CN102265305A - Image processing device, method and image display device - Google Patents
Image processing device, method and image display device Download PDFInfo
- Publication number
- CN102265305A CN102265305A CN2009801519588A CN200980151958A CN102265305A CN 102265305 A CN102265305 A CN 102265305A CN 2009801519588 A CN2009801519588 A CN 2009801519588A CN 200980151958 A CN200980151958 A CN 200980151958A CN 102265305 A CN102265305 A CN 102265305A
- Authority
- CN
- China
- Prior art keywords
- image
- intermediate image
- unit
- magnification
- pixel value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/14—Picture signal circuitry for video frequency region
- H04N5/20—Circuitry for controlling amplitude response
- H04N5/205—Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic
- H04N5/208—Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic for compensating for attenuation of high frequency components, e.g. crispening, aperture distortion correction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/20—Image enhancement or restoration using local operators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/73—Deblurring; Sharpening
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/64—Circuits for processing colour signals
- H04N9/68—Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20192—Edge enhancement; Edge preservation
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
- Facsimile Image Signal Circuits (AREA)
- Picture Signal Circuits (AREA)
Abstract
Description
技术领域 technical field
本发明涉及对输入图像进行增强处理的图像处理装置、方法以及使用该装置和方法的图像显示装置,例如在输入了将原图像放大后的放大图像作为输入图像时,通过进行高频分量的生成和相加,进行图像的增强处理以得到清晰感高的输出图像。The present invention relates to an image processing device and method for enhancing an input image, and an image display device using the same. For example, when an enlarged image obtained by enlarging an original image is input as an input image, by generating and added to perform image enhancement processing to obtain an output image with a high sense of clarity.
背景技术 Background technique
一般做法是,在对表示图像的图像信号适当施加了图像处理之后,对图像进行再现显示。Generally, an image is reproduced and displayed after appropriate image processing is applied to an image signal representing the image.
并且,在对彩色图像进行图像的增强处理的情况下,对亮度信号进行图像增强处理。Furthermore, when image enhancement processing is performed on a color image, image enhancement processing is performed on a luminance signal.
例如在专利文献1记载的图像处理装置中,针对变换成多重分辨率的细部图像,根据频带比期望频带低的细部图像的信号,设定针对该期望频带的细部图像的增强系数,从而增强了期望频带。For example, in the image processing device described in
而且在专利文献2记载的清晰度增强电路中具有第1增强电路和第2增强电路,第1增强电路针对输入的视频信号的亮度分量,以包含有该亮度分量的最高的高频分量的频带为中心进行增强,第2增强电路根据比第1增强电路低的中心频率增强视频信号的亮度分量。Furthermore, the sharpness enhancement circuit described in
现有技术文献prior art literature
专利文献patent documents
专利文献1:日本特开平9-44651号公报Patent Document 1: Japanese Patent Application Laid-Open No. 9-44651
专利文献2:日本特开2000-115582号公报Patent Document 2: Japanese Patent Laid-Open No. 2000-115582
发明内容 Contents of the invention
发明要解决的课题The problem to be solved by the invention
然而,在针对转换成多重分辨率的细部图像适当设定针对期望频带的细部图像的增强系数的图像处理装置中,有时,增强处理会由于输入图像而不适当或不充分,不能得到适当画质的输出图像。However, in an image processing device that appropriately sets an enhancement factor for a detailed image in a desired frequency band for a detailed image converted into multiple resolutions, the enhancement process may be inappropriate or insufficient depending on the input image, and appropriate image quality cannot be obtained. output image.
例如,在作为输入图像输入了受到放大处理后的图像的情况下,在输入图像的频谱的高频分量侧,出现放大处理前的图像的频谱的一部分叠加而成的分量(叠加分量)。因此,当单纯增强高频分量时,也增强了该叠加分量,从而成为不适当的处理。并且,当限定频带,仅增强不包含叠加分量的频带时,在用频谱加以考虑的情况下,避开了高频分量侧的增强,结果成为不充分的增强处理。For example, when an enlarged image is input as an input image, a part of the spectrum of the image before the enlargement is superimposed (superimposed component) appears on the high-frequency component side of the spectrum of the input image. Therefore, when the high-frequency component is simply enhanced, the superimposed component is also enhanced, which is inappropriate processing. Furthermore, when the frequency band is limited and only the frequency band not including the superimposed component is enhanced, the enhancement on the side of the high-frequency component is avoided in consideration of the frequency spectrum, resulting in insufficient enhancement processing.
并且,在作为输入图像输入了受到噪声处理后的图像的情况下,高频分量侧的频谱由于噪声处理而消失。因此,即使要取出高频分量,有时也不能取出,从而不能充分地进行图像的增强处理。Furthermore, when a noise-processed image is input as an input image, the frequency spectrum on the high-frequency component side disappears due to noise processing. Therefore, even if a high-frequency component is extracted, it may not be able to be extracted, and image enhancement processing cannot be performed sufficiently.
并且,在对输入的视频信号的亮度分量进行增强处理的情况下,有时,在有彩色的边缘附近颜色变白(或变淡),或者边缘附近变黑,或者在有彩色部分(彩度较高的部分)的边缘附近颜色浓淡发生变化。Also, when enhancing the luminance component of an input video signal, sometimes the color becomes white (or light) near the colored edge, or becomes black near the edge, or in the colored part (the chromaticity is relatively low). The color shade changes around the edge of the high part).
本发明的目的是提供这样的图像处理装置和方法:在输入图像在其频谱中在高频分量侧包含叠加分量的情况下和不充分包含高频分量的情况下,都能充分进行图像的增强处理。It is an object of the present invention to provide an image processing apparatus and method that can sufficiently enhance an image both when the input image contains superimposed components on the side of high-frequency components in its frequency spectrum and when the high-frequency components are not sufficiently included. deal with.
用于解决课题的手段means to solve the problem
本发明的图像处理装置具有:The image processing device of the present invention has:
第1中间图像生成单元,其生成取出输入图像的特定频带的分量而得到的第1中间图像;a first intermediate image generating unit that generates a first intermediate image obtained by extracting a component of a specific frequency band of an input image;
第2中间图像生成单元,其根据所述第1中间图像生成第2中间图像;a second intermediate image generation unit, which generates a second intermediate image based on the first intermediate image;
第1中间图像处理单元,其根据所述第1中间图像生成第3中间图像;a first intermediate image processing unit, which generates a third intermediate image based on the first intermediate image;
第2中间图像处理单元,其根据所述第2中间图像生成第4中间图像;以及a second intermediate image processing unit that generates a fourth intermediate image based on the second intermediate image; and
加法单元,其将所述输入图像、所述第3中间图像以及所述第4中间图像相加,an adding unit that adds the input image, the third intermediate image, and the fourth intermediate image,
其特征在于,It is characterized in that,
所述第1中间图像处理单元使用根据所述输入图像的像素值求出的第1放大率放大所述第1中间图像的像素值,或者,The first intermediate image processing unit amplifies the pixel values of the first intermediate image using a first magnification factor obtained from the pixel values of the input image, or,
所述第2中间图像处理单元使用根据所述输入图像的像素值求出的第2放大率放大所述第2中间图像的像素值。The second intermediate image processing unit amplifies the pixel values of the second intermediate image using a second magnification factor obtained from the pixel values of the input image.
发明的效果The effect of the invention
根据本发明,在输入图像在其频谱中在高频分量侧包含叠加分量的情况下和不充分包含高频分量的情况下,都能在防止过冲发生的同时,充分进行图像的增强处理。According to the present invention, both when the input image contains superimposed components on the high-frequency component side in its frequency spectrum and when the high-frequency components do not sufficiently contain high-frequency components, image enhancement processing can be sufficiently performed while preventing overshoot from occurring.
附图说明 Description of drawings
图1是示出本发明的实施方式1的图像处理装置的结构的框图。FIG. 1 is a block diagram showing the configuration of an image processing device according to
图2是示出图1的第1中间图像生成单元1的结构例的框图。FIG. 2 is a block diagram showing a configuration example of the first intermediate
图3是示出图1的第2中间图像生成单元2的结构例的框图。FIG. 3 is a block diagram showing a configuration example of the second intermediate
图4是示出图1的第1中间图像处理单元3M的结构例的框图。FIG. 4 is a block diagram showing a configuration example of the first intermediate image processing unit 3M in FIG. 1 .
图5是示出图1的第2中间图像处理单元3H的结构例的框图。FIG. 5 is a block diagram showing a configuration example of the second intermediate image processing unit 3H in FIG. 1 .
图6是示出图3的水平方向非线性处理单元2Ah的结构例的框图。FIG. 6 is a block diagram showing a configuration example of the horizontal non-linear processing unit 2Ah in FIG. 3 .
图7是示出图3的垂直方向非线性处理单元2Av的结构例的框图。FIG. 7 is a block diagram showing a configuration example of the vertical nonlinear processing unit 2Av in FIG. 3 .
图8的(A)~(C)是示出输入图像DIN以及图像D1h、D1v的像素配置的图。(A) to (C) of FIG. 8 are diagrams showing pixel arrangements of the input image DIN and the images D1h and D1v.
图9是示出使用实施方式1的图像处理装置的图像显示装置的结构例的框图。9 is a block diagram showing a configuration example of an image display device using the image processing device according to
图10是示出图9的图像放大单元U1的结构例的框图。FIG. 10 is a block diagram showing a configuration example of the image enlarging unit U1 of FIG. 9 .
图11的(A)~(E)是示出图10的图像放大单元U1的动作的像素配置图。(A) to (E) of FIG. 11 are pixel arrangement diagrams showing the operation of the image enlarging unit U1 of FIG. 10 .
图12的(A)~(D)是示出用于说明图10的图像放大单元U1的动作的频率响应和频谱的图。(A) to (D) of FIG. 12 are diagrams showing a frequency response and a frequency spectrum for explaining the operation of the image enlarging unit U1 of FIG. 10 .
图13的(A)~(E)是示出用于说明图1的第1中间图像生成单元1的动作的频率响应和频谱的图。(A) to (E) of FIG. 13 are diagrams showing a frequency response and a frequency spectrum for explaining the operation of the first intermediate
图14的(A)~(C)是示出用于说明图1的第2中间图像生成单元2的动作的频率响应和频谱的图。(A) to (C) of FIG. 14 are diagrams showing a frequency response and a frequency spectrum for explaining the operation of the second intermediate
图15的(A)~(C)是示出阶跃边缘和利用采样间隔S1对阶跃边缘进行采样时得到的相连续的像素信号值的图。(A) to (C) of FIG. 15 are diagrams showing a step edge and consecutive pixel signal values obtained when the step edge is sampled at the sampling interval S1.
图16的(A)~(C)是示出阶跃边缘和利用采样间隔S2对阶跃边缘进行采样时得到的相连续的像素信号值的图。(A) to (C) of FIG. 16 are diagrams showing a step edge and continuous pixel signal values obtained when the step edge is sampled at the sampling interval S2.
图17的(A)~(F)是示出用于说明图1的第1中间图像生成单元1和第2中间图像生成单元2的动作的、相连续的像素信号值的图。(A) to (F) of FIG. 17 are diagrams showing consecutive pixel signal values for explaining the operations of the first intermediate
图18的(A)和(B)是示出在通过适度进行高频分量的相加而增加了图像清晰感的情况下、以及在过度进行了高频分量的相加的结果是招致了画质下降的情况下的相连续的像素信号值的图。(A) and (B) of FIG. 18 show that in the case where image sharpness is increased by adding high-frequency components moderately, and when high-frequency component addition is excessively performed, a picture is caused. A graph of consecutive pixel signal values in the case of quality degradation.
图19是示出输入图像DIN的像素值与第1中间图像处理单元3M和第2中间图像处理单元3H中的放大率的关系的图。FIG. 19 is a diagram showing the relationship between the pixel value of the input image DIN and the magnification ratio in the first intermediate image processing unit 3M and the second intermediate image processing unit 3H.
图20是示出本发明的实施方式2的图像处理装置的结构的框图。20 is a block diagram showing the configuration of an image processing device according to
图21是示出图20的第1中间图像处理单元103M的结构例的框图。FIG. 21 is a block diagram showing a configuration example of the first intermediate image processing unit 103M in FIG. 20 .
图22是示出图20的第2中间图像处理单元103H的结构例的框图。FIG. 22 is a block diagram showing a configuration example of the second intermediate image processing unit 103H in FIG. 20 .
图23是示出图21的水平方向放大率决定单元103MAh的结构例的框图。FIG. 23 is a block diagram showing a configuration example of the horizontal magnification determining unit 103MAh in FIG. 21 .
图24是示出图21的垂直方向放大率决定单元103MAv的结构例的框图。FIG. 24 is a block diagram showing a configuration example of vertical magnification determining unit 103MAv in FIG. 21 .
图25的(A)和(B)是示出输入图像DIN的像素值与第1中间图像处理单元103M和第2中间图像处理单元103H中的放大率的关系的图。(A) and (B) of FIG. 25 are diagrams showing the relationship between the pixel value of the input image DIN and the magnification ratio in the first intermediate image processing section 103M and the second intermediate image processing section 103H.
图26是示出图21的水平方向放大率决定单元103MAh的另一结构例的框图。FIG. 26 is a block diagram showing another configuration example of the horizontal magnification determining unit 103MAh in FIG. 21 .
图27是示出本发明的实施方式3的图像处理装置的结构的框图。FIG. 27 is a block diagram showing the configuration of an image processing device according to
图28是示出图27的第1中间图像处理单元203M的结构例的框图。FIG. 28 is a block diagram showing a configuration example of the first intermediate
图29是示出图27的第2中间图像处理单元203H的结构例的框图。FIG. 29 is a block diagram showing a configuration example of the second intermediate
图30的(A)~(C)是示出亮度色差相加图像YC、图像D1h和图像D1v的像素配置的图。(A) to (C) of FIG. 30 are diagrams showing pixel arrangements of the luminance and color difference addition image YC, image D1h, and image D1v.
图31是示出使用实施方式3的图像处理装置的图像显示装置的结构例的框图。31 is a block diagram showing a configuration example of an image display device using the image processing device according to
图32的(A)~(E)是示出用于说明第1中间图像生成单元201的动作的频率响应和频谱的图。(A) to (E) of FIG. 32 are diagrams showing a frequency response and a frequency spectrum for explaining the operation of first intermediate
图33是示出亮度色差相加图像YC的像素值与第1中间图像处理单元203M和第2中间图像处理单元203H中的放大率的关系的图。FIG. 33 is a diagram showing the relationship between the pixel values of the luminance and color difference added image YC and the magnification ratios in the first intermediate
图34是示出本发明的实施方式4的图像处理装置的结构的框图。34 is a block diagram showing the configuration of an image processing device according to
图35是示出图34的第1中间图像处理单元303M的结构例的框图。FIG. 35 is a block diagram showing a configuration example of the first intermediate
图36是示出图34的第2中间图像处理单元303H的结构例的框图。FIG. 36 is a block diagram showing a configuration example of the second intermediate
图37的(A)~(E)是示出亮度色差相加图像YC、图像D1h和图像D1v的像素配置以及表示各像素的符号的信息的配置的图。(A) to (E) of FIG. 37 are diagrams showing the pixel arrangement of the luminance-color-difference added image YC, the image D1h, and the image D1v and the arrangement of information indicating the sign of each pixel.
图38的(A)和(B)是示出亮度色差相加图像YC的像素值与第1中间图像处理单元303M和第2中间图像处理单元303H中的放大率的关系的图。(A) and (B) of FIG. 38 are diagrams showing the relationship between the pixel values of the luminance and color difference added image YC and the magnification ratios in the first intermediate
图39是示出本发明的实施方式5的图像处理装置的结构的框图。39 is a block diagram showing the configuration of an image processing device according to Embodiment 5 of the present invention.
图40是示出图39的色差增减单元405的结构例的框图。FIG. 40 is a block diagram showing a configuration example of the color difference increase/
图41的(A)~(C)是示出高频分量相加图像D404、输入CR图像CRIN和输入CB图像CBIN的像素配置的图。(A) to (C) of FIG. 41 are diagrams showing pixel arrangements of the high-frequency component addition image D404 , the input CR image CRIN , and the input CB image CBIN.
图42是表示高频分量相加图像D404的像素值L与由放大率决定单元405A决定的放大率GAIN的关系的一例的图。FIG. 42 is a diagram showing an example of the relationship between the pixel value L of the high-frequency component added image D404 and the magnification factor GAIN determined by the magnification
图43是表示高频分量相加图像D404的像素值L与由放大率决定单元405A决定的放大率GAIN的关系的另一例的图。FIG. 43 is a diagram showing another example of the relationship between the pixel value L of the high-frequency component added image D404 and the magnification factor GAIN determined by the magnification
图44是示出本发明的实施方式6的图像处理装置的结构的框图。44 is a block diagram showing the configuration of an image processing device according to Embodiment 6 of the present invention.
图45是示出实施方式6的图像处理方法中的处理过程的流程图。FIG. 45 is a flowchart showing a processing procedure in the image processing method according to the sixth embodiment.
图46是示出图45的第1中间图像生成步骤ST1中的处理的流程图。FIG. 46 is a flowchart showing processing in the first intermediate image generating step ST1 in FIG. 45 .
图47是示出图45的第2中间图像生成步骤ST2中的处理的流程图。FIG. 47 is a flowchart showing processing in the second intermediate image generating step ST2 in FIG. 45 .
图48是示出图47的水平方向非线性处理步骤ST2Ah中的处理的流程图。FIG. 48 is a flowchart showing processing in the horizontal non-linear processing step ST2Ah of FIG. 47 .
图49是示出图47的垂直方向非线性处理步骤ST2Av中的处理的流程图。FIG. 49 is a flowchart showing processing in the vertical non-linear processing step ST2Av of FIG. 47 .
图50是示出图45的第1中间图像处理步骤ST3M中的处理的流程图。FIG. 50 is a flowchart showing processing in the first intermediate image processing step ST3M in FIG. 45 .
图51是示出图45的第2中间图像处理步骤ST3H中的处理的流程图。FIG. 51 is a flowchart showing processing in the second intermediate image processing step ST3H in FIG. 45 .
图52是示出本发明的实施方式7中的处理过程的流程图。FIG. 52 is a flowchart showing a processing procedure in Embodiment 7 of the present invention.
图53是示出图52的第1中间图像处理步骤ST103M中的处理的流程图。FIG. 53 is a flowchart showing processing in the first intermediate image processing step ST103M in FIG. 52 .
图54是示出图52的第2中间图像处理步骤ST103H中的处理的流程图。FIG. 54 is a flowchart showing processing in the second intermediate image processing step ST103H in FIG. 52 .
图55是示出图53的水平方向放大率决定步骤ST103MAh中的处理的流程图。FIG. 55 is a flowchart showing processing in the horizontal magnification factor determination step ST103MAh in FIG. 53 .
图56是示出图53的垂直方向放大率决定步骤ST103MAv中的处理的流程图。FIG. 56 is a flowchart showing processing in the vertical magnification determining step ST103MAv in FIG. 53 .
图57是示出本发明的实施方式8的图像处理方法中的处理过程的流程图。FIG. 57 is a flowchart showing a processing procedure in an image processing method according to Embodiment 8 of the present invention.
图58是示出图57的第1中间图像处理步骤ST203M中的处理的流程图。FIG. 58 is a flowchart showing processing in the first intermediate image processing step ST203M in FIG. 57 .
图59是示出图57的第2中间图像处理步骤ST203H中的处理的流程图。FIG. 59 is a flowchart showing processing in the second intermediate image processing step ST203H in FIG. 57 .
图60是示出本发明的实施方式9的图像处理装置中的处理过程的流程图。FIG. 60 is a flowchart showing a processing procedure in the image processing device according to Embodiment 9 of the present invention.
图61是示出图60的第1中间图像处理步骤ST303M中的处理的流程图。FIG. 61 is a flowchart showing processing in the first intermediate image processing step ST303M in FIG. 60 .
图62是示出图60的第2中间图像处理步骤ST303H中的处理的流程图。FIG. 62 is a flowchart showing processing in the second intermediate image processing step ST303H in FIG. 60 .
图63是示出本发明的实施方式10的图像处理方法中的处理过程的流程图。FIG. 63 is a flowchart showing a processing procedure in the image processing method according to Embodiment 10 of the present invention.
图64是示出图63的放大率决定步骤ST405中的处理的流程图。FIG. 64 is a flowchart showing processing in the magnification factor determining step ST405 of FIG. 63 .
具体实施方式 Detailed ways
以下说明的本发明的实施方式的图像处理装置可用作例如图像显示装置的一部分。The image processing device according to the embodiment of the present invention described below can be used, for example, as a part of an image display device.
实施方式1
图1是示出本发明的实施方式1的图像处理装置的结构例的图。FIG. 1 is a diagram showing a configuration example of an image processing device according to
图示的图像处理装置具有第1中间图像生成单元1、第2中间图像生成单元2、第1中间图像处理单元3M、第2中间图像处理单元3H以及加法单元4。The illustrated image processing device includes a first intermediate
第1中间图像生成单元1生成从输入图像DIN取出特定频带分量(即从第1频率(第1预定频率)到第2频率(第2预定频率)的分量)而得到的中间图像(第1中间图像)D1。The first intermediate
第2中间图像生成单元2生成对中间图像D1进行了后述处理而得到的中间图像(第2中间图像)D2。The second intermediate
第1中间图像处理单元3M生成对中间图像D1进行了后述处理而得到的中间图像(第3中间图像)D2M。The first intermediate image processing unit 3M generates an intermediate image (third intermediate image) D2M obtained by processing the intermediate image D1 to be described later.
第2中间图像处理单元3H生成对中间图像D2进行了后述处理而得到的中间图像(第4中间图像)D3H。The second intermediate image processing unit 3H generates an intermediate image (fourth intermediate image) D3H obtained by processing the intermediate image D2 to be described later.
加法单元4将输入图像DIN、中间图像D3M以及中间图像D3H相加。加法单元4的相加后得到的图像作为最终的输出图像DOUT被输出。The adding
图2是示出第1中间图像生成单元1的结构例的图,图示的第1中间图像生成单元1具有:高频分量图像生成单元1A,其生成从输入图像DIN仅取出第1频率以上的高频分量而得到的图像D1A;以及低频分量图像生成单元1B,其生成仅取出图像D1A的第2频率以下的低频分量而得到的图像D1B。由高频分量图像生成单元1A和低频分量图像生成单元1B构成取出特定频带分量的带通滤波器单元。从第1中间图像生成单元1输出图像D1B作为中间图像D1。FIG. 2 is a diagram showing a configuration example of the first intermediate
图3是示出第2中间图像生成单元2的结构例的图,图示的第2中间图像生成单元2具有:非线性处理单元2A,其输出对中间图像D1进行了后述的非线性处理而得到的图像D2A;以及高频分量图像生成单元2B,其输出仅取出图像D2A的第3频率(第3预定频率)以上的高频分量而得到的图像D2B。从第2中间图像生成单元2输出图像D2B作为中间图像D2。FIG. 3 is a diagram showing a configuration example of the second intermediate
图4是示出第1中间图像处理单元3M的结构例的图,图示的第1中间图像处理单元3M具有放大率决定单元3MA和像素值放大单元3MB。放大率决定单元3MA根据输入图像DIN的像素值决定放大率D3MA。像素值放大单元3MB使用由放大率决定单元3MA决定的放大率D3MA放大中间图像D1的像素值,并输出其结果作为中间图像D3MB。从第1中间图像处理单元3M输出中间图像D3MB作为中间图像D3M。FIG. 4 is a diagram showing a configuration example of the first intermediate image processing unit 3M, and the illustrated first intermediate image processing unit 3M includes a magnification factor determining unit 3MA and a pixel value amplifying unit 3MB. The magnification factor determination unit 3MA determines the magnification factor D3MA based on the pixel values of the input image DIN. Pixel value enlarging means 3MB amplifies the pixel values of intermediate image D1 using enlarging factor D3MA determined by enlarging factor determining means 3MA, and outputs the result as intermediate image D3MB. The intermediate image D3MB is output from the first intermediate image processing unit 3M as an intermediate image D3M.
放大率决定单元3MA具有水平方向放大率决定单元3MAh和垂直方向放大率决定单元3MAv,像素值放大单元3MB具有水平方向像素值放大单元3MBh和垂直方向像素值放大单元3MBv。由水平方向放大率决定单元3MAh和水平方向像素值放大单元3MBh构成第1水平方向中间图像处理单元3Mh,由垂直方向放大率决定单元3MAv和垂直方向像素值放大单元3MBv构成第1垂直方向中间图像处理单元3Mv。The magnification determination unit 3MA has a horizontal magnification determination unit 3MAh and a vertical magnification determination unit 3MAv, and the pixel value amplifying unit 3MB has a horizontal pixel value amplifying unit 3MBh and a vertical pixel value amplifying unit 3MBv. A first horizontal intermediate image processing unit 3Mh is formed by the horizontal magnification determining unit 3MAh and a horizontal pixel value amplifying unit 3MBh, and a first vertical intermediate image is formed by the vertical magnifying factor determining unit 3MAv and the vertical pixel value amplifying unit 3MBv. Processing unit 3Mv.
图5是示出第2中间图像后处理单元3H的结构例的图,图示的第2中间图像后处理单元3H具有放大率决定单元3HA和像素值放大单元3HB。放大率决定单元3HA根据输入图像DIN的像素值决定放大率D3HA。像素值放大单元3HB使用由放大率决定单元3HA决定的放大率D3HA放大中间图像D2的像素值,并输出其结果作为中间图像D3HB。从第1中间图像后处理单元3H输出中间图像D3HB作为中间图像D3H。FIG. 5 is a diagram showing a configuration example of the second intermediate image post-processing unit 3H, and the illustrated second intermediate image post-processing unit 3H includes a magnification factor determining unit 3HA and a pixel value magnifying unit 3HB. The magnification factor determining unit 3HA determines the magnification factor D3HA based on the pixel value of the input image DIN. Pixel value enlarging means 3HB amplifies the pixel values of intermediate image D2 using enlarging factor D3HA determined by enlarging factor determining means 3HA, and outputs the result as intermediate image D3HB. The intermediate image D3HB is output from the first intermediate image post-processing unit 3H as an intermediate image D3H.
放大率决定单元3HA具有水平方向放大率决定单元3HAh和垂直方向放大率决定单元3HAv,像素值放大单元3HB具有水平方向像素值放大单元3HBh和垂直方向像素值放大单元3HBv。由水平方向放大率决定单元3HAh和水平方向像素值放大单元3HBh构成第2水平方向中间图像处理单元3Hh,由垂直方向放大率决定单元3HAv和垂直方向像素值放大单元3HBv构成第2垂直方向中间图像处理单元3Hv。The magnification factor determining unit 3HA has a horizontal magnification factor determining unit 3HAh and a vertical magnification factor determining unit 3HAv, and the pixel value enlarging unit 3HB has a horizontal pixel value enlarging unit 3HBh and a vertical pixel value enlarging unit 3HBv. A second horizontal intermediate image processing unit 3Hh is formed by the horizontal magnification determining unit 3HAh and the horizontal pixel value enlarging unit 3HBh, and a second vertical intermediate image is formed by the vertical enlarging factor determining unit 3HAv and the vertical pixel value enlarging unit 3HBv Handling unit 3Hv.
加法单元4将中间图像D3M和中间图像D3H与输入图像DIN相加,生成最终的输出图像DOUT。The adding
以下,对实施方式1的图像处理装置的详细动作进行说明。Hereinafter, detailed operations of the image processing device according to
首先,说明第1中间图像生成单元1的详细动作。First, the detailed operation of the first intermediate
第1中间图像生成单元1在高频分量图像生成单元1A中,生成仅取出输入图像DIN的第1频率以上的高频分量而得到的图像D1A。能通过进行高通滤波处理来取出高频分量。高频分量的取出是分别针对图像的水平方向和垂直方向进行的。即,高频分量图像生成单元1A具有:水平方向高频分量图像生成单元1Ah,其对输入图像DIN进行水平方向的高通滤波处理,生成仅针对水平方向取出第1水平方向频率以上的高频分量而得到的图像D1Ah;以及垂直方向高频分量图像生成单元1Av,其进行垂直方向的高通滤波处理,生成仅针对垂直方向取出第1垂直方向频率以上的高频分量而得到的图像D1Av,图像D1A由图像D1Ah和图像D1Av构成。The first intermediate
然后,第1中间图像生成单元1在低频分量图像生成单元1B中,生成仅取出图像D1A的第2频率以下的低频分量而得到的图像D1B。能通过进行低通滤波处理来取出低频分量。低频分量的取出是分别针对水平方向和垂直方向进行的。即,低频分量图像生成单元1B具有:水平方向低频分量图像生成单元1B,其对图像D1Ah进行水平方向的低通滤波处理,生成仅针对水平方向取出第2水平方向频率以下的低频分量而得到的图像D1Bh;以及垂直方向低频分量图像生成单元1Bv,其对图像D1Av进行垂直方向的低通滤波处理,生成仅针对垂直方向取出第2垂直方向频率以下的低频分量而得到的图像D1Bv,图像D1B由图像D1Bh和图像D1Bv构成。从第1中间图像生成单元1输出图像D1B作为中间图像D1。另外,中间图像D1由与图像D1Bh相当的图像D1h、以及与图像D1Bv相当的图像D1v构成。Then, the first intermediate
然后,对第2中间图像生成单元2的详细动作进行说明。Next, the detailed operation of the second intermediate
首先,第2中间图像生成单元2在非线性处理单元2A中,生成对中间图像D1进行了后述的非线性处理而得到的图像D2A。非线性处理是分别针对水平方向和垂直方向进行的。即,非线性处理单元2A具有:水平方向非线性处理单元2Ah,其对图像D1h进行后述的非线性处理来生成图像D2Ah;以及垂直方向非线性处理单元2Av,其对图像D1v进行后述的非线性处理来生成图像D2Av,图像D2A由图像D2Ah和图像D2Av构成。First, the second intermediate
更详细地说明非线性处理单元2A的动作。非线性处理单元2A具有结构彼此相同的水平方向非线性处理单元2Ah和垂直方向非线性处理单元2Av。水平方向非线性处理单元2Ah进行水平方向的处理,垂直方向非线性处理单元2Av进行垂直方向的处理。The operation of the nonlinear processing unit 2A will be described in more detail. The non-linear processing unit 2A has a horizontal non-linear processing unit 2Ah and a vertical non-linear processing unit 2Av having the same configuration as each other. The horizontal non-linear processing unit 2Ah performs horizontal processing, and the vertical non-linear processing unit 2Av performs vertical processing.
图6是示出水平方向非线性处理单元2Ah的结构例的图。图示的水平方向非线性处理单元2Ah具有过零判定单元311h和信号放大单元312h。向非线性处理单元2Ah输入图像D1h作为输入图像DIN311h。FIG. 6 is a diagram showing a configuration example of the horizontal non-linear processing unit 2Ah. The illustrated horizontal non-linear processing unit 2Ah has a zero-crossing determination unit 311h and a signal amplification unit 312h. The image D1h is input to the nonlinear processing unit 2Ah as the input image DIN311h.
过零判定单元311h沿着水平方向确认输入图像DIN311h中的像素值的变化。然后,捕捉像素值从正值变化为负值或从负值变化为正值的部位作为过零点,通过信号D311h向信号放大单元312h传达位于过零点前后的像素(前后相邻的像素)的位置。在此,“前后”是指提供信号的顺序中的前后,在水平方向从左向右提供像素信号时是指“左右”,在垂直方向从上向下提供像素信号时是指“上下”。在水平方向非线性处理单元2Ah内的过零判定单元311h中,将位于过零点左右的像素识别为位于过零点前后的像素。The zero-cross determination unit 311h confirms changes in pixel values in the input image DIN311h in the horizontal direction. Then, the position where the pixel value changes from positive to negative or from negative to positive is captured as a zero-crossing point, and the position of the pixels before and after the zero-crossing point (adjacent pixels) is conveyed to the signal amplifying unit 312h through the signal D311h . Here, "front and rear" means front and rear in the order of signal supply, "left and right" when pixel signals are supplied from left to right in the horizontal direction, and "up and down" when pixel signals are supplied from top to bottom in the vertical direction. In the zero cross determination unit 311h in the horizontal non-linear processing unit 2Ah, pixels located around the zero cross point are recognized as pixels located before and after the zero cross point.
信号放大单元312h根据信号D311h确定位于过零点前后的像素(前后相邻的像素),生成仅针对位于过零点前后的像素放大其像素值(增大绝对值)后的非线性处理图像D312h。即,针对位于过零点前后的像素的像素值,设放大率为大于1的值,设针对除此之外的像素的像素值的放大率为1。The signal amplifying unit 312h determines the pixels located before and after the zero crossing point (adjacent pixels) according to the signal D311h, and generates a non-linearly processed image D312h after only amplifying the pixel values (increasing the absolute value) of the pixels located before and after the zero crossing point. That is, the magnification factor is set to a value greater than 1 for the pixel values of pixels located before and after the zero cross point, and the magnification factor is set to 1 for the pixel values of other pixels.
从水平方向非线性处理单元2Ah输出非线性处理图像D312h作为图像D2Ah。The non-linearly processed image D312h is output from the horizontal direction non-linear processing unit 2Ah as the image D2Ah.
图7是示出垂直方向非线性处理单元2Av的结构例的图。图示的垂直方向非线性处理单元2Av具有过零判定单元311v和信号放大单元312v。向非线性处理单元2Av输入图像D1v作为输入图像DIN311v。FIG. 7 is a diagram showing a configuration example of the vertical nonlinear processing unit 2Av. The illustrated vertical non-linear processing unit 2Av has a zero-
过零判定单元311v沿着垂直方向确认输入图像DIN311v中的像素值的变化。然后,捕捉像素值从正值变化为负值或从负值变化为正值的部位作为过零点,通过信号D311v向信号放大单元312v传达位于过零点前后的像素(前后相邻的像素)的位置。在垂直方向非线性处理单元2Av内的过零判定单元311v中,将位于过零点上下的像素识别为位于过零点前后的像素。The zero-
信号放大单元312v根据信号D311v确定位于过零点前后的像素(前后相邻的像素),生成仅针对位于过零点前后的像素放大其像素值(增大绝对值)后的非线性处理图像D312v。即,针对位于过零点前后的像素的像素值,设放大率为大于1的值,设针对除此之外的像素的像素值的放大率为1。The
以上是非线性处理单元2A的动作。The above is the operation of the nonlinear processing unit 2A.
然后,第2中间图像生成单元2在高频分量图像生成单元2B中,生成仅取出图像D2A的第3频率以上的高频分量而得到的图像D2B。能够通过进行高通滤波处理来取出高频分量。分别针对图像的水平方向和垂直方向进行高频分量的取出。即,高频分量图像生成单元2B具有:水平方向高频分量图像生成单元2Bh,其对图像D2Ah进行水平方向的高通滤波处理来生成仅针对水平方向取出第3水平方向频率以上的高频分量而得到的图像D2Bh;以及垂直方向高频分量图像生成单元2Bv,其针对图像D2Av进行垂直方向的高通滤波处理来生成仅针对垂直方向取出第3垂直方向频率以上的高频分量而得到的图像D2Bv,图像D2B由图像D2Bh和图像D2Bv构成。从第2中间图像生成单元2输出图像D2B作为中间图像D2。中间图像D2由与图像D2Bh相当的图像D2h、以及与图像D2Bv相当的图像D2v构成。Then, the second intermediate
然后,说明第1中间图像处理单元3M的详细动作。Next, detailed operations of the first intermediate image processing unit 3M will be described.
第1中间图像处理单元3M在放大率决定单元3MA中根据输入图像DIN的像素值决定放大率D3MA。如前所述,根据放大率D3MA放大第1中间图像D1的像素值,然而由于第1中间图像D1由图像D1h和图像D1v构成,因而作为放大率D3MA,决定针对图像D1h的放大率D3MAh和针对图像D1v的放大率D3MAv。即,放大率决定单元3MA具有水平方向放大率决定单元3MAh和垂直方向放大率决定单元3MAv,在水平方向放大率决定单元3MAh中,根据输入图像DIN的像素值决定放大率D3MAh,在垂直方向放大率决定单元3MAv中,根据输入图像DIN的像素值决定放大率D3MAv,从放大率决定单元3MA输出放大率D3MAh和放大率D3MAv作为放大率D3MA。In the first intermediate image processing unit 3M, the magnification factor D3MA is determined by the magnification factor determining unit 3MA based on the pixel values of the input image DIN. As described above, the pixel values of the first intermediate image D1 are amplified according to the magnification factor D3MA. However, since the first intermediate image D1 is composed of the image D1h and the image D1v, the magnification factor D3MAh for the image D1h and the magnification factor for the image D3MA are determined as the magnification factor D3MA. Magnification D3MAv of image D1v. That is, the magnification factor determining unit 3MA has a horizontal magnification factor determining unit 3MAh and a vertical magnification factor determining unit 3MAv. In the horizontal magnification factor determining unit 3MAh, the magnification factor D3MAh is determined based on the pixel value of the input image DIN, and the magnification rate in the vertical direction is enlarged. In the ratio determination unit 3MAv, the amplification ratio D3MAv is determined based on the pixel value of the input image DIN, and the amplification ratio D3MAh and the amplification ratio D3MAv are output from the amplification ratio determination unit 3MA as the amplification ratio D3MA.
更详细说明水平方向放大率决定单元3MAh和垂直方向放大率决定单元3MAv的动作。The operations of the horizontal magnification determining unit 3MAh and the vertical magnifying factor 3MAv will be described in more detail.
图8的(A)~(C)是表示输入图像DIN以及图像D1h、D1v的图,图8的(A)表示输入图像DIN,图8的(B)表示图像D1h,图8的(C)表示图像D1v。并且,在图8的(A)~(C)中,针对图像的水平方向和垂直方向表示水平坐标、垂直坐标和各坐标值。并且,针对输入图像DIN,在水平坐标x、垂直坐标y的位置上的像素的像素值由DIN(xy)这样的记号表示,针对图像D1h,在水平坐标x、垂直坐标y的位置上的像素的像素值由D1h(xy)这样的记号表示,针对图像D1v,在水平坐标x、垂直坐标y的位置上的像素的像素值由D1v(xy)这样的记号表示。(A) to (C) of FIG. 8 are diagrams showing the input image DIN and images D1h and D1v. FIG. 8(A) shows the input image DIN, FIG. 8(B) shows the image D1h, and FIG. 8(C) Denotes image D1v. In addition, in (A) to (C) of FIG. 8 , horizontal coordinates, vertical coordinates, and respective coordinate values are shown for the horizontal direction and the vertical direction of the image. In addition, for the input image DIN, the pixel value of the pixel at the position of the horizontal coordinate x and the vertical coordinate y is represented by a symbol such as DIN(xy), and for the image D1h, the pixel value of the pixel at the position of the horizontal coordinate x and the vertical coordinate y The pixel value of the image D1h (xy) is represented by the symbol D1h (xy), and the pixel value of the pixel at the position of the horizontal coordinate x and the vertical coordinate y for the image D1v is represented by the symbol D1v (xy).
水平方向放大率决定单元3MAh根据输入图像DIN的相同坐标的像素值决定针对图像D1h的各像素的放大率。即,根据像素值DIN(11)决定针对像素值D1h(11)的放大率,根据像素值DIN(12)决定针对像素值D1h(12)的放大率,一般来说,如根据像素值DIN(xy)决定针对像素值D1h(xy)的放大率那样,根据输入图像DIN的相同坐标的像素值决定放大率,输出其结果作为放大率D3MAh。The horizontal magnification determining means 3MAh determines the magnification of each pixel of the image D1h based on the pixel values at the same coordinates of the input image DIN. That is, the magnification factor for the pixel value D1h(11) is determined according to the pixel value DIN(11), and the magnification factor for the pixel value D1h(12) is determined according to the pixel value DIN(12). Generally, for example, according to the pixel value DIN( xy) determines the magnification factor for the pixel value D1h(xy), the magnification factor is determined from the pixel value at the same coordinates of the input image DIN, and the result is output as the magnification factor D3MAh.
并且,垂直方向放大率决定单元3MAv根据输入图像DIN的相同坐标的像素值决定针对图像D1v的各像素的放大率。即,根据像素值DIN(11)决定针对像素值D1v(11)的放大率,根据像素值DIN(12)决定针对像素值D1v(12)的放大率,一般来说,如根据像素值DIN(xy)决定针对像素值D1v(xy)的放大率那样,根据输入图像DIN的相同坐标的像素值决定放大率,输出其结果作为放大率D3MAv。Further, the vertical magnification determining means 3MAv determines the magnification of each pixel of the image D1v based on the pixel values of the same coordinates of the input image DIN. That is, the magnification factor for the pixel value D1v(11) is determined according to the pixel value DIN(11), and the magnification factor for the pixel value D1v(12) is determined according to the pixel value DIN(12). Generally, for example, according to the pixel value DIN( xy) determines the magnification factor for the pixel value D1v(xy), the magnification factor is determined from the pixel value at the same coordinates of the input image DIN, and the result is output as the magnification factor D3MAv.
然后,像素值放大单元3MB根据放大率D3MA放大第1中间图像D1的像素值。由于第1中间图像D1由图像D1h和图像D1v构成,因而像素值放大单元3MB具有:用于放大图像D1h的像素值的水平方向像素值放大单元3MBh;以及用于放大图像D1v的像素值的垂直方向像素值放大单元3MBv。Then, the pixel value enlarging means 3MB amplifies the pixel values of the first intermediate image D1 according to the enlarging factor D3MA. Since the first intermediate image D1 is composed of an image D1h and an image D1v, the pixel value enlarging unit 3MB has: a horizontal pixel value enlarging unit 3MBh for enlarging the pixel value of the image D1h; and a vertical enlarging unit 3MBh for enlarging the pixel value of the image D1v. Directional pixel value amplification unit 3MBv.
即,水平方向像素值放大单元3MBh输出根据放大率D3MAh放大图像D1h的像素值后的图像D3MBh,垂直方向像素值放大单元3MBv输出根据放大率D3MAv放大图像D1v的像素值后的图像D3MBv。然后,从像素值放大单元3MB输出图像D3MBh和图像D3MBv作为图像D3MB。That is, the horizontal pixel value enlarging unit 3MBh outputs an image D3MBh in which the pixel values of the image D1h are enlarged by the magnification factor D3MAh, and the vertical pixel value enlarging unit 3MBv outputs an image D3MBv in which the pixel values of the image D1v are amplified by the magnification factor D3MAv. Then, image D3MBh and image D3MBv are output from pixel value enlarging unit 3MB as image D3MB.
从第1中间图像处理单元3M输出图像D3MB作为中间图像D3M。中间图像D3M由与图像D3MBh相当的图像D3Mh和与图像D3MBv相当的图像D3Mv构成。Image D3MB is output from first intermediate image processing unit 3M as intermediate image D3M. Intermediate image D3M is composed of image D3Mh equivalent to image D3MBh and image D3Mv equivalent to image D3MBv.
以上是第1中间图像处理单元3M的动作。The above is the operation of the first intermediate image processing unit 3M.
然后,说明第2中间图像处理单元3H的动作。将图4和图5进行比较,第2中间图像处理单元除了输入信号为输入图像DIN和中间图像D2以外,结构与第1中间图像处理单元相同,第2中间图像处理单元3H输出对中间图像D2进行了与第1中间图像处理单元3M对中间图像D1进行的处理相同的处理而得到的中间图像D3H。另外,从上述第1中间图像处理单元3M的详细动作说明中也明白了第2中间图像处理单元3H的详细动作,因而省略第2中间图像处理单元3H的详细动作说明。Next, the operation of the second intermediate image processing unit 3H will be described. Comparing Fig. 4 with Fig. 5, the second intermediate image processing unit has the same structure as the first intermediate image processing unit except that the input signal is the input image DIN and intermediate image D2, and the second intermediate image processing unit 3H outputs a pair of intermediate image D2 Intermediate image D3H obtained by performing the same processing as that performed on intermediate image D1 by first intermediate image processing unit 3M. Since the detailed operation of the second intermediate image processing unit 3H is also clear from the detailed operation description of the first intermediate image processing unit 3M, the detailed operation description of the second intermediate image processing unit 3H is omitted.
最后说明加法单元4的动作。加法单元4生成将输入图像DIN、中间图像D3M和中间图像D3H相加而得到的输出图像DOUT。加法单元4的输出图像DOUT作为最终的输出图像从图像处理装置输出。Finally, the operation of the adding
中间图像D3M由图像D3Mh和图像D3Mv构成,中间图像D3H由图像D3Hh和图像D3Hv构成,因而将输入图像DIN、中间图像D3M和中间图像D3H相加是指将图像D3Mh、D3Mv、D3Hh和D3Hv全部与输入图像DIN相加。The intermediate image D3M is composed of the image D3Mh and the image D3Mv, and the intermediate image D3H is composed of the image D3Hh and the image D3Hv, thus adding the input image DIN, the intermediate image D3M and the intermediate image D3H means that all the images D3Mh, D3Mv, D3Hh and D3Hv are combined with The input images DIN are summed.
这里,加法单元4中的加法处理不限于单纯相加,也可以进行加权相加。即,也可以将图像D3Mh、D3Mv、D3Hh和D3Hv的各方以分别不同的放大率放大后与输入图像DIN相加。Here, the addition process in the
以下,对将本实施方式中的图像处理装置用作图像显示装置的一部分的例子进行说明。通过该说明,本实施方式中的图像处理装置的作用、效果也变得清楚。在以下说明中只要没有特别说明,Fn的记号就表示输入图像DIN的奈圭斯特频率。Hereinafter, an example in which the image processing device in this embodiment is used as a part of the image display device will be described. The operation and effects of the image processing device in this embodiment will also be clarified through this description. In the following description, unless otherwise specified, the symbol Fn represents the Nyquist frequency of the input image DIN.
图9示出利用本实施方式中的图像处理装置的图像显示装置,在图示的图像显示装置中,在监视器U3上显示对应于原图像DORG的图像。FIG. 9 shows an image display device using the image processing device in this embodiment. In the illustrated image display device, an image corresponding to the original image DORG is displayed on the monitor U3.
图像放大单元U1在原图像DORG的图像尺寸比监视器U3的图像尺寸小的情况下,输出放大原图像DORG后的图像DU1。这里,图像的放大可使用例如双三次法等进行。Image enlarging unit U1 outputs image DU1 in which original image DORG is enlarged when the image size of original image DORG is smaller than the image size of monitor U3. Here, the enlargement of the image can be performed using, for example, a bicubic method or the like.
本实施方式中的图像处理装置U2输出对图像DU1进行了先前说明的处理后的图像DU2。然后,在监视器U3上显示图像DU2。The image processing device U2 in this embodiment outputs the image DU2 obtained by performing the processing described above on the image DU1. Then, the image DU2 is displayed on the monitor U3.
以下,假定原图像DORG在水平方向和垂直方向上其像素值都是监视器U3的像素值的一半,首先对图像放大单元U1的动作、作用进行说明。Hereinafter, assuming that the pixel values of the original image DORG are half of the pixel values of the monitor U3 in the horizontal and vertical directions, the operation and function of the image enlarging unit U1 will be described first.
图10是示出图像放大单元U1的结构和动作的图,图像放大单元U1具有水平方向零插入单元U1A、水平方向低频分量通过单元U1B、垂直方向零插入单元U1C以及垂直方向低频分量通过单元U1D。10 is a diagram showing the structure and operation of the image enlarging unit U1. The image enlarging unit U1 has a horizontal direction zero insertion unit U1A, a horizontal low frequency component passing unit U1B, a vertical zero insertion unit U1C, and a vertical low frequency component passing unit U1D. .
水平方向零插入单元U1A生成针对原图像DORG的水平方向适当插入了具有像素值0的像素后的(在原图像DORG的水平方向相邻的像素列相互间插入了各1列的由像素值0的像素构成的像素列后的)图像DU1A。The horizontal direction zero insertion unit U1A generates a pixel with a
水平方向低频分量通过单元U1B生成通过低通滤波处理仅取出图像DU1A的低频分量而得到的图像DU1B。The horizontal low-frequency component passing unit U1B generates an image DU1B obtained by extracting only the low-frequency component of the image DU1A through low-pass filtering.
垂直方向零插入单元U1C生成针对图像DU1B的垂直方向适当插入了具有像素值0的像素后的(在图像DU1B的垂直方向相邻的像素行相互间插入了各1行的由像素值0的像素构成的像素行后的)图像DU1C。The vertical direction zero insertion unit U1C generates a pixel with a pixel value of 0 that is appropriately inserted with respect to the vertical direction of the image DU1B (one row of pixels with a pixel value of 0 is inserted between adjacent pixel rows in the vertical direction of the image DU1B) After the rows of pixels that make up the image DU1C.
垂直方向低频分量通过单元DU1D生成仅取出图像DU1C的低频分量而得到的图像DU1D。The vertical low-frequency component passing unit DU1D generates an image DU1D obtained by extracting only the low-frequency component of the image DU1C.
图像DU1D作为在水平方向和垂直方向都是原图像DORG的2倍的图像DU1,从图像放大单元U1输出。The image DU1D is output from the image enlarging unit U1 as the image DU1 that is twice the size of the original image DORG in the horizontal direction and the vertical direction.
图11的(A)~(E)是用于详细说明图像放大单元U1的动作的图,图11的(A)表示原图像DORG,图11的(B)表示图像DU1A,图11的(C)表示图像DU1B,图11的(D)表示图像DU1C,图11的(E)表示图像DU1D。关于图11的(A)~(E),方形(各格子)表示像素,写入其中的记号或数值表示各像素的像素值。(A) to (E) of FIG. 11 are diagrams for explaining the operation of the image enlarging unit U1 in detail. (A) of FIG. 11 shows the original image DORG, (B) of FIG. 11 shows the image DU1A, and (C ) represents the image DU1B, (D) of FIG. 11 represents the image DU1C, and (E) of FIG. 11 represents the image DU1D. Regarding (A) to (E) of FIG. 11 , squares (each square) represent pixels, and symbols or numerical values written therein represent pixel values of each pixel.
水平方向零插入单元U1A针对图11的(A)所示的原图像DORG,在水平方向每隔1个像素插入1个具有像素值0的像素(即,在原图像DORG的水平方向相邻的像素列相互间插入1个由像素值0的像素构成的像素列),生成图11的(B)所示的图像DU1A。水平方向低频分量通过单元U1B针对图11的(B)所示的图像DU1A实施低通滤波处理,生成图11的(C)所示的图像DU1B。The horizontal direction zero insertion unit U1A inserts a pixel with a pixel value of 0 every other pixel in the horizontal direction for the original image DORG shown in (A) of FIG. One pixel column consisting of pixels with a pixel value of 0 is inserted between the columns), and an image DU1A shown in (B) of FIG. 11 is generated. The horizontal direction low-frequency component passing unit U1B performs low-pass filter processing on the image DU1A shown in (B) of FIG. 11 to generate the image DU1B shown in (C) of FIG. 11 .
垂直方向零插入单元U1C针对图11的(C)所示的图像DU1B,在垂直方向每隔1个像素插入1个具有像素值0的像素(即,在图像DU1B的垂直方向相邻的像素行相互间插入1个由像素值0的像素构成的像素行),生成图11的(D)所示的图像DU1C。垂直方向低频分量通过单元U1D针对图11的(D)所示的图像DU1C实施低通滤波处理,生成图11的(E)所示的图像DU1D。通过以上处理生成在水平方向和垂直方向都将原图像DORG放大为2倍后的图像DU1D。The vertical direction zero insertion unit U1C inserts a pixel with a pixel value of 0 every other pixel in the vertical direction for the image DU1B shown in (C) of FIG. One pixel row consisting of pixels with a pixel value of 0 is inserted between each other), and an image DU1C shown in (D) of FIG. 11 is generated. The vertical low-frequency component passing unit U1D performs low-pass filter processing on the image DU1C shown in (D) of FIG. 11 to generate the image DU1D shown in (E) of FIG. 11 . An image DU1D in which the original image DORG is doubled in both the horizontal direction and the vertical direction is generated through the above processing.
图12的(A)~(D)是在频率空间上表示图像放大单元U1的处理的作用的图,图12的(A)表示原图像DORG的频谱,图12的(B)表示图像DU1A的频谱,图12的(C)表示水平方向低频分量通过单元U1B的频率响应,图12的(D)表示图像DU1B的频谱。另外,在图12的(A)~(D)中,横轴是表示水平方向的空间频率的频率轴,纵轴表示频谱或频率响应的强度。(A) to (D) of FIG. 12 are diagrams showing the operation of the processing of the image enlargement unit U1 in frequency space, (A) of FIG. 12 shows the frequency spectrum of the original image DORG, and (B) of FIG. 12 shows the frequency spectrum of the image DU1A. Spectrum, (C) of FIG. 12 shows the frequency response of the low-frequency component in the horizontal direction passing through the unit U1B, and (D) of FIG. 12 shows the spectrum of the image DU1B. In addition, in (A) to (D) of FIG. 12 , the horizontal axis represents the frequency axis representing the spatial frequency in the horizontal direction, and the vertical axis represents the intensity of the frequency spectrum or frequency response.
原图像DORG的像素数是输入图像DIN的一半,换言之,原图像DORG的采样间隔是输入图像DIN的采样间隔的2倍。因此,原图像DORG的奈圭斯特频率是输入图像DIN的奈圭斯特频率的一半,即Fn/2。The number of pixels of the original image DORG is half of that of the input image DIN, in other words, the sampling interval of the original image DORG is twice the sampling interval of the input image DIN. Therefore, the Nyquist frequency of the original image DORG is half of the Nyquist frequency of the input image DIN, ie Fn/2.
另外,在图12的(A)~(D)中,为了简单表示,只使用了1根频率轴。然而,通常,图像数据由在呈二维平面状排列的像素排列上给出的像素值构成,其频谱也是在用水平方向的频率轴和垂直方向的频率轴展开的平面上给出的频谱。因此,为了正确表示原图像DORG等的频谱等,有必要记载水平方向的频率轴和垂直方向的频率轴的两方。然而,原图像DORG的频谱形状通常是以频率轴上的原点为中心各向同性扩展而成的形状,如果示出用1根频率轴展开的空间上的频谱,则本领域技术人员容易将其扩展到用2根频率轴展开的空间来进行考察。因此,在以后的说明中只要没有特别讲明,则使用用1根频率轴展开的空间进行频率空间上的说明。In addition, in (A) to (D) of FIG. 12 , only one frequency axis is used for simple representation. Usually, however, image data is composed of pixel values given on a pixel array arranged in a two-dimensional plane, and its spectrum is also a spectrum given on a plane developed with a frequency axis in the horizontal direction and a frequency axis in the vertical direction. Therefore, in order to accurately represent the spectrum of the original image DORG or the like, it is necessary to describe both the frequency axis in the horizontal direction and the frequency axis in the vertical direction. However, the spectral shape of the original image DORG is usually a shape that is isotropically expanded around the origin on the frequency axis, and those skilled in the art can easily understand it by showing the spatial spectrum expanded by one frequency axis. Expand to the space expanded by two frequency axes for investigation. Therefore, in the following description, unless otherwise specified, the frequency space will be described using a space expanded on one frequency axis.
首先,说明原图像DORG的频谱。通常,输入自然图像作为原图像DORG,但是在该情况下,原图像DORG的谱强度集中于频率空间的原点周围。因此,原图像DORG的频谱成为图12的(A)所示的谱SPO。First, the frequency spectrum of the original image DORG will be described. Normally, a natural image is input as the original image DORG, but in this case, the spectral intensity of the original image DORG is concentrated around the origin of the frequency space. Therefore, the spectrum of the original image DORG becomes the spectrum SPO shown in (A) of FIG. 12 .
然后,说明图像DU1A的谱强度。针对原图像DORG,在水平方向每隔1个像素插入1个具有像素值0的像素来生成图像DU1A。当进行这种处理时,在频谱上产生以原图像DORG的奈圭斯特频率为中心的叠加。即,产生以频率±Fn/2为中心将谱SPO叠加后的谱SPM,因而图像DU1A的频谱如图12的(B)所示。Next, the spectral intensity of image DU1A will be described. For the original image DORG, a pixel having a pixel value of 0 is inserted every other pixel in the horizontal direction to generate an image DU1A. When this processing is performed, a superposition centered on the Nyquist frequency of the original image DORG is generated on the frequency spectrum. That is, since the spectrum SPM obtained by superimposing the spectrum SPO around the frequency ±Fn/2 is generated, the spectrum of the image DU1A is as shown in (B) of FIG. 12 .
然后,说明水平方向低频分量通过单元U1B的频率响应。由于水平方向低频分量通过单元由低通滤波器实现,因而如图12的(C)所示,频率越高,水平方向低频分量通过单元U1B的频率响应就越低。Next, the frequency response of the horizontal low-frequency component passing unit U1B will be described. Since the horizontal low-frequency component passing unit is realized by a low-pass filter, as shown in (C) of FIG. 12 , the higher the frequency, the lower the frequency response of the horizontal low-frequency component passing unit U1B.
最后,说明图像DU1B的频谱。通过对具有图12的(B)所示的频谱的图像DU1A进行具有图12的(C)所示的频率响应的低通滤波处理,得到图12的(D)所示的图像DU1B。因此,图像DU1B的频谱如图像DU1B所示,由谱SPM的强度降低某种程度的谱SP2、和谱SPO的强度降低某种程度的谱SP1构成。另外,一般,频率越高,低通滤波器的频率响应就越低。因此,在将谱SP1的强度与谱SPO进行比较时,成为通过水平方向低频分量通过单元U1B,高频分量侧、即频率为±Fn/2附近的谱强度减小的谱。Finally, the frequency spectrum of image DU1B will be described. Image DU1B shown in FIG. 12(D) is obtained by performing low-pass filter processing having a frequency response shown in FIG. 12(C) on image DU1A having a frequency spectrum shown in FIG. 12(B) . Therefore, the spectrum of the image DU1B is composed of the spectrum SP2 in which the intensity of the spectrum SPM is decreased to some extent, and the spectrum SP1 in which the intensity of the spectrum SPO is decreased to some extent, as shown in the image DU1B. Also, generally, the higher the frequency, the lower the frequency response of the low-pass filter. Therefore, when the intensity of the spectrum SP1 is compared with the spectrum SPO, the horizontal low-frequency component passing unit U1B passes through the spectrum in which the intensity of the spectrum on the high-frequency side, that is, at frequencies around ±Fn/2, decreases.
并且,针对图像放大单元U1的处理中的、垂直方向零插入单元U1C和垂直方向低频分量通过单元U1D的处理,省略关于在其频率空间上的作用的说明,但是从该处理的内容可以容易理解,针对表示垂直方向的空间频率的轴向,具有与参照图12的(A)~(D)说明的内容相同的作用。即,图像DU1D的频谱是二维扩展了图12的(D)所示的频谱而得到的。Also, in the processing of the image enlarging unit U1, the processing of the vertical zero insertion unit U1C and the vertical low-frequency component passing unit U1D is omitted, but it can be easily understood from the content of the processing. , has the same effect as that described with reference to (A) to (D) of FIG. 12 with respect to the axial direction indicating the spatial frequency in the vertical direction. That is, the spectrum of image DU1D is obtained by two-dimensionally expanding the spectrum shown in (D) of FIG. 12 .
并且,在以后的说明中,将谱SP2称作叠加分量。在图像上,该叠加分量表现为具有较高的频率分量的噪声或假信号。作为这种噪声或假信号,可列举过冲量、锯齿或振铃等。Also, in the following description, the spectrum SP2 will be referred to as a superposition component. On the image, this superimposed component appears as noise or artifacts with higher frequency components. Such noise or glitches include overshoot, sawtooth, ringing, and the like.
以下,说明本实施方式中的图像处理装置的作用、效果。The operation and effect of the image processing device in this embodiment will be described below.
图13的(A)~(E)是示意性表示在输入了放大原图像DORG而得到的图像DU1D作为输入图像DIN(或图像DU1)的情况下的、从输入图像DIN生成中间图像D1时的作用、效果的图,图13的(A)表示输入图像DIN的频谱,图13的(B)表示高频分量图像生成单元1A的频率响应,图13的(C)表示低频分量图像生成单元1B的频率响应,图13的(D)表示第1中间图像生成单元1的频率响应,图13的(E)表示中间图像D1的频谱。另外,在图13的(A)~(E)中,基于与图12的(A)~(D)同样的理由,只使用了1根频率轴。(A) to (E) of FIG. 13 schematically show how the intermediate image D1 is generated from the input image DIN when the image DU1D obtained by enlarging the original image DORG is input as the input image DIN (or image DU1 ). Figure 13(A) shows the frequency spectrum of the input image DIN, FIG. 13(B) shows the frequency response of the high-frequency component
而且,在图13的(A)~(E)中,仅在空间频率为0以上的范围内表示频谱或频率响应的强度,但是以下说明中的频谱或频率响应成为以频率轴上的原点为中心对称的形状。因此,在说明中使用的图仅示出空间频率为0以上的范围,因而是充分的。Furthermore, in (A) to (E) of FIG. 13 , the strength of the frequency spectrum or frequency response is shown only in the range where the spatial frequency is equal to or greater than 0, but the frequency spectrum or frequency response in the following description is based on the origin on the frequency axis Centrosymmetric shape. Therefore, it is sufficient that the diagrams used in the description only show the range in which the spatial frequency is equal to or greater than 0.
首先,说明输入图像DIN的频谱。由于输入通过图像放大单元U1中的放大处理而生成的图像DU1D作为输入图像DIN,因而如图13的(A)所示,输入图像DIN的频谱具有与在图12的(D)中说明的频谱相同的形状,并由原图像DORG的谱SPO的强度降低某种程度的谱SP1、和成为叠加分量的谱SP2构成。First, the frequency spectrum of the input image DIN will be described. Since the image DU1D generated by the enlargement processing in the image enlargement unit U1 is input as the input image DIN, as shown in (A) of FIG. 13 , the frequency spectrum of the input image DIN has They have the same shape, and are composed of a spectrum SP1 in which the intensity of the spectrum SPO of the original image DORG is reduced to some extent, and a spectrum SP2 that becomes a superimposed component.
然后,说明高频分量图像生成单元1A的频率响应。由于高频分量图像生成单元1A由高通滤波器构成,因而如图13的(B)所示,频率越低,其频率响应就越低。Next, the frequency response of the high-frequency component
然后,说明低频分量图像生成单元1B的频率响应。由于低频分量图像生成单元1B由低通滤波器构成,因而如图13的(C)所示,频率越高,其频率响应就越低。Next, the frequency response of the low-frequency component
然后,说明第1中间图像生成单元1的频率响应。用第1中间图像生成单元1内的高频分量图像生成单元1A,减弱输入图像DIN具有的频率分量中的、图13的(D)所示的低频分量侧的区域(比“第1频率FL1”低的频带)RL1的频率分量。另一方面,用第1中间图像生成单元1内的低频分量图像生成单元1B,减弱图13的(D)所示的高频分量侧的区域(比第2频率FL2高的频带)RH1的频率分量。因此,如图13的(D)所示,第1中间图像生成单元1的频率响应在通过低频分量侧的区域RL1和高频分量侧的区域RH1限制了频带的中间区域(特定频带)RM1内具有峰值。Next, the frequency response of the first intermediate
然后,说明中间图像D1的频谱。具有图13的(A)所示的频谱的输入图像DIN通过具有图13的(D)所示的频率响应的第1中间图像生成单元1,从而得到图13的(E)所示的中间图像D1。然后,第1中间图像生成单元1的频率响应在通过低频分量侧的区域RL1和高频分量侧的区域RH1限制了频带的中间区域RM1内具有峰值,因而中间图像D1的频谱成为减弱了输入图像DIN的频谱中的、低频分量侧的区域RL1和高频分量侧的区域RH1内包含的部分的强度后的频谱。因此,中间图像D1成为从输入图像DIN具有的高频分量去除成为叠加分量的谱SP2而得到的图像。即,第1中间图像生成单元1具有生成从输入图像DIN具有的高频分量去除成为叠加分量的谱SP1而得到的中间图像D1的效果。Next, the frequency spectrum of the intermediate image D1 will be described. The input image DIN having the frequency spectrum shown in (A) of FIG. 13 passes through the first intermediate
图14的(A)~(C)是表示第2中间图像生成单元2的作用、效果的图,图14的(A)表示非线性处理单元D2A的频谱,图14的(B)表示高频分量图像生成单元2B的频率响应,图14的(C)表示图像D2B的频谱。另外,在图14的(A)~(C)中,基于与图13的(A)~(E)同样的理由,仅在空间频率为0以上的范围内表示频谱或频率响应。(A) to (C) of FIG. 14 are diagrams showing the operation and effect of the second intermediate
如后所述,在非线性处理图像D2A中,生成相当于高频分量侧的区域RH2的高频分量。图14的(A)是示意性表示该状况的图。非线性处理图像D2A通过高频分量图像生成单元2B,从而生成图14的(C)所示的图像D2B。高频分量图像生成单元2B由使第3频率FL3以上的分量通过的高通滤波器构成,如图14的(B)所示,频率越高,其频率响应就越高。因此,图像D2B的频谱如图14的(C)所示,是从非线性处理图像D2A的频谱中去除相当于低频分量侧的区域RL2的分量(比第3频率FL3低的频率分量)而得到的。换言之,非线性处理单元2A具有生成相当于高频分量侧的区域RH2的高频分量的效果,高频分量图像生成单元2B具有仅取出在非线性处理单元2A中生成的高频分量的效果。另外,在图示的例子中,第3频率FL3大致等于Fn/2。As will be described later, in the nonlinear processed image D2A, a high-frequency component corresponding to a region RH2 on the high-frequency component side is generated. (A) of FIG. 14 is a diagram schematically showing this situation. Nonlinearly processed image D2A passes through high-frequency component image generating means 2B, thereby generating image D2B shown in (C) of FIG. 14 . The high-frequency component image generator 2B is composed of a high-pass filter that passes components of the third frequency FL3 or higher, and as shown in (B) of FIG. 14 , the higher the frequency, the higher the frequency response. Therefore, as shown in (C) of FIG. 14 , the spectrum of the image D2B is obtained by removing the component corresponding to the region RL2 on the low-frequency component side (frequency components lower than the third frequency FL3 ) from the spectrum of the nonlinearly processed image D2A. of. In other words, the nonlinear processing unit 2A has the effect of generating a high-frequency component corresponding to the region RH2 on the high-frequency component side, and the high-frequency component image generating unit 2B has the effect of extracting only the high-frequency component generated by the nonlinear processing unit 2A. In addition, in the illustrated example, the third frequency FL3 is substantially equal to Fn/2.
更详细说明上述的作用、效果。The operation and effect described above will be described in more detail.
图15的(A)~(C)以及图16的(A)~(C)是表示在对阶跃边缘进行了采样时得到的信号的图。(A) to (C) of FIG. 15 and (A) to (C) of FIG. 16 are diagrams showing signals obtained when a step edge is sampled.
图15的(A)表示阶跃边缘和采样间隔S1,图15的(B)表示以采样间隔S1对阶跃边缘进行了采样时得到的信号,图15的(C)表示图15的(B)所示的信号的高频分量。另一方面,图16的(A)表示阶跃边缘和间隔比采样间隔S1宽的采样间隔S2,图16的(B)表示以采样间隔S2对阶跃边缘进行了采样时得到的信号,图16的(C)表示图16的(B)所示的信号的高频分量。在以下说明中,假定采样间隔S2的长度是采样间隔S1的长度的2倍。(A) of FIG. 15 represents a step edge and sampling interval S1, (B) of FIG. 15 represents a signal obtained when the step edge is sampled with sampling interval S1, and (C) of FIG. 15 represents (B) of FIG. 15 ) shows the high-frequency component of the signal. On the other hand, (A) of FIG. 16 shows a step edge and a sampling interval S2 wider than the sampling interval S1, and (B) of FIG. 16 shows a signal obtained when the step edge is sampled at the sampling interval S2. FIG. (C) of 16 shows a high-frequency component of the signal shown in (B) of FIG. 16 . In the following description, it is assumed that the length of the sampling interval S2 is twice the length of the sampling interval S1.
如图15的(C)和图16的(C)所示,阶跃边缘的中央在表示高频分量的信号中表现为过零点Z。并且,采样间隔越短,表示高频分量的信号在过零点Z附近的倾斜度就越陡,并且,采样间隔越短,过零点Z附近的给出局部最大值、最小值的点的位置就越接近过零点Z。As shown in (C) of FIG. 15 and (C) of FIG. 16 , the center of the step edge appears as a zero-crossing point Z in a signal representing a high-frequency component. Moreover, the shorter the sampling interval, the steeper the slope of the signal representing the high-frequency component near the zero-crossing point Z, and the shorter the sampling interval, the position of the point that gives the local maximum and minimum near the zero-crossing point Z will be The closer to the zero crossing point Z.
即,即使采样间隔变化,在边缘附近表示高频分量的信号的过零点位置也不变化,但是采样间隔越小(或者分辨率越提高),边缘附近的高频分量的倾斜度就越陡,给出局部最大值、最小值的点的位置就越接近过零点。That is, even if the sampling interval changes, the zero-crossing position of the signal representing the high-frequency component near the edge does not change, but the smaller the sampling interval (or the higher the resolution), the steeper the slope of the high-frequency component near the edge, The closer the position of the point giving the local maximum and minimum is to the zero-crossing point.
图17的(A)~(F)是示出将以采样间隔S2对阶跃边缘进行了采样后的信号放大至2倍后,输入到本实施方式中的图像处理装置时的作用、效果的图,特别是表示第1中间图像生成单元1和第2中间图像生成单元2的动作、效果。另外,如前所述,由于分别针对水平方向和垂直方向进行第1中间图像生成单元1和第2中间图像生成单元2的内部处理,因而一维地进行该处理。因此,在图17的(A)~(F)中,使用一维信号表示处理内容。(A) to (F) of FIG. 17 show the operation and effect when the signal obtained by sampling the step edge at the sampling interval S2 is amplified by a factor of 2 and then input to the image processing device in this embodiment. In particular, the figure shows the operations and effects of the first intermediate
与图16的(B)一样,图17的(A)是以采样间隔S2对阶跃边缘进行了采样后的信号。图17的(B)示出将图17的(A)表示的信号放大至2倍后的信号。即,在原图像DORG内包含图17的(A)所示的边缘的情况下,作为输入图像DIN输入图17的(B)所示的信号。另外,在将信号放大至2倍时,采样间隔为放大前的一半,因而图17的(B)表示的信号的采样间隔与图14的(A)~(C)中的采样间隔S1相同。并且,在图17的(A)中,由坐标P3表示的位置是边缘信号的低亮度侧(低电平侧)的边界部分,由坐标P4表示的位置是边缘信号的高亮度侧(高电平侧)的边界部分。Like (B) of FIG. 16 , (A) of FIG. 17 is a signal obtained by sampling step edges at the sampling interval S2 . (B) of FIG. 17 shows a signal obtained by amplifying the signal shown in (A) of FIG. 17 twice. That is, when the edge shown in (A) of FIG. 17 is included in the original image DORG, the signal shown in (B) of FIG. 17 is input as the input image DIN. In addition, when the signal is amplified to 2 times, the sampling interval is half of that before amplification, so the sampling interval of the signal shown in (B) of FIG. 17 is the same as the sampling interval S1 in (A) to (C) of FIG. 14 . Also, in (A) of FIG. 17 , the position indicated by the coordinate P3 is the boundary portion on the low luminance side (low level side) of the edge signal, and the position indicated by the coordinate P4 is the high luminance side (high level side) of the edge signal. flat side) of the boundary portion.
图17的(C)是表示图17的(B)表示的信号的高频分量的信号,即相当于从高频分量图像生成单元1A输出的图像D1A的信号。另外,由于图像D1A是取出输入图像DIN的高频分量而得到的,因而其中还包括叠加分量。(C) of FIG. 17 is a signal representing a high-frequency component of the signal shown in (B) of FIG. 17 , that is, a signal corresponding to image D1A output from high-frequency component
图17的(D)是表示图17的(C)所示的信号的低频分量的信号,即相当于从低频分量图像生成单元1B输出的图像D1B的信号。另外,如前所述,图像D1B作为中间图像D1输出,因而图17的(D)还相当于中间图像D1。如图17的(D)所示,在中间图像D1中,过零点Z附近的局部最小值出现在坐标P3,局部最大值出现在坐标P4,该状况与图16的(C)所示的、从以采样间隔S2对阶跃边缘进行了采样后的信号取出的高频分量一致。并且,包含在图像D1A内的叠加分量通过在低频分量图像生成单元1B中进行的低通滤波处理被去除。(D) of FIG. 17 is a signal representing the low-frequency component of the signal shown in (C) of FIG. 17 , that is, a signal corresponding to the image D1B output from the low-frequency component
图17的(E)表示针对图17的(D)所示的信号的输入到非线性处理单元2A时的输出信号,即在被输入中间图像D1的情况下从非线性处理单元2A输出的图像D2A。在非线性处理单元2A中,过零点Z前后的(在前后相邻的)坐标P1、P2的信号值被放大。因此,如图17的(E)所示,图像D2A在坐标P1、P2处的信号值大小相比其他值要大,在过零点Z附近,出现局部最小值的位置从坐标P3变化到更接近过零点Z的坐标P1,出现局部最大值的位置从坐标P4变化到更接近过零点Z的坐标P2。这是指通过在非线性处理单元2A中的、对过零点Z前后的像素值进行放大这样的非线性处理,生成了高频分量。这样,能够通过按每个像素适当改变放大率、或者根据像素适当改变处理内容,生成高频分量。即,非线性处理单元2A具有生成不包含在中间图像D1内的高频分量、即相当于图14的(A)所示的高频分量侧的区域RH2的高频分量的效果。(E) of FIG. 17 shows an output signal when the signal shown in (D) of FIG. 17 is input to the nonlinear processing unit 2A, that is, an image output from the nonlinear processing unit 2A when the intermediate image D1 is input. D2A. In the nonlinear processing unit 2A, the signal values of the coordinates P1 , P2 before and after the zero crossing point Z (adjacent before and after) are amplified. Therefore, as shown in (E) of Figure 17, the signal value of image D2A at coordinates P1 and P2 is larger than other values, and near the zero-crossing point Z, the position where the local minimum appears changes from coordinate P3 to closer to The coordinate P1 of the zero-crossing point Z, the position where the local maximum occurs changes from the coordinate P4 to the coordinate P2 closer to the zero-crossing point Z. This means that a high-frequency component is generated by the non-linear processing of amplifying pixel values before and after the zero-crossing point Z in the non-linear processing unit 2A. In this way, high-frequency components can be generated by appropriately changing the amplification factor for each pixel, or by appropriately changing the content of processing for each pixel. That is, nonlinear processing unit 2A has an effect of generating high-frequency components not included in intermediate image D1 , that is, high-frequency components corresponding to region RH2 on the high-frequency component side shown in FIG. 14(A) .
图17的(F)是表示图17的(E)所示的信号的高频分量的信号,即相当于从高频分量图像生成单元2B输出的图像D2B的信号。后面对图像D2B的更准确的形状进行描述,如图17的(F)所示,在图像D2B中,过零点Z附近的局部最小值(负侧的峰值)出现在坐标P1,最大值(正侧的峰值)出现在坐标P2,该状况与图15的(C)所示的、从以采样间隔S1对阶跃边缘进行了采样后的信号取出的高频分量一致。这是指在非线性处理单元2A中生成的高频分量由高频分量图像生成单元2B取出,并作为图像D2B输出。(F) of FIG. 17 is a signal representing the high-frequency component of the signal shown in (E) of FIG. 17 , that is, a signal corresponding to the image D2B output from the high-frequency component image generator 2B. The more accurate shape of image D2B will be described later. As shown in (F) of FIG. The peak on the positive side) appears at the coordinate P2, which corresponds to the high-frequency component extracted from the signal obtained by sampling the step edge at the sampling interval S1 shown in (C) of FIG. 15 . This means that the high-frequency components generated in the nonlinear processing unit 2A are taken out by the high-frequency component image generating unit 2B and output as an image D2B.
并且,可以说,所取出的图像D2B是包含与采样间隔S1对应的频率分量的信号。换言之,高频分量图像生成单元2B具有仅取出在非线性处理单元2A中生成的高频分量的效果。Furthermore, it can be said that the extracted image D2B is a signal including frequency components corresponding to the sampling interval S1. In other words, the high-frequency component image generating unit 2B has an effect of taking out only the high-frequency components generated in the nonlinear processing unit 2A.
以上是第2中间图像生成处理单元2的效果,总结一下,第2中间图像生成处理单元2内的非线性处理单元2A具有生成相当于高频分量侧的区域RH2的高频分量的效果,第2中间图像生成处理单元2内的高频分量图像生成单元2B具有仅取出相当于在非线性处理单元2A中生成的高频分量的效果。然后,由于图像D2B作为中间图像D2输出,因而第2中间图像生成单元2可输出具有与采样间隔S1对应的高频分量的中间图像D2。The above is the effect of the second intermediate image
这里,通过将中间图像D1和中间图像D2与输入图像DIN相加,能进行图像的增强处理。Here, image enhancement processing can be performed by adding intermediate image D1 and intermediate image D2 to input image DIN.
在本实施方式中,不是将第1中间图像D1和第2中间图像D2与输入图像DIN相加,但是以下假定对在将第1中间图像和第2中间图像相加的情况下得到的效果进行说明,之后,对取代第1中间图像D1和第2中间图像D2而将第3中间图像D3M和第4中间图像D3H相加的效果进行说明。In this embodiment, instead of adding the first intermediate image D1 and the second intermediate image D2 to the input image DIN, the effect obtained when the first intermediate image and the second intermediate image are added is assumed below. Next, the effect of adding the third intermediate image D3M and the fourth intermediate image D3H instead of the first intermediate image D1 and the second intermediate image D2 will be described.
首先,对加上中间图像D1的效果进行描述。如前所述,中间图像D1是从输入图像DIN具有的高频分量取出叠加分量而得到的,如图13的(E)所示,对应于原图像DORG的奈圭斯特频率附近的高频分量。如在图12的(D)中说明的那样,原图像DORG的奈圭斯特频率附近的谱强度由于图像放大单元U1中的放大处理而减弱,因而通过加上中间图像D1,可补偿由于放大处理而减弱的谱强度。并且,由于从中间图像D1去除了叠加分量,因而不会增强过冲量、锯齿或振铃这样的假信号。First, the effect of adding the intermediate image D1 will be described. As mentioned above, the intermediate image D1 is obtained by extracting superimposed components from the high-frequency components of the input image DIN. As shown in (E) of FIG. portion. As explained in (D) of FIG. 12 , the spectral intensity near the Nyquist frequency of the original image DORG is weakened by the enlarging process in the image enlarging unit U1. Spectral intensity attenuated by processing. Also, since the superimposed component is removed from the intermediate image D1, artifacts such as overshoot, jaggies, or ringing are not enhanced.
然后,对加上中间图像D2的效果进行描述。如前所述,中间图像D2是对应于采样间隔S1的高频分量。因此,通过加上中间图像D2,可给出原图像DORG的奈圭斯特频率以上的频带的高频分量,从而可增加图像的清晰感。Next, the effect of adding the intermediate image D2 will be described. As mentioned above, the intermediate image D2 is a high-frequency component corresponding to the sampling interval S1. Therefore, by adding the intermediate image D2, high-frequency components in the frequency band above the Nyquist frequency of the original image DORG can be given, thereby increasing the sharpness of the image.
总结一下,通过将中间图像D1和中间图像D2与输入图像DIN相加,能加上高频分量而不会增强叠加分量,能提高图像的清晰感。To sum up, by adding the intermediate image D1 and the intermediate image D2 to the input image DIN, high-frequency components can be added without enhancing the superimposed components, and the clarity of the image can be improved.
另外,通过如上述说明那样将所生成的高频分量与输入图像相加,能增加图像的清晰感,能提高画质,然而过度进行高频分量的相加,有时反而招致画质的下降。In addition, by adding the generated high-frequency components to the input image as described above, the sharpness of the image can be increased, and the image quality can be improved. However, excessive addition of high-frequency components may actually lead to a decrease in image quality.
图18的(A)和(B)是用于说明由高频分量的相加引起的画质下降的图,图18的(A)表示通过适度进行高频分量的相加而增加了图像的清晰感的情况,图18的(B)表示过度进行了高频分量的相加后招致画质下降的情况。(A) and (B) of FIG. 18 are diagrams for explaining image quality degradation caused by addition of high-frequency components, and (A) of FIG. 18 shows that image quality is increased by adding high-frequency components appropriately. In the case of sharpness, (B) of FIG. 18 shows a case where high-frequency components are excessively added and image quality deteriorates.
图18的(A)是示出将图17的(D)所示的中间图像D1和图17的(F)所示的中间图像D2与图17的(B)所示的输入图像DIN相加后的结果的图,在图17的(A)中由坐标P3表示的阶跃边缘的低亮度侧的边界部分被修正为在图18的(A)中由坐标P1表示的位置,在图17的(A)中由坐标P3表示的阶跃边缘的低亮度侧的边界部分被修正为在图18的(A)中由坐标P1表示的位置,在图17的(A)中由坐标P4表示的阶跃边缘的高亮度侧的边界部分被修正为在图18的(A)中由坐标P2表示的位置,结果,将图17的(A)和图18的(B)进行比较可知,图18的(A)接近图16的(A)所示的阶跃边缘。这表示通过适度进行高频分量的相加,图像的清晰感增加。(A) of FIG. 18 shows that the intermediate image D1 shown in (D) of FIG. 17 and the intermediate image D2 shown in (F) of FIG. 17 are added to the input image DIN shown in (B) of FIG. 17 In the figure of the result after that, the boundary portion on the low-brightness side of the step edge represented by the coordinate P3 in (A) of FIG. The boundary portion on the low-brightness side of the step edge indicated by the coordinate P3 in (A) of (A) is corrected to the position indicated by the coordinate P1 in (A) of FIG. The boundary portion on the high-brightness side of the step edge is corrected to the position indicated by the coordinate P2 in (A) of FIG. 18. As a result, comparing (A) of FIG. 17 with (B) of FIG. (A) of 18 approaches the step edge shown in (A) of FIG. 16 . This indicates that the sharpness of the image increases by moderately adding high-frequency components.
另一方面,图18的(B)也是示出将图17的(D)所示的中间图像D1和图17的(F)所示的中间图像D2与图17的(B)所示的输入图像DIN相加后的结果的图,与图18的(A)的情况不同,图18的(B)表示过度进行了高频分量的相加的情况。与图18的(A)进行比较可知,由坐标P1、P3表示的位置的亮度与其周边相比低得不自然(下冲),或者由坐标P2、P4表示的位置的亮度与其周边相比高得不自然(过冲),画质下降。On the other hand, (B) of FIG. 18 also shows that the intermediate image D1 shown in (D) of FIG. 17 and the intermediate image D2 shown in (F) of FIG. 17 and the input shown in (B) of FIG. The graph of the result of adding the image DIN is different from the case of FIG. 18(A), and FIG. 18(B) shows the case where the high-frequency component is excessively added. Comparing with (A) of FIG. 18 , it can be seen that the luminance of the position indicated by the coordinates P1 and P3 is unnaturally low (undershoot) compared with its surroundings, or the luminance of the position indicated by the coordinates P2 and P4 is high compared with its surroundings. The result is unnatural (overshoot), and the image quality is degraded.
当利用中间图像D1和中间图像D2相加或相减的亮度的大小(以下称为校正量)过度变大时,容易发生成为这些画质下降要因的下冲和过冲。因此,认为只要调整成使中间图像D1和中间图像D2的校正量不会过度变大即可。When the magnitude of luminance added or subtracted by intermediate image D1 and intermediate image D2 (hereinafter referred to as correction amount) is excessively large, undershoot and overshoot, which are factors for these image quality degradations, tend to occur. Therefore, it is considered that it is only necessary to adjust so that the correction amounts of the intermediate image D1 and the intermediate image D2 do not become excessively large.
作为该方法,例如认为有这样的方法:检测由中间图像D1和中间图像D2给出的校正量的局部最大值,在检测出的最大值超过预定值的情况下,通过适当施加增益以使中间图像D1和中间图像D2的校正量减小,使校正量不会过度增大。As this method, for example, it is considered that there is a method of detecting a local maximum value of the correction amount given by intermediate image D1 and intermediate image D2, and when the detected maximum value exceeds a predetermined value, by appropriately applying a gain so that the intermediate The correction amounts of the image D1 and the intermediate image D2 are reduced so that the correction amounts do not increase excessively.
然而,当采用这样的方法时,为了判定局部最大值,必须参照数个像素的数据,招致电路规模增加。而且当要在垂直方向参照数个像素的数据时,伴随线路存储器的追加,也成为成本上升的要因。However, when such a method is used, in order to determine a local maximum value, it is necessary to refer to data of several pixels, which leads to an increase in circuit scale. Furthermore, when it is necessary to refer to the data of several pixels in the vertical direction, the addition of line memory also becomes a factor of cost increase.
因此,在本实施方式中,通过根据输入图像DIN的像素值变更施加给中间图像D1和中间图像D2的放大率,使利用中间图像D1和中间图像D2相加的校正量不会过度增大,特别是防止过冲的发生。在实施方式1的图像处理装置中,在第1中间图像处理单元3M和第2中间图像处理单元3H中,通过根据输入图像DIN的像素值对中间图像D1和中间图像D2适当施加不同的放大率,调节校正量。Therefore, in this embodiment, by changing the magnification applied to intermediate image D1 and intermediate image D2 according to the pixel value of input image DIN, the correction amount added by intermediate image D1 and intermediate image D2 will not be excessively increased. Especially to prevent the occurrence of overshoot. In the image processing device according to
图19是示出在第1中间图像处理单元3M和第2中间图像处理单元3H中,对中间图像D1和中间图像D2应施加的放大率、或者在放大率决定单元3MA中应决定的放大率D3MA和在放大率决定单元3HA中应决定的放大率D3HA的图。优选的是,输入图像DIN的像素值越大,这些放大率就越小。例如,可考虑这样的形式:在输入图像DIN的像素值是0的情况下取某个预定值Gb,在像素值从0到某个值A1之间以斜率k1逐渐减小,在像素值从A1到某个值A2之间以斜率k2逐渐减小,在像素值是A1以上的情况下以斜率k3逐渐减小。另外,由于显然放大率是0以上为好,因而在上述决定中放大率为负值的情况下,将其值设定为0。19 shows the magnification to be applied to the intermediate image D1 and D2 in the first intermediate image processing unit 3M and the second intermediate image processing unit 3H, or the magnification to be determined by the magnification determining unit 3MA. A map of D3MA and the amplification factor D3HA to be determined by the amplification factor determination unit 3HA. Preferably, the larger the pixel values of the input image DIN, the smaller these magnifications. For example, such a form can be considered: when the pixel value of the input image DIN is 0, a certain predetermined value Gb is taken, and gradually decreases with a slope k1 between the pixel value from 0 to a certain value A1, and when the pixel value changes from Between A1 and a certain value A2, it gradually decreases with a slope k2, and when the pixel value is above A1, it gradually decreases with a slope k3. In addition, since it is clear that the amplification factor is preferably 0 or more, when the amplification factor is negative in the above determination, the value is set to 0.
将放大率表示为G,将输入图像DIN的像素值表示为L时,该关系表示为:When denoting the magnification as G and the pixel value of the input image DIN as L, the relationship is expressed as:
[算式1][Equation 1]
式中 …(1)where ...(1)
以下描述上述的放大率是适当的理由。The reason why the above-mentioned magnification is appropriate is described below.
中间图像D1是通过在对输入图像DIN进行了高通滤波处理之后进行低通滤波处理来生成的。这里,高通滤波处理相当于从输入图像DIN的各像素值减去局部平均值。因此,当在输入图像DIN中关注的像素的像素值大时,赋予给该像素的高通滤波处理后的输出值也为大的正值的可能性高。Intermediate image D1 is generated by performing low-pass filter processing on input image DIN after high-pass filter processing. Here, the high-pass filtering process corresponds to subtracting a local average value from each pixel value of the input image DIN. Therefore, when the pixel value of the pixel of interest in the input image DIN is large, there is a high possibility that the output value after the high-pass filtering process given to the pixel will also be a large positive value.
另一方面,低通滤波处理与求出所输入的数据的局部平均值相同。因此,当高通滤波处理的输出值为大的正值时,低通滤波处理的输出值也为大的正值的可能性高。On the other hand, the low-pass filtering process is the same as calculating the local average value of the input data. Therefore, when the output value of the high-pass filter process is a large positive value, there is a high possibility that the output value of the low-pass filter process will also be a large positive value.
并且,中间图像D2是通过在非线性处理单元2A中对中间图像D1进行了非线性处理之后在高频分量图像生成单元2B中进行高通滤波处理而得到的。由于在非线性处理单元2A中仅在过零点附近使中间图像D1放大,因而基本上认为,当中间图像D1具有大的正值时,非线性处理单元2A输出的图像D2A也具有大的正值。在图像D2A具有大的正值的情况下,针对图像D2A的高通滤波处理结果即中间图像D2也具有大的正值的可能性高。Furthermore, the intermediate image D2 is obtained by performing a high-pass filter process in the high-frequency component image generating unit 2B after performing nonlinear processing on the intermediate image D1 in the nonlinear processing unit 2A. Since the intermediate image D1 is enlarged only near the zero-crossing point in the nonlinear processing unit 2A, it is basically considered that when the intermediate image D1 has a large positive value, the image D2A output by the nonlinear processing unit 2A also has a large positive value . When image D2A has a large positive value, there is a high possibility that intermediate image D2 that is the result of the high-pass filtering process on image D2A also has a large positive value.
综上所述,在输入图像DIN的像素值大的情况下,中间图像D1和中间图像D2的像素值也为大的正值的可能性高。换言之,利用中间图像D1和中间图像D2过度加上校正量,容易发生过冲。From the above, when the pixel value of the input image DIN is large, there is a high possibility that the pixel values of the intermediate image D1 and intermediate image D2 are also large positive values. In other words, if the correction amount is excessively added by intermediate image D1 and intermediate image D2 , overshooting tends to occur.
因此,输入图像DIN的像素值越增大,就越减小施加给中间图像D1和中间图像D2的放大率,从而可期待能控制成使校正量不过度增大。换言之,可期待能控制成难以发生过冲。Therefore, as the pixel value of the input image DIN increases, the magnification factor applied to the intermediate image D1 and intermediate image D2 decreases, and it is expected that the correction amount can be controlled so that the correction amount does not increase excessively. In other words, it is expected that the overshoot can be controlled so that it is difficult to occur.
即,根据图19或式(1)所示的、输入图像DIN的像素值越大则放大率越小这样的单调递减的函数,决定放大率D3MA或放大率D3HA,从而能进行这样的(难以发生过冲的)处理。That is, by determining the magnification D3MA or the magnification D3HA according to a monotonically decreasing function such that the larger the pixel value of the input image DIN is, the smaller the magnification shown in FIG. Overshoot occurred) processing.
如上所述在实施方式1的图像处理装置中,得到这样的效果:可在抑制过冲发生的同时,进行图像的增强处理。当在图像中过度发生过冲时仅图像的一部分异常地浮现,在视觉特性上感到不愉快,因而在实施方式1的图像处理装置中,在视觉特性上也是非常优选的。As described above, in the image processing device according to
并且,在实施方式1的图像处理装置中,为了抑制过冲发生,在第1中间图像处理单元3M和第2中间图像处理单元3H中,决定针对中间图像D1和中间图像D2的放大率,然而此时需要的信息仅是输入图像DIN的像素值。因此,能在简单的电路中决定放大率,伴随第1中间图像处理单元3M和第2中间图像处理单元3H的追加的电路规模的增加也减少。Furthermore, in the image processing device according to
并且,在第1中间图像处理单元3M和第2中间图像处理单元3H中决定的放大率与输入图像DIN的像素值的关系不限于在本实施方式中说明的关系,只要是输入图像DIN的像素值越大则放大率越小即可。In addition, the relationship between the magnification factor determined in the first intermediate image processing unit 3M and the second intermediate image processing unit 3H and the pixel value of the input image DIN is not limited to the relationship described in this embodiment, as long as the pixel value of the input image DIN The larger the value, the smaller the magnification.
实施方式2
图20是示出本发明的实施方式2的图像处理装置的结构例的图。20 is a diagram showing a configuration example of an image processing device according to
图示的图像处理装置具有第1中间图像生成单元1、第2中间图像生成单元2、第1中间图像处理单元103M、第2中间图像处理单元103H以及加法单元4。另外,由于第1中间图像生成单元1、第2中间图像生成单元2以及加法单元4的结构、动作与实施方式1相同,因而省略其说明。The illustrated image processing device includes a first intermediate
图21是示出第1中间图像处理单元103M的结构例的图,图示的第1中间图像处理单元103M具有放大率决定单元103MA和像素值放大单元103MB。放大率决定单元103MA根据输入图像DIN和中间图像D1的像素值决定放大率D103MA。像素值放大单元103MB使用由放大率决定单元103MA决定的放大率D103MA放大中间图像D1的像素值,并输出其结果作为中间图像D103MB。从第1中间图像处理单元103M输出中间图像D103MB作为中间图像D103M。FIG. 21 is a diagram showing a configuration example of the first intermediate image processing unit 103M, and the illustrated first intermediate image processing unit 103M includes a magnification factor determining unit 103MA and a pixel value amplifying unit 103MB. The magnification factor determining unit 103MA determines the magnification factor D103MA based on the pixel values of the input image DIN and the intermediate image D1. Pixel value enlarging section 103MB amplifies the pixel values of intermediate image D1 using enlarging factor D103MA determined by enlarging factor determining section 103MA, and outputs the result as intermediate image D103MB. Intermediate image D103MB is output from first intermediate image processing unit 103M as intermediate image D103M.
放大率决定单元103MA具有水平方向放大率决定单元103MAh和垂直方向放大率决定单元103MAv,像素值放大单元103MB具有水平方向像素值放大单元103MBh和垂直方向像素值放大单元103MBv。由水平方向放大率决定单元103MAh和水平方向像素值放大单元103MBh构成第1水平方向中间图像处理单元103Mh,由垂直方向放大率决定单元103MAv和垂直方向像素值放大单元103MBv构成第1垂直方向中间图像处理单元103Mv。The magnification factor determining unit 103MA has a horizontal magnification factor determining unit 103MAh and a vertical magnification factor determining unit 103MAv, and the pixel value amplifying unit 103MB has a horizontal pixel value magnifying unit 103MBh and a vertical pixel value magnifying unit 103MBv. The first horizontal intermediate image processing unit 103Mh is formed by the horizontal magnification determining unit 103MAh and the horizontal pixel value amplifying unit 103MBh, and the first vertical intermediate image is formed by the vertical magnifying factor determining unit 103MAv and the vertical pixel value amplifying unit 103MBv. Processing unit 103Mv.
图22是示出第2中间图像处理单元103H的结构例的图,图示的第2中间图像处理单元103H具有放大率决定单元103HA和像素值放大单元103HB。放大率决定单元103HA根据输入图像DIN和中间图像D2的像素值决定放大率D103HA。像素值放大单元103HB使用由放大率决定单元103HA决定的放大率D103HA放大中间图像D2的像素值,并输出其结果作为中间图像D103HB。从第1中间图像处理单元103H输出中间图像D103HB作为中间图像D103H。FIG. 22 is a diagram showing a configuration example of the second intermediate image processing unit 103H, and the illustrated second intermediate image processing unit 103H includes a magnification factor determining unit 103HA and a pixel value magnifying unit 103HB. The magnification factor determining unit 103HA determines the magnification factor D103HA based on the pixel values of the input image DIN and the intermediate image D2. Pixel value enlarging section 103HB amplifies the pixel values of intermediate image D2 using enlarging factor D103HA determined by enlarging factor determining section 103HA, and outputs the result as intermediate image D103HB. Intermediate image D103HB is output from first intermediate image processing unit 103H as intermediate image D103H.
放大率决定单元103HA具有水平方向放大率决定单元103HAh和垂直方向放大率决定单元103HAv,像素值放大单元103HB具有水平方向像素值放大单元103HBh和垂直方向像素值放大单元103HBv。由水平方向放大率决定单元103HAh和水平方向像素值放大单元103HBh构成第2水平方向中间图像处理单元103Hh,由垂直方向放大率决定单元103HAv和垂直方向像素值放大单元103HBv构成第2垂直方向中间图像处理单元103Hv。The magnification factor determining unit 103HA has a horizontal magnification factor determining unit 103HAh and a vertical magnification factor determining unit 103HAv, and the pixel value amplifying unit 103HB has a horizontal pixel value magnifying unit 103HBh and a vertical pixel value magnifying unit 103HBv. The second horizontal intermediate image processing unit 103Hh is constituted by the horizontal enlargement rate determining unit 103HAh and the horizontal pixel value enlarging unit 103HBh, and the second vertical intermediate image is constituted by the vertical enlargement rate determining unit 103HAv and the vertical pixel value enlarging unit 103HBv. Processing unit 103Hv.
首先,说明第1中间图像处理单元103M的详细动作。First, the detailed operation of the first intermediate image processing unit 103M will be described.
第1中间图像处理单元103M在放大率决定单元103MA中根据输入图像DIN和中间图像D1的像素值决定放大率D103MA。如先前所述,根据放大率D103MA放大第1中间图像D1的像素值,然而由于第1中间图像D1由图像D1h和图像D1v构成,因而作为放大率D103MA,决定针对图像D1h的放大率D103MAh和针对图像D1v的放大率D103MAv。即,放大率决定单元103MA具有水平方向放大率决定单元103MAh和垂直方向放大率决定单元103MAv,在水平方向放大率决定单元103MAh中,根据输入图像DIN和图像D1h的像素值决定放大率D103MAh,在垂直方向放大率决定单元103MAv中,根据输入图像DIN和图像D1v的像素值决定放大率D103MAv,从放大率决定单元103MA输出放大率D103MAh和放大率D103MAv作为放大率D103MA。In the first intermediate image processing unit 103M, the magnification factor D103MA is determined in the magnification factor determining unit 103MA based on the pixel values of the input image DIN and the intermediate image D1. As described above, the pixel values of the first intermediate image D1 are amplified by the magnification factor D103MA. However, since the first intermediate image D1 is composed of the image D1h and the image D1v, as the magnification factor D103MA, the magnification factor D103MAh for the image D1h and the magnification factor for the image D1h are determined. Magnification D103MAv of image D1v. That is, the magnification factor determining unit 103MA includes a horizontal magnification factor determining unit 103MAh and a vertical magnification factor determining unit 103MAv. In the horizontal magnification determining unit 103MAh, the magnification D103MAh is determined based on the pixel values of the input image DIN and the image D1h. Vertical magnification determining unit 103MAv determines magnification D103MAv based on the pixel values of input image DIN and image D1v, and magnification D103MAh and magnification D103MAv are output from magnification determining unit 103MA as magnification D103MA.
更详细说明水平方向放大率决定单元103MAh和垂直方向放大率决定单元103MAv的动作。The operations of the horizontal magnification factor determining unit 103MAh and the vertical magnification factor determining unit 103MAv will be described in more detail.
另外,输入图像DIN以及图像D1h、D1v与在实施方式1中参照图8说明的一样。In addition, the input image DIN and the images D1h and D1v are the same as those described with reference to FIG. 8 in the first embodiment.
水平方向放大率决定单元103MAh根据输入图像DIN和图像D1h的相同坐标的像素值决定针对图像D1h的各像素的放大率。即,根据像素值DIN(11)和像素值D1h(11)决定针对像素值D1h(11)的放大率,根据像素值DIN(12)和像素值D1h(12)决定针对像素值D1h(12)的放大率,一般来说,如根据像素值DIN(xy)和像素值D1h(xy)决定针对像素值D1h(xy)的放大率那样,根据输入图像DIN和图像D1h的相同坐标的像素值决定放大率,输出其结果作为放大率D103MAh。The horizontal magnification determining unit 103MAh determines the magnification of each pixel of the image D1h based on the pixel values of the same coordinates of the input image DIN and the image D1h. That is, the magnification factor for pixel value D1h(11) is determined based on pixel value DIN(11) and pixel value D1h(11), and the magnification factor for pixel value D1h(12) is determined based on pixel value DIN(12) and pixel value D1h(12). In general, it is determined from the pixel values of the same coordinates of the input image DIN and the image D1h as the magnification ratio for the pixel value D1h(xy) is determined from the pixel value DIN(xy) and the pixel value D1h(xy). magnification, and output the result as magnification D103MAh.
并且,垂直方向放大率决定单元103MAv根据输入图像DIN和图像D1v的相同坐标的像素值决定针对图像D1v的各像素的放大率。即,根据像素值DIN(11)和像素值D1v(11)决定针对像素值D1v(11)的放大率,根据像素值DIN(12)和像素值D1v(12)决定针对像素值D1v(12)的放大率,一般来说,如根据像素值DIN(xy)和像素值D1v(xy)决定针对像素值D1v(xy)的放大率那样,根据输入图像DIN和图像D1v的相同坐标的像素值决定放大率,输出其结果作为放大率D103MAv。Further, the vertical magnification determining unit 103MAv determines the magnification of each pixel of the image D1v based on the pixel values of the same coordinates of the input image DIN and the image D1v. That is, the magnification factor for pixel value D1v(11) is determined based on pixel value DIN(11) and pixel value D1v(11), and the amplification factor for pixel value D1v(12) is determined based on pixel value DIN(12) and pixel value D1v(12). In general, the magnification rate for the pixel value D1v(xy) is determined based on the pixel value of the same coordinates of the input image DIN and the image D1v as the magnification rate for the pixel value D1v(xy) is determined based on the pixel value DIN(xy) and the pixel value D1v(xy). magnification, and output the result as magnification D103MAv.
图23是示出水平方向放大率决定单元103MAh的结构例的图。图示的水平方向放大率决定单元103MAh具有第1放大率决定单元511h、第2放大率决定单元512h、符号判定单元52h以及选择单元53h。输入图像DIN和图像D1h被输入到水平方向放大率决定单元103MAh。第1放大率决定单元511h根据输入图像DIN的像素值,输出由后述的第1特性决定的放大率D511h。第2放大率决定单元512h根据输入图像DIN的像素值,输出由后述的第2特性决定的放大率D512h。符号判定单元52h判定图像D1h的像素值的符号(正负),将判定结果作为信号D52h传递到选择单元53h。选择单元53h根据符号判定单元52h的输出D52h,在图像D1h的像素值的符号是正的情况下,输出放大率D511h作为水平方向放大率D103MAh,在图像D1h的像素值的符号是负的情况下,输出放大率D512h作为水平方向放大率D103MAh。FIG. 23 is a diagram showing a configuration example of the horizontal magnification determining means 103MAh. The illustrated horizontal magnification determination unit 103MAh includes a first
图24是示出垂直方向放大率决定单元103MAv的结构例的图。图示的垂直方向放大率决定单元103MAv具有第1放大率决定单元511v、第2放大率决定单元512v、符号判定单元52v以及选择单元53v。输入图像DIN和图像D1v被输入到垂直方向放大率决定单元103MAv。第1放大率决定单元511v根据输入图像DIN的像素值,输出由后述的第1特性决定的放大率D511v。第2放大率决定单元512v根据输入图像DIN的像素值,输出由后述的第2特性决定的放大率D512v。第1放大率决定单元511v和第2放大率决定单元512v与图23所示的第1放大率决定单元511h和第2放大率决定单元512h动作相同,输入图像DIN也是共同的,因而也能使单元共同化(将放大率决定单元511h、512h也用作放大率决定单元511v、512v)。符号判定单元52v判定图像D1v的像素值的符号(正负),将判定结果作为信号D52v传递到选择单元53v。选择单元53v根据符号判定单元52v的输出D52v,在图像D1v的像素值的符号是正的情况下,输出放大率D511v作为垂直方向放大率D103MAv,在图像D1v的像素值的符号是负的情况下,输出放大率D512v作为垂直方向放大率D103MAv。FIG. 24 is a diagram showing a configuration example of the vertical magnification determining unit 103MAv. The illustrated vertical magnification determination unit 103MAv includes a first
然后,像素值放大单元103MB根据放大率D103MA放大第1中间图像D1的像素值。由于第1中间图像D1由图像D1h和图像D1v构成,因而像素值放大单元103MB具有:用于放大图像D1h的像素值的水平方向像素值放大单元103MBh;以及用于放大图像D1v的像素值的垂直方向像素值放大单元103MBv。即,水平方向像素值放大单元103MBh输出根据放大率D103MAh放大图像D1h的像素值后的图像D103MBh,垂直方向像素值放大单元103MBv输出根据放大率D103MAv放大图像D1v的像素值后的图像D103MBv。然后,从像素值放大单元103MB输出图像D103MBh和图像D103MBv作为图像D103MB。Then, the pixel value enlarging unit 103MB amplifies the pixel values of the first intermediate image D1 according to the enlarging factor D103MA. Since the first intermediate image D1 is composed of an image D1h and an image D1v, the pixel value enlarging unit 103MB has: a horizontal pixel value enlarging unit 103MBh for enlarging the pixel value of the image D1h; and a vertical enlarging unit 103MBh for enlarging the pixel value of the image D1v. Directional pixel value amplification unit 103MBv. That is, the horizontal pixel value enlarging unit 103MBh outputs an image D103MBh in which the pixel values of the image D1h are enlarged by the magnification factor D103MAh, and the vertical pixel value enlarging unit 103MBv outputs an image D103MBv in which the pixel values of the image D1v are amplified by the magnification factor D103MAv. Then, the image D103MBh and the image D103MBv are output from the pixel value enlarging unit 103MB as the image D103MB.
从第1中间图像处理单元103M输出图像D103MB作为中间图像D103M。中间图像D103M由与图像D103MBh相当的图像D103Mh和与图像D103MBv相当的图像D103Mv构成。Image D103MB is output from first intermediate image processing unit 103M as intermediate image D103M. The intermediate image D103M is composed of an image D103Mh corresponding to the image D103MBh and an image D103Mv corresponding to the image D103MBv.
以上是第1中间图像处理单元103M的动作。The above is the operation of the first intermediate image processing unit 103M.
然后,说明第2中间图像处理单元103H的动作。将图21和图22进行比较,第2中间图像处理单元除了输入信号为输入图像DIN和中间图像D2以外,结构与第1中间图像处理单元相同,第2中间图像处理单元103H输出对中间图像D2进行了与第1中间图像处理单元103M对中间图像D1进行的处理相同的处理而得到的中间图像D103H。另外,从上述第1中间图像处理单元103M的详细动作说明中也明白了第2中间图像处理单元103H的详细动作,因而省略第2中间图像处理单元103H的详细动作说明。Next, the operation of the second intermediate image processing unit 103H will be described. Comparing Fig. 21 and Fig. 22, the second intermediate image processing unit has the same structure as the first intermediate image processing unit except that the input signal is the input image DIN and the intermediate image D2, and the second intermediate image processing unit 103H outputs a pair of intermediate image D2 Intermediate image D103H obtained by performing the same processing as that performed on intermediate image D1 by first intermediate image processing unit 103M. Since the detailed operation of the second intermediate image processing unit 103H is also clear from the detailed operation description of the first intermediate image processing unit 103M, the detailed operation description of the second intermediate image processing unit 103H is omitted.
本实施方式中的图像处理装置也与实施方式1中的图像处理装置一样,可用作图9所示的图像显示装置的一部分。以下,对将本实施方式中的图像处理装置用作图像显示装置的一部分的例子进行说明。通过该说明,本实施方式中的图像处理装置的作用、效果也变得清楚。The image processing device in this embodiment can also be used as a part of the image display device shown in FIG. 9 like the image processing device in
如在实施方式1中参照图18的(A)和(B)说明的那样,通过将中间图像D1和图像D2与输入图像DIN相加,能增加图像的清晰感,能提高画质,然而过度进行高频分量的相加,有时反而招致画质的下降。As described in
因此,在本实施方式中,通过根据输入图像DIN的像素值和中间图像D1或中间图像D2的像素值变更施加给中间图像D1和中间图像D2的放大率,使利用中间图像D1和中间图像D2相加或相减的校正量不会过度增大,防止过冲和下冲的发生。Therefore, in this embodiment, by changing the magnification applied to intermediate image D1 and intermediate image D2 according to the pixel value of input image DIN and the pixel value of intermediate image D1 or intermediate image D2, intermediate image D1 and intermediate image D2 The correction amount added or subtracted will not increase excessively, preventing the occurrence of overshoot and undershoot.
在图示的图像处理装置中,在第1中间图像处理单元103M和第2中间图像处理单元103H中,通过根据输入图像DIN的像素值和中间图像D1或中间图像D2的像素值的符号(正负)对中间图像D1和中间图像D2适当施加不同的放大率,调节校正量。In the illustrated image processing device, in the first intermediate image processing unit 103M and the second intermediate image processing unit 103H, the sign (positive Negative) Appropriately apply different magnifications to the intermediate image D1 and intermediate image D2, and adjust the correction amount.
图25的(A)是示出为了防止过冲发生,在第1中间图像处理单元103M和第2中间图像处理单元103H中,对中间图像D1和中间图像D2应施加的放大率、或者在放大率决定单元103MA中应决定的放大率D103MA和在放大率决定单元103HA中应决定的放大率D103HA的特性(第1特性)的图。为了防止过冲发生,优选的是,输入图像DIN的像素值越大,这些放大率就越小。例如,可考虑这样的形式:在输入图像DIN的像素值是0的情况下取某个预定值B1,在像素值从0到某个值A11之间以斜率k11逐渐减小,在像素值从A11到某个值A12之间以斜率k12逐渐减小,在像素值是A11以上的情况下以斜率k13逐渐减小。另外,由于显然放大率是0以上为好,因而在上述决定中在放大率为负值的情况下,将其值设定为0。(A) of FIG. 25 shows, in order to prevent the occurrence of overshoot, in the first intermediate image processing unit 103M and the second intermediate image processing unit 103H, the magnification ratio to be applied to the intermediate image D1 and the intermediate image D2, or the magnification ratio to be applied to the intermediate image D1 and the intermediate image D2. It is a graph showing the characteristic (first characteristic) of the amplification factor D103MA to be determined by the factor determining unit 103MA and the factor D103HA to be determined by the factor determining unit 103HA. In order to prevent overshooting from occurring, these magnifications are preferably smaller the larger the pixel values of the input image DIN are. For example, such a form can be considered: when the pixel value of the input image DIN is 0, a certain predetermined value B1 is taken, and the pixel value gradually decreases from 0 to a certain value A11 with a slope k11, and when the pixel value changes from Between A11 and a certain value A12, it gradually decreases with a slope k12, and when the pixel value is greater than A11, it gradually decreases with a slope k13. In addition, since it is obvious that the amplification factor is 0 or more, when the amplification factor has a negative value in the above determination, its value is set to 0.
将放大率表示为G,将输入图像DIN的像素值表示为L时,该关系表示为:When denoting the magnification as G and the pixel value of the input image DIN as L, the relationship is expressed as:
[算式2][Equation 2]
式中 …(2)where …(2)
在图23、图24所示的第1水平方向放大率决定单元511h和第1垂直方向放大率决定单元511v中,根据图25的(A)和式(2)所示的第1特性输出放大率。In the first horizontal
另一方面,图25的(B)是示出为了防止下冲发生,在第1中间图像处理单元103M和第2中间图像处理单元103H中,对中间图像D1和中间图像D2应施加的放大率、或者在放大率决定单元103MA中应决定的放大率D103MA和在放大率决定单元103HA中应决定的放大率D103HA的特性(第2特性)的图。为了防止下冲发生,优选的是,输入图像DIN的像素值越小,这些放大率就越小,换言之,输入图像DIN的像素值越大,这些放大率就越大。例如,可考虑这样的形式:在输入图像DIN的像素值是0的情况下取某个预定值B2,在像素值从0到某个值A21之间以斜率k21逐渐增加,在像素值从A21到某个值A22之间以斜率k22逐渐增加,在像素值是A22以上的情况下以斜率k23逐渐增加。On the other hand, (B) of FIG. 25 shows the magnification to be applied to the intermediate image D1 and the intermediate image D2 in the first intermediate image processing unit 103M and the second intermediate image processing unit 103H in order to prevent undershoot. , or a graph of the characteristics (second characteristics) of the amplification factor D103MA to be determined by the amplification factor determination unit 103MA and the amplification factor D103HA to be determined by the amplification factor determination unit 103HA. In order to prevent undershooting, it is preferable that the smaller the pixel values of the input image DIN, the smaller these magnifications are, in other words, the larger the pixel values of the input image DIN, the larger these magnifications. For example, such a form can be considered: when the pixel value of the input image DIN is 0, a certain predetermined value B2 is taken, and gradually increases with a slope k21 between the pixel value from 0 to a certain value A21, and when the pixel value changes from A21 to It gradually increases with slope k22 until a certain value A22, and gradually increases with slope k23 when the pixel value is A22 or more.
将放大率表示为G,将输入图像DIN的像素值表示为L时,该关系表示为:When denoting the magnification as G and the pixel value of the input image DIN as L, the relationship is expressed as:
[算式3][Equation 3]
式中 …(3)where …(3)
在图23、图24所示的第2水平方向放大率决定单元512h和第2垂直方向放大率决定单元512v中,根据图25的(B)和式(3)所示的第2特性输出放大率。In the second horizontal
以下描述上述的放大率是适当的理由。The reason why the above-mentioned magnification is appropriate is described below.
中间图像D1是通过在对输入图像DIN进行了高通滤波处理之后进行低通滤波处理而生成的。这里,高通滤波处理相当于从输入图像DIN的各像素值减去局部平均值。因此,当在输入图像DIN中关注的像素的像素值大时,赋予给该像素的高通滤波处理后的输出值也为大的正值的可能性高。Intermediate image D1 is generated by performing high-pass filter processing on input image DIN and then performing low-pass filter processing. Here, the high-pass filtering process corresponds to subtracting a local average value from each pixel value of the input image DIN. Therefore, when the pixel value of the pixel of interest in the input image DIN is large, there is a high possibility that the output value after the high-pass filtering process given to the pixel will also be a large positive value.
另一方面,低通滤波处理与求出所输入的数据的局部平均值相同。因此,当高通滤波处理的输出值为大的正值时,低通滤波处理的输出值也为大的正值的可能性高。On the other hand, the low-pass filtering process is the same as calculating the local average value of the input data. Therefore, when the output value of the high-pass filter process is a large positive value, there is a high possibility that the output value of the low-pass filter process will also be a large positive value.
并且,中间图像D2是通过在非线性处理单元2A中对中间图像D1进行了非线性处理之后在高频分量图像生成单元2B中进行高通滤波处理而得到的。由于在非线性处理单元2A中仅在过零点附近使中间图像D1放大,因而基本上认为,当中间图像D1具有大的正值时,非线性处理单元2A输出的图像D2A也具有大的正值。在图像D2A具有大的正值的情况下,针对图像D2A的高通滤波处理结果即中间图像D2也具有大的正值的可能性高。Furthermore, the intermediate image D2 is obtained by performing a high-pass filter process in the high-frequency component image generating unit 2B after performing nonlinear processing on the intermediate image D1 in the nonlinear processing unit 2A. Since the intermediate image D1 is enlarged only near the zero-crossing point in the nonlinear processing unit 2A, it is basically considered that when the intermediate image D1 has a large positive value, the image D2A output by the nonlinear processing unit 2A also has a large positive value . When image D2A has a large positive value, there is a high possibility that intermediate image D2 that is the result of the high-pass filtering process on image D2A also has a large positive value.
综上所述,在输入图像DIN的像素值大的情况下,中间图像D1和中间图像D2的像素值也为大的正值的可能性高。换言之,利用中间图像D1和中间图像D2过度加上校正量,容易发生过冲。From the above, when the pixel value of the input image DIN is large, there is a high possibility that the pixel values of the intermediate image D1 and intermediate image D2 are also large positive values. In other words, if the correction amount is excessively added by intermediate image D1 and intermediate image D2 , overshooting tends to occur.
反之,在输入图像DIN的像素值小的情况下,中间图像D1和中间图像D2的像素值为大的负值的可能性高。换言之,利用中间图像D1和中间图像D2过度减去校正量,容易发生下冲。Conversely, when the pixel values of the input image DIN are small, the pixel values of the intermediate images D1 and D2 are likely to be large negative values. In other words, the correction amount is excessively subtracted with intermediate image D1 and intermediate image D2, and undershoot is likely to occur.
因此,当中间图像D1和中间图像D2的像素值是正值时,输入图像DIN的像素值越增大,就越减小施加给中间图像D1和中间图像D2的放大率,当中间图像D1和中间图像D2的像素值是负值时,输入图像DIN的像素值越减小,就越减小施加给中间图像D1和中间图像D2的放大率,从而可期待能控制成使被加上或被减去的校正量不过度增大。换言之,可期待能控制成难以发生过冲和下冲。Therefore, when the pixel values of the intermediate image D1 and the intermediate image D2 are positive values, the larger the pixel value of the input image DIN is, the smaller the magnification applied to the intermediate image D1 and the intermediate image D2 is, and when the intermediate image D1 and When the pixel value of the intermediate image D2 is a negative value, the smaller the pixel value of the input image DIN is, the smaller the magnification applied to the intermediate image D1 and intermediate image D2 is, so that it can be expected to be controlled so that The subtracted correction amount does not increase excessively. In other words, it can be expected that overshoot and undershoot can be controlled so that it is difficult to occur.
即,判别中间图像D1或中间图像D2的符号,在该符号是正的情况下,根据图25的(A)或式(2)所示的、输入图像DIN的像素值越大则放大率就越小这样的单调递减的函数,决定放大率D103MA或放大率D103HA,在符号是负的情况下,根据图25的(B)或式(3)所示的、输入图像DIN的像素值越小则放大率就越小这样的单调递增的函数,决定放大率D103MA或放大率D103HA,从而能进行这样的(难以发生过冲和下冲的)处理。That is, the sign of the intermediate image D1 or the intermediate image D2 is discriminated, and if the sign is positive, the larger the pixel value of the input image DIN, the larger the magnification factor, as shown in (A) of FIG. 25 or equation (2). If the magnification factor D103MA or magnification factor D103HA is determined by such a monotonically decreasing function, if the sign is negative, the smaller the pixel value of the input image DIN as shown in (B) of FIG. 25 or equation (3), then A monotonically increasing function such that the smaller the amplification factor is, determines the amplification factor D103MA or the amplification factor D103HA, so that such processing (which makes overshooting and undershooting difficult to occur) can be performed.
如上所述,在实施方式2的图像处理装置中得到这样的效果:可在抑制过冲和下冲发生的同时,进行图像的增强处理。当在图像中过度发生过冲和下冲时仅图像的一部分异常地浮现,在视觉特性上感到不愉快,因而在实施方式2的图像处理装置中,在视觉特性上也是非常优选的。As described above, the image processing device according to
并且,在实施方式2的图像处理装置中,为了抑制过冲和下冲发生,在第1中间图像处理单元103M和第2中间图像处理单元103H中,决定针对中间图像D1和中间图像D2的放大率,然而此时需要的信息仅是输入图像DIN的像素值和中间图像D1或中间图像D2(自身图像)的像素值的符号。因此,能在简单的电路中决定放大率,伴随第1中间图像处理单元103M和第2中间图像处理单元103H的追加的电路规模的增加也减少。In addition, in the image processing device according to
并且,在第1中间图像处理单元103M和第2中间图像处理单元103H中决定的放大率与输入图像DIN的像素值的关系不限于在本实施方式中说明的关系,只要用于防止过冲发生的第1特性是输入图像DIN的像素值越大则放大率就越小,并且用于防止下冲发生的第2特性是输入图像DIN的像素值越小则放大率就越小即可。而且,只要满足上述特性,则可以在水平方向放大率决定单元103MAh、垂直方向放大率决定单元103MAv、水平方向放大率决定单元103HAh、垂直方向放大率决定单元103HAh之间改变式(2)、式(3)的系数和函数形式自身。In addition, the relationship between the magnification determined in the first intermediate image processing unit 103M and the second intermediate image processing unit 103H and the pixel value of the input image DIN is not limited to the relationship described in this embodiment, as long as it is used to prevent the occurrence of overshoot The first characteristic is that the larger the pixel value of the input image DIN is, the smaller the magnification factor is, and the second characteristic for preventing undershoot is that the smaller the pixel value of the input image DIN is, the smaller the magnification factor is. And, as long as the above characteristics are satisfied, the formula (2), the formula (2) and the formula can be changed between the horizontal magnification determination unit 103MAh, the vertical magnification determination unit 103MAv, the horizontal magnification determination unit 103HAh, and the vertical magnification determination unit 103HAh. The coefficients of (3) and the functional form itself.
而且,作为水平方向放大率决定单元103MAh,不限定于图23所示的水平方向放大率决定单元,也可以使用例如图26所示的结构的水平方向放大率决定单元。图26所示的水平方向放大率决定单元103MAh具有符号判定单元52h、系数决定单元54h以及放大率决定单元55h。符号判定单元52h判定图像D1h的像素值的符号(正负),将判定结果作为信号D52h传递到系数决定单元54h。系数决定单元54h根据符号判定单元52h的输出D52h,在图像D1h的像素值的符号是正的情况下,根据下式(4)决定预定的系数组D54h(k1、k2、k3、A1、A2、B)。Furthermore, the horizontal magnification determining means 103MAh is not limited to the horizontal magnifying factor determining means shown in FIG. 23 , and for example, a horizontal magnifying factor determining means configured as shown in FIG. 26 may be used. Horizontal magnification determining unit 103MAh shown in FIG. 26 includes
[算式4][Equation 4]
k1=-k11k1=-k11
k2=-k12k2=-k12
k3=-k13 …(4)k3=-k13 ...(4)
A1=A11A1=A11
A2=A12A2=A12
B=B1B=B1
并且,在图像D1h的像素值的符号是负的情况下,根据下式(5)决定预定的系数组D54h(k1、k2、k3、A1、A2、B)。And when the sign of the pixel value of image D1h is negative, predetermined coefficient group D54h (k1, k2, k3, A1, A2, B) is determined according to the following formula (5).
[算式5][Equation 5]
k1=k21k1=k21
k2=k22k2=k22
k3=k23 …(5)k3=k23 ...(5)
A1=A21A1=A21
A2=A22A2=A22
B=B2B=B2
放大率决定单元55根据系数组D54h,使用下式(6)计算水平方向放大率D103MAh。The magnification factor determination unit 55 calculates the horizontal magnification factor D103MAh using the following equation (6) from the coefficient group D54h.
[算式6][Equation 6]
式中 …(6)where …(6)
代入系数可以看出,在图像D1h的像素值的符号是正的情况下,式(6)与式(2)等效,在图像D1h的像素值的符号是负的情况下,式(6)与式(3)等效。因此,输出的水平方向放大率D103MAh与图23中说明的结构的水平方向放大率相同。另一方面,通过采用图26所示的结构,可使用单一关系式描述放大率决定单元55h中的运算,只需根据图像D1h的符号变更系数就能切换特性,因而可削减运算的电路规模。而且,关于垂直方向放大率决定单元103MAv、水平方向放大率决定单元103HAh以及垂直方向放大率决定单元103HAv,也能采用相同结构,得到同等效果。Substituting the coefficients, it can be seen that when the sign of the pixel value of image D1h is positive, formula (6) is equivalent to formula (2), and when the sign of the pixel value of image D1h is negative, formula (6) and Equation (3) is equivalent. Therefore, the output horizontal magnification D103MAh is the same as that of the configuration explained in FIG. 23 . On the other hand, by adopting the structure shown in FIG. 26, the calculation in the amplification
并且,在本实施方式中,示出了根据输入图像DIN的各像素的像素值通过运算计算放大率的例子,然而也可以预先以查阅表(LUT)的形式保持与输入图像DIN的像素值对应的放大率的值。在使用这样的LUT的情况下,无需进行式(2)、式(3)或者式(6)的运算,因而可实现水平方向放大率决定单元103MAh、垂直方向放大率决定单元103MAv、水平方向放大率决定单元103HAh以及垂直方向放大率决定单元103HAh中的处理简化。In addition, in this embodiment, an example is shown in which the magnification factor is calculated by calculation based on the pixel value of each pixel of the input image DIN. The value of the magnification. In the case of using such a LUT, there is no need to perform the calculation of formula (2), formula (3) or formula (6), so the horizontal direction amplification ratio determination unit 103MAh, the vertical direction amplification ratio determination unit 103MAv, the horizontal direction amplification ratio determination unit 103MAh, and the horizontal direction amplification ratio can be realized. The processing in the ratio determination unit 103HAh and the vertical amplification ratio determination unit 103HAh is simplified.
另外,在上述的实施方式中,如图23、图24所示,第1中间图像处理单元103M的第1水平方向放大率决定单元103MAh和第1垂直方向放大率决定单元103MAv的双方具有:第1放大率决定单元(511h、511v),其根据输入图像的像素值越大则放大率就越小的第1特性输出放大率;第2放大率决定单元(512h、512v),其根据输入图像的像素值越小则放大率就越小的第2特性输出放大率;符号判定单元(52h、52v),其判定第1中间图像D1的像素值的符号;以及选择单元(53h、53v),其根据符号判定单元的判定结果选择第1放大率决定单元(511h、511v)输出的放大率和第2放大率决定单元(512h、512v)输出的放大率并将其输出,然而,也可以仅第1水平方向放大率决定单元103MAh和第1垂直方向放大率决定单元103MAv中的任意一方具有上述结构,另一方具有不同结构。In addition, in the above-mentioned embodiment, as shown in FIGS. 23 and 24 , both of the first horizontal magnification determining unit 103MAh and the first vertical magnification determining unit 103MAv of the first intermediate image processing unit 103M have: 1 Amplification ratio determining means (511h, 511v) which output the amplification ratio according to the first characteristic that the larger the pixel value of the input image is, the smaller the amplification ratio is; The smaller the pixel value, the smaller the second characteristic output magnification; the sign determination unit (52h, 52v), which determines the sign of the pixel value of the first intermediate image D1; and the selection unit (53h, 53v), It selects and outputs the amplification factor output by the first amplification factor determination unit (511h, 511v) and the amplification factor output by the second amplification factor determination unit (512h, 512v) according to the determination result of the sign determination unit, however, only Either one of the first horizontal magnification determining unit 103MAh and the first vertical magnification determining unit 103MAv has the above-mentioned structure, and the other has a different structure.
并且,参照图26进行说明,第1水平方向放大率决定单元103MAh和第1垂直方向放大率决定单元103MAv的双方可以具有:符号判定单元(52h),其判定第1中间图像的像素值的符号;系数决定单元(54h),其根据符号判定单元(52h)的判定结果输出预定系数;以及放大率决定单元(55h),其使用输入图像的像素值和系数决定单元(52h)输出的系数来决定放大率,然而,也可以仅第1水平方向放大率决定单元103MAh和第1垂直方向放大率决定单元103MAv中的任意一方具有上述结构,另一方具有不同结构。26, both of the first horizontal magnification determination unit 103MAh and the first vertical magnification determination unit 103MAv may include a sign determination unit (52h) that determines the sign of the pixel value of the first intermediate image. a coefficient determining unit (54h), which outputs a predetermined coefficient according to the determination result of the sign determining unit (52h); and an amplification factor determining unit (55h), which uses the pixel value of the input image and the coefficient output by the coefficient determining unit (52h) to determine To determine the magnification, however, only one of the first horizontal magnification determining unit 103MAh and the first vertical magnification determining unit 103MAv may have the above structure, and the other may have a different structure.
并且,关于第2中间图像处理单元103H的第2水平方向放大率决定单元103HAh和第2垂直方向放大率决定单元103HAv,也是一样。The same applies to the second horizontal magnification determining unit 103HAh and the second vertical magnification determining unit 103HAv of the second intermediate image processing unit 103H.
实施方式3
图27是示出本发明的实施方式3的图像处理装置的结构例的图。27 is a diagram showing a configuration example of an image processing device according to
输入图像IMGIN被输入到图示的图像处理装置,图示的图像处理装置输出输出图像IMGOUT。输入图像IMGIN是彩色图像,由表示亮度分量的信号YIN(以下称为输入亮度图像YIN)和表示色差分量的信号CRIN、CBIN构成。信号CRIN(以下称为输入CR图像CRIN)表示色差分量中的Cr分量,信号CBIN(以下称为输入CB图像CBIN)表示色差分量中的Cb分量。输出图像IMGOUT也是彩色图像,由表示亮度分量的信号YOUT(以下称为输出亮度图像YOUT)和表示色差分量的信号CROUT、CBOUT构成。信号CROUT(以下称为输出CR图像CROUT)表示色差分量中的Cr分量,信号CBOUT(以下称为输出CB图像CBOUT)表示色差分量中的Cb分量。An input image IMGIN is input to the illustrated image processing device, and the illustrated image processing device outputs an output image IMGOUT. The input image IMGIN is a color image and is composed of a signal YIN representing a luminance component (hereinafter referred to as an input luminance image YIN) and signals CRIN and CBIN representing color difference components. A signal CRIN (hereinafter referred to as an input CR image CRIN) represents a Cr component among the color difference components, and a signal CBIN (hereinafter referred to as an input CB image CBIN) represents a Cb component among the color difference components. The output image IMGOUT is also a color image, and is composed of a signal YOUT representing a luminance component (hereinafter referred to as output luminance image YOUT) and signals CROUT and CBOUT representing color difference components. The signal CROUT (hereinafter referred to as the output CR image CROUT) represents the Cr component of the color difference components, and the signal CBOUT (hereinafter referred to as the output CB image CBOUT) represents the Cb component of the color difference components.
实施方式3的图像处理装置具有第1中间图像生成单元201、第2中间图像生成单元2、亮度色差相加单元205、第1中间图像后处理单元203M、第2中间图像后处理单元203H以及加法单元204。The image processing device according to
第1中间图像生成单元201生成从输入亮度图像YIN取出特定频带分量(即从第1频率(第1预定频率)到第2频率(第2预定频率)的分量)而得到的中间图像(第1中间图像)D1。The first intermediate
第2中间图像生成单元2生成对中间图像D1进行了后述处理而得到的中间图像(第2中间图像)D2。The second intermediate
亮度色差相加单元205生成将输入亮度图像YIN、输入CR图像CRIN、输入CB图像CBIN如后所述进行了加权相加而得到的亮度色差相加图像YC。The luminance and color
第1中间图像后处理单元203M生成对中间图像D1进行了后述处理而得到的中间图像(第3中间图像)D203M。The first intermediate image
第2中间图像后处理单元203H生成对中间图像D2进行了后述处理而得到的中间图像(第4中间图像)D203H。The second intermediate image
加法单元204将输入亮度图像YIN、中间图像D203M以及中间图像D203H相加。The adding
在图示的实施方式的图像处理装置中仅对亮度分量进行处理。即,加法单元204的输出图像作为输出亮度图像YOUT输出,另一方面,输入CR图像CRIN直接作为输出CR图像CROUT输出,输入CB图像CBIN直接作为输出CB图像CBOUT输出。In the image processing device of the illustrated embodiment, only the luminance component is processed. That is, the output image of the adding
第1中间图像生成单元201对输入亮度图像YIN进行与实施方式1中的第1中间图像生成单元1对输入图像DIN进行的处理相同的处理。因此,其结构可以与实施方式1中的第1中间图像生成单元1相同。The first intermediate
第2中间图像生成单元2的动作、结构与实施方式1中的第1中间图像生成单元2相同,因而省略其说明。The operation and configuration of the second intermediate
图28是示出第1中间图像处理单元203M的结构例的图,图示的第1中间图像处理单元203M具有放大率决定单元203MA和像素值放大单元203MB。放大率决定单元203MA根据后述的亮度色差相加图像YC的像素值决定放大率D203MA。FIG. 28 is a diagram showing a configuration example of the first intermediate
像素值放大单元203MB使用由放大率决定单元203MA决定的放大率D203MA放大中间图像D1的像素值,并输出其结果作为中间图像D203MB。然后,从第1中间图像处理单元203M输出中间图像D203MB作为中间图像D203M。Pixel value enlarging section 203MB amplifies the pixel values of intermediate image D1 using enlarging factor D203MA determined by enlarging factor determining section 203MA, and outputs the result as intermediate image D203MB. Then, intermediate image D203MB is output from first intermediate
放大率决定单元203MA具有水平方向放大率决定单元203MAh和垂直方向放大率决定单元203MAv,像素值放大单元203MB具有水平方向像素值放大单元203MBh和垂直方向像素值放大单元203MBv。由水平方向放大率决定单元203MAh和水平方向像素值放大单元203MBh构成第1水平方向中间图像处理单元203Mh,由垂直方向放大率决定单元203MAv和垂直方向像素值放大单元203MBv构成第1垂直方向中间图像处理单元203Mv。The magnification determining unit 203MA has a horizontal magnifying factor determining unit 203MAh and a vertical magnifying factor determining unit 203MAv, and the pixel value enlarging unit 203MB has a horizontal pixel value enlarging unit 203MBh and a vertical pixel value enlarging unit 203MBv. The first horizontal intermediate image processing unit 203Mh is formed by the horizontal magnification determining unit 203MAh and the horizontal pixel value amplifying unit 203MBh, and the first vertical intermediate image is formed by the vertical magnifying factor determining unit 203MAv and the vertical pixel value amplifying unit 203MBv. Processing unit 203Mv.
图29是示出第2中间图像处理单元203H的结构例的图,图示的第2中间图像处理单元203H具有放大率决定单元203HA和像素值放大单元203HB。放大率决定单元203HA根据后述的亮度色差相加图像YC的像素值决定放大率D203HA。FIG. 29 is a diagram showing a configuration example of the second intermediate
像素值放大单元203HB使用由放大率决定单元203HA决定的放大率D203HA放大中间图像D2的像素值,并输出其结果作为中间图像D203HB。然后,从第1中间图像处理单元203H输出中间图像D203HB作为中间图像D203H。Pixel value enlarging section 203HB amplifies the pixel values of intermediate image D2 using enlarging factor D203HA determined by enlarging factor determining section 203HA, and outputs the result as intermediate image D203HB. Then, intermediate image D203HB is output from first intermediate
放大率决定单元203HA具有水平方向放大率决定单元203HAh和垂直方向放大率决定单元203HAv,像素值放大单元203HB具有水平方向像素值放大单元203HBh和垂直方向像素值放大单元203HBv。由水平方向放大率决定单元203HAh和水平方向像素值放大单元203HBh构成第2水平方向中间图像处理单元203Hh,由垂直方向放大率决定单元203HAv和垂直方向像素值放大单元203HBv构成第2垂直方向中间图像处理单元203Hv。The magnification factor determining unit 203HA has a horizontal magnification factor determining unit 203HAh and a vertical magnification factor determining unit 203HAv, and the pixel value amplifying unit 203HB has a horizontal pixel value magnifying unit 203HBh and a vertical pixel value magnifying unit 203HBv. The second horizontal intermediate image processing unit 203Hh is constituted by the horizontal enlargement factor determining unit 203HAh and the horizontal pixel value enlarging unit 203HBh, and the second vertical intermediate image is formed by the vertical enlargement factor determining unit 203HAv and the vertical pixel value enlarging unit 203HBv. Processing unit 203Hv.
加法单元204将中间图像D203M和中间图像D203H与输入亮度图像YIN相加,生成输出亮度图像YOUT。
以下,对实施方式3的图像处理装置的详细动作进行说明。不过如前所述,第1中间图像生成单元201和第2中间图像生成单元2的动作与实施方式1相同,因而省略其说明。Hereinafter, detailed operations of the image processing device according to
首先,说明亮度色差相加单元205的详细动作。亮度色差相加单元205针对各像素将输入亮度图像YIN的像素值、输入CR图像CRIN的像素值的绝对值以及输入CB图像CBIN的像素值的绝对值进行加权相加(仅通过加权相加),生成亮度色差相加图像YC。即,使用输入亮度图像YIN、输入CR图像CRIN以及输入CB图像CBIN,根据下式求出亮度色差相加图像YC。First, the detailed operation of luminance and color
YC=Ky·YIN+Kcr·|CRIN|+Kcb·|CBIN|…(7)YC=Ky·YIN+Kcr·|CRIN|+Kcb·|CBIN|...(7)
式中,Ky、Kcr、Kcb是用于加权的系数。In the formula, Ky, Kcr, and Kcb are coefficients used for weighting.
然后,说明第1中间图像处理单元203M的详细动作。Next, detailed operations of the first intermediate
第1中间图像处理单元203M在放大率决定单元203MA中根据亮度色差相加图像YC的像素值决定放大率D203MA。如前所述,根据放大率D203MA放大第1中间图像D1的像素值,然而由于第1中间图像D1由图像D1h和图像D1v构成,因而作为放大率D203MA,决定针对图像D1h的放大率D203MAh和针对图像D1v的放大率D203MAv。即,放大率决定单元203MA具有水平方向放大率决定单元203MAh和垂直方向放大率决定单元203MAv,在水平方向放大率决定单元203MAh中,根据亮度色差相加图像YC的像素值决定放大率D203MAh,在垂直方向放大率决定单元203MAv中,根据亮度色差相加图像YC的像素值决定放大率D203MAv,从放大率决定单元203MA输出放大率D203MAh和放大率D203MAv作为放大率D203MA。In the first intermediate
更详细说明水平方向放大率决定单元203MAh和垂直方向放大率决定单元203MAv的动作。The operations of the horizontal magnification factor determining unit 203MAh and the vertical magnification factor determining unit 203MAv will be described in more detail.
图30的(A)~(C)是表示亮度色差相加图像YC以及图像D1h、D1v的图,图30的(A)表示亮度色差相加图像YC,图30的(B)表示图像D1h,图30的(C)表示图像D1v。并且,在图30的(A)~(C)中,针对图像的水平方向和垂直方向表示水平坐标、垂直坐标和各坐标值。并且,针对亮度色差相加图像YC,在水平坐标x、垂直坐标y的位置上的像素的像素值由YC(xy)这样的记号表示,针对图像D1h,在水平坐标x、垂直坐标y的位置上的像素的像素值由D1h(xy)这样的记号表示,针对图像D1v,在水平坐标x、垂直坐标y的位置上的像素的像素值由D1v(xy)这样的记号表示。(A) to (C) of FIG. 30 are diagrams showing the luminance and color difference added image YC and images D1h and D1v, FIG. 30(A) shows the luminance and color difference added image YC, and FIG. 30(B) shows the image D1h, (C) of FIG. 30 shows an image D1v. In addition, in (A) to (C) of FIG. 30 , horizontal coordinates, vertical coordinates, and respective coordinate values are shown for the horizontal direction and the vertical direction of the image. In addition, for the luminance and color difference addition image YC, the pixel value of the pixel at the position of the horizontal coordinate x and the vertical coordinate y is represented by a symbol such as YC(xy), and for the image D1h, at the position of the horizontal coordinate x and the vertical coordinate y The pixel value of a pixel above is represented by a symbol D1h(xy), and for the image D1v, the pixel value of a pixel at a position of horizontal coordinate x and vertical coordinate y is represented by a symbol D1v(xy).
水平方向放大率决定单元203MAh根据亮度色差相加图像YC的相同坐标的像素值决定针对图像D1h的各像素的放大率。即,根据像素值YC(11)决定针对像素值D1h(11)的放大率,根据像素值YC(12)决定针对像素值D1h(12)的放大率,一般来说,如根据像素值YC(xy)决定针对像素值D1h(xy)的放大率那样,根据亮度色差相加图像YC的相同坐标的像素值决定放大率,输出其结果作为放大率D203MAh。The horizontal magnification determining unit 203MAh determines the magnification for each pixel of the image D1h based on the pixel values at the same coordinates of the luminance-color-difference added image YC. That is, the magnification factor for the pixel value D1h(11) is determined based on the pixel value YC(11), and the magnification factor for the pixel value D1h(12) is determined based on the pixel value YC(12). Generally speaking, for example, based on the pixel value YC( xy) determines the magnification factor for the pixel value D1h(xy), the magnification factor is determined from the pixel value at the same coordinates of the luminance-chromatic-difference addition image YC, and the result is output as the magnification factor D203MAh.
并且,垂直方向放大率决定单元203MAv根据亮度色差相加图像YC的相同坐标的像素值决定针对图像D1v的各像素的放大率。即,根据像素值YC(11)决定针对像素值D1v(11)的放大率,根据像素值YC(12)决定针对像素值D1v(12)的放大率,一般来说,如根据像素值YC(xy)决定针对像素值D1v(xy)的放大率那样,根据亮度色差相加图像YC的相同坐标的像素值决定放大率,输出其结果作为放大率D203MAv。Further, the vertical magnification determining unit 203MAv determines the magnification of each pixel of the image D1v based on the pixel values at the same coordinates of the luminance-chromatic-difference addition image YC. That is, the magnification factor for the pixel value D1v(11) is determined according to the pixel value YC(11), and the magnification factor for the pixel value D1v(12) is determined according to the pixel value YC(12). Generally speaking, for example, according to the pixel value YC( xy) determines the magnification factor for the pixel value D1v(xy), the magnification factor is determined from the pixel value at the same coordinates of the luminance-chromatic-difference addition image YC, and the result is output as the magnification factor D203MAv.
然后,像素值放大单元203MB根据放大率D203MA放大第1中间图像D1的像素值。由于第1中间图像D1由图像D1h和图像D1v构成,因而像素值放大单元203MB具有:用于放大图像D1h的像素值的水平方向像素值放大单元203MBh;以及用于放大图像D1v的像素值的垂直方向像素值放大单元203MBv。即,水平方向像素值放大单元203MBh输出根据放大率D203MAh放大图像D1h的像素值后的图像D203MBh,垂直方向像素值放大单元203MBv输出根据放大率D203MAv放大图像D1v的像素值后的图像D203MBv。然后,从像素值放大单元203MB输出图像D203MBh和图像D203MBv作为图像D203MB。Then, the pixel value enlarging unit 203MB amplifies the pixel values of the first intermediate image D1 according to the enlarging factor D203MA. Since the first intermediate image D1 is composed of an image D1h and an image D1v, the pixel value enlarging unit 203MB has: a horizontal pixel value enlarging unit 203MBh for enlarging the pixel value of the image D1h; and a vertical enlarging unit 203MBh for enlarging the pixel value of the image D1v. Directional pixel value amplification unit 203MBv. That is, the horizontal pixel value enlarging unit 203MBh outputs an image D203MBh in which the pixel values of the image D1h are enlarged by the magnification factor D203MAh, and the vertical pixel value enlarging unit 203MBv outputs an image D203MBv in which the pixel values of the image D1v are amplified by the magnification factor D203MAv. Then, an image D203MBh and an image D203MBv are output from the pixel value enlarging unit 203MB as an image D203MB.
从第1中间图像处理单元203M输出图像D203MB作为中间图像D203M。中间图像D203M由与图像D203MBh相当的图像D203Mh和与图像D203MBv相当的图像D203Mv构成。Image D203MB is output from first intermediate
以上是第1中间图像处理单元203M的动作。The above is the operation of the first intermediate
然后,说明第2中间图像处理单元203H的动作。将图28和图29进行比较,第2中间图像处理单元除了输入信号为亮度色差相加图像YC和中间图像D2以外,结构与第1中间图像处理单元相同,第2中间图像处理单元203H输出对中间图像D2进行了与第1中间图像处理单元203M对中间图像D1进行的处理相同的处理而得到的中间图像D203H。另外,从上述第1中间图像处理单元203M的详细动作说明中也明白了第2中间图像处理单元203H的详细动作,因而省略第2中间图像处理单元203H的详细动作说明。Next, the operation of the second intermediate
最后说明加法单元204的动作。加法单元204生成将输入亮度图像YIN、中间图像D203M和中间图像D203H相加而得到的输出亮度图像YOUT。加法单元204的由输出亮度图像YOUT以及输出CR图像CROUT和输出CB图像CBOUT构成的输出图像IMGOUT作为最终的输出图像从图像处理装置输出。Finally, the operation of adding
中间图像D203M由图像D203Mh和图像D203Mv构成,中间图像D203H由图像D203Hh和图像D203Hv构成,因而将输入亮度图像YIN、中间图像D203M和中间图像D203H相加是指将图像D203Mh、D203Mv、D203Hh和D203Hv全部与输入亮度图像YIN相加。The intermediate image D203M is composed of the image D203Mh and the image D203Mv, and the intermediate image D203H is composed of the image D203Hh and the image D203Hv, so adding the input luminance image YIN, the intermediate image D203M, and the intermediate image D203H means adding all the images D203Mh, D203Mv, D203Hh, and D203Hv Added to the input luminance image YIN.
这里,加法单元204中的加法处理不限于单纯相加,也可以进行加权相加。即,也可以将图像D203Mh、D203Mv、D203Hh和D203Hv的各方以分别不同的放大率放大后与输入亮度图像YIN相加。Here, the addition processing in the
以下,对将本实施方式中的图像处理装置用作图像显示装置的一部分的例子进行说明。通过该说明,本实施方式中的图像处理装置的作用、效果也变得清楚。Hereinafter, an example in which the image processing device in this embodiment is used as a part of the image display device will be described. The operation and effects of the image processing device in this embodiment will also be clarified through this description.
图31示出利用本实施方式中的图像处理装置的图像显示装置,在图示的图像显示装置中,在监视器U203上显示对应于原图像IMGORG的图像。FIG. 31 shows an image display device using the image processing device in this embodiment. In the illustrated image display device, an image corresponding to the original image IMGORG is displayed on the monitor U203.
彩色图像放大单元U201在原图像IMGORG的图像尺寸比监视器U203的图像尺寸小的情况下,输出放大原图像IMGORG后的图像IMGU201。这里,图像的放大可使用例如双三次法等进行。When the image size of the original image IMGORG is smaller than the image size of the monitor U203, the color image enlarging unit U201 outputs an image IMGU201 in which the original image IMGORG is enlarged. Here, the enlargement of the image can be performed using, for example, a bicubic method or the like.
本实施方式中的图像处理装置U202将图像IMGU201作为输入图像IMGIN,输出对输入图像IMGIN进行了先前说明的处理后的图像DU202。然后,在监视器U203上显示图像DU202。The image processing device U202 in this embodiment uses the image IMGU201 as an input image IMGIN, and outputs an image DU202 obtained by performing the processing described above on the input image IMGIN. Then, the image DU202 is displayed on the monitor U203.
另外,由于图像DU202被分为亮度信号(Y)和色差信号(Cr、Cb)(以下有时也称为YCbCr形式),因而,通常在显示于监视器U203上之前变换为红(R)绿(G)蓝(B)的色信号(以下有时也称为RGB形式)。YCbCr形式和RGB形式之间的变换例如记载在国际电信联盟的建议ITU-R.BT601等内,从RGB形式到YCbCr形式的变换是根据下式进行的。In addition, since the image DU202 is divided into a luminance signal (Y) and a color difference signal (Cr, Cb) (hereinafter sometimes referred to as a YCbCr format), it is usually converted into red (R) green ( G) Color signal of blue (B) (hereinafter sometimes referred to as RGB format). The conversion between the YCbCr format and the RGB format is described, for example, in Recommendation ITU-R.BT601 of the International Telecommunication Union, and the conversion from the RGB format to the YCbCr format is performed according to the following formula.
Y=0.299R+0.587G+0.114BY=0.299R+0.587G+0.114B
Cr=0.500R-0.419G-0.081BCr=0.500R-0.419G-0.081B
Cb=-0.169R-0.331G+0.500BCb=-0.169R-0.331G+0.500B
…(8)…(8)
从YCbCr形式到RGB形式的变换是根据下式进行的。The conversion from the YCbCr form to the RGB form is performed according to the following formula.
R=1.000Y+1.402Cr+0.000CbR=1.000Y+1.402Cr+0.000Cb
G=1.000Y-0.714Cr-0.344CbG=1.000Y-0.714Cr-0.344Cb
B=1.000Y+0.000Cr+1.772CbB=1.000Y+0.000Cr+1.772Cb
…(9)…(9)
另外,式(8)、式(9)所示的系数是一例,本实施方式不限定于此。并且,在输入图像是8比特数据的情况下,Cr、Cb的值通常舍入到-127以上128以下的范围内。In addition, the coefficient shown by Formula (8) and Formula (9) is an example, and this embodiment is not limited to this. In addition, when the input image is 8-bit data, the values of Cr and Cb are usually rounded to the range of -127 or more and 128 or less.
以下,假定原图像IMGORG在水平方向和垂直方向上其像素值都是监视器U203的像素值的一半,首先对彩色图像放大单元U201的动作、作用进行说明。Hereinafter, assuming that the pixel values of the original image IMGORG are half of the pixel values of the monitor U203 in the horizontal and vertical directions, the operation and function of the color image enlarging unit U201 will be described first.
彩色图像放大单元U201具有:图像放大单元U201Y,其生成放大表示原图像IMGORG的亮度分量的图像YORG后的图像DU201Y;图像放大单元U201CR,其生成放大表示Cr分量的图像CRORG后的图像DU201CR;以及图像放大单元U201CB,其生成放大表示Cb分量的图像CBORG后的图像DU201CB。另外,图像放大单元U201Y、图像放大单元U201CR以及图像放大单元U201CB的结构、动作均可以与在实施方式1中参照图10说明的图像放大单元U1相同,因而省略详细说明。The color image enlargement unit U201 has: an image enlargement unit U201Y that generates an image DU201Y that enlarges an image YORG representing a luminance component of an original image IMGORG; an image enlargement unit U201CR that generates an image DU201CR that enlarges an image CRORG representing a Cr component; The image enlarging unit U201CB generates an image DU201CB in which the image CBORG representing the Cb component is enlarged. The configuration and operation of image enlargement unit U201Y, image enlargement unit U201CR, and image enlargement unit U201CB may be the same as those of image enlargement unit U1 described with reference to FIG. 10 in
如针对实施方式1说明的那样,通过将中间图像D1和中间图像D2与输入图像DIN相加,能进行图像的增强处理。As described for
在本实施方式中,不是将第1中间图像D1和第2中间图像D2与输入图像YIN相加,以下,假定对在将第1中间图像和第2中间图像相加的情况下得到的效果进行说明,之后,对取代第1中间图像D1和第2中间图像D2而将第3中间图像D203M和第4中间图像D203H相加的效果进行说明。In this embodiment, instead of adding the first intermediate image D1 and the second intermediate image D2 to the input image YIN, the effect obtained when the first intermediate image and the second intermediate image are added is assumed to be described below. Next, the effect of adding the third intermediate image D203M and the fourth intermediate image D203H instead of the first intermediate image D1 and the second intermediate image D2 will be described.
首先,对加上中间图像D1的效果进行描述。从与实施方式1的对比可以看出,中间图像D1是从输入亮度图像YIN具有的高频分量取出叠加分量而得到的,如图32的(E)所示,对应于原图像DORG的奈圭斯特频率附近的高频分量。如在图32的(D)中说明的那样,原图像DORG的奈圭斯特频率附近的谱强度由于图像放大单元U201中的放大处理而减弱,因而通过加上中间图像D1,可补偿由于放大处理而减弱的谱强度。并且,由于从中间图像D1去除了叠加分量,因而不会增强过冲量、锯齿或振铃这样的假信号。First, the effect of adding the intermediate image D1 will be described. From the comparison with
然后,对加上中间图像D2的效果进行描述。从与实施方式1的对比可以看出,中间图像D2是对应于采样间隔S1的高频分量。因此,通过加上中间图像D2,可给出原图像DORG的奈圭斯特频率以上的频带的高频分量,从而可增加图像的清晰感。Next, the effect of adding the intermediate image D2 will be described. It can be seen from the comparison with
总结一下,通过将中间图像D1和中间图像D2与输入亮度图像YIN相加,能加上高频分量而不会增强叠加分量。并且,在人的视觉特性上,针对图像的清晰感,从亮度分量得到的信息是支配性的,因而能通过上述处理提高图像的清晰感。To summarize, by adding intermediate image D1 and intermediate image D2 to input luminance image YIN, high frequency components can be added without enhancing superimposed components. In addition, in terms of human visual characteristics, information obtained from the luminance component is dominant for the sharpness of an image, so the above-mentioned processing can improve the sharpness of an image.
另外,通过如上述说明的那样将生成的高频分量与输入亮度图像YIN相加,能增加图像的清晰感,能提高画质,然而过度进行高频分量的相加,有时反而招致画质的下降。即,从与实施方式1的对比可以看出,在输入亮度图像YIN有阶跃边缘状的亮度变化的情况下,存在发生过冲和下冲的情况。In addition, by adding the generated high-frequency components to the input luminance image YIN as described above, the sharpness of the image can be increased, and the image quality can be improved. However, excessive addition of high-frequency components may cause deterioration of the image quality. decline. That is, as can be seen from the comparison with
特别是在输入亮度图像YIN中发生过冲时,亮度信号过度增大。从式(9)可知,在亮度信号(Y)的值增大时变换到RGB形式的情况下,表示R、G、B的各式的右边的第1项增大,因而,R、G、B都为大值。In particular, when overshoot occurs in the input luminance image YIN, the luminance signal increases excessively. It can be known from formula (9) that when the value of the luminance signal (Y) increases and the value of the luminance signal (Y) is converted to the RGB format, the first item on the right side of each formula representing R, G, and B increases. Therefore, R, G, B is a large value.
R、G、B都为大值是指接近白色。换言之,接近白色是指颜色变淡。本来在接近无彩色的部分即使颜色变淡也相对地不显眼,然而当在有彩色的边缘附近颜色变淡时,仅边缘周围颜色变淡,产生不自然的感觉。R, G, and B are all large values, which means that they are close to white. In other words, approaching white means that the color becomes lighter. Originally, even if the color is lightened in the near-achromatic part, it is relatively inconspicuous. However, when the color becomes light near the colored edge, only the color around the edge becomes light, giving an unnatural feeling.
换言之,当在有彩色的部分利用中间图像D1和中间图像D2相加的亮度的大小(以下称为校正量)过度增大时,认为容易发生这些画质下降。因此,认为只要调整成在有彩色的部分中中间图像D1和中间图像D2的校正量不过度增大即可。In other words, when the magnitude of the luminance added by intermediate image D1 and intermediate image D2 (hereinafter referred to as correction amount) is excessively increased in a colored portion, it is considered that these image quality degradations tend to occur. Therefore, it is considered that it is only necessary to adjust so that the correction amount of the intermediate image D1 and the intermediate image D2 does not increase excessively in the colored portion.
作为该方法,例如认为有这样的方法:检测有彩色且由中间图像D1和中间图像D2提供的校正量增大的部分,在检测出的部位,通过适当施加增益以使中间图像D1和中间图像D2的校正量减小,使校正量不会过度增大。As this method, for example, it is considered that there is a method of detecting a colored portion where the correction amount provided by intermediate image D1 and intermediate image D2 increases, and at the detected portion, by appropriately applying a gain to make intermediate image D1 and intermediate image The correction amount of D2 is reduced so that the correction amount does not increase excessively.
是否是有彩色可根据彩度(可由Cr、Cb的平方和的平方根表示)来判定。即,对于有彩色,彩度为大值。并且,Cr、Cb的平方和的平方根可使用Cr、Cb的绝对值的和求近似。这是因为,在Cr或Cb的绝对值增大的情况下,Cr、Cb的平方和的平方根也增大。并且,与计算平方和的平方根相比,计算绝对值的和更简单,因而也可以减小电路规模。Whether it is colored can be judged according to the chroma (which can be expressed by the square root of the square sum of Cr and Cb). That is, for a chromatic color, the saturation is a large value. Also, the square root of the sum of the squares of Cr and Cb can be approximated using the sum of the absolute values of Cr and Cb. This is because, when the absolute value of Cr or Cb increases, the square root of the sum of the squares of Cr and Cb also increases. Also, since calculating the sum of absolute values is simpler than calculating the square root of the sum of squares, the circuit scale can also be reduced.
由中间图像D1和中间图像D2提供的校正量是否增大,能根据输入亮度图像YIN的像素值在某种程度上进行判定。以下描述理由。Whether or not the amount of correction provided by the intermediate image D1 and intermediate image D2 has increased can be determined to some extent from the pixel values of the input luminance image YIN. The reason is described below.
中间图像D1是通过在对输入亮度图像YIN进行了高通滤波处理之后进行低通滤波处理来生成的。这里,高通滤波处理相当于从输入亮度图像YIN的各像素值减去局部平均值。因此,当在输入亮度图像YIN中关注的像素的像素值大时,赋予给该像素的高通滤波处理后的输出值也为大的正值的可能性高。The intermediate image D1 is generated by performing high-pass filter processing on the input luminance image YIN and then performing low-pass filter processing. Here, the high-pass filtering process corresponds to subtracting a local average value from each pixel value of the input luminance image YIN. Therefore, when the pixel value of the pixel of interest in the input luminance image YIN is large, there is a high possibility that the output value after the high-pass filtering process given to the pixel will also be a large positive value.
另一方面,低通滤波处理与求出所输入的数据的局部平均值相同。因此,当高通滤波处理的输出值为大的正值时,低通滤波处理的输出值也为大的正值的可能性高。On the other hand, the low-pass filtering process is the same as calculating the local average value of the input data. Therefore, when the output value of the high-pass filter process is a large positive value, there is a high possibility that the output value of the low-pass filter process will also be a large positive value.
并且,中间图像D2是通过在非线性处理单元2A中对中间图像D1进行了非线性处理之后在高频分量图像生成单元2B中进行高通滤波处理来得到的。由于在非线性处理单元2A中仅在过零点附近使中间图像D1放大,因而基本上认为,当中间图像D1具有大的正值时,非线性处理单元2A输出的图像D2A也具有大的正值。在图像D2A具有大的正值的情况下,针对图像D2A的高通滤波处理结果即中间图像D2也具有大的正值的可能性高。Furthermore, the intermediate image D2 is obtained by performing a high-pass filter process in the high-frequency component image generating unit 2B after performing nonlinear processing on the intermediate image D1 in the nonlinear processing unit 2A. Since the intermediate image D1 is enlarged only near the zero-crossing point in the nonlinear processing unit 2A, it is basically considered that when the intermediate image D1 has a large positive value, the image D2A output by the nonlinear processing unit 2A also has a large positive value . When image D2A has a large positive value, there is a high possibility that intermediate image D2 that is the result of the high-pass filtering process on image D2A also has a large positive value.
综上所述,在输入亮度图像YIN的像素值大的情况下,中间图像D1和中间图像D2的像素值也为大的正值的可能性高。换言之,在输入亮度图像YIN的像素值大的情况下,能在某种程度上判断为由中间图像D1和中间图像D2提供的校正量增大。As described above, when the pixel value of the input luminance image YIN is large, there is a high possibility that the pixel values of the intermediate image D1 and intermediate image D2 are also large positive values. In other words, when the pixel value of the input luminance image YIN is large, it can be determined that the correction amount provided by the intermediate image D1 and the intermediate image D2 is increased to some extent.
根据上述理由认为,在输入亮度图像YIN的像素值、输入CR图像CRIN的像素值的绝对值以及输入CB图像CBIN的像素值的绝对值中的任意一方大的像素中,校正量增大,会发生在变为RGB形式的情况下颜色变淡的不利情况。From the above reasons, it is considered that the correction amount increases for a pixel in which any one of the absolute value of the pixel value of the input luminance image YIN, the absolute value of the pixel value of the input CR image CRIN, and the absolute value of the pixel value of the input CB image CBIN is larger, and the correction amount becomes larger. There is a disadvantage that the color fades when changing to RGB form.
并且,在输入亮度图像YIN的像素值、输入CR图像CRIN的像素值的绝对值以及输入CB图像CBIN的像素值的绝对值中的任意一方大的情况下,其加权相加值也为大值。In addition, when any one of the pixel value of the input luminance image YIN, the absolute value of the pixel value of the input CR image CRIN, and the absolute value of the pixel value of the input CB image CBIN is large, the weighted addition value is also a large value. .
因此,在本实施方式中,根据式(7)对输入亮度图像YIN的像素值、输入CR图像CRIN的像素值的绝对值以及输入CB图像CBIN的像素值的绝对值进行加权相加,生成亮度色差相加图像YC,亮度色差相加图像YC的像素值越大,就越减小施加给中间图像D1和中间图像D2的放大率,从而避免在有彩色的边缘附近颜色变淡的不利情况。Therefore, in this embodiment, the pixel value of the input luminance image YIN, the absolute value of the pixel value of the input CR image CRIN, and the absolute value of the pixel value of the input CB image CBIN are weighted and added according to the formula (7) to generate the luminance The color difference addition image YC, the larger the pixel value of the brightness color difference addition image YC, the smaller the magnification applied to the intermediate image D1 and intermediate image D2, thereby avoiding the unfavorable situation of color fading near the colored edges.
这样的放大率(GAIN)与亮度色差相加图像YC的像素值(L)的关系例如表示如下:The relationship between such a magnification factor (GAIN) and the pixel value (L) of the luminance-chromatic-difference added image YC is expressed as follows, for example:
[算式7][Equation 7]
式中 …(10)where ...(10)
图33是示出由式(10)表示的放大率(GAIN)与亮度色差相加图像YC的像素值(L)的关系的图。在亮度色差相加图像YC的像素值是0的情况下取某个预定值B,在像素值从0到某个值A1之间以斜率k1逐渐减小,在像素值从A1到某个值A2之间以斜率k2逐渐减小,在像素值是A1以上的情况下以斜率k3逐渐减小。FIG. 33 is a graph showing the relationship between the magnification (GAIN) represented by the equation (10) and the pixel value (L) of the luminance-color-difference added image YC. When the pixel value of the luminance and color difference added image YC is 0, a certain predetermined value B is taken, and gradually decreases with a slope k1 between the pixel value from 0 to a certain value A1, and when the pixel value is from A1 to a certain value A2 gradually decreases with a slope k2, and gradually decreases with a slope k3 when the pixel value is greater than or equal to A1.
总之,根据图33或式(10)所示的、亮度色差相加图像YC的像素值越大则放大率就越小这样的单调递减的函数,决定放大率D203MA或放大率D203HA,从而能进行防止在有彩色的边缘附近颜色变淡的不利情况的处理。In short, the magnification D203MA or the magnification D203HA is determined according to a monotonically decreasing function such that the larger the pixel value of the luminance-chromatic-difference added image YC is, the smaller the magnification is, as shown in FIG. 33 or Equation (10). A treatment that prevents the adverse condition of color fading near colored edges.
如上所述,在实施方式3的图像处理装置中,可在抑制发生在有彩色的边缘附近颜色变淡的不利情况的同时,进行图像的增强处理。当在有彩色的边缘附近颜色变淡时,在视觉特性上感到不自然,因而在实施方式3的图像处理装置中,在视觉特性上也是非常优选的。As described above, in the image processing device according to
并且,在实施方式3的图像处理装置中,为了抑制发生在有彩色的边缘附近颜色变淡的不利情况,在第1中间图像处理单元203M和第2中间图像处理单元203H中,决定针对中间图像D1和中间图像D2的放大率,然而,此时需要的信息仅是输入亮度图像YIN的像素值、输入CR图像CRIN的像素值的绝对值以及输入CB图像CBIN的像素值的绝对值的加权相加值。因此,能在简单的电路中决定放大率,也可以减少电路规模的增加。In addition, in the image processing device according to
并且,在第1中间图像处理单元203M和第2中间图像处理单元203H中决定的放大率与亮度色差相加图像YC的像素值的关系不限于在本实施方式中说明的关系,只要亮度色差相加图像YC的像素值越大则放大率就越小即可。Furthermore, the relationship between the magnification determined in the first intermediate
实施方式4
图34是示出本发明的实施方式4的图像处理装置的结构例的图。34 is a diagram showing a configuration example of an image processing device according to
与针对实施方式3说明的一样,输入图像IMGIN被输入到图示的图像处理装置,图示的图像处理装置输出输出图像IMGOUT。输入图像IMGIN是彩色图像,由输入亮度图像YIN、输入CR图像CRIN和输入CB图像CBIN构成。输出图像IMGOUT也是彩色图像,由输出亮度图像YOUT、输出CR图像CROUT和输出CB图像CBOUT构成。As described for the third embodiment, the input image IMGIN is input to the illustrated image processing device, and the illustrated image processing device outputs the output image IMGOUT. The input image IMGIN is a color image composed of an input luminance image YIN, an input CR image CRIN, and an input CB image CBIN. The output image IMGOUT is also a color image, and is composed of an output luminance image YOUT, an output CR image CROUT, and an output CB image CBOUT.
实施方式4的图像处理装置具有第1中间图像生成单元201、第2中间图像生成单元2、亮度色差相加单元205、第1中间图像处理单元303M、第2中间图像处理单元303H以及加法单元204。The image processing device according to
第1中间图像生成单元201、第2中间图像生成单元2、亮度色差相加单元205以及加法单元204的结构和动作分别与实施方式3中的相同标号的单元相同。The configurations and operations of first intermediate
第1中间图像处理单元303M生成对中间图像D1进行了后述处理而得到的中间图像(第3中间图像)D303M。The first intermediate
第2中间图像处理单元303H生成对中间图像D2进行了后述处理而得到的中间图像(第4中间图像)D303H。The second intermediate
在图示的实施方式的图像处理装置中仅对亮度分量进行处理。即,加法单元204的输出图像作为输出亮度图像YOUT输出,另一方面,输入CR图像CRIN直接作为输出CR图像CROUT输出,输入CB图像CBIN直接作为输出CB图像CBOUT输出。In the image processing device of the illustrated embodiment, only the luminance component is processed. That is, the output image of the adding
图35是示出第1中间图像处理单元303M的结构例的图,图示的第1中间图像处理单元303M具有放大率决定单元303MA和像素值放大单元303MB。放大率决定单元303MA根据后述的亮度色差相加图像YC的像素值决定放大率D303MA。像素值放大单元303MB使用由放大率决定单元303MA决定的放大率D303MA放大中间图像D1的像素值,并输出其结果作为中间图像D303MB。然后,从第1中间图像处理单元303M输出中间图像D303MB作为中间图像D303M。FIG. 35 is a diagram showing a configuration example of the first intermediate
放大率决定单元303MA具有水平方向放大率决定单元303MAh和垂直方向放大率决定单元303MAv,像素值放大单元303MB具有水平方向像素值放大单元303MBh和垂直方向像素值放大单元303MBv。由水平方向放大率决定单元303MAh和水平方向像素值放大单元303MBh构成第1水平方向中间图像处理单元303Mh,由垂直方向放大率决定单元303MAv和垂直方向像素值放大单元303MBv构成第1垂直方向中间图像处理单元303Mv。The magnification determination unit 303MA has a horizontal magnification determination unit 303MAh and a vertical magnification determination unit 303MAv, and the pixel value amplifying unit 303MB has a horizontal pixel value amplifying unit 303MBh and a vertical pixel value amplifying unit 303MBv. The first horizontal intermediate image processing unit 303Mh is composed of the horizontal magnification factor determining unit 303MAh and the horizontal pixel value enlarging unit 303MBh, and the first vertical intermediate image is formed by the vertical magnification factor determining unit 303MAv and the vertical pixel value enlarging unit 303MBv. Processing unit 303Mv.
图36是示出第2中间图像处理单元303H的结构例的图,图示的第2中间图像处理单元303H具有放大率决定单元303HA和像素值放大单元303HB。放大率决定单元303HA根据后述的亮度色差相加图像YC的像素值决定放大率D303HA。FIG. 36 is a diagram showing a configuration example of the second intermediate
像素值放大单元303HB使用由放大率决定单元303HA决定的放大率D303HA放大中间图像D2的像素值,并输出其结果作为中间图像D303HB。然后,从第1中间图像处理单元303H输出中间图像D303HB作为中间图像D303H。Pixel value enlarging section 303HB amplifies the pixel values of intermediate image D2 using enlarging factor D303HA determined by enlarging factor determining section 303HA, and outputs the result as intermediate image D303HB. Then, intermediate image D303HB is output from first intermediate
放大率决定单元303HA具有水平方向放大率决定单元303HAh和垂直方向放大率决定单元303HAv,像素值放大单元303HB具有水平方向像素值放大单元303HBh和垂直方向像素值放大单元303HBv。由水平方向放大率决定单元303HAh和水平方向像素值放大单元303HBh构成第2水平方向中间图像处理单元303Hh,由垂直方向放大率决定单元303HAv和垂直方向像素值放大单元303HBv构成第2垂直方向中间图像处理单元303Hv。The magnification determination unit 303HA has a horizontal magnification determination unit 303HAh and a vertical magnification determination unit 303HAv, and the pixel value amplifying unit 303HB has a horizontal pixel value amplifying unit 303HBh and a vertical pixel value amplifying unit 303HBv. The second horizontal intermediate image processing unit 303Hh is constituted by the horizontal enlargement ratio determination unit 303HAh and the horizontal pixel value enlargement unit 303HBh, and the second vertical intermediate image is constituted by the vertical enlargement ratio determination unit 303HAv and the vertical pixel value enlargement unit 303HBv. Processing unit 303Hv.
以下,对实施方式4的图像处理装置的详细动作进行说明。Hereinafter, detailed operations of the image processing device according to
另外,第1中间图像生成单元201、第2中间图像生成单元2、亮度色差相加单元205以及加法单元204的详细动作与实施方式3记载的相同,因而省略其说明。Note that the detailed operations of first intermediate
首先,说明第1中间图像处理单元303M的详细动作。First, the detailed operation of the first intermediate
第1中间图像处理单元303M在放大率决定单元303MA中根据亮度色差相加图像YC的像素值和中间图像D1的像素值的符号sD1决定放大率D303MA。这里,由于第1中间图像D1由图像D1h和图像D1v构成,因而符号sD1由表示图像D1h的符号的符号sD1h和表示图像D1v的符号的符号sD1v构成。如前所述,根据放大率D303MA放大第1中间图像D1的像素值,然而由于第1中间图像D1由图像D1h和图像D1v构成,因而作为放大率D303MA,决定针对图像D1h的放大率D303MAh和针对图像D1v的放大率D303MAv。即,放大率决定单元303MA具有水平方向放大率决定单元303MAh和垂直方向放大率决定单元303MAv,在水平方向放大率决定单元303MAh中,根据亮度色差相加图像YC的像素值和图像D1h的像素值的符号sD1h决定放大率D303MAh,在垂直方向放大率决定单元303MAv中,根据亮度色差相加图像YC的像素值和图像D1v的像素值的符号sD1v决定放大率D303MAv,从放大率决定单元303MA输出放大率D303MAh和放大率D303MAv作为放大率D303MA。In the first intermediate
更详细说明水平方向放大率决定单元303MAh和垂直方向放大率决定单元303MAv的动作。The operations of the horizontal magnification determination unit 303MAh and the vertical magnification determination unit 303MAv will be described in more detail.
图37的(A)~(E)是表示亮度色差相加图像YC以及图像D1h、D1v、图像D1h的像素值的符号sD1h、图像D1v的像素值的符号sD1v的图,图37的(A)表示亮度色差相加图像YC,图37的(B)表示图像D1h,图37的(C)表示图像D1v,图37的(D)表示符号sD1h,图37的(E)表示符号sD1v。并且,在图37的(A)~(E)中,针对图像的水平方向和垂直方向表示水平坐标、垂直坐标和各坐标值。并且,针对亮度色差相加图像YC,在水平坐标x、垂直坐标y的位置上的像素的像素值由YC(xy)这样的记号表示,针对图像D1h,在水平坐标x、垂直坐标y的位置上的像素的像素值由D1h(xy)这样的记号表示,针对图像D1v,在水平坐标x、垂直坐标y的位置上的像素的像素值由D1v(xy)这样的记号表示。针对图像D1h的像素值的符号sD1h,在水平坐标x、垂直坐标y的位置上的像素的符号由sD1h(xy)这样的记号表示,针对图像D1v的像素值的符号sD1v,在水平坐标x、垂直坐标v的位置上的像素的符号由sD1v(xy)这样的记号表示。(A) to (E) of FIG. 37 are diagrams showing the luminance and color difference added image YC and images D1h and D1v, the symbol sD1h of the pixel value of the image D1h, and the symbol sD1v of the pixel value of the image D1v. (A) of FIG. 37 37(B) shows image D1h, FIG. 37(C) shows image D1v, FIG. 37(D) shows symbol sD1h, and FIG. 37(E) shows symbol sD1v. In addition, in (A) to (E) of FIG. 37 , horizontal coordinates, vertical coordinates, and respective coordinate values are shown for the horizontal direction and the vertical direction of the image. In addition, for the luminance and color difference addition image YC, the pixel value of the pixel at the position of the horizontal coordinate x and the vertical coordinate y is represented by a symbol such as YC(xy), and for the image D1h, at the position of the horizontal coordinate x and the vertical coordinate y The pixel value of a pixel above is represented by a symbol D1h(xy), and for the image D1v, the pixel value of a pixel at a position of horizontal coordinate x and vertical coordinate y is represented by a symbol D1v(xy). For the symbol sD1h of the pixel value of the image D1h, the symbol of the pixel at the position of the horizontal coordinate x and the vertical coordinate y is represented by a symbol such as sD1h(xy), and for the symbol sD1v of the pixel value of the image D1v, at the horizontal coordinate x, The sign of the pixel at the position of the vertical coordinate v is represented by a sign such as sD1v(xy).
水平方向放大率决定单元303MAh根据亮度色差相加图像YC的相同坐标的像素值和图像D1h的相同坐标的像素值的符号决定针对图像D1h的各像素的放大率。即,根据像素值YC(11)和符号sD1h(11)决定针对像素值D1h(11)的放大率,根据像素值YC(12)和符号sD1h(12)决定针对像素值D1h(12)的放大率,一般来说,如根据像素值YC(xy)和符号sD1h(xy)决定针对像素值D1h(xy)的放大率那样,根据亮度色差相加图像YC的相同坐标的像素值和图像D1h的相同坐标的像素值的符号决定放大率,输出其结果作为放大率D303MAh。The horizontal magnification determining unit 303MAh determines the magnification for each pixel of the image D1h based on the signs of the pixel values at the same coordinates in the luminance-chromatic-difference added image YC and the pixel values at the same coordinates in the image D1h. That is, the magnification factor for the pixel value D1h(11) is determined based on the pixel value YC(11) and the symbol sD1h(11), and the magnification factor for the pixel value D1h(12) is determined based on the pixel value YC(12) and the symbol sD1h(12) Generally speaking, as the magnification rate for the pixel value D1h(xy) is determined from the pixel value YC(xy) and the symbol sD1h(xy), the pixel value of the same coordinates of the image YC and the pixel value of the image D1h are added according to the brightness and color difference The signs of the pixel values at the same coordinates determine the magnification, and the result is output as the magnification D303MAh.
并且,垂直方向放大率决定单元303MAv根据亮度色差相加图像YC的相同坐标的像素值和图像D1v的相同坐标的像素值的符号决定针对图像D1v的各像素的放大率。即,根据像素值YC(11)和符号sD1v(11)决定针对像素值D1v(11)的放大率,根据像素值YC(12)和符号sD1v(12)决定针对像素值D1v(12)的放大率,一般来说,如根据像素值YC(xy)和符号sD1v(xy)决定针对像素值D1v(xy)的放大率那样,根据亮度色差相加图像YC的相同坐标的像素值和图像D1v的相同坐标的像素值的符号决定放大率,输出其结果作为放大率D303MAv。Further, the vertical magnification determining unit 303MAv determines the magnification of each pixel of the image D1v based on the signs of the pixel values at the same coordinates of the luminance and color difference added image YC and the pixel values of the same coordinates of the image D1v. That is, the magnification factor for the pixel value D1v(11) is determined based on the pixel value YC(11) and the symbol sD1v(11), and the magnification factor for the pixel value D1v(12) is determined based on the pixel value YC(12) and the symbol sD1v(12) Generally speaking, as the magnification rate for the pixel value D1v(xy) is determined from the pixel value YC(xy) and the symbol sD1v(xy), the pixel value of the same coordinates of the image YC and the value of the image D1v are added according to the luminance and color difference The signs of the pixel values at the same coordinates determine the magnification, and the result is output as the magnification D303MAv.
然后,像素值放大单元303MB根据放大率D303MA放大第1中间图像D1的像素值。由于第1中间图像D1由图像D1h和图像D1v构成,因而像素值放大单元303MB具有:用于放大图像D1h的像素值的水平方向像素值放大单元303MBh;以及用于放大图像D1v的像素值的垂直方向像素值放大单元303MBv。即,水平方向像素值放大单元303MBh输出根据放大率D303MAh放大图像D1h的像素值后的图像D303MBh,垂直方向像素值放大单元303MBv输出根据放大率D303MAv放大图像D1v的像素值后的图像D303MBv。然后,从像素值放大单元303MB输出图像D303MBh和图像D303MBv作为图像D303MB。Then, the pixel value enlarging unit 303MB amplifies the pixel values of the first intermediate image D1 according to the enlarging factor D303MA. Since the first intermediate image D1 is composed of an image D1h and an image D1v, the pixel value enlarging unit 303MB has: a horizontal pixel value enlarging unit 303MBh for enlarging the pixel value of the image D1h; and a vertical enlarging unit 303MBh for enlarging the pixel value of the image D1v. Directional pixel value amplification unit 303MBv. That is, the horizontal pixel value enlarging unit 303MBh outputs an image D303MBh in which the pixel values of the image D1h are enlarged by the magnification factor D303MAh, and the vertical pixel value enlarging unit 303MBv outputs an image D303MBv in which the pixel values of the image D1v are amplified by the magnification factor D303MAv. Then, an image D303MBh and an image D303MBv are output from the pixel value enlarging unit 303MB as an image D303MB.
从第1中间图像处理单元303M输出图像D303MB作为中间图像D303M。中间图像D303M由与图像D303MBh相当的图像D303Mh和与图像D303MBv相当的图像D303Mv构成。Image D303MB is output from first intermediate
以上是第1中间图像处理单元303M的动作。The above is the operation of the first intermediate
然后,说明第2中间图像处理单元303H的动作。将图35和图36进行比较,第2中间图像处理单元除了输入信号为亮度色差相加图像YC和中间图像D2以外,结构与第1中间图像处理单元相同,第2中间图像处理单元303H输出对中间图像D2进行了与第1中间图像处理单元303M对中间图像D1进行的处理相同的处理而得到的中间图像D303H。另外,从上述第1中间图像处理单元303M的详细动作说明中也明白了第2中间图像处理单元303H的详细动作,因而省略第2中间图像处理单元303H的详细动作说明。Next, the operation of the second intermediate
以下,对将本实施方式中的图像处理装置用作图像显示装置的一部分的例子进行说明。另外,本实施方式中的图像处理装置例如可用作图31所示的图像显示装置的一部分。Hereinafter, an example in which the image processing device in this embodiment is used as a part of the image display device will be described. In addition, the image processing device in this embodiment can be used, for example, as a part of the image display device shown in FIG. 31 .
如针对实施方式3所述那样,通过将中间图像D1和中间图像D2与输入亮度图像YIN相加,能加上高频分量而不会增强叠加分量,能提高图像的清晰感。As described in
通过如上述说明的那样将生成的高频分量与输入图像相加,能增加图像的清晰感,能提高画质,然而当过度进行高频分量的相加时,在输入亮度图像YIN呈阶跃边缘状变化的部位发生过冲或下冲,有时反而招致画质的下降。By adding the generated high-frequency components to the input image as described above, the sharpness of the image can be increased, and the image quality can be improved. However, when the high-frequency components are added excessively, there will be a step in the input luminance image YIN Overshooting or undershooting occurs at edge-like changes, which sometimes leads to a decrease in image quality.
在中间图像D1和中间图像D2的像素值的符号为正的情况下发生过冲,在中间图像D1和中间图像D2的像素值的符号为负的情况下发生下冲。Overshoot occurs when the sign of the pixel values of intermediate image D1 and intermediate image D2 is positive, and undershoot occurs when the sign of the pixel value of intermediate image D1 and intermediate image D2 is negative.
以下,分别考虑在发生过冲的情况下的不利情况和在发生下冲的情况下的不利情况,并描述通过本实施方式如何防止这些不利情况。Hereinafter, disadvantageous situations in the case of occurrence of overshoot and disadvantageous situations in the case of occurrence of undershoot are respectively considered, and how these disadvantageous situations are prevented by the present embodiment will be described.
首先,针对过冲进行描述。First, a description will be given of overshoot.
在输入亮度图像YIN中发生过冲时,亮度信号过度增大。从式(9)可知,在亮度信号(Y)的值增大时变换到RGB形式的情况下,表示R、G、B的各式的右边的第1项增大,因而,R、G、B都为大值。When overshoot occurs in the input luminance image YIN, the luminance signal increases excessively. It can be known from formula (9) that when the value of the luminance signal (Y) increases and the value of the luminance signal (Y) is converted to the RGB format, the first item on the right side of each formula representing R, G, and B increases. Therefore, R, G, B is a large value.
R、G、B都为大值是指接近白色。换言之,接近白色是指颜色变淡。本来在接近无彩色的部分即使颜色变淡也相对地不显眼,然而当在有彩色的边缘附近颜色变淡时,仅边缘周围颜色变淡,产生不自然的感觉。R, G, and B are all large values, which means that they are close to white. In other words, approaching white means that the color becomes lighter. Originally, even if the color is lightened in the near-achromatic part, it is relatively inconspicuous. However, when the color becomes light near the colored edge, only the color around the edge becomes light, giving an unnatural feeling.
换言之,在中间图像D1和中间图像D2的像素值的符号是正的情况下,当在有彩色的部分利用中间图像D1和中间图像D2相加的亮度的大小(以下称为校正量)过度增大时,认为容易发生这些画质下降。因此,认为只要调整成在有彩色的部分中中间图像D1和中间图像D2的校正量不过度增大即可。In other words, when the signs of the pixel values of the intermediate image D1 and the intermediate image D2 are positive, when the magnitude of the luminance added by the intermediate image D1 and the intermediate image D2 in the colored portion (hereinafter referred to as the correction amount) is excessively increased , these image quality degradations are considered to occur easily. Therefore, it is considered that it is only necessary to adjust so that the correction amount of the intermediate image D1 and the intermediate image D2 does not increase excessively in the colored portion.
作为该方法,例如认为有这样的方法:在中间图像D1和中间图像D2的像素值的符号是正的情况下,检测有彩色且由中间图像D1和中间图像D2提供的校正量增大的部分,在检测出的部位,通过适当施加增益以使中间图像D1和中间图像D2的校正量减小,使校正量不会过度增大。As this method, for example, it is considered that there is a method in which, when the sign of the pixel value of the intermediate image D1 and the intermediate image D2 is positive, a part that is colored and the correction amount provided by the intermediate image D1 and the intermediate image D2 is increased, In the detected part, the correction amount of the intermediate image D1 and the intermediate image D2 is reduced by appropriately applying a gain so that the correction amount does not increase excessively.
是否是有彩色可根据彩度(可由Cr、Cb的平方和的平方根表示)来判定。即,对于有彩色,彩度为大值。并且,Cr、Cb的平方和的平方根可使用Cr、Cb的绝对值的和求近似。这是因为,在Cr或Cb的绝对值增大的情况下,Cr、Cb的平方和的平方根也增大。并且,与计算平方和的平方根相比,计算绝对值的和更简单,因而也可以减小电路规模。Whether it is colored can be judged according to the chroma (which can be expressed by the square root of the square sum of Cr and Cb). That is, for a chromatic color, the saturation is a large value. Also, the square root of the sum of the squares of Cr and Cb can be approximated using the sum of the absolute values of Cr and Cb. This is because, when the absolute value of Cr or Cb increases, the square root of the sum of the squares of Cr and Cb also increases. Also, since calculating the sum of absolute values is simpler than calculating the square root of the sum of squares, the circuit scale can also be reduced.
由中间图像D1和中间图像D2提供的校正量是否增大,能根据输入亮度图像YIN的像素值在某种程度上进行判定。以下描述理由。Whether or not the amount of correction provided by the intermediate image D1 and intermediate image D2 has increased can be determined to some extent from the pixel values of the input luminance image YIN. The reason is described below.
中间图像D1是通过在对输入亮度图像YIN进行了高通滤波处理之后进行低通滤波处理来生成的。低通滤波处理与求出所输入的数据的局部平均值相同。因此,当高通滤波处理的输出值为大的正值时,低通滤波处理的输出值也为大的正值的可能性高,由中间图像D1提供的校正量也容易为大值。The intermediate image D1 is generated by performing high-pass filter processing on the input luminance image YIN and then performing low-pass filter processing. The low-pass filtering process is the same as calculating the local average value of the input data. Therefore, when the output value of the high-pass filter process is a large positive value, there is a high possibility that the output value of the low-pass filter process will also be a large positive value, and the correction amount provided by the intermediate image D1 tends to be a large value.
另一方面,高通滤波处理相当于从输入亮度图像YIN的各像素值减去局部平均值。因此,当在输入亮度图像YIN中关注的像素的像素值具有大值、且其周边的像素的像素值小时,赋予给该像素的高通滤波处理后的输出值也为大的正值。On the other hand, the high-pass filtering process corresponds to subtracting a local average value from each pixel value of the input luminance image YIN. Therefore, when the pixel value of the pixel of interest in the input luminance image YIN has a large value and the pixel values of its surrounding pixels are small, the output value after the high-pass filter process given to the pixel is also a large positive value.
反之当在输入亮度图像YIN中关注的像素的像素值具有小值时,高通滤波处理后的输出值不会为大的正值。Conversely, when the pixel value of the pixel of interest in the input luminance image YIN has a small value, the output value after the high-pass filtering process will not be a large positive value.
因此,当在输入亮度图像YIN中关注的像素的像素值大时,赋予给该像素的高通滤波处理后的输出值也为大的正值的可能性高。Therefore, when the pixel value of the pixel of interest in the input luminance image YIN is large, there is a high possibility that the output value after the high-pass filtering process given to the pixel will also be a large positive value.
另一方面,低通滤波处理与求出所输入的数据的局部平均值相同。因此,当高通滤波处理的输出值为大的正值时,低通滤波处理的输出值也为大的正值的可能性高。On the other hand, the low-pass filtering process is the same as calculating the local average value of the input data. Therefore, when the output value of the high-pass filter process is a large positive value, there is a high possibility that the output value of the low-pass filter process will also be a large positive value.
综上所述,当在输入亮度图像YIN中关注的像素的像素值大时,由中间图像D1提供的校正量也容易为大值。As described above, when the pixel value of the pixel of interest in the input luminance image YIN is large, the correction amount provided by the intermediate image D1 tends to be large.
并且,中间图像D2是通过在非线性处理单元2A中对中间图像D1进行了非线性处理之后在高频分量图像生成单元2B中进行高通滤波处理来得到的。由于在非线性处理单元2A中仅在过零点附近使中间图像D1放大,因而基本上认为,当中间图像D1具有大的正值时,非线性处理单元2A输出的图像D2A也具有大的正值。在图像D2A具有大的正值的情况下,针对图像D2A的高通滤波处理结果即中间图像D2也具有大的正值的可能性高。Furthermore, the intermediate image D2 is obtained by performing a high-pass filter process in the high-frequency component image generating unit 2B after performing nonlinear processing on the intermediate image D1 in the nonlinear processing unit 2A. Since the intermediate image D1 is enlarged only near the zero-crossing point in the nonlinear processing unit 2A, it is basically considered that when the intermediate image D1 has a large positive value, the image D2A output by the nonlinear processing unit 2A also has a large positive value . When image D2A has a large positive value, there is a high possibility that intermediate image D2 that is the result of the high-pass filtering process on image D2A also has a large positive value.
综上所述,在输入亮度图像YIN的像素值大的情况下,中间图像D1和中间图像D2的像素值也为大的正值的可能性高。换言之,在输入亮度图像YIN的像素值大的情况下,能在某种程度上判断为由中间图像D1和中间图像D2提供的校正量增大。As described above, when the pixel value of the input luminance image YIN is large, there is a high possibility that the pixel values of the intermediate image D1 and intermediate image D2 are also large positive values. In other words, when the pixel value of the input luminance image YIN is large, it can be determined that the correction amount provided by the intermediate image D1 and the intermediate image D2 is increased to some extent.
根据上述理由认为,在输入亮度图像YIN的像素值、输入CR图像CRIN的像素值的绝对值以及输入CB图像CBIN的像素值的绝对值中的任意一方大的像素中,校正量增大,会发生在变为RGB形式的情况下颜色变淡的不利情况。From the above reasons, it is considered that the correction amount increases for a pixel in which any one of the absolute value of the pixel value of the input luminance image YIN, the absolute value of the pixel value of the input CR image CRIN, and the absolute value of the pixel value of the input CB image CBIN is larger, and the correction amount becomes larger. There is a disadvantage that the color fades when changing to RGB form.
并且,在输入亮度图像YIN的像素值、输入CR图像CRIN的像素值的绝对值以及输入CB图像CBIN的像素值的绝对值中的任意一方大的情况下,其加权相加值也为大值。In addition, when any one of the pixel value of the input luminance image YIN, the absolute value of the pixel value of the input CR image CRIN, and the absolute value of the pixel value of the input CB image CBIN is large, the weighted addition value is also a large value. .
因此,在本实施方式中,根据式(7)对输入亮度图像YIN的像素值、输入CR图像CRIN的像素值的绝对值以及输入CB图像CBIN的像素值的绝对值进行加权相加,生成亮度色差相加图像YC,在中间图像D1和中间图像D2的像素值的符号是正的情况下,亮度色差相加图像YC的像素值越大,就越减小施加给中间图像D1和中间图像D2的放大率,从而避免在有彩色的边缘附近颜色变淡的不利情况。Therefore, in this embodiment, the pixel value of the input luminance image YIN, the absolute value of the pixel value of the input CR image CRIN, and the absolute value of the pixel value of the input CB image CBIN are weighted and added according to the formula (7) to generate the luminance In the color difference added image YC, when the sign of the pixel value of the intermediate image D1 and the intermediate image D2 is positive, the larger the pixel value of the brightness and color difference added image YC, the smaller the value applied to the intermediate image D1 and the intermediate image D2. Magnification, thus avoiding the unfavorable situation of color fading near colored edges.
这样的放大率(GAIN)与亮度色差相加图像YC的像素值(L)的关系例如表示如下:The relationship between such a magnification factor (GAIN) and the pixel value (L) of the luminance-chromatic-difference added image YC is expressed as follows, for example:
[算式8][Equation 8]
式中 …(11)where …(11)
图38的(A)是示出由式(11)表示的放大率(GAIN)与亮度色差相加图像YC的像素值(L)的关系的图。在亮度色差相加图像YC的像素值是0的情况下取某个预定值pB,在像素值从0到某个值pA1之间以斜率pk1逐渐减小,在像素值从pA1到某个值pA2之间以斜率pk2逐渐减小,在像素值是pA2以上的情况下以斜率pk3逐渐减小。(A) of FIG. 38 is a diagram showing the relationship between the magnification factor (GAIN) represented by Equation (11) and the pixel value (L) of the added luminance and color difference image YC. When the pixel value of the luminance and color difference added image YC is 0, a certain predetermined value pB is taken, and gradually decreases with a slope pk1 between the pixel value from 0 to a certain value pA1, and when the pixel value is from pA1 to a certain value pA2 gradually decreases with slope pk2, and when the pixel value is pA2 or more, gradually decreases with slope pk3.
总之,根据图38的(A)或式(11)所示的、亮度色差相加图像YC的像素值越大则放大率就越小这样的单调递减的函数,决定放大率D303MA或放大率D303HA,从而能进行防止在有彩色的边缘附近颜色变淡的不利情况的处理。In short, the magnification D303MA or the magnification D303HA is determined based on a monotonically decreasing function such that the larger the pixel value of the luminance-color-difference added image YC is, the smaller the magnification shown in (A) of FIG. 38 or the formula (11). , so that processing can be performed to prevent the disadvantageous situation of fading in the vicinity of colored edges.
然后,针对下冲进行描述。Then, description will be given for the undershoot.
在输入亮度图像YIN中发生下冲时,亮度信号过度减小。从式(9)可知,在亮度信号(Y)的值减小时变换到RGB形式的情况下,表示R、G、B的各式的右边的第1项减小,因而,R、G、B都为小值。When undershooting occurs in the input luminance image YIN, the luminance signal decreases excessively. It can be seen from formula (9) that when the value of the luminance signal (Y) is reduced and converted to the RGB format, the first term on the right side of each formula representing R, G, and B decreases, and therefore, R, G, and B are all small values.
R、G、B都为小值是指接近黑色。当在边缘附近颜色变黑时,出现给边缘镶边的黑的假轮廓,产生不自然的感觉。All of R, G, and B being small values mean that they are close to black. When the color becomes black near the edge, a black false outline bordering the edge appears, giving an unnatural feeling.
换言之,在中间图像D1和中间图像D2的像素值的符号是负的情况下,当利用中间图像D1和中间图像D2相减的亮度的大小(以下称为校正量)为过度大的值时,认为容易发生这些画质下降。因此,认为在中间图像D1和中间图像D2的像素值的符号是负的情况下,只要调整成校正量不过度增大即可。In other words, when the sign of the pixel value of intermediate image D1 and intermediate image D2 is negative, when the magnitude of the brightness subtracted by intermediate image D1 and intermediate image D2 (hereinafter referred to as correction amount) is an excessively large value, It is thought that these image quality drops are easy to occur. Therefore, it is considered that when the signs of the pixel values of intermediate image D1 and intermediate image D2 are negative, it is only necessary to adjust so that the correction amount does not increase excessively.
作为该方法,例如认为有这样的方法:在中间图像D1和中间图像D2的像素值的符号是负的情况下,检测校正量增大的部分,在检测出的部位,通过适当施加增益以使中间图像D1和中间图像D2的校正量减小,使校正量不会过度增大。As this method, for example, there is considered a method in which, when the signs of the pixel values of intermediate image D1 and intermediate image D2 are negative, a portion where the correction amount increases is detected, and a gain is appropriately applied to the detected portion so that The correction amounts of intermediate image D1 and intermediate image D2 are reduced so that the correction amount does not increase excessively.
由中间图像D1和中间图像D2提供的校正量是否增大(为绝对值大的负值),能根据输入亮度图像YIN的像素值在某种程度上进行判断。以下描述理由。Whether or not the correction amount provided by intermediate image D1 and intermediate image D2 increases (is a negative value with a large absolute value) can be determined to some extent from the pixel value of the input luminance image YIN. The reason is described below.
中间图像D1是通过在对输入亮度图像YIN进行了高通滤波处理之后进行低通滤波处理来生成的。这里,高通滤波处理相当于从输入亮度图像YIN的各像素值减去局部平均值。因此,当在输入亮度图像YIN中关注的像素的像素值小时,赋予给该像素的高通滤波处理后的输出值也为绝对值大的负值的可能性高。The intermediate image D1 is generated by performing high-pass filter processing on the input luminance image YIN and then performing low-pass filter processing. Here, the high-pass filtering process corresponds to subtracting a local average value from each pixel value of the input luminance image YIN. Therefore, when the pixel value of a pixel of interest in the input luminance image YIN is small, there is a high possibility that the output value after the high-pass filtering process applied to the pixel will also be a negative value with a large absolute value.
另一方面,低通滤波处理与求出所输入的数据的局部平均值相同。因此,当高通滤波处理的输出值为绝对值大的负值时,低通滤波处理的输出值也为绝对值大的负值的可能性高。On the other hand, the low-pass filtering process is the same as calculating the local average value of the input data. Therefore, when the output value of the high-pass filter process is a negative value with a large absolute value, there is a high possibility that the output value of the low-pass filter process will also be a negative value with a large absolute value.
并且,中间图像D2是通过在非线性处理单元2A中对中间图像D1进行了非线性处理之后在高频分量图像生成单元2B中进行高通滤波处理而得到的。由于在非线性处理单元2A中仅在过零点附近使中间图像D1放大,因而基本上认为,当中间图像D1具有绝对值大的负值时,非线性处理单元2A输出的图像D2A也具有绝对值大的负值。在图像D2A具有绝对值大的负值的情况下,针对图像D2A的高通滤波处理结果即中间图像D2也具有绝对值大的负值的可能性高。Furthermore, the intermediate image D2 is obtained by performing a high-pass filter process in the high-frequency component image generating unit 2B after performing nonlinear processing on the intermediate image D1 in the nonlinear processing unit 2A. Since the intermediate image D1 is enlarged only near the zero-crossing point in the nonlinear processing unit 2A, it is basically considered that when the intermediate image D1 has a negative value with a large absolute value, the image D2A output by the nonlinear processing unit 2A also has an absolute value large negative value. When image D2A has a large negative value in absolute value, there is a high possibility that intermediate image D2 , which is the result of the high-pass filtering process on image D2A, also has a large negative value in absolute value.
综上所述,在输入亮度图像YIN的像素值小的情况下,中间图像D1和中间图像D2的像素值也为小的负值的可能性高。换言之,在输入亮度图像YIN的像素值小的情况下,能在某种程度上判断为由中间图像D1和中间图像D2提供的校正量为大值。As described above, when the pixel values of the input luminance image YIN are small, there is a high possibility that the pixel values of the intermediate images D1 and D2 are also small negative values. In other words, when the pixel value of the input luminance image YIN is small, it can be determined that the correction amount provided by the intermediate image D1 and the intermediate image D2 is a large value to some extent.
根据上述理由认为,在输入亮度图像YIN的像素值小的像素中,校正量为大值,会发生在变为RGB形式的情况下成为黑色的不利情况。For the above reasons, it is considered that the correction amount is large for pixels with small pixel values of the input luminance image YIN, and there is a disadvantage that the pixels become black when the RGB format is changed.
在本实施方式中,在中间图像D1和中间图像D2的像素值的符号是负的情况下,取代输入亮度图像YIN的像素值而是亮度色差相加图像YC的像素值越小,就越减小施加给中间图像D1和中间图像D2的放大率,从而避免在边缘附近出现假轮廓的不利情况。(另外,后面对可以使用亮度色差相加图像YC来取代输入亮度图像YIN的理由进行描述。)In this embodiment, when the sign of the pixel value of the intermediate image D1 and the intermediate image D2 is negative, instead of the pixel value of the input luminance image YIN, the smaller the pixel value of the luminance-color-difference addition image YC is, the smaller the sign is. The magnification applied to the intermediate image D1 and the intermediate image D2 is small so as to avoid the disadvantage of false contours near the edges. (The reason why the luminance-color-difference addition image YC can be used instead of the input luminance image YIN will be described later.)
这样的放大率(GAIN)与亮度色差相加图像YC的像素值(L)的关系例如表示如下:The relationship between such a magnification factor (GAIN) and the pixel value (L) of the luminance-chromatic-difference added image YC is expressed as follows, for example:
[算式9][Equation 9]
式中 …(12)In the formula ...(12)
图38的(B)是示出由式(12)表示的放大率(GAIN)与亮度色差相加图像YC的像素值(L)的关系的图。在亮度色差相加图像YC的像素值是0的情况下取某个预定值mB,在像素值从0到某个值mA1之间以斜率mk1逐渐增加,在像素值从mA1到某个值mA2之间以斜率mk2逐渐增加,在像素值是mA2以上的情况下以斜率mk3逐渐增加。(B) of FIG. 38 is a graph showing the relationship between the magnification factor (GAIN) represented by Equation (12) and the pixel value (L) of the added luminance and color difference image YC. When the pixel value of the luminance and color difference added image YC is 0, a certain predetermined value mB is taken, and the pixel value gradually increases from 0 to a certain value mA1 with a slope mk1, and when the pixel value is from mA1 to a certain value mA2 Gradually increase with slope mk2, and gradually increase with slope mk3 when the pixel value is mA2 or more.
通过进行上述的处理,在无彩色的边缘附近,能进行防止在边缘附近颜色接近黑色的不利情况的处理。这是因为,在无彩色的情况下,输入CR图像CRIN的像素值的绝对值以及输入CB图像CBIN的像素值的绝对值接近零,因而认为亮度相加图像YC的像素值的大小关系直接表示输入亮度图像YIN的像素值的大小关系。因此,认为在无彩色的边缘附近使用亮度色差相加图像YC来取代输入亮度图像YIN是没有问题的。By performing the above processing, it is possible to perform processing to prevent the disadvantage that the color near the edge is close to black near the edge of the achromatic color. This is because, in the case of achromatic color, the absolute value of the pixel value of the input CR image CRIN and the absolute value of the pixel value of the input CB image CBIN are close to zero, so it is considered that the magnitude relationship of the pixel values of the luminance-added image YC directly expresses The magnitude relationship of the pixel values of the input brightness image YIN. Therefore, it is considered that there is no problem in using the luminance-color-difference added image YC instead of the input luminance image YIN near the edge of the achromatic color.
另一方面,在有彩色的边缘附近,由于输入CR图像CRIN的像素值的绝对值和输入CB图像CBIN的像素值的绝对值可取大值,因而亮度相加图像YC的像素值的大小关系不一定直接表示输入亮度图像YIN的像素值的大小关系。例如当输入亮度图像YIN的像素值小但输入CR图像CRIN的像素值的绝对值或输入CB图像CBIN的像素值大时,输入亮度图像YIN的像素值为小值而亮度色差相加图像YC的像素值为大值。On the other hand, in the vicinity of colored edges, since the absolute values of the pixel values of the input CR image CRIN and the absolute values of the pixel values of the input CB image CBIN can take large values, the magnitude relationship of the pixel values of the luminance-added image YC is different. It must directly represent the magnitude relationship of the pixel values of the input luminance image YIN. For example, when the pixel value of the input luminance image YIN is small but the absolute value of the pixel value of the input CR image CRIN or the pixel value of the input CB image CBIN is large, the pixel value of the input luminance image YIN is small while that of the luminance-chromatic-difference addition image YC is The pixel value is a large value.
然而,在自然图像中亮度小的情况下,色差的绝对值往往也小,因而输入亮度图像YIN的像素值小但输入CR图像CRIN的像素值的绝对值或输入CB图像CBIN的像素值大的情况是罕见的。因此,如上述那样取代输入亮度图像YIN的像素值而使用亮度色差相加图像YC的像素值来控制针对中间图像D1和中间图像D2的放大率,可认为这在实用上问题不多。However, when the luminance in a natural image is small, the absolute value of the color difference is often small, so the pixel value of the input luminance image YIN is small but the absolute value of the pixel value of the input CR image CRIN or the pixel value of the input CB image CBIN is large Situations are rare. Therefore, controlling the magnification ratios for intermediate images D1 and D2 using the pixel values of the luminance-color-difference added image YC instead of the pixel values of the input luminance image YIN as described above is considered to be practically less problematic.
总之,根据图38的(B)或式(12)所示的、亮度色差相加图像YC的像素值越大则放大率就越增加这样的单调递增的函数,决定放大率D303MA或放大率D303HA,从而能进行防止在边缘附近颜色接近黑色的不利情况的处理。In short, the magnification ratio D303MA or the magnification ratio D303HA is determined based on a monotonically increasing function such that the larger the pixel value of the luminance-chromatic-difference added image YC is, the larger the magnification ratio is shown in FIG. 38(B) or Equation (12). , so that processing can be performed to prevent the disadvantage that the color is close to black in the vicinity of the edge.
如上所述,在实施方式4的图像处理装置中,可在抑制发生在边缘附近颜色变淡或者接近黑色的不利情况的同时,进行图像的增强处理。当在边缘附近颜色变淡或者接近黑色时,在视觉特性上感到不自然,因而在实施方式4的图像处理装置中,在视觉特性上也是非常优选的。As described above, in the image processing device according to
并且,在实施方式4的图像处理装置中,在第1中间图像处理单元303M和第2中间图像处理单元303H中,决定针对中间图像D1和中间图像D2的放大率,然而此时需要的信息仅是输入亮度图像YIN的像素值、输入CR图像CRIN的像素值的绝对值、输入CB图像CBIN的像素值的绝对值的加权相加值以及中间图像D1或中间图像D2的像素值的符号。因此,能在简单的电路中决定放大率,也可以减少电路规模的增加。Furthermore, in the image processing device according to
例如将式(11)和式(12)进行比较,两者仅是其中使用的系数、阈值等的参数不同。即,可使用运算单元和系数切换单元构成放大率决定单元303MA或放大率决定单元303MB,该运算单元可进行使用系数k1、k2、k3、阈值A1、A2和数值B表示的以下计算:For example, comparing formula (11) and formula (12), the two differ only in parameters such as coefficients and thresholds used therein. That is, the magnification determining unit 303MA or the magnifying factor determining unit 303MB can be constituted using an arithmetic unit and a coefficient switching unit that can perform the following calculation expressed using coefficients k1, k2, k3, thresholds A1, A2, and value B:
[算式10][Equation 10]
式中 …(13)In the formula ...(13)
系数切换单元根据中间图像D1或中间图像D2的像素值的符号使赋予给运算单元的系数k1、k2、k3、阈值A1、A2和数值B的值变化。The coefficient switching unit changes the values of the coefficients k1, k2, k3, thresholds A1, A2 and value B given to the arithmetic unit according to the sign of the pixel value of the intermediate image D1 or intermediate image D2.
即,可以利用切换单元,当像素值的符号是正时,选择-pk1、-pk2、-pk3、pA1、pA2、pB,当像素值的符号是负时,选择mk1、mk2、mk3、mA1、mA2、mB,可以分别用作k1、k2、k3、A1、A2、B进行式(13)的运算。That is, the switching unit can be used to select -pk1, -pk2, -pk3, pA1, pA2, pB when the sign of the pixel value is positive, and select mk1, mk2, mk3, mA1, mA2 when the sign of the pixel value is negative , mB, can be used as k1, k2, k3, A1, A2, B to carry out the operation of formula (13) respectively.
另外,在上述实施方式中,在第1中间图像处理单元303M中,根据亮度色差相加单元205的输出YC和第1中间图像D1的像素值的符号sD1决定放大率D303MA,并在第2中间图像处理单元303H中,根据亮度色差相加单元205的输出YC和第2中间图像D2的像素值的符号sD2决定放大率D303HA,然而也可以仅在第1中间图像处理单元303M和第2中间图像处理单元303H的一方中,使用上述方法决定放大率,在另一方中使用其它方法决定放大率。In addition, in the above-mentioned embodiment, in the first intermediate
并且,在第1中间图像处理单元303M和第2中间图像处理单元303H中决定的放大率与亮度色差相加图像YC的像素值的关系不限于在本实施方式中说明的关系,在中间图像D1或D2的符号是正的情况下,只要亮度色差相加图像YC的像素值越大则放大率就越小即可,在中间图像D1或D2的符号是负的情况下,只要亮度色差相加图像YC的像素值越小则放大率就越小即可。Furthermore, the relationship between the magnification determined in the first intermediate
实施方式5Embodiment 5
图39是示出本发明的实施方式5的图像处理装置的结构例的图。39 is a diagram showing a configuration example of an image processing device according to Embodiment 5 of the present invention.
与针对实施方式3说明的一样,输入图像IMGIN被输入到图示的图像处理装置,图示的图像处理装置输出输出图像IMGOUT。输入图像IMGIN是彩色图像,由输入亮度图像YIN、输入CR图像CRIN和输入CB图像CBIN构成。输出图像IMGOUT也是彩色图像,由输出亮度图像YOUT、输出CR图像CROUT和输出CB图像CBOUT构成。As described for the third embodiment, the input image IMGIN is input to the illustrated image processing device, and the illustrated image processing device outputs the output image IMGOUT. The input image IMGIN is a color image composed of an input luminance image YIN, an input CR image CRIN, and an input CB image CBIN. The output image IMGOUT is also a color image, and is composed of an output luminance image YOUT, an output CR image CROUT, and an output CB image CBOUT.
图示的图像处理装置具有第1中间图像生成单元201、第2中间图像生成单元2、加法单元404以及色差增减单元405。The illustrated image processing device includes a first intermediate
第1中间图像生成单元201和第2中间图像生成单元2的动作和结构分别与实施方式3中的相同标号的单元相同。The operation and configuration of the first intermediate
色差增减单元405对输入CR图像CRIN和输入CB图像CBIN进行后述的处理,输出输出CR图像CROUT和输出CB图像CBOUT。The color difference increase/
加法单元404将输入亮度图像YIN、中间图像D1以及中间图像D2相加,输出相加结果作为输出亮度图像YOUT,并输出将中间图像D1和中间图像D2相加后的结果作为高频分量相加图像D404。The
图40是示出色差增减单元405的结构例的图,图示的色差增减单元405具有放大率决定单元405A、色差Cr乘法单元(第1色差乘法单元)405B1以及色差Cb乘法单元(第2色差乘法单元)405B2。40 is a diagram showing a configuration example of the color difference increase/
放大率决定单元405A根据高频分量相加图像D404决定放大率D405A。The amplification
色差Cr乘法单元405B1根据放大率D405A的值,增减输入CR图像CRIN的各像素值,输出其结果作为图像D405B1。The color difference Cr multiplier 405B1 increases or decreases each pixel value of the input CR image CRIN according to the value of the magnification factor D405A, and outputs the result as an image D405B1.
色差Cb乘法单元405B2根据放大率D405A的值,增减输入CB图像CBIN的各像素值,输出其结果作为图像D405B2。The color difference Cb multiplier 405B2 increases or decreases each pixel value of the input CB image CBIN according to the value of the magnification factor D405A, and outputs the result as an image D405B2.
以下,对实施方式5的图像处理装置的详细动作进行说明。Hereinafter, detailed operations of the image processing device according to Embodiment 5 will be described.
不过,第1中间图像生成单元201和第2中间图像生成单元2的详细动作与实施方式3记载的相同,因而省略其说明。However, the detailed operations of the first intermediate
然后说明加法单元404的动作。加法单元404输出将中间图像D1和中间图像D2相加后的结果作为高频分量相加图像D404。并且,输出将高频分量相加图像D404与输入亮度图像YIN相加后的结果(即,将中间图像D1和中间图像D2相加后的结果)作为输出亮度图像YOUT。输出亮度图像YOUT作为最终的输出图像IMGOUT的一部分从图像处理装置输出。Next, the operation of adding
由于中间图像D1由图像D1h和图像D1v构成,中间图像D2由图像D2h和图像D2v构成,因而将输入图像D1和中间图像D2相加是指将图像D1h、D1v、D2h和D2v全部相加。Since the intermediate image D1 is composed of the image D1h and the image D1v, and the intermediate image D2 is composed of the image D2h and the image D2v, adding the input image D1 and the intermediate image D2 refers to adding all the images D1h, D1v, D2h and D2v.
这里,加法单元404中的加法处理不限于单纯相加,也可以进行加权相加。即,也可以将图像D1h、D1v、D2h和D2v的各方以分别不同的放大率放大后相加得到的图像作为高频分量相加图像D404。Here, the addition processing in adding
然后说明色差增减单元405的详细动作。首先,色差增减单元405在放大率决定单元405A中根据高频分量相加图像D404决定放大率D405A。这里,按各像素进行放大率D405A的决定。Next, the detailed operation of the color difference increase/
图41的(A)~(C)是表示高频分量相加图像D404、输入CR图像CRIN以及输入CB图像CBIN的像素配置的图,图41的(A)表示高频分量相加图像D404,图41的(B)表示输入CR图像CRIN,图41的(C)表示输入CB图像CBIN。并且,在图41的(A)~(C)中,针对图像的水平方向和垂直方向表示水平坐标和垂直坐标。而且,针对高频分量相加图像D404,在水平坐标x、垂直坐标y的位置上的像素的像素值由L(xy)这样的记号表示,针对输入CR图像CRIN,在水平坐标x、垂直坐标y的位置上的像素的像素值由Cr(xy)这样的记号表示,针对输入CB图像CBIN,在水平坐标x、垂直坐标y的位置上的像素的像素值由Cb(xy)这样的记号表示。(A) to (C) of FIG. 41 are diagrams showing the pixel arrangement of the high-frequency component added image D404, the input CR image CRIN, and the input CB image CBIN. FIG. 41(A) shows the high-frequency component added image D404, (B) of FIG. 41 shows the input CR image CRIN, and (C) of FIG. 41 shows the input CB image CBIN. In addition, in (A) to (C) of FIG. 41 , horizontal coordinates and vertical coordinates are shown for the horizontal direction and vertical direction of the image. Furthermore, for the high-frequency component added image D404, the pixel value of the pixel at the position of the horizontal coordinate x and the vertical coordinate y is represented by a symbol such as L(xy), and for the input CR image CRIN, the pixel value of the pixel at the horizontal coordinate x and the vertical coordinate The pixel value of the pixel at the position of y is represented by a symbol such as Cr(xy), and for the input CB image CBIN, the pixel value of the pixel at the position of horizontal coordinate x and vertical coordinate y is represented by a symbol such as Cb(xy) .
放大率决定单元405A根据高频分量相加图像D404的相同坐标的像素值决定针对输入CR图像CRIN和输入CB图像CBIN的各像素的放大率。即,根据像素值L(11)决定针对像素值Cr(11)和Cb(11)的放大率,根据像素值L(12)决定针对像素值Cr(12)和Cb(12)的放大率,一般来说,如根据像素值L(xy)决定针对像素值Cr(xy)和Cb(xy)的放大率那样,根据高频分量相加图像D404的相同坐标的像素值决定放大率,输出其结果作为放大率D405A。The magnification
图42是表示高频分量相加图像D404的像素值(以下表示为L)与由放大率决定单元405A决定的放大率(以下表示为GAIN)的关系的图。FIG. 42 is a diagram showing the relationship between the pixel value (hereinafter denoted as L) of the high-frequency component added image D404 and the magnification factor (hereinafter denoted as GAIN) determined by the magnification
如图所示,在L是零的情况下,GAIN为1,在L是正值的情况下,GAIN为大于1的值,在L是负值的情况下,GAIN为小于1的正值。这样的L与GAIN的关系例如可由下式表示:As shown in the figure, when L is zero, GAIN is 1, when L is a positive value, GAIN is a value greater than 1, and when L is a negative value, GAIN is a positive value smaller than 1. Such a relationship between L and GAIN can be represented by the following formula, for example:
[算式11][Equation 11]
式中,kp、km是取正值的预定系数,kp表示图42的曲线的L>0的区域内的斜率,km表示图42的曲线的L<0的区域内的斜率。In the formula, kp and km are predetermined positive coefficients, kp represents the slope in the region of L>0 of the curve in FIG. 42 , and km represents the slope in the region of L<0 of the curve in FIG. 42 .
另外,GAIN一定取正值。在使用式(14)计算GAIN的情况下,只要使km的值相对于L的可取值充分小,就能使GAIN的值总是为正值。例如在将L设为带符号的8比特整数值的情况下,L的可取值是-128以上127以下。因此,只要km为小于1/128的值即可。一般来说,在L的可取值是-ML以上(ML是正值)的情况下,只要km的值是1/ML以下即可,由此GAIN不会为负值。这样,可根据L的可取值的最小值容易考虑对km的限制。In addition, GAIN must take a positive value. In the case of calculating GAIN using formula (14), as long as the value of km is sufficiently small relative to the possible value of L, the value of GAIN can always be a positive value. For example, when L is a signed 8-bit integer value, the possible value of L is -128 or more and 127 or less. Therefore, it is sufficient as long as km is a value smaller than 1/128. In general, when the possible value of L is -ML or more (ML is a positive value), the value of km only needs to be 1/ML or less, so that GAIN does not become a negative value. In this way, the limitation on km can be easily considered according to the minimum value of the possible value of L.
色差Cr乘法单元405B1输出对输入CR图像CRIN的像素值施加了放大率D405A后的结果作为图像D405B1。在放大率D405A大于1的情况下,输入CR图像CRIN的像素值被放大,在放大率D405A小于1的情况下,输入CR图像CRIN的像素值被减小,在放大率D405A是1的情况下,输入CR图像CRIN的像素值被维持。另外,放大率D405A的值在高频分量相加图像D404的像素值是正的情况下大于1,在负的情况下小于1,在零的情况下为1,因而,输入CR图像CRIN的像素值在高频分量相加图像D404的像素值是正的情况下被放大,在负的情况下被减少,在零的情况下被维持。The color difference Cr multiplier 405B1 outputs the result obtained by applying the amplification factor D405A to the pixel value of the input CR image CRIN as an image D405B1. When the magnification ratio D405A is larger than 1, the pixel value of the input CR image CRIN is enlarged, and when the magnification ratio D405A is smaller than 1, the pixel value of the input CR image CRIN is reduced, and when the magnification ratio D405A is 1 , the pixel values of the input CR image CRIN are maintained. In addition, the value of the amplification factor D405A is larger than 1 when the pixel value of the high-frequency component added image D404 is positive, smaller than 1 when negative, and 1 when zero. Therefore, the pixel value of the input CR image CRIN When the pixel value of the high-frequency component addition image D404 is positive, it is amplified, when it is negative, it is decreased, and when it is zero, it is maintained.
同样,色差Cb乘法单元405B2输出对输入CB图像CBIN的像素值施加了放大率D405A后的结果作为图像D405B2。在放大率D405A大于1的情况下,输入CB图像CBIN的像素值被放大,在放大率D405A小于1的情况下,输入CB图像CBIN的像素值被减小,在放大率D405A是1的情况下,输入CB图像CBIN的像素值被维持。另外,放大率D405A的值在高频分量相加图像D404的像素值是正的情况下大于1,在负的情况下小于1,在零的情况下为1,因而,输入CB图像CBIN的像素值在高频分量相加图像D404的像素值是正的情况下被放大,在负的情况下被减小,在零的情况下被维持。Similarly, color difference Cb multiplier 405B2 outputs the result obtained by adding amplification factor D405A to the pixel value of input CB image CBIN as image D405B2. In the case where the magnification ratio D405A is larger than 1, the pixel value of the input CB image CBIN is enlarged, and in the case where the magnification ratio D405A is smaller than 1, the pixel value of the input CB image CBIN is reduced, and in the case where the magnification ratio D405A is 1 , the pixel values of the input CB image CBIN are maintained. In addition, the value of the amplification factor D405A is greater than 1 when the pixel value of the high-frequency component added image D404 is positive, less than 1 when negative, and 1 when zero. Therefore, the pixel value of the input CB image CBIN When the pixel value of the high-frequency component addition image D404 is positive, it is enlarged, when it is negative, it is reduced, and when it is zero, it is maintained.
然后,输出图像D405B1作为输出CR图像CROUT,输出图像D405B2作为输出CB图像CBOUT。并且,输出CR图像CROUT和输出CB图像CBOUT作为最终的输出图像IMGOUT的一部分从图像处理装置输出。Then, image D405B1 is output as output CR image CROUT, and image D405B2 is output as output CB image CBOUT. Then, the output CR image CROUT and the output CB image CBOUT are output from the image processing device as part of the final output image IMGOUT.
以上是色差增减单元405的动作。The above is the operation of the color difference increase/
以下,对将本实施方式中的图像处理装置用作图像显示装置的一部分的例子进行说明。另外,本实施方式中的图像处理装置例如可用作图31所示的图像显示装置的一部分。Hereinafter, an example in which the image processing device in this embodiment is used as a part of the image display device will be described. In addition, the image processing device in this embodiment can be used, for example, as a part of the image display device shown in FIG. 31 .
在本实施方式的图像处理装置中,将中间图像D1和中间图像D2与输入亮度图像YIN相加。如前所述,通过将中间图像D1和中间图像D2与输入亮度图像YIN相加,能加上高频分量而不会增强叠加分量,能提高图像的清晰感。In the image processing device of this embodiment, intermediate image D1 and intermediate image D2 are added to input luminance image YIN. As mentioned above, by adding the intermediate image D1 and intermediate image D2 to the input luminance image YIN, high-frequency components can be added without enhancing the superimposed components, and the clarity of the image can be improved.
不过,通过如上述说明的那样将生成的高频分量与输入图像相加,能增加图像的清晰感,能提高画质,然而当过度进行高频分量的相加时,在输入亮度图像YIN呈阶跃边缘状变化的部位发生过冲或下冲,有时反而招致画质的下降。However, by adding the generated high-frequency components to the input image as described above, the sharpness of the image can be increased and the image quality can be improved. However, if the high-frequency components are added too much, the input luminance image YIN appears Overshooting or undershooting occurs at the step-edge-like change, which sometimes leads to a decrease in image quality.
特别是在输入亮度图像YIN中发生过冲时,亮度信号过度增大。从式(9)可知,在亮度信号(Y)的值增大时变换到RGB形式的情况下,表示R、G、B的各式的右边的第1项增大,因而,R、G、B都为大值。In particular, when overshoot occurs in the input luminance image YIN, the luminance signal increases excessively. It can be seen from formula (9) that when the value of the luminance signal (Y) increases and the value of the luminance signal (Y) is converted to the RGB format, the first item on the right side of each formula representing R, G, and B increases, and therefore, R, G, B are all large values.
R、G、B都为大值是指接近白色。换言之,接近白色是指颜色变淡。本来在接近无彩色的部分即使颜色变淡也相对地不显眼,然而当在有彩色部分(彩度比较高的部分)的边缘附近颜色变淡时,仅边缘周围颜色变淡,产生不自然的感觉。R, G, and B are all large values, which means that they are close to white. In other words, approaching white means that the color becomes lighter. Originally, even if the color is lightened in the part close to achromatic color, it is relatively inconspicuous. However, when the color becomes light near the edge of the colored part (a part with relatively high saturation), only the color around the edge becomes light, resulting in an unnatural appearance. Feel.
换言之,当在有彩色的部分利用中间图像D1和中间图像D2(或者高频分量相加图像D404)相加的亮度的大小(以下称为校正量)过度增大时,亮度相对于色差过大,会产生颜色变淡的问题。并且,从与上述相反的论点来看,在校正量为过度小的负值的情况下,亮度相对于色差过小,会产生颜色过浓的问题。也就是说,具有在有彩色部分的边缘附近颜色的浓淡变化的问题。In other words, when the magnitude of the luminance (hereinafter referred to as the correction amount) added by the intermediate image D1 and the intermediate image D2 (or the high-frequency component added image D404) is excessively increased in the colored portion, the luminance is too large relative to the color difference , there will be a problem of color fading. Also, from the opposite point of view, when the correction amount is an excessively small negative value, the luminance is too small relative to the color difference, resulting in a problem that the color is too dark. That is, there is a problem that the shade of the color changes near the edge of the colored portion.
上述问题的原因在于,在校正量是正值的情况下,色差相对于亮度减小,在校正量是负值的情况下,色差相对于亮度增大。The reason for the above problem is that, in the case where the correction amount is a positive value, the chromatic aberration decreases with respect to the luminance, and in the case where the correction amount is a negative value, the chromatic aberration increases with respect to the luminance.
因此,本实施方式通过根据校正量使色差信号适当增减,防止色差相对于亮度减小或增大。Therefore, in the present embodiment, by appropriately increasing or decreasing the color difference signal according to the correction amount, the color difference is prevented from decreasing or increasing with respect to the luminance.
即,在校正量是正值的情况下,为了防止色差相对减小,放大色差信号,在校正量是负值的情况下,为了防止色差相对增大,减小色差信号。That is, when the correction amount is a positive value, the color difference signal is amplified to prevent the color difference from being relatively reduced, and when the correction amount is a negative value, the color difference signal is reduced to prevent the color difference from being relatively increased.
在本实施方式的图像处理装置中,在色差增减单元405中根据高频分量相加图像D404的像素值使色差信号的值增减。即,在高频分量相加图像D404的像素值是正的情况下,从放大率决定单元405A输出大于1的值作为放大率D405A,在色差Cr乘法单元405B1和色差Cb乘法单元405B2中放大色差信号。并且,在高频分量相加图像D404的像素值是负的情况下,从放大率决定单元405A输出小于1的值作为放大率D405A,在色差Cr乘法单元405B 1和色差Cb乘法单元405B2中减小色差信号。因此,能将上述问题防止于未然。In the image processing device of the present embodiment, the value of the color difference signal is increased or decreased in the color difference increasing/decreasing
如上所述,在实施方式5的图像处理装置中,可在抑制发生在有彩色部分的边缘附近颜色浓淡变化的不利情况的同时,进行图像的增强处理。当在有彩色部分的边缘附近颜色浓淡变化时,在视觉特性上感到不自然,因而实施方式5的图像处理装置可得到在视觉特性上也是非常优选的效果。As described above, in the image processing device according to Embodiment 5, it is possible to perform image enhancement processing while suppressing the occurrence of disadvantageous changes in color shading near the edges of colored portions. When the color shading changes near the edge of the colored portion, the visual characteristics are unnatural. Therefore, the image processing device according to the fifth embodiment can obtain an effect which is very preferable also in terms of visual characteristics.
并且,通过对输入CR图像CRIN和输入CB图像CBIN的各像素值施加相同的放大率D405A,颜色浓淡(或者彩度)变化,然而输入CR图像CRIN和输入CB图像CBIN的各像素值之比没有变化,因而色相不会变化。因此,在实施方式5的图像处理装置中,能校正在边缘附近发生的颜色浓淡而不使色相变化。Also, by applying the same amplification factor D405A to each pixel value of the input CR image CRIN and the input CB image CBIN, the color shade (or chroma) changes, but the ratio of each pixel value of the input CR image CRIN and the input CB image CBIN does not change. change, so the hue does not change. Therefore, in the image processing device according to Embodiment 5, it is possible to correct color shading occurring near the edge without changing the hue.
并且,在放大率决定单元405A中决定的放大率D405A与高频分量相加图像D404的像素值的关系不限于式(14)所示的关系,只要是这样的关系即可:在高频分量相加图像D404的像素值是正的情况下,取大于1的值,在负的情况下,取小于1的值。然而,为了更有效地进行对色差信号的校正,优选的是,高频分量相加图像D404的像素值越为更大的正值,放大率D405A也就越为更大的值,高频分量相加图像D404的像素值越为更小的负值,放大率D405A也就越为更小的小于1的正值。Furthermore, the relationship between the magnification factor D405A determined in the magnification
然而,即使不是这样,只要放大率D405A相对于高频分量相加图像D404的像素值单调递增即可。However, even if this is not the case, it is only necessary that the magnification ratio D405A increases monotonously with respect to the pixel value of the high-frequency component added image D404.
并且,为了防止对色差信号的过度校正,也可以对放大率D405A的范围设置限制。即,设置阈值TH1、TH2(设TH1>1、1>TH2>0),放大率(GAIN)与亮度色差相加图像YC的像素值(L)的关系例如可定义如下:Furthermore, in order to prevent excessive correction of the color difference signal, a limit may also be set on the range of the amplification factor D405A. That is, setting thresholds TH1 and TH2 (assuming TH1>1, 1>TH2>0), the relationship between the magnification (GAIN) and the pixel value (L) of the luminance and color difference added image YC can be defined as follows, for example:
[算式12][Equation 12]
式中 …(15)In the formula ...(15)
式(15)中的kp、km与针对式(14)说明的相同。由式(15)表示的放大率GAIN与像素值L的关系如图43所示。kp and km in Equation (15) are the same as those described for Equation (14). The relationship between the magnification factor GAIN expressed by the formula (15) and the pixel value L is shown in FIG. 43 .
通过这样使用阈值对放大率(GAIN)的值设置上限和下限,可防止在色差增减单元405中对色差分量施加过度校正。By thus setting upper and lower limits on the value of the magnification ratio (GAIN) using the threshold, excessive correction can be prevented from being applied to the color difference components in the color difference increase/
另外,GAIN与L的关系除了式(14)、式(15)以外,还可考虑各种变型例。并且,在上述说明中,在色差Cr放大单元405B1和色差Cb放大单元405B2中使用相同的放大率,然而也可以在色差Cr乘法单元405B1和色差Cb乘法单元405B2中使用不同的放大率。In addition, various modification examples of the relationship between GAIN and L can be considered other than Expression (14) and Expression (15). Also, in the above description, the same amplification factor is used in the color difference Cr amplification unit 405B1 and the color difference Cb amplification unit 405B2, but different amplification factors may be used in the color difference Cr multiplication unit 405B1 and the color difference Cb multiplication unit 405B2.
并且,在实施方式1~实施方式5的图像处理装置中,在第1中间图像生成单元1或201和第2中间图像生成单元2中,并列进行与图像的水平方向相关的处理和与垂直方向相关的处理,因而不限于图像的仅水平方向或仅垂直方向,可针对任意方向得到上述效果。Furthermore, in the image processing apparatus according to
而且,在实施方式1~实施方式5的图像处理装置中,在频率空间上考虑,根据在从原点过渡到Fn的频带中,原图像DORG的奈圭斯特频率±Fn/2附近(或特定的频带)输入图像DIN或输入亮度图像YIN具有的分量,生成对应于输入图像DIN或输入亮度图像YIN的奈圭斯特频率±Fn附近的高频分量的图像D2B。因此,即使由于某种理由,在输入图像DIN或输入亮度图像YIN(或输入图像IMGIN)中失去奈圭斯特频率±Fn附近的频率分量,也能通过图像D2B提供奈圭斯特频率±Fn附近的频率分量。换言之,由于对输入图像DIN或输入亮度图像YIN提供更高频分量侧的频率分量,因而可增加输出图像DOUT或输出亮度图像YOUT(或输出图像IMGOUT)的清晰感。Furthermore, in the image processing apparatuses according to
而且,用作特定频带的部位不限定于±Fn/2附近。即,通过适当变更高频分量图像生成单元1A和低频分量图像生成单元1B的频率响应,可变更使用的频带。Also, the portion used as a specific frequency band is not limited to the vicinity of ±Fn/2. That is, by appropriately changing the frequency responses of the high-frequency component
而且,在针对实施方式1~实施方式5的上述说明中,作为失去奈圭斯特频率Fn附近的频率分量的例子,列举了图像的放大处理,然而针对输入图像DIN或输入亮度图像YIN失去奈圭斯特频率Fn附近的频率分量的原因不限于此,除此以外还可考虑噪声去除处理等。因此,本发明中的图像处理装置的用途不限定于图像放大处理后。Furthermore, in the above-mentioned descriptions of
实施方式6Embodiment 6
在实施方式1~实施方式5中,说明了使用硬件实现本发明,然而也能使用软件实现图1所示的结构的一部分或全部。参照图44以及图45~图64说明该情况下的处理。In
图44示出在实施方式6~实施方式10中使用的图像处理装置。图示的图像处理装置具有CPU11、程序存储器12、数据存储器13、第1接口14、第2接口15以及连接这些部件的总线16,CPU11依照存储在程序存储器12内的程序进行动作,在动作的过程中使数据存储器13存储各种数据,可取代例如图1或图20所示的图像处理装置,用作例如图9所示的显示装置内的图像处理装置U2,或者取代图27、图34或图39所示的图像处理装置,用作例如图31所示的显示装置内的图像处理装置U202。FIG. 44 shows an image processing device used in the sixth to tenth embodiments. The illustrated image processing device has a
首先,说明取代图1的图像处理装置而使用图44的图像处理装置的情况。在该情况下,经由接口14提供从图9所示的图像放大单元U1输出的图像DU1作为输入图像DIN,在CPU11中,进行与图1的图像处理装置相同的处理,将处理后生成的输出图像DOUT经由接口15提供给例如图9所示的图像显示装置内的监视器U3作为图像DU2,用于监视器U3的显示。First, a case where the image processing device of FIG. 44 is used instead of the image processing device of FIG. 1 will be described. In this case, the image DU1 output from the image enlargement unit U1 shown in FIG. The image DOUT is supplied to, for example, the monitor U3 in the image display device shown in FIG. 9 via the
图45是示出通过使图44的图像处理装置具有与实施方式1的图像处理装置相同的功能而实施的、本发明的实施方式6的图像处理方法的流程的图,图示的图像处理方法包含第1中间图像生成步骤ST1、第2中间图像生成步骤ST2、第1中间图像处理步骤ST3M、第2中间图像处理步骤ST3H以及加法步骤ST4。45 is a diagram showing the flow of an image processing method according to Embodiment 6 of the present invention implemented by making the image processing device in FIG. 44 have the same functions as the image processing device according to
如图46所示,第1中间图像生成步骤ST1包含高频分量图像生成步骤ST1A和低频分量图像生成步骤ST1B。As shown in FIG. 46 , the first intermediate image generation step ST1 includes a high-frequency component image generation step ST1A and a low-frequency component image generation step ST1B.
高频分量图像生成步骤ST1A包含水平方向高频分量图像生成步骤ST1Ah和垂直方向高频分量图像生成步骤ST1Av,低频分量图像生成步骤ST1B包含水平方向低频分量图像生成步骤ST1Bh和垂直方向低频分量图像生成步骤ST1Bv。The high-frequency component image generating step ST1A includes a horizontal high-frequency component image generating step ST1Ah and a vertical high-frequency component image generating step ST1Av, and the low-frequency component image generating step ST1B includes a horizontal low-frequency component image generating step ST1Bh and a vertical low-frequency component image generating step ST1Bh. Step ST1Bv.
如图47所示,第2中间图像生成步骤ST2包含非线性处理步骤ST2A和高频分量图像生成步骤ST2B。As shown in FIG. 47, the second intermediate image generation step ST2 includes a nonlinear processing step ST2A and a high-frequency component image generation step ST2B.
非线性处理步骤ST2A包含水平方向非线性处理步骤ST2Ah和垂直方向非线性处理步骤ST2Av,高频分量图像生成步骤ST2B包含水平方向高频分量通过步骤ST2Bh和垂直方向高频分量通过步骤ST2Bv。The nonlinear processing step ST2A includes a horizontal nonlinear processing step ST2Ah and a vertical nonlinear processing step ST2Av, and the high-frequency component image generation step ST2B includes a horizontal high-frequency component passing step ST2Bh and a vertical high-frequency component passing step ST2Bv.
如图48所示,水平方向非线性处理步骤ST2Ah包含过零判定步骤ST311h和信号放大步骤ST312h,如图49所示,垂直方向非线性处理步骤ST2Av包含过零判定步骤ST311v和信号放大步骤ST312v。As shown in FIG. 48, the horizontal nonlinear processing step ST2Ah includes a zero-crossing determination step ST311h and a signal amplification step ST312h. As shown in FIG. 49, the vertical nonlinear processing step ST2Av includes a zero-crossing determination step ST311v and a signal amplification step ST312v.
如图50所示,第1中间图像处理步骤ST3M包含放大率决定步骤ST3MA和像素值变更步骤ST3MB。As shown in FIG. 50 , the first intermediate image processing step ST3M includes a magnification factor determining step ST3MA and a pixel value changing step ST3MB.
如图51所示,第2中间图像处理步骤ST3H包含放大率决定步骤ST3HA和像素值变更步骤ST3HB。As shown in FIG. 51 , the second intermediate image processing step ST3H includes an enlargement factor determining step ST3HA and a pixel value changing step ST3HB.
首先,依照图46的流程说明第1中间图像生成步骤ST1的动作。First, the operation of the first intermediate image generation step ST1 will be described in accordance with the flow shown in FIG. 46 .
在高频分量图像生成步骤ST1A中,针对在未图示的图像输入步骤中输入的输入图像DIN进行如下的处理。In the high-frequency component image generation step ST1A, the following processing is performed on the input image DIN input in the image input step (not shown).
首先,在水平方向高频分量图像生成步骤ST1Ah中,通过水平方向的高通滤波处理生成从输入图像DIN取出水平方向的高频分量而得到的图像D1Ah。First, in the horizontal high-frequency component image generating step ST1Ah, an image D1Ah obtained by extracting a horizontal high-frequency component from the input image DIN is generated by horizontal high-pass filtering.
在垂直方向高频分量图像生成步骤ST1Av中,通过垂直方向的高通滤波处理生成从输入图像DIN取出垂直方向的高频分量而得到的图像D1Av。In the vertical high-frequency component image generation step ST1Av, an image D1Av obtained by extracting a vertical high-frequency component from the input image DIN is generated by a vertical high-pass filter process.
即,高频分量图像生成步骤ST1A进行与高频分量图像生成单元1A同样的处理,从输入图像DIN生成由图像D1Ah和图像D1Av构成的图像D1A。该动作与高频分量图像生成单元1A相同。That is, the high-frequency component image generating step ST1A performs the same processing as the high-frequency component image generating means 1A, and generates an image D1A composed of an image D1Ah and an image D1Av from the input image DIN. This operation is the same as that of the high-frequency component
在低频分量图像生成步骤ST1B中,针对图像D1A进行如下的处理。首先,在水平方向低频分量图像生成步骤ST1Bh中,通过水平方向的低通滤波处理生成从图像D1Ah取出水平方向的低频分量而得到的图像D1Bh。In the low-frequency component image generation step ST1B, the following processing is performed on the image D1A. First, in the horizontal low-frequency component image generating step ST1Bh, an image D1Bh obtained by extracting the horizontal low-frequency component from the image D1Ah is generated by horizontal low-pass filtering processing.
在垂直方向低频分量图像生成步骤ST1Bv中,通过垂直方向的低通滤波处理生成从图像D1Av取出垂直方向的低频分量而得到的图像D1Bv。In the vertical low-frequency component image generation step ST1Bv, an image D1Bv obtained by extracting a vertical low-frequency component from the image D1Av is generated by a vertical low-pass filter process.
即,低频分量图像生成步骤ST1B进行与低频分量图像生成单元1B同样的处理,从图像D1A生成由图像D1Bh和图像D1Bv构成的图像D1B。该动作与低频分量图像生成单元1B相同。That is, the low-frequency component image generating step ST1B performs the same processing as that of the low-frequency component image generating means 1B, and generates an image D1B composed of an image D1Bh and an image D1Bv from the image D1A. This operation is the same as that of the low-frequency component
以上是第1中间图像生成步骤ST1的动作,第1中间图像生成步骤ST1设图像D1Bh为图像D1h,设图像D1Bv为图像D1v,输出由图像D1h和图像D1v构成的中间图像D1。以上动作与第1中间图像生成单元1相同。The above is the operation of the first intermediate image generating step ST1. The first intermediate image generating step ST1 sets image D1Bh as image D1h and image D1Bv as image D1v, and outputs intermediate image D1 composed of image D1h and image D1v. The above operation is the same as that of the first intermediate
然后,依照图47~图49的流程说明第2中间图像生成步骤ST2的动作。Next, the operation of the second intermediate image generation step ST2 will be described in accordance with the flow of FIGS. 47 to 49 .
首先,在非线性处理步骤ST2A中对中间图像D1进行如下的处理。First, the intermediate image D1 is processed as follows in the nonlinear processing step ST2A.
首先,在水平方向非线性处理步骤ST2Ah中,通过依照图48所示流程的处理从图像D1h生成图像D2Ah。图48所示的流程的处理如下所述。首先,在过零判定步骤ST311h中,沿着水平方向确认图像D1h中的像素值的变化。然后,捕捉像素值从正值变化为负值或从负值变化为正值的部位作为过零点,将位于过零点左右的像素通知给信号放大步骤ST312h。在信号放大步骤ST312h中,针对图像D1h,放大被通知位于过零点左右的像素的像素值,并将该图像作为图像D2Ah进行输出。即,非线性处理步骤ST2Ah对图像D1h进行与水平方向非线性处理单元2Ah同样的处理,生成图像D2Ah。First, in the horizontal non-linear processing step ST2Ah, an image D2Ah is generated from the image D1h by processing according to the flow shown in FIG. 48 . The processing of the flow shown in FIG. 48 is as follows. First, in the zero-cross determination step ST311h, changes in pixel values in the image D1h are checked in the horizontal direction. Then, the position where the pixel value changes from positive value to negative value or from negative value to positive value is captured as a zero crossing point, and the pixels located around the zero crossing point are notified to the signal amplification step ST312h. In the signal amplification step ST312h, with respect to the image D1h, the pixel value of the notified pixel positioned around the zero cross point is amplified, and the image is output as the image D2Ah. That is, the non-linear processing step ST2Ah performs the same processing as the horizontal non-linear processing means 2Ah on the image D1h to generate the image D2Ah.
然后,在垂直方向非线性处理步骤ST2Av中,通过依照图49所示的流程的处理从图像D1v生成图像D2Av。图49所示的流程的处理如下所述。首先,在过零判定步骤ST311v中,沿着垂直方向确认图像D1v中的像素值的变化。然后,捕捉像素值从正值变化为负值或从负值变化为正值的部位作为过零点,将位于过零点上下的像素通知给信号放大步骤ST312v。在信号放大步骤ST312v中,针对图像D1v,放大被通知位于过零点上下的像素的像素值,并将该图像作为图像D2Av进行输出。即,非线性处理步骤ST2Av对图像D1v进行与垂直方向非线性处理单元2Av同样的处理,生成图像D2Av。Then, in the vertical non-linear processing step ST2Av, an image D2Av is generated from the image D1v by processing according to the flow shown in FIG. 49 . The processing of the flow shown in FIG. 49 is as follows. First, in the zero-cross determination step ST311v, changes in pixel values in the image D1v are checked in the vertical direction. Then, the position where the pixel value changes from positive to negative or from negative to positive is captured as a zero-crossing point, and the pixels located above and below the zero-crossing point are notified to the signal amplification step ST312v. In the signal amplification step ST312v, with respect to the image D1v, the pixel values of the pixels notified to be located above and below the zero cross point are amplified, and this image is output as the image D2Av. That is, the non-linear processing step ST2Av performs the same processing as the vertical non-linear processing means 2Av on the image D1v to generate the image D2Av.
以上是非线性处理步骤ST2A的动作,非线性处理步骤ST2A生成由图像D2Ah和图像D2Av构成的图像D2A。该动作与非线性处理单元2A相同。The above is the operation of the nonlinear processing step ST2A. The nonlinear processing step ST2A generates the image D2A composed of the image D2Ah and the image D2Av. This operation is the same as that of the nonlinear processing unit 2A.
然后,在高频分量图像生成步骤ST2B中,对图像D2A进行如下的处理。Then, in the high-frequency component image generation step ST2B, the following processing is performed on the image D2A.
首先,在水平方向高频分量图像生成步骤ST2Bh中,生成对图像D2Ah进行了水平方向的高通滤波处理后的图像D2Bh。即,水平方向高频分量图像生成步骤ST2Bh进行与水平方向高频分量图像生成单元2Bh同样的处理。First, in the horizontal high-frequency component image generating step ST2Bh, image D2Bh obtained by performing horizontal high-pass filter processing on image D2Ah is generated. That is, the horizontal high-frequency component image generation step ST2Bh performs the same processing as that of the horizontal high-frequency component image generation unit 2Bh.
然后,在垂直方向高频分量图像生成步骤ST2Bv中,生成对图像D2Av进行了垂直方向的高通滤波处理后的图像D2Bv。即,垂直方向高频分量图像生成步骤ST2Bv进行与垂直方向高频分量图像生成单元2Bv同样的处理。Next, in the vertical high-frequency component image generation step ST2Bv, image D2Bv in which image D2Av has been subjected to vertical high-pass filter processing is generated. That is, the vertical high-frequency component image generation step ST2Bv performs the same processing as the vertical high-frequency component image generation unit 2Bv.
以上是高频分量图像生成步骤ST2B的动作,高频分量图像生成步骤ST2B生成由图像D2Bh和图像D2Bv构成的图像D2B。该动作与高频分量图像生成单元2B相同。The above is the operation of the high-frequency component image generating step ST2B. The high-frequency component image generating step ST2B generates the image D2B composed of the image D2Bh and the image D2Bv. This operation is the same as that of the high-frequency component image generating unit 2B.
以上是第2中间图像生成步骤ST2的动作,第2中间图像生成步骤ST2输出图像D2B作为中间图像D2。即,输出设图像D2Bh为图像D2h,设图像D2Bv为图像D2v的中间图像D2。该动作与第2中间图像生成单元2相同。The above is the operation of the second intermediate image generation step ST2, and the second intermediate image generation step ST2 outputs the image D2B as the intermediate image D2. That is, an intermediate image D2 in which the image D2Bh is the image D2h and the image D2Bv is the image D2v is output. This operation is the same as that of the second intermediate
然后,依照图50的流程说明第1中间图像处理步骤ST3M的动作。Next, the operation of the first intermediate image processing step ST3M will be described in accordance with the flow shown in FIG. 50 .
首先,第1中间图像处理步骤ST3M在放大率决定步骤ST3MA中,决定针对中间图像D1的各像素具有的像素值的放大率。这里,由于中间图像D1由图像D1h和图像D1v构成,因而针对图像D1h和图像D1v的各像素进行放大率的决定。即,针对图像D1h,在水平方向放大率决定步骤ST3MAh中决定针对各像素的放大率,针对图像D1v,在垂直方向放大率决定步骤ST3MAv中决定针对各像素的放大率。这里,水平方向放大率决定步骤ST3MAh的动作与水平方向放大率决定单元3MAh相同,垂直方向放大率决定步骤ST3MAv的动作与垂直方向放大率决定单元3MAv相同,因而省略其说明。First, in the first intermediate image processing step ST3M, in the magnification factor determination step ST3MA, the magnification factor for the pixel value of each pixel of the intermediate image D1 is determined. Here, since the intermediate image D1 is composed of the image D1h and the image D1v, the enlargement factor is determined for each pixel of the image D1h and the image D1v. That is, for the image D1h, the magnification for each pixel is determined in the horizontal magnification determination step ST3MAh, and for the image D1v, the magnification for each pixel is determined in the vertical magnification determination step ST3MAv. Here, the operation of the horizontal magnification determination step ST3MAh is the same as that of the horizontal magnification determination unit 3MAh, and the operation of the vertical magnification determination step ST3MAv is the same as that of the vertical magnification determination unit 3MAv, so description thereof is omitted.
然后,在像素值变更步骤ST3MB中,根据在放大率决定步骤ST3MA中决定的放大率放大中间图像D1的各像素具有的像素值。这里,由于中间图像D1由图像D1h和图像D1v构成,因而针对图像D1h和图像D1v的各方进行像素值的放大。即,根据在水平方向放大率决定步骤ST3MAh中决定的放大率放大图像D1h的各像素值,生成图像D3MBh。并且,根据在垂直方向放大率决定步骤ST3MAv中决定的放大率放大图像D1v的各像素值,生成图像D3MBv。该动作与像素值变更单元3MB的动作相同。Then, in the pixel value changing step ST3MB, the pixel value of each pixel of the intermediate image D1 is amplified according to the magnification factor determined in the magnification factor determination step ST3MA. Here, since the intermediate image D1 is composed of the image D1h and the image D1v, the pixel values of each of the image D1h and the image D1v are enlarged. That is, the image D3MBh is generated by enlarging each pixel value of the magnification factor of the image D1h determined in the horizontal magnification factor determination step ST3MAh. Then, an image D3MBv is generated based on each pixel value of the magnification enlarged image D1v determined in the vertical magnification determination step ST3MAv. This operation is the same as that of the pixel value changing unit 3MB.
然后,通过第1中间图像处理步骤ST3M生成由与图像D3MBh相当的图像D3Mh和与图像D3MBv相当的图像D3Mv构成的中间图像D3M。以上是第1中间图像处理步骤ST3M的动作,该动作与第1中间图像处理单元3M相同。Then, an intermediate image D3M composed of an image D3Mh corresponding to the image D3MBh and an image D3Mv corresponding to the image D3MBv is generated by the first intermediate image processing step ST3M. The above is the operation of the first intermediate image processing step ST3M, which is the same as that of the first intermediate image processing unit 3M.
然后,依照图51的流程说明第2中间图像处理步骤ST3H的动作。Next, the operation of the second intermediate image processing step ST3H will be described in accordance with the flow shown in FIG. 51 .
首先,第2中间图像处理步骤ST3H在放大率决定步骤ST3HA中,决定针对中间图像D2的各像素具有的像素值的放大率。这里,由于中间图像D2由图像D2h和图像D2v构成,因而针对图像D2h和图像D2v的各像素进行放大率的决定。即,针对图像D2h,在水平方向放大率决定步骤ST3HAh中决定针对各像素的放大率,针对图像D2v,在垂直方向放大率决定步骤ST3HAv中决定针对各像素的放大率。这里,水平方向放大率决定步骤ST3HAh的动作与水平方向放大率决定单元3HAh相同,垂直方向放大率决定步骤ST3HAv的动作与垂直方向放大率决定单元3HAv相同,因而省略其说明。First, in the second intermediate image processing step ST3H, in the magnification factor determination step ST3HA, the magnification factor for the pixel value of each pixel of the intermediate image D2 is determined. Here, since the intermediate image D2 is composed of the image D2h and the image D2v, the enlargement factor is determined for each pixel of the image D2h and the image D2v. That is, for the image D2h, the magnification for each pixel is determined in the horizontal magnification determination step ST3HAh, and for the image D2v, the magnification for each pixel is determined in the vertical magnification determination step ST3HAv. Here, the operation of the horizontal magnification determination step ST3HAh is the same as that of the horizontal magnification determination unit 3HAh, and the operation of the vertical magnification determination step ST3HAv is the same as that of the vertical magnification determination unit 3HAv, so description thereof is omitted.
然后,在像素值变更步骤ST3HB中,根据在放大率决定步骤ST3HA中决定的放大率放大中间图像D2的各像素具有的像素值。这里,由于中间图像D2由图像D2h和图像D2v构成,因而针对图像D2h和图像D2v的各方进行像素值的放大。即,根据在水平方向放大率决定步骤ST3HAh中决定的放大率放大图像D2h的各像素值,生成图像D3HBh。并且,根据在垂直方向放大率决定步骤ST3HAv中决定的放大率放大图像D2v的各像素值,生成图像D3HBv。该动作与像素值变更单元3HB的动作相同。Then, in the pixel value changing step ST3HB, the pixel value of each pixel of the intermediate image D2 is amplified according to the magnification factor determined in the magnification factor determination step ST3HA. Here, since the intermediate image D2 is composed of the image D2h and the image D2v, the pixel values are enlarged for each of the image D2h and the image D2v. That is, the image D3HBh is generated by enlarging each pixel value of the image D2h at the magnification determined in the horizontal magnification determination step ST3HAh. Then, the image D3HBv is generated by enlarging each pixel value of the image D2v with the magnification determined in the vertical magnification determination step ST3HAv. This operation is the same as that of the pixel value changing unit 3HB.
然后,通过第2中间图像处理步骤ST3H生成由与图像D3HBh相当的图像D3Hh和与图像D3HBv相当的图像D3Hv构成的中间图像D3H。以上是第2中间图像处理步骤ST3H的动作,该动作与第2中间图像处理单元3H相同。Then, an intermediate image D3H composed of an image D3Hh corresponding to the image D3HBh and an image D3Hv corresponding to the image D3HBv is generated by the second intermediate image processing step ST3H. The above is the operation of the second intermediate image processing step ST3H, which is the same as that of the second intermediate image processing unit 3H.
加法步骤ST4将输入图像DIN、中间图像D3M和中间图像D3H相加,生成输出图像DOUT。由于中间图像D3M由图像D3Mh和图像D3Mv构成,中间图像D3H由图像D3Hh和图像D3Hv构成,因而在加法步骤ST4中,将图像D3Mh、D3Hv、D3Mh以及D3Hv全部与输入图像DIN相加。此时,可以将图像D3Mh、D3Hv、D3Mh以及D3Hv与输入图像DIN单纯相加,也可以进行加权相加。输出图像DOUT作为本实施方式中的图像处理方法的最终输出图像输出。以上是加法步骤ST4的动作,该动作与加法单元4的动作相同。The addition step ST4 adds the input image DIN, the intermediate image D3M, and the intermediate image D3H to generate the output image DOUT. Since the intermediate image D3M is composed of the image D3Mh and the image D3Mv, and the intermediate image D3H is composed of the image D3Hh and the image D3Hv, in the adding step ST4, all the images D3Mh, D3Hv, D3Mh, and D3Hv are added to the input image DIN. At this time, the images D3Mh, D3Hv, D3Mh, and D3Hv may be simply added to the input image DIN, or weighted may be added. The output image DOUT is output as the final output image of the image processing method in this embodiment. The above is the operation of the adding step ST4 , which is the same as that of the adding
以上是本实施方式中的图像处理方法的动作。The above is the operation of the image processing method in this embodiment.
从该说明可知,本实施方式中的图像处理方法的动作与实施方式1中的图像处理装置相同。因此,本实施方式中的图像处理方法具有与实施方式1中的图像处理装置相同的效果。并且,在图9所示的图像显示装置中,还可以通过例如在图像处理装置U2内部实施上述的图像处理方法,将使用上述的图像处理方法处理后的图像显示在图9所示的图像显示装置上。As can be seen from the description, the operation of the image processing method in the present embodiment is the same as that of the image processing device in the first embodiment. Therefore, the image processing method in this embodiment has the same effect as the image processing device in
实施方式7Embodiment 7
在实施方式2中,说明了使用硬件实现本发明,然而也能使用软件实现图20所示的结构的一部分或全部。在该情况下使用的图像处理装置的结构与图44所示的结构相同。In
该情况下的图像处理装置与实施方式6一样用作形成例如图9的图像显示装置的一部分的图像处理装置U2,经由接口14提供从图像放大单元U1输出的图像DU1作为输入图像DIN,在CPU11中,进行与图20的图像处理装置相同的处理,将处理后生成的输出图像DOUT经由接口15提供给例如图9的监视器U3作为图像DU2,用于监视器U3的显示。The image processing device in this case is used as the image processing device U2 forming part of the image display device in FIG. 20, the output image DOUT generated after the processing is provided to the monitor U3 of FIG. 9 via the
图52是示出通过使图44的图像处理装置具有与实施方式2的图像处理装置相同的功能而实施的、本发明的实施方式7的图像处理方法的流程的图,图示的图像处理方法包含第1中间图像生成步骤ST1、第2中间图像生成步骤ST2、第1中间图像处理步骤ST103M、第2中间图像处理步骤ST103H以及加法步骤ST4。另外,第1中间图像生成步骤ST1、第2中间图像生成步骤ST2以及加法步骤ST4的结构和动作与实施方式6相同,因而省略其说明。FIG. 52 is a diagram showing the flow of an image processing method according to Embodiment 7 of the present invention implemented by making the image processing device of FIG. 44 have the same functions as the image processing device according to
如图53所示,第1中间图像处理步骤ST103M包含放大率决定步骤ST103MA和像素值变更步骤ST103MB。As shown in FIG. 53 , the first intermediate image processing step ST103M includes a magnification factor determining step ST103MA and a pixel value changing step ST103MB.
如图54所示,第2中间图像处理步骤ST103H包含放大率决定步骤ST103HA和像素值变更步骤ST103HB。As shown in FIG. 54 , the second intermediate image processing step ST103H includes an enlargement factor determining step ST103HA and a pixel value changing step ST103HB.
首先,依照图53的流程说明第1中间图像处理步骤ST103M的动作。First, the operation of the first intermediate image processing step ST103M will be described in accordance with the flow shown in FIG. 53 .
首先,第1中间图像处理步骤ST103M在放大率决定步骤ST103MA中,决定针对中间图像D1的各像素具有的像素值的放大率。这里,由于中间图像D1由图像D1h和图像D1v构成,因而针对图像D1h和图像D1v的各像素进行放大率的决定。即,针对图像D1h,在水平方向放大率决定步骤ST103MAh中决定针对各像素的放大率,针对图像D1v,在垂直方向放大率决定步骤ST103MAv中决定针对各像素的放大率。First, in the first intermediate image processing step ST103M, in the magnification factor determination step ST103MA, the magnification factor for the pixel value of each pixel of the intermediate image D1 is determined. Here, since the intermediate image D1 is composed of the image D1h and the image D1v, the enlargement factor is determined for each pixel of the image D1h and the image D1v. That is, for the image D1h, the magnification for each pixel is determined in the horizontal magnification determination step ST103MAh, and for the image D1v, the magnification for each pixel is determined in the vertical magnification determination step ST103MAv.
图55是示出水平方向放大率决定步骤ST103MAh的动作的流程图。首先,在符号判定步骤ST52h中,判别图像D1h的各像素的像素值的符号(正负)。在图像D1h的符号是正的情况下,通过第1放大率决定步骤ST511h决定放大率,在图像D1h的符号是负的情况下,通过第2放大率决定步骤ST512h决定放大率。第1放大率决定步骤ST511h针对输入图像DIN的各像素的像素值,根据在实施方式2中所述的第1特性决定放大率。第2放大率决定步骤ST512h针对输入图像DIN的各像素的像素值,根据在实施方式2中所述的第2特性决定放大率。以上的水平方向放大率决定步骤ST103MAh的动作与水平方向放大率决定单元103MAh相同。FIG. 55 is a flowchart showing the operation of the horizontal magnification determining step ST103MAh. First, in the sign determination step ST52h, the sign (positive or negative) of the pixel value of each pixel of the image D1h is determined. When the sign of the image D1h is positive, the magnification is determined in the first magnification determining step ST511h, and when the sign of the image D1h is negative, the magnification is determined in the second magnification determining step ST512h. The first magnification factor determination step ST511h determines the magnification factor based on the first characteristic described in
图56是示出垂直方向放大率决定步骤ST103MAv的动作的流程图。首先,在符号判定步骤ST52v中,判别图像D1v的各像素的像素值的符号(正负)。在图像D1v的符号是正的情况下,通过第1放大率决定步骤ST511v决定放大率,在图像D1h的符号是负的情况下,通过第2放大率决定步骤ST512v决定放大率。第1放大率决定步骤ST511v针对输入图像DIN的各像素的像素值,根据在实施方式2中所述的第1特性决定放大率。第2放大率决定步骤ST512v针对输入图像DIN的各像素的像素值,根据在实施方式2中所述的第2特性决定放大率。以上的垂直方向放大率决定步骤ST103MAv的动作与垂直方向放大率决定单元103MAv相同。FIG. 56 is a flowchart showing the operation of the vertical magnification determining step ST103MAv. First, in the sign determination step ST52v, the sign (positive or negative) of the pixel value of each pixel of the image D1v is determined. When the sign of the image D1v is positive, the magnification is determined in the first magnification determining step ST511v, and when the sign of the image D1h is negative, the magnification is determined in the second magnification determining step ST512v. The first magnification factor determination step ST511v determines a magnification factor based on the first characteristic described in
然后,在像素值变更步骤ST103MB中,根据在放大率决定步骤ST103MA中决定的放大率放大中间图像D1的各像素具有的像素值。这里,由于中间图像D1由图像D1h和图像D1v构成,因而针对图像D1h和图像D1v的各方进行像素值的放大。即,根据在水平方向放大率决定步骤ST103MAh中决定的放大率放大图像D1h的各像素值,生成图像D103MBh。并且,根据在垂直方向放大率决定步骤ST103MAv中决定的放大率放大图像D1v的各像素值,生成图像D103MBv。该动作与像素值变更单元103MB的动作相同。Then, in the pixel value changing step ST103MB, the pixel value of each pixel of the intermediate image D1 is amplified according to the magnification factor determined in the magnification factor determination step ST103MA. Here, since the intermediate image D1 is composed of the image D1h and the image D1v, the pixel values of each of the image D1h and the image D1v are enlarged. That is, the image D103MBh is generated by enlarging each pixel value of the image D1h at the magnification determined in the horizontal magnification determination step ST103MAh. Then, an image D103MBv is generated based on each pixel value of the magnification enlarged image D1v determined in the vertical magnification determination step ST103MAv. This operation is the same as that of the pixel value changing unit 103MB.
然后,通过第1中间图像处理步骤ST103M生成由与图像D103MBh相当的图像D103Mh和与图像D103MBv相当的图像D103Mv构成的中间图像D103M。以上是第1中间图像处理步骤ST103M的动作,该动作与第1中间图像处理单元103M相同。Then, an intermediate image D103M composed of an image D103Mh corresponding to the image D103MBh and an image D103Mv corresponding to the image D103MBv is generated by the first intermediate image processing step ST103M. The above is the operation of the first intermediate image processing step ST103M, and this operation is the same as that of the first intermediate image processing unit 103M.
然后,依照图54的流程说明第2中间图像处理步骤ST103H的动作。Next, the operation of the second intermediate image processing step ST103H will be described in accordance with the flow shown in FIG. 54 .
首先,第2中间图像处理步骤ST103H在放大率决定步骤ST103HA中,决定针对中间图像D2的各像素具有的像素值的放大率。这里,由于中间图像D2由图像D2h和图像D2v构成,因而针对图像D2h和图像D2v的各像素进行放大率的决定。即,针对图像D2h,在水平方向放大率决定步骤ST103HAh中决定针对各像素的放大率,针对图像D2v,在垂直方向放大率决定步骤ST103HAv中决定针对各像素的放大率。这里,水平方向放大率决定步骤ST103HAh的动作与水平方向放大率决定单元103HAh相同,垂直方向放大率决定步骤ST103HAv的动作与垂直方向放大率决定单元103HAv相同,因而省略其说明。First, in the second intermediate image processing step ST103H, in the magnification factor determination step ST103HA, the magnification factor for the pixel value of each pixel of the intermediate image D2 is determined. Here, since the intermediate image D2 is composed of the image D2h and the image D2v, the enlargement factor is determined for each pixel of the image D2h and the image D2v. That is, for the image D2h, the magnification for each pixel is determined in the horizontal magnification determining step ST103HAh, and for the image D2v, the magnification for each pixel is determined in the vertical magnification determining step ST103HAv. Here, the operation of the horizontal magnification determination step ST103HAh is the same as that of the horizontal magnification determination unit 103HAh, and the operation of the vertical magnification determination step ST103HAv is the same as that of the vertical magnification determination unit 103HAv, and thus their description is omitted.
然后,在像素值变更步骤ST103HB中,根据在放大率决定步骤ST103HA中决定的放大率放大中间图像D2的各像素具有的像素值。这里,由于中间图像D2由图像D2h和图像D2v构成,因而针对图像D2h和图像D2v的各方进行像素值的放大。即,根据在水平方向放大率决定步骤ST103HAh中决定的放大率放大图像D2h的各像素值,生成图像D103HBh。并且,根据在垂直方向放大率决定步骤ST103HAv中决定的放大率放大图像D2v的各像素值,生成图像D103HBv。该动作与像素值变更单元103HB的动作相同。Then, in the pixel value changing step ST103HB, the pixel value of each pixel of the intermediate image D2 is amplified according to the magnification factor determined in the magnification factor determination step ST103HA. Here, since the intermediate image D2 is composed of the image D2h and the image D2v, the pixel values are enlarged for each of the image D2h and the image D2v. That is, the image D103HBh is generated by enlarging each pixel value of the magnification factor of the image D2h determined in the horizontal magnification factor determination step ST103HAh. Then, the image D103HBv is generated by enlarging each pixel value of the magnification factor of the image D2v determined in the vertical magnification factor determination step ST103HAv. This operation is the same as that of the pixel value changing unit 103HB.
然后,通过第2中间图像处理步骤ST103H生成由与图像D103HBh相当的图像D103Hh和与图像D103HBv相当的图像D103Hv构成的中间图像D103H。以上是第2中间图像处理步骤ST103H的动作,该动作与第2中间图像处理单元103H相同。Then, an intermediate image D103H composed of an image D103Hh corresponding to the image D103HBh and an image D103Hv corresponding to the image D103HBv is generated by the second intermediate image processing step ST103H. The above is the operation of the second intermediate image processing step ST103H, which is the same as that of the second intermediate image processing unit 103H.
以上是本实施方式中的图像处理方法的动作。The above is the operation of the image processing method in this embodiment.
从该说明可知,本实施方式中的图像处理方法的动作与实施方式2中的图像处理装置相同。因此,本实施方式中的图像处理方法具有与实施方式2中的图像处理装置相同的效果。并且,在图9所示的图像显示装置中,还可以通过例如在图像处理装置U2内部实施上述的图像处理方法,将使用上述的图像处理方法处理后的图像显示在图9所示的图像显示装置上。As can be seen from the description, the operation of the image processing method in the present embodiment is the same as that of the image processing device in the second embodiment. Therefore, the image processing method in this embodiment has the same effect as the image processing device in
实施方式8Embodiment 8
在实施方式3中,说明了使用硬件实现本发明,然而也能使用软件实现图27所示的结构的一部分或全部。在该情况下使用的图像处理装置的结构与图44所示的结构相同。In
不过,该情况下的图像处理装置用作形成例如图3 1的图像显示装置的一部分的图像处理装置U202,经由接口14提供从彩色图像放大单元U201输出的彩色图像IMGU201作为输入图像IMGIN,在CPU11中,进行与图27的图像处理装置相同的处理,将处理后生成的输出图像IMGOUT经由接口15提供给例如图3 1的监视器U203作为图像DU202,用于监视器U203的显示。However, the image processing device in this case is used as the image processing device U202 forming a part of the image display device of FIG. 27, the output image IMGOUT generated after processing is provided to, for example, the monitor U203 of FIG. 31 via the
图57是示出通过使图44的图像处理装置具有与实施方式3的图像处理装置相同的功能而实施的、本发明的实施方式8的图像处理方法的流程的图,实施方式8的图像处理方法包含亮度色差信号相加步骤ST200、第1中间图像生成步骤ST201、第2中间图像生成步骤ST2、第1中间图像处理步骤ST203M、第2中间图像处理步骤ST203H以及加法步骤ST204。FIG. 57 is a diagram showing the flow of an image processing method according to Embodiment 8 of the present invention implemented by making the image processing device of FIG. 44 have the same functions as the image processing device according to
另外,实施方式8的图像处理方法也与实施方式3一样,对以YCbCr形式输入的输入图像IMGIN进行图像处理。即,在未图示的图像输入步骤输入的输入图像IMGIN是彩色图像,由表示亮度分量的信号YIN(以下称为输入亮度图像YIN)以及表示色差分量的信号CRIN和CBIN构成。信号CRIN(以下称为输入CR图像CRIN)表示色差分量中的Cr分量,信号CBIN(以下称为输入CB图像CBIN)表示色差分量中的Cb分量。Also, in the image processing method of the eighth embodiment, as in the third embodiment, image processing is performed on the input image IMGIN input in the YCbCr format. That is, the input image IMGIN input in the image input step (not shown) is a color image composed of a signal YIN representing a luminance component (hereinafter referred to as an input luminance image YIN) and signals CRIN and CBIN representing color difference components. A signal CRIN (hereinafter referred to as an input CR image CRIN) represents a Cr component among the color difference components, and a signal CBIN (hereinafter referred to as an input CB image CBIN) represents a Cb component among the color difference components.
第1中间图像生成步骤ST201对输入亮度图像YIN进行与在实施方式6中第1中间图像生成步骤ST1对输入图像DIN进行的处理相同的处理。并且,其结构可以与在实施方式6中说明的第1中间图像生成步骤ST1相同。The first intermediate image generation step ST201 performs the same processing as that performed on the input image DIN in the first intermediate image generation step ST1 in Embodiment 6 on the input luminance image YIN. In addition, its configuration may be the same as that of the first intermediate image generation step ST1 described in Embodiment 6.
第2中间图像生成步骤ST2的动作和结构可以与在实施方式6中说明的第2中间图像生成步骤ST2相同。The operation and configuration of the second intermediate image generating step ST2 may be the same as the second intermediate image generating step ST2 described in the sixth embodiment.
如图58所示,第1中间图像处理步骤ST203M包含放大率决定步骤ST203MA和像素值变更步骤ST203MB。As shown in FIG. 58 , the first intermediate image processing step ST203M includes a magnification factor determining step ST203MA and a pixel value changing step ST203MB.
如图59所示,第2中间图像处理步骤ST203H包含放大率决定步骤ST203HA和像素值变更步骤ST203HB。As shown in FIG. 59 , the second intermediate image processing step ST203H includes an enlargement factor determining step ST203HA and a pixel value changing step ST203HB.
首先,说明亮度色差信号相加步骤ST200的动作。亮度色差信号相加步骤ST200针对各像素将输入亮度图像YIN的像素值、输入CR图像CRIN的像素值的绝对值以及输入CB图像CBIN的像素值的绝对值进行加权相加,生成亮度色差相加图像YC。亮度色差相加图像YC与输入亮度图像YIN、输入CR图像CRIN和输入CB图像CBIN的关系由式(7)表示。该动作与亮度色差相加单元205相同。First, the operation of the luminance and color difference signal adding step ST200 will be described. The luminance and color difference signal addition step ST200 performs weighted addition of the pixel value of the input luminance image YIN, the absolute value of the pixel value of the input CR image CRIN, and the absolute value of the pixel value of the input CB image CBIN for each pixel to generate a luminance and color difference summation Image YC. The relationship between the luminance and color difference addition image YC, the input luminance image YIN, the input CR image CRIN, and the input CB image CBIN is expressed by Equation (7). This operation is the same as that of luminance and color
第1中间图像生成步骤ST201对输入亮度图像YIN进行与在实施方式6中第1中间图像生成步骤ST1对输入图像DIN进行的处理相同的处理。The first intermediate image generation step ST201 performs the same processing as that performed on the input image DIN in the first intermediate image generation step ST1 in Embodiment 6 on the input luminance image YIN.
然后,第2中间图像生成步骤ST2的动作与在实施方式6中说明的第2中间图像生成步骤ST2相同。Then, the operation of the second intermediate image generation step ST2 is the same as that of the second intermediate image generation step ST2 described in the sixth embodiment.
然后,依照图58的流程说明第1中间图像处理步骤ST203M的动作。Next, the operation of the first intermediate image processing step ST203M will be described in accordance with the flow shown in FIG. 58 .
首先,第1中间图像处理步骤ST203M在放大率决定步骤ST203MA中,决定针对中间图像D1的各像素具有的像素值的放大率。这里,由于中间图像D1由图像D1h和图像D1v构成,因而针对图像D1h和图像D1v的各像素进行放大率的决定。即,针对图像D1h,在水平方向放大率决定步骤ST203MAh中决定针对各像素的放大率,针对图像D1v,在垂直方向放大率决定步骤ST203MAv中决定针对各像素的放大率。这里,水平方向放大率决定步骤ST203MAh的动作与水平方向放大率决定单元203MAh相同,垂直方向放大率决定步骤ST203MAv的动作与垂直方向放大率决定单元203MAv相同,因而省略其说明。First, in the first intermediate image processing step ST203M, in the magnification factor determination step ST203MA, the magnification factor for the pixel value of each pixel of the intermediate image D1 is determined. Here, since the intermediate image D1 is composed of the image D1h and the image D1v, the enlargement factor is determined for each pixel of the image D1h and the image D1v. That is, for the image D1h, the magnification for each pixel is determined in the horizontal magnification determination step ST203MAh, and for the image D1v, the magnification for each pixel is determined in the vertical magnification determination step ST203MAv. Here, the operation of the horizontal magnification determination step ST203MAh is the same as that of the horizontal magnification determination unit 203MAh, and the operation of the vertical magnification determination step ST203MAv is the same as that of the vertical magnification determination unit 203MAv, and thus their description is omitted.
然后,在像素值变更步骤ST203MB中,根据在放大率决定步骤ST203MA中决定的放大率放大中间图像D1的各像素具有的像素值。这里,由于中间图像D1由图像D1h和图像D1v构成,因而针对图像D1h和图像D1v的各方进行像素值的放大。即,根据在水平方向放大率决定步骤ST203MAh中决定的放大率放大图像D1h的各像素值,生成图像D203MBh。并且,根据在垂直方向放大率决定步骤ST203MAv中决定的放大率放大图像D1v的各像素值,生成图像D203MBv。该动作与像素值变更单元203MB的动作相同。Then, in the pixel value changing step ST203MB, the pixel value of each pixel of the intermediate image D1 is amplified according to the magnification factor determined in the magnification factor determination step ST203MA. Here, since the intermediate image D1 is composed of the image D1h and the image D1v, the pixel values of each of the image D1h and the image D1v are enlarged. That is, the image D203MBh is generated by enlarging each pixel value of the magnification factor of the image D1h determined in the horizontal magnification factor determination step ST203MAh. Then, an image D203MBv is generated based on each pixel value of the magnification enlarged image D1v determined in the vertical magnification determination step ST203MAv. This operation is the same as that of the pixel value changing unit 203MB.
然后,通过第1中间图像处理步骤ST203M生成由与图像D203MBh相当的图像D203Mh和与图像D203MBv相当的图像D203Mv构成的中间图像D203M。以上是第1中间图像处理步骤ST203M的动作,该动作与第1中间图像处理单元203M相同。Then, an intermediate image D203M composed of an image D203Mh corresponding to the image D203MBh and an image D203Mv corresponding to the image D203MBv is generated by the first intermediate image processing step ST203M. The above is the operation of the first intermediate image processing step ST203M, which is the same as that of the first intermediate
然后,依照图59的流程说明第2中间图像处理步骤ST203H的动作。Next, the operation of the second intermediate image processing step ST203H will be described in accordance with the flow shown in FIG. 59 .
首先,第2中间图像处理步骤ST203H在放大率决定步骤ST203HA中,决定针对中间图像D2的各像素具有的像素值的放大率。这里,由于中间图像D2由图像D2h和图像D2v构成,因而针对图像D2h和图像D2v的各像素进行放大率的决定。即,针对图像D2h,在水平方向放大率决定步骤ST203HAh中决定针对各像素的放大率,针对图像D2v,在垂直方向放大率决定步骤ST203HAv中决定针对各像素的放大率。这里,水平方向放大率决定步骤ST203HAh的动作与水平方向放大率决定单元203HAh相同,垂直方向放大率决定步骤ST203HAv的动作与垂直方向放大率决定单元203HAv相同,因而省略其说明。First, in the second intermediate image processing step ST203H, in the magnification factor determination step ST203HA, the magnification factor for the pixel value of each pixel of the intermediate image D2 is determined. Here, since the intermediate image D2 is composed of the image D2h and the image D2v, the enlargement factor is determined for each pixel of the image D2h and the image D2v. That is, for the image D2h, the magnification for each pixel is determined in the horizontal magnification determination step ST203HAh, and for the image D2v, the magnification for each pixel is determined in the vertical magnification determination step ST203HAv. Here, the operation of the horizontal magnification determination step ST203HAh is the same as that of the horizontal magnification determination unit 203HAh, and the operation of the vertical magnification determination step ST203HAv is the same as that of the vertical magnification determination unit 203HAv, and thus their description is omitted.
然后,在像素值变更步骤ST203HB中,根据在放大率决定步骤ST203HA中决定的放大率放大中间图像D2的各像素具有的像素值。这里,由于中间图像D2由图像D2h和图像D2v构成,因而针对图像D2h和图像D2v的各方进行像素值的放大。即,根据在水平方向放大率决定步骤ST203HAh中决定的放大率放大图像D2h的各像素值,生成图像D203HBh。并且,根据在垂直方向放大率决定步骤ST203HAv中决定的放大率放大图像D2v的各像素值,生成图像D203HBv。该动作与像素值变更单元203HB的动作相同。Then, in the pixel value changing step ST203HB, the pixel value of each pixel of the intermediate image D2 is amplified according to the magnification factor determined in the magnification factor determination step ST203HA. Here, since the intermediate image D2 is composed of the image D2h and the image D2v, the pixel values are enlarged for each of the image D2h and the image D2v. That is, the image D203HBh is generated by enlarging each pixel value of the magnification factor of the image D2h determined in the horizontal magnification factor determination step ST203HAh. Then, the image D203HBv is generated by enlarging each pixel value of the image D2v with the magnification determined in the vertical magnification determination step ST203HAv. This operation is the same as that of the pixel value changing section 203HB.
然后,通过第2中间图像处理步骤ST203H生成由与图像D203HBh相当的图像D203Hh和与图像D203HBv相当的图像D203Hv构成的中间图像D203H。以上是第2中间图像处理步骤ST203H的动作,该动作与第2中间图像处理单元203H相同。Then, an intermediate image D203H composed of an image D203Hh corresponding to the image D203HBh and an image D203Hv corresponding to the image D203HBv is generated by the second intermediate image processing step ST203H. The above is the operation of the second intermediate image processing step ST203H, which is the same as that of the second intermediate
加法步骤ST204将输入亮度图像YIN、中间图像D203M和中间图像D203H相加,生成输出亮度图像YOUT。由于中间图像D203M由图像D203Mh和图像D203Mv构成,中间图像D203H由图像D203Hh和图像D203Hv构成,因而在加法步骤ST204中,将图像D203Mh、D203Hv、D203Mh以及D203Hv全部与输入亮度图像YIN相加。此时,可以将图像D203Mh、D203Hv、D203Mh以及D203Hv与输入亮度图像YIN单纯相加,也可以进行加权相加。然后,输出亮度图像YOUT作为本实施方式中的图像处理方法的最终输出图像输出。以上是加法步骤ST204的动作,该动作与加法单元204的动作相同。The addition step ST204 adds the input luminance image YIN, intermediate image D203M, and intermediate image D203H to generate an output luminance image YOUT. Since the intermediate image D203M is composed of the image D203Mh and the image D203Mv, and the intermediate image D203H is composed of the image D203Hh and the image D203Hv, in the addition step ST204, all the images D203Mh, D203Hv, D203Mh, and D203Hv are added to the input luminance image YIN. At this time, the images D203Mh, D203Hv, D203Mh, and D203Hv may be simply added to the input luminance image YIN, or weighted may be added. Then, the output luminance image YOUT is output as the final output image of the image processing method in this embodiment. The above is the operation of the addition step ST204 , which is the same as the operation of the
以上是本实施方式中的图像处理方法的动作。The above is the operation of the image processing method in this embodiment.
从该说明可知,本实施方式中的图像处理方法的动作与实施方式3中的图像处理装置相同。因此,本实施方式中的图像处理方法具有与实施方式3中的图像处理装置相同的效果。并且,在图31所示的图像显示装置中,还可以通过例如在图像处理装置U202内部实施上述的图像处理方法,将使用上述的图像处理方法处理后的图像显示在图31所示的图像显示装置上。As can be seen from the description, the operation of the image processing method in the present embodiment is the same as that of the image processing device in the third embodiment. Therefore, the image processing method in this embodiment has the same effect as the image processing device in
实施方式9Embodiment 9
在实施方式4中,说明了使用硬件实现本发明,然而也能使用软件实现图34所示的结构的一部分或全部。在该情况下使用的图像处理装置的结构与图44所示的结构相同。In
不过,该情况下的图像处理装置用作形成例如图3 1的图像显示装置的一部分的图像处理装置U202,经由接口14提供从彩色图像放大单元U201输出的彩色图像IMGU201作为输入图像IMGIN,在CPU11中,进行与图34的图像处理装置相同的处理,将处理后生成的输出图像IMGOUT经由接口15提供给例如图3 1的监视器U203作为图像DU202,用于监视器U203的显示。However, the image processing device in this case is used as the image processing device U202 forming a part of the image display device of FIG. 34, the output image IMGOUT generated after processing is provided to, for example, the monitor U203 of FIG. 31 via the
图60是示出通过使图44的图像处理装置具有与实施方式4的图像处理装置相同的功能而实施的、本发明的实施方式9的图像处理方法的流程的图,图示的图像处理方法包含亮度色差信号相加步骤ST200、第1中间图像生成步骤ST201、第2中间图像生成步骤ST2、第1中间图像处理步骤ST303M、第2中间图像处理步骤ST303H以及加法步骤ST204。FIG. 60 is a diagram showing the flow of an image processing method according to Embodiment 9 of the present invention implemented by making the image processing device of FIG. 44 have the same functions as the image processing device according to
另外,实施方式9的图像处理方法也与实施方式4一样,对以YCbCr形式输入的输入图像IMGIN进行图像处理。即,在未图示的图像输入步骤输入的输入图像IMGIN是彩色图像,由表示亮度分量的信号YIN(以下称为输入亮度图像YIN)以及表示色差分量的信号CRIN和CBIN构成。信号CRIN(以下称为输入CR图像CRIN)表示色差分量中的Cr分量,信号CBIN(以下称为输入CB图像CBIN)表示色差分量中的Cb分量。Also, in the image processing method of the ninth embodiment, as in the fourth embodiment, image processing is performed on the input image IMGIN input in the YCbCr format. That is, the input image IMGIN input in the image input step (not shown) is a color image composed of a signal YIN representing a luminance component (hereinafter referred to as an input luminance image YIN) and signals CRIN and CBIN representing color difference components. A signal CRIN (hereinafter referred to as an input CR image CRIN) represents a Cr component among the color difference components, and a signal CBIN (hereinafter referred to as an input CB image CBIN) represents a Cb component among the color difference components.
第1中间图像生成步骤ST201的动作、结构与实施方式8中的第1中间图像生成步骤ST201相同。The operation and configuration of the first intermediate image generation step ST201 are the same as those of the first intermediate image generation step ST201 in the eighth embodiment.
第2中间图像生成步骤ST2的动作、结构与实施方式8中的第2中间图像生成步骤ST2相同。The operation and configuration of the second intermediate image generation step ST2 are the same as those of the second intermediate image generation step ST2 in the eighth embodiment.
如图61所示,第1中间图像处理步骤ST303M包含放大率决定步骤ST303MA和像素值变更步骤ST303MB。As shown in FIG. 61 , the first intermediate image processing step ST303M includes a magnification factor determining step ST303MA and a pixel value changing step ST303MB.
如图62所示,第2中间图像处理步骤ST303H包含放大率决定步骤ST303HA和像素值变更步骤ST303HB。As shown in FIG. 62 , the second intermediate image processing step ST303H includes an enlargement factor determining step ST303HA and a pixel value changing step ST303HB.
以下,说明本实施方式的图像处理方法。不过,亮度色差信号相加步骤ST200、第1中间图像生成步骤ST201、第2中间图像生成步骤ST2以及加法步骤ST204的动作与实施方式8记载的步骤分别相同,因而省略其说明。Hereinafter, the image processing method of this embodiment will be described. However, the operations of the luminance and color difference signal adding step ST200 , first intermediate image generating step ST201 , second intermediate image generating step ST2 , and adding step ST204 are the same as those described in Embodiment 8, and therefore description thereof will be omitted.
首先,依照图61的流程说明第1中间图像处理步骤ST303M的动作。First, the operation of the first intermediate image processing step ST303M will be described in accordance with the flow shown in FIG. 61 .
首先,第1中间图像处理步骤ST303M在放大率决定步骤ST303MA中,决定针对中间图像D1的各像素具有的像素值的放大率。这里,由于中间图像D1由图像D1h和图像D1v构成,因而针对图像D1h和图像D1v的各像素进行放大率的决定。即,针对图像D1h,在水平方向放大率决定步骤ST303MAh中决定针对各像素的放大率,针对图像D1v,在垂直方向放大率决定步骤ST303MAv中决定针对各像素的放大率。这里,水平方向放大率决定步骤ST303MAh的动作与水平方向放大率决定单元303MAh相同,垂直方向放大率决定步骤ST303MAv的动作与垂直方向放大率决定单元303MAv相同,因而省略其说明。First, in the first intermediate image processing step ST303M, in the magnification factor determination step ST303MA, the magnification factor for the pixel value of each pixel of the intermediate image D1 is determined. Here, since the intermediate image D1 is composed of the image D1h and the image D1v, the enlargement factor is determined for each pixel of the image D1h and the image D1v. That is, for the image D1h, the magnification for each pixel is determined in the horizontal magnification determination step ST303MAh, and for the image D1v, the magnification for each pixel is determined in the vertical magnification determination step ST303MAv. Here, the operation of the horizontal magnification determination step ST303MAh is the same as that of the horizontal magnification determination unit 303MAh, and the operation of the vertical magnification determination step ST303MAv is the same as that of the vertical magnification determination unit 303MAv, so description thereof is omitted.
然后,在像素值变更步骤ST303MB中,根据在放大率决定步骤ST303MA中决定的放大率放大中间图像D1的各像素具有的像素值。这里,由于中间图像D1由图像D1h和图像D1v构成,因而针对图像D1h和图像D1v的各方进行像素值的放大。即,根据在水平方向放大率决定步骤ST303MAh中决定的放大率放大图像D1h的各像素值,生成图像D303MBh。并且,根据在垂直方向放大率决定步骤ST303MAv中决定的放大率放大图像D1v的各像素值,生成图像D303MBv。该动作与像素值变更单元303MB的动作相同。Then, in the pixel value changing step ST303MB, the pixel value of each pixel of the intermediate image D1 is amplified according to the magnification factor determined in the magnification factor determination step ST303MA. Here, since the intermediate image D1 is composed of the image D1h and the image D1v, the pixel values of each of the image D1h and the image D1v are enlarged. That is, the image D303MBh is generated by enlarging each pixel value of the image D1h at the magnification determined in the horizontal magnification determination step ST303MAh. Then, an image D303MBv is generated based on each pixel value of the magnification enlarged image D1v determined in the vertical magnification determination step ST303MAv. This operation is the same as that of the pixel value changing unit 303MB.
然后,通过第1中间图像处理步骤ST303M生成由与图像D303MBh相当的图像D303Mh和与图像D303MBv相当的图像D303Mv构成的中间图像D303M。以上是第1中间图像处理步骤ST303M的动作,该动作与第1中间图像处理单元303M相同。Then, an intermediate image D303M composed of an image D303Mh corresponding to the image D303MBh and an image D303Mv corresponding to the image D303MBv is generated by the first intermediate image processing step ST303M. The above is the operation of the first intermediate image processing step ST303M, which is the same as that of the first intermediate
然后,依照图62的流程说明第2中间图像处理步骤ST303H的动作。Next, the operation of the second intermediate image processing step ST303H will be described in accordance with the flow shown in FIG. 62 .
首先,第2中间图像处理步骤ST303H在放大率决定步骤ST303HA中,决定针对中间图像D2的各像素具有的像素值的放大率。这里,由于中间图像D2由图像D2h和图像D2v构成,因而针对图像D2h和图像D2v的各像素进行放大率的决定。即,针对图像D2h,在水平方向放大率决定步骤ST303HAh中决定针对各像素的放大率,针对图像D2v,在垂直方向放大率决定步骤ST303HAv中决定针对各像素的放大率。这里,水平方向放大率决定步骤ST303HAh的动作与水平方向放大率决定单元303HAh相同,垂直方向放大率决定步骤ST303HAv的动作与垂直方向放大率决定单元303HAv相同,因而省略其说明。First, in the second intermediate image processing step ST303H, in the magnification factor determination step ST303HA, the magnification factor for the pixel value of each pixel of the intermediate image D2 is determined. Here, since the intermediate image D2 is composed of the image D2h and the image D2v, the enlargement factor is determined for each pixel of the image D2h and the image D2v. That is, for the image D2h, the magnification for each pixel is determined in the horizontal magnification determination step ST303HAh, and for the image D2v, the magnification for each pixel is determined in the vertical magnification determination step ST303HAv. Here, the operation of the horizontal magnification determination step ST303HAh is the same as that of the horizontal magnification determination unit 303HAh, and the operation of the vertical magnification determination step ST303HAv is the same as that of the vertical magnification determination unit 303HAv, and thus their description is omitted.
然后,在像素值变更步骤ST303HB中,根据在放大率决定步骤ST303HA中决定的放大率放大中间图像D2的各像素具有的像素值。这里,由于中间图像D2由图像D2h和图像D2v构成,因而针对图像D2h和图像D2v的各方进行像素值的放大。即,根据在水平方向放大率决定步骤ST303HAh中决定的放大率放大图像D2h的各像素值,生成图像D303HBh。并且,根据在垂直方向放大率决定步骤ST303HAv中决定的放大率放大图像D2v的各像素值,生成图像D303HBv。该动作与像素值变更单元303HB的动作相同。Then, in the pixel value changing step ST303HB, the pixel value of each pixel of the intermediate image D2 is amplified according to the magnification factor determined in the magnification factor determination step ST303HA. Here, since the intermediate image D2 is composed of the image D2h and the image D2v, the pixel values are enlarged for each of the image D2h and the image D2v. That is, the image D303HBh is generated by enlarging each pixel value of the image D2h with the magnification determined in the horizontal magnification determination step ST303HAh. Then, the image D303HBv is generated by enlarging each pixel value of the magnification factor of the image D2v determined in the vertical magnification factor determination step ST303HAv. This operation is the same as that of the pixel value changing section 303HB.
然后,通过第2中间图像处理步骤ST303H生成由与图像D303HBh相当的图像D303Hh和与图像D303HBv相当的图像D303Hv构成的中间图像D303H。以上是第2中间图像处理步骤ST303H的动作,该动作与第2中间图像处理单元303H相同。Then, an intermediate image D303H composed of an image D303Hh corresponding to the image D303HBh and an image D303Hv corresponding to the image D303HBv is generated by the second intermediate image processing step ST303H. The above is the operation of the second intermediate image processing step ST303H, which is the same as that of the second intermediate
以上是本实施方式中的图像处理方法的动作。The above is the operation of the image processing method in this embodiment.
从该说明可知,本实施方式中的图像处理方法的动作与实施方式4中的图像处理装置相同。因此,本实施方式中的图像处理方法具有与实施方式4中的图像处理装置相同的效果。并且,在图31所示的图像显示装置中,还可以通过例如在图像处理装置U202内部实施上述的图像处理方法,将使用上述的图像处理方法处理后的图像显示在图31所示的图像显示装置上。As can be seen from the description, the operation of the image processing method in the present embodiment is the same as that of the image processing device in the fourth embodiment. Therefore, the image processing method in this embodiment has the same effect as the image processing device in
实施方式10Embodiment 10
在实施方式5中,说明了使用硬件实现本发明,然而也能使用软件实现图39所示的结构的一部分或全部。在该情况下使用的图像处理装置的结构与图44所示的结构相同。In Embodiment 5, it was described that the present invention is implemented using hardware, but it is also possible to implement a part or all of the configuration shown in FIG. 39 using software. The configuration of the image processing device used in this case is the same as that shown in FIG. 44 .
不过,该情况下的图像处理装置用作形成例如图3 1的图像显示装置的一部分的图像处理装置U202,经由接口14提供从彩色图像放大单元U201输出的彩色图像IMGU201作为输入图像IMGIN,在CPU11中,进行与图39的图像处理装置相同的处理,将处理后生成的输出图像IMGOUT经由接口15提供给例如图3 1的监视器U203作为图像DU202,用于监视器U203的显示。However, the image processing device in this case is used as the image processing device U202 forming a part of the image display device of FIG. 39, the same processing as the image processing device in FIG. 39 is performed, and the output image IMGOUT generated after processing is provided to the monitor U203 in FIG.
图63是示出通过使图44的图像处理装置具有与实施方式5的图像处理装置相同的功能而实施的、本发明的实施方式10的图像处理方法的流程的图,实施方式10的图像处理方法包含第1中间图像生成步骤ST201、第2中间图像生成步骤ST2、加法步骤ST404以及色差增减步骤ST405。FIG. 63 is a diagram showing the flow of an image processing method according to Embodiment 10 of the present invention implemented by making the image processing apparatus of FIG. 44 have the same functions as the image processing apparatus according to Embodiment 5. The image processing method according to Embodiment 10 The method includes a first intermediate image generation step ST201, a second intermediate image generation step ST2, an addition step ST404, and a color difference increase/decrease step ST405.
另外,实施方式10的图像处理方法也与实施方式5一样,对以YCbCr形式输入的输入图像IMGIN进行图像处理。即,在未图示的图像输入步骤输入的输入图像IMGIN是彩色图像,由表示亮度分量的信号YIN(以下称为输入亮度图像YIN)以及表示色差分量的信号CRIN和CBIN构成。信号CRIN(以下称为输入CR图像CRIN)表示色差分量中的Cr分量,信号CBIN(以下称为输入CB图像CBIN)表示色差分量中的Cb分量。Also, in the image processing method of the tenth embodiment, as in the fifth embodiment, image processing is performed on the input image IMGIN input in the YCbCr format. That is, the input image IMGIN input in the image input step (not shown) is a color image composed of a signal YIN representing a luminance component (hereinafter referred to as an input luminance image YIN) and signals CRIN and CBIN representing color difference components. A signal CRIN (hereinafter referred to as an input CR image CRIN) represents a Cr component among the color difference components, and a signal CBIN (hereinafter referred to as an input CB image CBIN) represents a Cb component among the color difference components.
通过对输入图像YIN进行依照以下所示的说明的处理而生成的由输出亮度图像YOUT、输出CR图像CROUT和输出CB图像CBOUT构成的输出图像IMGOUT通过未图示的图像输出步骤作为最终的输出图像输出。An output image IMGOUT composed of an output luminance image YOUT, an output CR image CROUT, and an output CB image CBOUT, which is generated by processing the input image YIN according to the description shown below, passes through a not-shown image output step as the final output image. output.
第1中间图像生成步骤ST201的动作、结构与实施方式8中的第1中间图像生成步骤ST201相同。The operation and configuration of the first intermediate image generation step ST201 are the same as those of the first intermediate image generation step ST201 in the eighth embodiment.
第2中间图像生成步骤ST2的动作、结构与实施方式8中的第2中间图像生成步骤ST2相同。The operation and configuration of the second intermediate image generation step ST2 are the same as those of the second intermediate image generation step ST2 in the eighth embodiment.
然后,对加法步骤ST404的动作进行说明。Next, the operation of the addition step ST404 will be described.
加法步骤ST404输出将输入亮度图像YIN、中间图像D1和中间图像D2相加后的结果作为高频分量相加图像D404。并且,输出将高频分量相加图像D404与输入亮度图像YIN相加后的结果(即,将中间图像D1和中间图像D2相加后的结果)作为输出亮度图像YOUT。The adding step ST404 outputs the result of adding the input luminance image YIN, intermediate image D1, and intermediate image D2 as a high-frequency component added image D404. Then, the result of adding the high-frequency component added image D404 to the input luminance image YIN (that is, the result of adding the intermediate image D1 and the intermediate image D2 ) is output as the output luminance image YOUT.
另外,由于中间图像D1由图像D1h和图像D1v构成,中间图像D2由图像D2h和图像D2v构成,因而在加法步骤ST404中,将图像D1h、D1v、D2h和D2v全部相加,生成高频分量相加图像D404。此时,可以将图像D1h、D1v、D2h和D2v单纯相加,也可以进行加权相加。然后,输出亮度图像YOUT作为本实施方式中的图像处理方法的最终输出图像的一部分输出。以上是加法步骤ST404的动作,该动作与加法单元404的动作相同。In addition, since the intermediate image D1 is composed of the image D1h and the image D1v, and the intermediate image D2 is composed of the image D2h and the image D2v, in the addition step ST404, all the images D1h, D1v, D2h, and D2v are added to generate a high-frequency component phase Add image D404. At this time, the images D1h, D1v, D2h, and D2v may be simply added or weighted. Then, the output luminance image YOUT is output as a part of the final output image of the image processing method in this embodiment. The above is the operation of the adding step ST404, which is the same as the operation of the adding means 404.
然后,依照图64的流程说明亮度色差相加步骤ST405的动作。Next, the operation of the luminance and color difference addition step ST405 will be described in accordance with the flowchart in FIG. 64 .
在亮度色差相加步骤ST405中,首先,在放大率决定步骤ST405A中,根据高频分量相加图像D404的相同坐标的像素值决定针对输入CR图像CRIN和输入CB图像CBIN的各像素的放大率。高频分量相加图像D404的像素值与在放大率决定单元405A中决定的放大率的关系使用与实施方式5相同的关系。In the luminance and color difference adding step ST405, first, in the magnification factor determining step ST405A, the magnification factor for each pixel of the input CR image CRIN and the input CB image CBIN is determined from the pixel values at the same coordinates of the high-frequency component added image D404. . The relationship between the pixel value of the high-frequency component added image D404 and the amplification factor determined in the amplification
然后,色差Cr乘法步骤ST405B1输出对输入CR图像CRIN的像素值施加了以放大率D405A提供的放大率后的结果作为图像D405B1。Then, the color difference Cr multiplication step ST405B1 outputs, as an image D405B1, a result obtained by applying a magnification rate given by the magnification rate D405A to the pixel values of the input CR image CRIN.
然后,色差Cb乘法步骤ST405B2输出对输入CB图像CBIN的像素值施加了以放大率D405A提供的放大率后的结果作为图像D405B2。Then, the color difference Cb multiplication step ST405B2 outputs, as an image D405B2, a result obtained by applying a magnification rate given by the magnification rate D405A to the pixel values of the input CB image CBIN.
然后,图像D405B1作为输出CR图像CROUT输出,图像D405B2作为输出CB图像CBOUT输出。输出CR图像CROUT和输出CB图像CBOUT用作最终的输出图像IMGOUT的一部分。Then, the image D405B1 is output as the output CR image CROUT, and the image D405B2 is output as the output CB image CBOUT. The output CR image CROUT and the output CB image CBOUT are used as part of the final output image IMGOUT.
以上是色差放大步骤ST405的动作,该动作与色差放大单元405相同。The above is the operation of the color difference amplifying step ST405 , which is the same as that of the color
以上是本实施方式中的图像处理方法的动作。The above is the operation of the image processing method in this embodiment.
从该说明可知,本实施方式中的图像处理方法的动作与实施方式5中的图像处理装置相同。因此,本实施方式中的图像处理方法具有与实施方式5中的图像处理装置相同的效果。并且,在图31所示的图像显示装置中,还可以通过例如在图像处理装置U202内部实施上述的图像处理方法,将使用上述的图像处理方法处理后的图像显示在图31所示的图像显示装置上。As can be seen from the description, the operation of the image processing method in the present embodiment is the same as that of the image processing device in the fifth embodiment. Therefore, the image processing method in this embodiment has the same effect as the image processing device in Embodiment 5. Moreover, in the image display device shown in FIG. 31, for example, by implementing the above-mentioned image processing method inside the image processing device U202, the image processed by the above-mentioned image processing method can be displayed on the image display shown in FIG. on the device.
标号说明Label description
1:第1中间图像生成单元;2:第2中间图像生成单元;3M:第1中间图像处理单元;3H:第2中间图像处理单元;4:加法单元;103M:第1中间图像处理单元;103H:第2中间图像处理单元;201:第1中间图像生成单元;203M:第1中间图像处理单元;203H:第2中间图像处理单元;204:加法单元;205:亮度色差加法单元;303M:第1中间图像处理单元;303H:第2中间图像处理单元;404:加法单元;405:色差增减单元;DIN:输入图像;D1:中间图像;D2:中间图像;D3M:中间图像;D3H:中间图像;DOUT:输出图像;D103M:中间图像;D103H:中间图像;IMGIN:输入图像;YIN:输入亮度图像;CRIN:输入CR图像;CBIN:输入CB图像;D203M:中间图像;D203H:中间图像;IMGOUT:输出图像;YOUT:输出亮度图像;CROUT:输出CR图像;CBOUT:输出CB图像;D303M:中间图像;D303:中间图像;D404:高频分量相加图像。1: the first intermediate image generation unit; 2: the second intermediate image generation unit; 3M: the first intermediate image processing unit; 3H: the second intermediate image processing unit; 4: the addition unit; 103M: the first intermediate image processing unit; 103H: the second intermediate image processing unit; 201: the first intermediate image generating unit; 203M: the first intermediate image processing unit; 203H: the second intermediate image processing unit; 204: adding unit; 205: brightness and color difference adding unit; 303M: 1st intermediate image processing unit; 303H: 2nd intermediate image processing unit; 404: addition unit; 405: color difference increase and decrease unit; DIN: input image; D1: intermediate image; D2: intermediate image; D3M: intermediate image; D3H: DOUT: output image; D103M: intermediate image; D103H: intermediate image; IMGIN: input image; YIN: input brightness image; CRIN: input CR image; CBIN: input CB image; D203M: intermediate image; D203H: intermediate image ; IMGOUT: output image; YOUT: output brightness image; CROUT: output CR image; CBOUT: output CB image; D303M: intermediate image; D303: intermediate image; D404: high-frequency component addition image.
Claims (32)
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008325148A JP4994353B2 (en) | 2008-12-22 | 2008-12-22 | Image processing apparatus and method, and image display apparatus |
JP2008-325180 | 2008-12-22 | ||
JP2008-325148 | 2008-12-22 | ||
JP2008325180A JP4994354B2 (en) | 2008-12-22 | 2008-12-22 | Image processing apparatus and method, and image display apparatus |
JP2009005549A JP4912418B2 (en) | 2009-01-14 | 2009-01-14 | Image processing apparatus and method, and image display apparatus |
JP2009-005549 | 2009-01-14 | ||
JP2009-066630 | 2009-03-18 | ||
JP2009066630A JP4994407B2 (en) | 2009-03-18 | 2009-03-18 | Image processing apparatus and method, and image display apparatus |
JP2009070498A JP4994409B2 (en) | 2009-03-23 | 2009-03-23 | Image processing apparatus and method, and image display apparatus |
JP2009-070498 | 2009-03-23 | ||
PCT/JP2009/006356 WO2010073485A1 (en) | 2008-12-22 | 2009-11-25 | Image processing apparatus and method, and image displaying apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102265305A true CN102265305A (en) | 2011-11-30 |
CN102265305B CN102265305B (en) | 2014-04-30 |
Family
ID=42287144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980151958.8A Active CN102265305B (en) | 2008-12-22 | 2009-11-25 | Image processing apparatus and method, and image displaying apparatus |
Country Status (4)
Country | Link |
---|---|
US (1) | US8249379B2 (en) |
EP (2) | EP2362347A4 (en) |
CN (1) | CN102265305B (en) |
WO (1) | WO2010073485A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5276854B2 (en) | 2008-02-13 | 2013-08-28 | 株式会社日立ハイテクノロジーズ | Pattern generation apparatus and pattern shape evaluation apparatus |
TW201001334A (en) * | 2008-06-20 | 2010-01-01 | Altek Corp | Adjustment method of color tone for digital image and electronic apparatus thereof |
JP5403450B1 (en) * | 2013-02-25 | 2014-01-29 | 清一 合志 | Image processing apparatus and image processing method |
US10057566B2 (en) * | 2014-04-04 | 2018-08-21 | Tektronix, Inc. | Depth of field indication using focus-peaking picture markers |
JP6289439B2 (en) * | 2015-12-16 | 2018-03-07 | オムロンオートモーティブエレクトロニクス株式会社 | Image processing device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1534548A (en) * | 2003-03-28 | 2004-10-06 | ���µ�����ҵ��ʽ���� | Apparatus and method for image processing |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05344386A (en) | 1992-06-09 | 1993-12-24 | Matsushita Electric Ind Co Ltd | Image contour emphasizing device |
US5374995A (en) | 1993-03-22 | 1994-12-20 | Eastman Kodak Company | Method and apparatus for enhancing sharpness of a sequence of images subject to continuous zoom |
US6005983A (en) * | 1993-09-08 | 1999-12-21 | California Institutue Of Technology | Image enhancement by non-linear extrapolation in frequency space |
US5717789A (en) * | 1993-09-08 | 1998-02-10 | California Institute Of Technology | Image enhancement by non-linear extrapolation in frequency space |
JPH07177386A (en) | 1993-12-21 | 1995-07-14 | Matsushita Electric Ind Co Ltd | Image control emphasizing device |
JPH08111792A (en) | 1994-10-13 | 1996-04-30 | Matsushita Electric Ind Co Ltd | Image contour emphasis device |
JPH0944651A (en) | 1995-07-27 | 1997-02-14 | Fuji Photo Film Co Ltd | Image processing method and device therefor |
JPH0946576A (en) | 1995-07-28 | 1997-02-14 | Sony Corp | Digital signal processing camera |
JP4383581B2 (en) | 1998-05-22 | 2009-12-16 | パナソニック株式会社 | Block noise detecting device and block noise removing device |
WO1999062264A1 (en) * | 1998-05-22 | 1999-12-02 | Matsushita Electric Industrial Co., Ltd. | Block noise detector and block noise eliminator |
JP2000115582A (en) | 1998-10-05 | 2000-04-21 | Sony Corp | Sharpness enhancing circuit, receiver and video signal processing method |
KR20060120643A (en) * | 2003-09-11 | 2006-11-27 | 마쯔시다덴기산교 가부시키가이샤 | Image processing apparatus, image processing method and image processing program |
US7860339B2 (en) | 2003-09-11 | 2010-12-28 | Panasonic Corporation | Visual processing device, visual processing method, visual processing program, intergrated circuit, display device, image-capturing device, and portable information terminal |
JP2005142832A (en) | 2003-11-06 | 2005-06-02 | Canon Inc | Outline correcting circuit and imaging unit |
JP4577565B2 (en) * | 2005-03-03 | 2010-11-10 | ソニー株式会社 | Image processing method, image processing apparatus, program, and photographing apparatus |
JP2006340006A (en) | 2005-06-01 | 2006-12-14 | Sony Corp | Imaging device, video image signal processing device and method, and program |
US7773158B2 (en) * | 2005-10-12 | 2010-08-10 | Panasonic Corporation | Visual processing device, display device, and integrated circuit |
US7881549B2 (en) * | 2005-10-12 | 2011-02-01 | Panasonic Corporaiton | Visual processing device, display device, visual processing method, program, and integrated circuit |
JP4440245B2 (en) | 2005-10-12 | 2010-03-24 | パナソニック株式会社 | Visual processing device, display device, and integrated circuit |
JP4437150B2 (en) | 2005-10-12 | 2010-03-24 | パナソニック株式会社 | Visual processing device, display device, visual processing method, program, and integrated circuit |
JP4240324B2 (en) | 2006-01-16 | 2009-03-18 | ソニー株式会社 | Image processing apparatus, image processing method, program for image processing method, and recording medium recording program for image processing method |
JP4157568B2 (en) * | 2006-04-11 | 2008-10-01 | 株式会社東芝 | Method and apparatus for increasing image resolution |
CN102113307B (en) * | 2008-07-30 | 2014-04-30 | 三菱电机株式会社 | Image processing device and method, and image display device |
JP5344742B2 (en) | 2008-08-01 | 2013-11-20 | 株式会社Adeka | Flame retardant thermoplastic resin composition |
-
2009
- 2009-11-25 WO PCT/JP2009/006356 patent/WO2010073485A1/en active Application Filing
- 2009-11-25 EP EP09834301A patent/EP2362347A4/en not_active Withdrawn
- 2009-11-25 US US12/810,448 patent/US8249379B2/en active Active
- 2009-11-25 CN CN200980151958.8A patent/CN102265305B/en active Active
- 2009-11-25 EP EP12162488.6A patent/EP2472850B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1534548A (en) * | 2003-03-28 | 2004-10-06 | ���µ�����ҵ��ʽ���� | Apparatus and method for image processing |
Also Published As
Publication number | Publication date |
---|---|
US20100310166A1 (en) | 2010-12-09 |
EP2472850B1 (en) | 2013-11-20 |
EP2472850A2 (en) | 2012-07-04 |
US8249379B2 (en) | 2012-08-21 |
CN102265305B (en) | 2014-04-30 |
EP2472850A3 (en) | 2012-07-18 |
EP2362347A4 (en) | 2012-07-18 |
WO2010073485A1 (en) | 2010-07-01 |
EP2362347A1 (en) | 2011-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8233744B2 (en) | Image enlargement apparatus, method, integrated circuit, and program | |
US8131103B2 (en) | Image detail enhancement | |
JP5107355B2 (en) | Method, apparatus, and program for gamut mapping to reproduction gamut narrower than input gamut | |
JP5588650B2 (en) | Sharpness correction apparatus and method | |
US20080129875A1 (en) | Motion and/or scene change detection using color components | |
KR20010075557A (en) | Video signal enhancement | |
JP4575963B2 (en) | Image processing device | |
CN102265305A (en) | Image processing device, method and image display device | |
JP4257036B2 (en) | Histogram equalization method | |
JP5247632B2 (en) | Image processing apparatus and method, and image display apparatus and method | |
JP5247634B2 (en) | Image processing apparatus and method, and image display apparatus and method | |
JP5383385B2 (en) | Image processing apparatus and method, and image display apparatus and method | |
JP4994407B2 (en) | Image processing apparatus and method, and image display apparatus | |
JP4526405B2 (en) | TV image processing device | |
JP2005529558A (en) | Image processing | |
JP4994354B2 (en) | Image processing apparatus and method, and image display apparatus | |
JP4912418B2 (en) | Image processing apparatus and method, and image display apparatus | |
JP4994409B2 (en) | Image processing apparatus and method, and image display apparatus | |
KR100698627B1 (en) | Image contrast improvement device and method | |
Cho et al. | Color transient improvement with transient detection and variable length nonlinear filtering | |
JP2005311497A (en) | Image processing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |