[go: up one dir, main page]

CN102263496B - Power equalizing control method for multi-module DC-DC (Direct Current-Direct Current) convertor - Google Patents

Power equalizing control method for multi-module DC-DC (Direct Current-Direct Current) convertor Download PDF

Info

Publication number
CN102263496B
CN102263496B CN 201110204089 CN201110204089A CN102263496B CN 102263496 B CN102263496 B CN 102263496B CN 201110204089 CN201110204089 CN 201110204089 CN 201110204089 A CN201110204089 A CN 201110204089A CN 102263496 B CN102263496 B CN 102263496B
Authority
CN
China
Prior art keywords
module
output
output voltage
given
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201110204089
Other languages
Chinese (zh)
Other versions
CN102263496A (en
Inventor
沙德尚
邓凯
郭志强
廖晓钟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN 201110204089 priority Critical patent/CN102263496B/en
Publication of CN102263496A publication Critical patent/CN102263496A/en
Application granted granted Critical
Publication of CN102263496B publication Critical patent/CN102263496B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

本发明涉及一种用于多模块DC-DC变换器的功率均分控制方法,特别涉及一种用于输入串联输出串联的隔离式DC-DC变换器的功率均分控制方法,属于电力电子技术领域。采用输出电压和输出电流双闭环控制,通过占空比重新分配的方式产生各个模块的PWM信号,达到各模块的输出电压均分,从而实现每个模块功率均分。本发明控制方法简单,所用传感器的数量少,同时也降低对传感器要求,减少了生产成本,具有冗余投切的功能,可以提高整个系统的可靠性和稳定性。

Figure 201110204089

The invention relates to a power sharing control method for multi-module DC-DC converters, in particular to a power sharing control method for isolated DC-DC converters with input series and output series, which belongs to power electronics technology field. The output voltage and output current double closed-loop control is adopted, and the PWM signal of each module is generated by redistribution of the duty cycle, so as to achieve the equal sharing of the output voltage of each module, so as to realize the equal sharing of the power of each module. The control method of the invention is simple, the number of sensors used is small, the requirements for sensors are reduced, the production cost is reduced, the function of redundant switching is provided, and the reliability and stability of the whole system can be improved.

Figure 201110204089

Description

一种用于多模块DC-DC变换器的功率均分控制方法A Power Sharing Control Method for Multi-module DC-DC Converters

技术领域 technical field

本发明涉及一种用于多模块DC-DC变换器的功率均分控制方法,特别涉及一种用于输入串联输出串联的隔离式DC-DC变换器的功率均分控制方法,属于电力电子技术领域。The invention relates to a power sharing control method for multi-module DC-DC converters, in particular to a power sharing control method for isolated DC-DC converters with input series and output series, which belongs to power electronics technology field.

背景技术 Background technique

对于用在高压输入场合的直流电源,功率器件所承受的高压问题仍然是一个挑战,因为能够承受如此高电压的功率器件是十分有限的,而且成本非常高。因此,通过选择正确的拓扑结构来降低功率器件所承受的电压是十分必要的。通过输入串联输出并联或者输入串联输出串联把隔离式DC-DC变换器模块组合起来,该组合可以适用于高压输入场合。其中输入串联输出串联DC-DC变换器特别适用于输入输出电压均较高且输入且输出需要电磁隔离的供电场合,该变换器具有以下的优点:For DC power supplies used in high-voltage input applications, the high voltage that power devices withstand is still a challenge, because power devices that can withstand such high voltages are very limited and the cost is very high. Therefore, it is very necessary to reduce the voltage borne by power devices by choosing the correct topology. The isolated DC-DC converter modules are combined through input series connection and output parallel connection or input series connection and output series connection, and this combination can be applied to high voltage input occasions. Among them, the input series output series DC-DC converter is especially suitable for power supply occasions where the input and output voltages are high and the input and output require electromagnetic isolation. The converter has the following advantages:

(1)各个变换器模块均分承担原来的输入、输出电压,从而可以选用电压应力较低的开关管,而低压开关管的导通电阻较小,从而获得较高的工作效率;(1) Each converter module bears the original input and output voltage equally, so that the switching tube with lower voltage stress can be selected, and the on-resistance of the low-voltage switching tube is small, so as to obtain higher working efficiency;

(2)可以用耐压较低的MOSFET来代替耐压能力高和开关频率较低的IGBT,因此变换器的开关频率可以提升,提高了变换器的功率密度;(2) MOSFETs with lower withstand voltage can be used to replace IGBTs with high withstand voltage and lower switching frequency, so the switching frequency of the converter can be increased and the power density of the converter can be improved;

(3)整个系统由标准模块组成,增加了系统的冗余性和可靠性,同时采用模块化组合降低了生产周期和成本;(3) The whole system is composed of standard modules, which increases the redundancy and reliability of the system, and at the same time adopts modular combination to reduce the production cycle and cost;

为了保证变换器正常工作,必须保证各个模块均分总的输入电压和输出电压,否则各模块间将出现功率不均,输出功率大的模块会因为过热等问题降低系统的可靠性。因此,实现各模块的功率均分是需要解决的关键问题。In order to ensure the normal operation of the converter, it is necessary to ensure that each module shares the total input voltage and output voltage equally, otherwise there will be uneven power among the modules, and the modules with high output power will reduce the reliability of the system due to problems such as overheating. Therefore, it is a key problem to be solved to realize equal power sharing of each module.

针对输入串联输出串联隔离式DC-DC变换器的控制,IEEE Applied PowerElectronics Conference and Exposition 2004年发表了“Input-series and output-seriesconnected modular DC-DC converters with active input voltage and output voltagesharing”(输入串联输出串联DC-DC变换器动态输入输出电压均分)一文提出了一种实现功率均分的方法。对于每个模块,该方法由输出电压环、输出电流内环以及每个模块输入均压环构成,为三闭环控制策略。输入均压环的引入通过采样每个模块的瞬时输入电压,把所有模块的输入电压取平均值作为每个模块输入均压环的给定值,同其他给定值选取方法相比可以最大程度的降低各变换器模块间和一个模块内不同控制回路的交叉影响,这种三闭环控制方法通过控制输入均压从而实现输出均压,从而保证各模块功率均分。然而,这种方法存在以下不足之处:For the control of input series and output series isolated DC-DC converters, IEEE Applied PowerElectronics Conference and Exposition published "Input-series and output-series connected modular DC-DC converters with active input voltage and output voltagesharing" in 2004 (input series output Dynamic input and output voltage sharing of series DC-DC converter) This paper presents a method to realize power sharing. For each module, the method consists of an output voltage loop, an output current inner loop, and an input voltage equalization loop for each module, which is a three-closed-loop control strategy. The introduction of the input voltage equalizing ring samples the instantaneous input voltage of each module, and takes the average value of the input voltage of all modules as the given value of the input voltage equalizing ring of each module. Compared with other given value selection methods, it can maximize This triple closed-loop control method realizes output voltage equalization by controlling input voltage equalization, thereby ensuring equal power sharing of each module. However, this method has the following disadvantages:

(1)系统控制方法采用三闭环控制方式,控制方法复杂;(1) The system control method adopts a three-closed-loop control method, and the control method is complicated;

(2)由于既要采样输入电压,又要采样输出电压,因此需要大量的电压传感器,成本大大增加。(2) Since both the input voltage and the output voltage need to be sampled, a large number of voltage sensors are required, and the cost is greatly increased.

发明内容 Contents of the invention

本发明为了克服现有控制方法的不足,提出了一种用于多模块DC-DC变换器的功率均分控制方法。In order to overcome the shortcomings of the existing control methods, the present invention proposes a power sharing control method for multi-module DC-DC converters.

本发明是通过以下技术方案实现的。The present invention is achieved through the following technical solutions.

本发明的一种用于多模块DC-DC变换器的功率均分控制方法,采用输出电压和输出电流双闭环控制,通过占空比重新分配的方式产生各个模块的PWM信号,达到各模块的输出电压均分,从而实现每个模块功率均分。由于占空比是一个开关周期内开关管通态时间所占的比率,在数值上等于调制波幅值与载波幅值的比值,因此所述占空比重新分配也即调制波的重新分配。A power sharing control method for multi-module DC-DC converters of the present invention adopts double closed-loop control of output voltage and output current, generates PWM signals of each module by redistribution of duty cycle, and achieves The output voltage is shared equally, so as to realize the power sharing of each module. Since the duty cycle is the ratio of the on-state time of the switch tube in one switching cycle, it is numerically equal to the ratio of the amplitude of the modulation wave to the amplitude of the carrier wave, so the redistribution of the duty cycle is also the redistribution of the modulation wave.

所述多模块DC-DC变换器的主电路由n个相同的隔离式DC-DC变换器模块通过输入端串联、输出端串联的形式构成,其中n为2或者2以上的数字,每个模块的输出回路上串接有电感,变换器可以是正激、反激、全桥、半桥、推挽或者推挽正激结构的高频隔离式DC-DC变换器。The main circuit of the multi-module DC-DC converter is composed of n identical isolated DC-DC converter modules connected in series at the input end and in series at the output end, where n is a number of 2 or more, and each module An inductor is connected in series on the output loop of the inverter, and the converter can be a high-frequency isolated DC-DC converter with a forward, flyback, full-bridge, half-bridge, push-pull or push-pull forward structure.

本发明的功率均分控制方法,其步骤为:The power sharing control method of the present invention, its steps are:

1)确定每个模块的输出电压给定,具体为设定每个模块的输出电压给定为主电路输出电压给定vref

Figure BDA0000077085400000021
也即
Figure BDA0000077085400000022
1) Determine the output voltage reference of each module, specifically to set the output voltage reference of each module to the main circuit output voltage reference v ref
Figure BDA0000077085400000021
that is
Figure BDA0000077085400000022

2)对每个模块的输出电压和输出电感电流进行采样,采样结果记为:每个模块的输出电压分别为vo1,…,voj,…,von,每个模块的输出电压经过采样后得到的值分别为vof1,…,vofj,…,vofn,每个模块输出电感电流分别为iLf1,…,iLfj,…,iLfn,每个模块输出电感电流经过采样后得到的值分别为if1,…,ifj,…,ifn,也即其中模块j的输出电压为voj,经过采样后得到的值为vofj,输出电感电流为iLfj,经过采样后得到的值为ifj,其中1≤j≤n;2) Sampling the output voltage and output inductor current of each module, the sampling result is recorded as: the output voltage of each module is v o1 ,..., v oj ,..., v on , the output voltage of each module is sampled The obtained values are respectively v of1 ,...,v ofj ,...,v ofn , the output inductor current of each module is i Lf1 ,...,i Lfj ,...,i Lfn , and the output inductor current of each module is obtained after sampling The values are respectively i f1 ,..., ifj ,...,ifn , that is, the output voltage of module j is v oj , the value obtained after sampling is v ofj , and the output inductor current is i Lfj , which is obtained after sampling The value of is i fj , where 1≤j≤n;

3)确定每个模块电流环的给定,其中确定模块j电流环给定的具体方法为:将模块j的输出电压采样结果vofj与模块j的输出电压给定

Figure BDA0000077085400000031
进行比较,并经过电压环调节器Gvo补偿以后输出的irefj作为模块j电流环的给定;3) Determine the setting of the current loop of each module, wherein the specific method of determining the setting of the current loop of module j is: the output voltage sampling result v ofj of module j and the output voltage setting of module j
Figure BDA0000077085400000031
Compare and output i refj after compensation by the voltage loop regulator G vo as the given of the current loop of module j;

4)确定每个模块电流环的输出值,其中确定模块j电流环的输出值的具体方法为:将模块j的输出电感电流采样结果ifj与模块j电流环给定irefj进行比较,并经电流环调节器Gio补偿且经过限幅后输出的值为ioutj4) Determine the output value of each module current loop, wherein the specific method of determining the output value of the module j current loop is: compare the output inductor current sampling result i fj of module j with the given i refj of the module j current loop, and After being compensated by the current loop regulator G io and limited, the output value is i outj ;

5)将通过步骤4)得到的每个模块电流环的输出值iout1,…,ioutj,…,ioutn进行重新分配,其中模块j重新分配后的输出为

Figure BDA0000077085400000032
其中1≤j≤n;5) Redistribute the output values i out1 , ..., i outj , ..., i outn of each module current loop obtained through step 4), where the output of module j after redistribution is
Figure BDA0000077085400000032
where 1≤j≤n;

6)将步骤5)得到的每个模块电流环的输出值进行重新分配后的输出作为调制波与载波进行比较,由比较产生的PWM控制信号控制每个模块中开关管的通断。6) The output value of the current loop of each module obtained in step 5) is redistributed as a modulated wave and compared with the carrier, and the PWM control signal generated by the comparison controls the on-off of the switch tube in each module.

当上述含有n个DC-DC变换器的主电路中任一模块k失效时,将该模块从系统中移除,即整个系统由n-1个模块进行工作,正常工作的n-1个模块的输出电压给定由原先的

Figure BDA0000077085400000033
变为
Figure BDA0000077085400000034
采用占空比重新分配的控制方法,即对于正常工作的任一模块j电流环的输出值重新分配后的输出为
Figure BDA0000077085400000035
将其作为调制波与载波进行比较,由比较产生的PWM控制信号控制模块j开关管的通断。When any module k in the main circuit containing n DC-DC converters fails, the module is removed from the system, that is, the whole system is operated by n-1 modules, and n-1 modules are working normally The output voltage is given by the original
Figure BDA0000077085400000033
becomes
Figure BDA0000077085400000034
The control method of redistribution of duty cycle is adopted, that is, the output value of the current loop of any module j in normal operation after redistribution is
Figure BDA0000077085400000035
It is compared with the carrier wave as the modulation wave, and the PWM control signal generated by the comparison controls the on-off of the switching tube of the module j.

当上述含有n个DC-DC变换器的主电路中新投入一个模块加入工作时,整个系统由n+1个模块进行工作,其中任一模块j的输出电压给定由

Figure BDA0000077085400000041
变为
Figure BDA0000077085400000042
采用占空比重新分配的控制方法,即对于正常工作的任一模块j电流环的输出值重新分配后的输出为
Figure BDA0000077085400000043
将其作为调制波与载波进行比较,由比较产生的PWM控制信号控制模块j开关管的通断。When a new module is added to the above-mentioned main circuit containing n DC-DC converters, the whole system is operated by n+1 modules, and the output voltage of any module j is given by
Figure BDA0000077085400000041
becomes
Figure BDA0000077085400000042
The control method of redistribution of duty cycle is adopted, that is, the output value of the current loop of any module j in normal operation after redistribution is
Figure BDA0000077085400000043
It is compared with the carrier wave as the modulation wave, and the PWM control signal generated by the comparison controls the on-off of the switching tube of the module j.

整个系统采用这种占空比重新分配的控制方法,达到输入输出电压均分的目的,从而实现每个模块功率均分,即使在任意模块投切的情况下系统仍能正常运行,保证了高频电源能够安全稳定有效地工作。The whole system adopts this duty cycle redistribution control method to achieve the purpose of equal sharing of input and output voltages, so as to realize equal sharing of power for each module. Even when any module is switched, the system can still operate normally, ensuring high The frequency power supply can work safely, stably and effectively.

有益效果Beneficial effect

本发明相对于现有技术,采用电压、电流双闭环的控制方式,控制方法简单;仅需对各个模块的输出电压、输出电流进行采样,减少了所用传感器的数量,同时也降低对传感器要求,减少了生产成本;具有冗余投切的功能,可以提高整个系统的可靠性和稳定性。Compared with the prior art, the present invention adopts a double closed-loop control mode of voltage and current, and the control method is simple; only the output voltage and output current of each module need to be sampled, which reduces the number of sensors used and also reduces the requirements for sensors. The production cost is reduced; the function of redundant switching can improve the reliability and stability of the whole system.

附图说明 Description of drawings

图1本发明实施例的多模块DC-DC变换器主电路连接示意图;Fig. 1 schematic diagram of connection of the main circuit of the multi-module DC-DC converter of the embodiment of the present invention;

图1中,n为主电路所包含的变换器模块数;vin表示总的输入直流电压;S1、S2…Sn为各模块与输入分压电容并联的开关;Cd1、Cd2…Cdn为输入分压电容;vcd1、vcd2…vcdn为各模块输入电压;iin1、iin2…iinn为各模块输入电流;vo为输出总电压;io为输出总电流;vo1、vo2…von为各模块输出电压;S′1、S′2…S′n为各模块与输出端滤波电容并联的开关;iLf1、iLf2…iLfn为各模块滤波电感电流;Lf1、Lf2…Lfn为各个模块的输出滤波电感;Cf1、Cf2…Cfn为各个模块的输出滤波电容;In Fig. 1, n is the number of converter modules included in the main circuit; v in represents the total input DC voltage; S 1 , S 2 ... S n are switches connected in parallel with each module and the input voltage dividing capacitor; C d1 , C d2 …C dn is the input voltage dividing capacitor; v cd1 , v cd2 …v cdn is the input voltage of each module; i in1 , i in2 …i inn is the input current of each module; v o is the total output voltage; i o is the total output current ; v o1 , v o2 ... v on are the output voltages of each module; S′ 1 , S′ 2 ... S′ n are the switches connected in parallel between each module and the output filter capacitor; i Lf1 , i Lf2 ...i Lfn are the filter capacitors of each module Inductor current; L f1 , L f2 ... L fn is the output filter inductance of each module; C f1 , C f2 ... C fn is the output filter capacitor of each module;

图2本发明实施例中所采用的功率均分控制方法的示意图;FIG. 2 is a schematic diagram of a power sharing control method adopted in an embodiment of the present invention;

图3本发明实施例的多模块DC-DC变换器主电路中任一模块k失效情况下的占空比重新分配控制方法;Fig. 3 is the duty cycle redistribution control method in the case of failure of any module k in the main circuit of the multi-module DC-DC converter according to the embodiment of the present invention;

图2和图3中,vref为主电路输出电压给定;vof1、vof2…vofn为各模块输出电压采样;Hv1、Hv2…Hvn为各模块输出电压反馈系数;Gvo为各个模块的电压环调节器;

Figure BDA0000077085400000051
为载波信号;为输出限幅;iref1、iref2…irefn为各模块电压环调节器输出;if1、if2…ifn为各模块滤波电感电流采样;Hi1、Hi2…Hin为各模块滤波电感电流反馈系数;Gio为各模块的电流环调节器;iout1、iout2…ioutn为各模块电流控制器经限幅后的输出;i′out1、i′out2…i′outn为经占空比重新分配后产生的新的调制波幅值;PWM1、PWM2…PWMn为各模块开关管控制信号。In Fig. 2 and Fig. 3, v ref is given as the main circuit output voltage; v of1 , v of2 ... v ofn is the output voltage sampling of each module; H v1 , H v2 ... H vn is the output voltage feedback coefficient of each module; G vo It is the voltage loop regulator of each module;
Figure BDA0000077085400000051
is the carrier signal; is the output limiter; i ref1 , i ref2 ... i refn is the output of the voltage loop regulator of each module; i f1 , i f2 ... i fn is the sampling of the filter inductor current of each module; H i1 , H i2 ... H in is the filter of each module Inductor current feedback coefficient; G io is the current loop regulator of each module; i out1 , i out2 ...i outn is the output of the current controller of each module after limiting; i′ out1 , i′ out2 ...i′ outn is the The new modulation wave amplitude value generated after the duty cycle is redistributed; PWM 1 , PWM 2 ... PWM n are the control signals of the switching tubes of each module.

具体实施方式 Detailed ways

一种用于多模块DC-DC变换器的功率均分控制方法,其中多模块DC-DC变换器的主电路由n个隔离式DC-DC变换器模块通过输入串联、输出串联的形式构成,如图1所示,高频隔离式变换器DC-DC部分、滤波电感、电容及负载,其中输入直流电压为vin,变换器可以是正激、反激、全桥、半桥、推挽或者推挽正激结构的高频隔离式DC-DC变换器。A power sharing control method for a multi-module DC-DC converter, wherein the main circuit of the multi-module DC-DC converter is composed of n isolated DC-DC converter modules in the form of input series connection and output series connection, As shown in Figure 1, the high-frequency isolated converter DC-DC part, filter inductor, capacitor and load, where the input DC voltage is v in , the converter can be forward, flyback, full bridge, half bridge, push-pull or High frequency isolated DC-DC converter with push-pull forward structure.

对于输入串联输出串联的隔离式DC-DC变换器,为了实现各个模块的功率均分的目的,采用占空比重新分配的控制方式。在图2中,整个变换器系统的输出电压给定为vref,各个模块的电压环给定电压为

Figure BDA0000077085400000053
各个模块的输出电压为vo1、vo2、…、von,滤波电感电流为iLf1、iLf2…iLfn。对于模块1,输出电压vo1通过电压传感器采样得到vof1为电压反馈,与电压环给定
Figure BDA0000077085400000054
比较,经过电压环调节器Gvo输出iref1作为模块1电流环的给定,模块1的电流环的反馈if1与电流环给定iref1进行比较,电流环调节器Gio输出的值经过限幅得到iout1。对于任一模块j,输出电压voj通过电压传感器采样得到vofj为电压反馈,与电压环给定
Figure BDA0000077085400000055
比较,经过电压环调节器Gvo,输出irefj作为模块j电流环的给定,模块j的电流环的反馈ifj与电流环给定irefj进行比较,电流环调节器Gio输出的值经过限幅得到ioutj。将各个模块的电流调节器输出经过限幅后的值进行重新分配,对于模块1,将除了模块1以外的其他所有电流调节器输出经过限幅后的值相加,再除以(n-1),产生新的调制波i′out1,即
Figure BDA0000077085400000061
将调制波与载波进行比较后产生PWM1控制模块1的开关管通断;对于任意模块j,将除了模块j以外的其他所有电流调节器输出限幅后的值相加,再除以(n-1),产生新的调制波幅值i′outj,即
Figure BDA0000077085400000062
将调制波与载波进行比较后产生PWMj控制模块j的开关管通断。For the isolated DC-DC converter with the input connected in series and the output connected in series, in order to realize the power sharing of each module, the duty cycle redistribution control method is adopted. In Figure 2, the output voltage of the entire converter system is given as v ref , and the given voltage of the voltage loop of each module is
Figure BDA0000077085400000053
The output voltages of each module are v o1 , v o2 , ..., v on , and the filter inductor currents are i Lf1 , i Lf2 ... i Lfn . For module 1, the output voltage v o1 is sampled by the voltage sensor to obtain v of1 as voltage feedback, which is consistent with the given voltage loop
Figure BDA0000077085400000054
For comparison, after the voltage loop regulator G vo outputs i ref1 as the given of the current loop of module 1, the feedback i f1 of the current loop of module 1 is compared with the given current loop i ref1 , and the output value of the current loop regulator G io is passed through Clipping results in i out1 . For any module j, the output voltage v oj is sampled by the voltage sensor to obtain v ofj as voltage feedback, which is consistent with the given voltage loop
Figure BDA0000077085400000055
Comparison, through the voltage loop regulator G vo , output i refj as the given of the current loop of module j, the feedback i fj of the current loop of module j is compared with the given i refj of the current loop, and the output value of the current loop regulator G io Get i outj after clipping. Redistribute the clipped values of the current regulator outputs of each module. For module 1, add the clipped values of all other current regulator outputs except module 1, and then divide by (n-1 ), generate a new modulation wave i′ out1 , namely
Figure BDA0000077085400000061
Comparing the modulated wave with the carrier wave generates PWM 1 to control the on-off of the switching tube of module 1; for any module j, add the output limiting values of all other current regulators except module j, and then divide by (n -1), to generate a new modulation amplitude value i′ outj , namely
Figure BDA0000077085400000062
After comparing the modulated wave with the carrier wave, PWM j is generated to control the on-off of the switching tube of module j.

考虑到n模块中任意模块失效的情况下系统仍能正常工作,设计如下的冗余控制方法:假设模块k失效,加在输入端电容Cdk两端的开关Sk和输出滤波电容Cfk两端的开关S′k闭合,将模块k从系统中切除,余下n-1个模块进行输入输出均压控制。正常工作的每个模块输出电压给定由

Figure BDA0000077085400000063
变为
Figure BDA0000077085400000064
任一模块j的输出电压voj通过电压传感器采样得到vofj为电压反馈,与该模块电压给定
Figure BDA0000077085400000065
进行比较,电压调节器Gvo输出irefj作为模块j电流环的给定,电流反馈ifj与电流环给定irefj做比较,电流调节器输出的值经过限幅后得到ioutj。其他n-2个有效模块通过同样的方法产生iout1、iout2…iout(k-1)、iout(k+1)…ioutn,将这n-1个电流调节器输出限幅的值进行重新分配。对于模块1,将除了模块1以外的其他所有电流调节器输出经过限幅后的值相加,再除以(n-2),产生新的调制波i′out1,即
Figure BDA0000077085400000066
将调制波i′out1与载波进行比较后产生PWM1控制模块1的开关管通断。对于任一模块j,将除了模块j以外的其他所有电流调节器输出经过限幅后的值相加,再除以(n-2),产生新的调制波i′outj,即
Figure BDA0000077085400000067
将调制波i′outj与载波进行比较后产生PWMj控制模块j的开关管通断。Considering that the system can still work normally when any module in the n modules fails, the following redundant control method is designed: Assuming that module k fails, the switch S k and the output filter capacitor C fk are added at both ends of the input capacitor C dk The switch S'k is closed, and the module k is removed from the system, and the remaining n-1 modules perform input and output voltage equalization control. The output voltage of each module for normal operation is given by the
Figure BDA0000077085400000063
becomes
Figure BDA0000077085400000064
The output voltage v oj of any module j is sampled by the voltage sensor to obtain v ofj as voltage feedback, which is consistent with the given voltage of the module
Figure BDA0000077085400000065
For comparison, the voltage regulator G vo outputs i refj as the setting of the current loop of module j, the current feedback i fj is compared with the current loop setting i refj , and the output value of the current regulator is limited to obtain i outj . The other n-2 effective modules generate i out1 , i out2 ...i out(k-1) , i out(k+1) ...i outn by the same method, and limit the output of these n-1 current regulators The value is reassigned. For module 1, add the clipped values of the outputs of all other current regulators except module 1, and then divide by (n-2) to generate a new modulation wave i′ out1 , namely
Figure BDA0000077085400000066
Comparing the modulated wave i' out1 with the carrier generates PWM 1 to control the switch tube of module 1 to turn on and off. For any module j, add the clipped values of all other current regulator outputs except module j, and then divide by (n-2) to generate a new modulation wave i′ outj , namely
Figure BDA0000077085400000067
Comparing the modulated wave i' outj with the carrier generates PWM j to control the switching of the switch tube of module j.

当多模块DC-DC变换器的主电路中新投入一个模块加入工作时,即整个系统重新由n+1个模块组成。任一模块j的输出电压给定由

Figure BDA0000077085400000071
变为
Figure BDA0000077085400000072
仍然采用占空比重新分配的控制方法,各个模块进行占空比重新分配后产生的新的调制波为
Figure BDA0000077085400000073
将调制波i′outj与载波进行比较,产生的控制信号PWMj控制模块j开关管的通断。When a new module is added to the main circuit of the multi-module DC-DC converter to work, the whole system is composed of n+1 modules again. The output voltage of any module j is given by
Figure BDA0000077085400000071
becomes
Figure BDA0000077085400000072
The control method of redistribution of duty ratio is still adopted, and the new modulation wave generated by each module after redistribution of duty ratio is
Figure BDA0000077085400000073
Comparing the modulation wave i' outj with the carrier, the generated control signal PWM j controls the on-off of the switching tube of the module j.

整个系统通过占空比重新分配环节达到输入、输出电压分别均分的目的,实现各个模块功率均分,即使在任意模块投切的情况下系统仍能正常运行。通过占空比分配环节的引入,提高了系统在动态响应过程中对电压扰动的抑制能力,从而实现了系统的快速调节。本发明运用于隔离式DC-DC变换器,该变换器可以是正激、反激、全桥、半桥、推挽、推挽正激等所有的高频隔离式DC-DC变换器。The entire system achieves the purpose of equally sharing the input and output voltages through the redistribution of duty ratios, and realizes the equal sharing of the power of each module. Even if any module is switched, the system can still operate normally. Through the introduction of the duty ratio distribution link, the system's ability to suppress voltage disturbances during the dynamic response process is improved, thereby realizing the rapid adjustment of the system. The invention is applied to isolated DC-DC converters, and the converters can be all high-frequency isolated DC-DC converters such as forward, flyback, full bridge, half bridge, push-pull, and push-pull forward.

以上对本发明所提供的一种用于多模块DC-DC变换器的功率均分控制方法进行了详细介绍,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。A power sharing control method for multi-module DC-DC converters provided by the present invention has been introduced in detail above. For those of ordinary skill in the art, according to the idea of the present invention, in terms of specific implementation and application range There will be changes. In summary, the contents of this specification should not be construed as limiting the present invention.

Claims (3)

1. power-sharing control method that is used for multimode DC-DC converter, wherein the main circuit of multimode DC-DC converter is made of the form of n identical isolated DC-DC converter module by input series connection, output series connection, wherein n is the numeral more than 2 or 2, be serially connected with inductance on the output loop of each module, a described n converter module is identical normal shock, instead swash, full-bridge, half-bridge, recommend or the high-frequency isolation formula DC-DC converter of push-pull ortho-exciting structure, it is characterized in that the step of method is:
1) determines that the output voltage of each module is given;
2) output voltage and the outputting inductance electric current of each module are sampled, and the record sampled result, the output voltage of each module is designated as v respectively O1..., v Oj..., v On, the output voltage sampling of each module is designated as v respectively Of1..., v Ofj..., v Ofn, each module outputting inductance electric current is designated as i respectively Lf1..., i Lfj..., i Lfn, each module outputting inductance current sample is designated as i respectively F1..., i Fj..., i Fn, also promptly wherein the output voltage of module j be v Oj, output voltage is sampled as v Ofj, the outputting inductance electric current is i Lfj, the outputting inductance current sample is i Fj, the scope of j is 1≤j≤n;
3) determine the given of each blocks current ring;
4) determine the output valve of each blocks current ring;
5) the output valve i of each blocks current ring that will obtain by step 4) Out1..., i Outj..., i OutnRedistribute;
Output after the output valve of each the blocks current ring that 6) step 5) is obtained is redistributed compares as modulating wave and carrier wave, is controlled the break-make of switching tube in each module by the pwm control signal that relatively produces;
The given method of output voltage of determining each module in the described step 1) is specially: the output voltage of setting each module is given as the given v of main circuit output voltage Ref
Figure FDA00003006001900011
Also be
The given concrete grammar of determination module j electric current loop is in the described step 3): with the output voltage sampled result v of module j OfjGiven with the output voltage of module j
Figure FDA00003006001900013
Compare, and through Voltage loop adjuster G VoThe i of output after the compensation RefjGiven as module j electric current loop;
The scope of above-mentioned j is 1≤j≤n;
The concrete grammar of the output valve of described step 4) determination module j electric current loop is: with the outputting inductance current sample of module j i as a result FjWith the given i of module j electric current loop RefjCompare, and through electric current loop adjuster G IoThe value of exporting behind compensation and the process amplitude limit is i Outj
The scope of above-mentioned j is 1≤j≤n;
The computational methods that described step 5) is redistributed the output valve of module j electric current loop are:
Figure FDA00003006001900021
I' wherein OutjBe the output of module j after redistributing;
The scope of above-mentioned j is 1≤j≤n.
2. a kind of power-sharing control method that is used for multimode DC-DC converter according to claim 1, it is characterized in that: when arbitrary module k in the main circuit of described multimode DC-DC converter lost efficacy and removed the back from system, whole system is carried out work by n-1 module, and wherein the output voltage of arbitrary module j is given as
Figure FDA00003006001900022
And after redistributing, the output valve of module j electric current loop is output as i outj ′ = 1 n - 2 ( Σ i = 1 k - 1 i outi + Σ i = k + 1 n i outi - i outj ) .
3. a kind of power-sharing control method that is used for multimode DC-DC converter according to claim 1, it is characterized in that: when new when dropping into a module adding job identical in the main circuit of described multimode DC-DC converter with former DC-DC converter module, whole system is carried out work by n+1 module, and wherein the output voltage of arbitrary module j is given as v Ref, and the output valve of module j electric current loop is output as after redistributing
Figure FDA00003006001900025
CN 201110204089 2011-07-20 2011-07-20 Power equalizing control method for multi-module DC-DC (Direct Current-Direct Current) convertor Expired - Fee Related CN102263496B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110204089 CN102263496B (en) 2011-07-20 2011-07-20 Power equalizing control method for multi-module DC-DC (Direct Current-Direct Current) convertor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110204089 CN102263496B (en) 2011-07-20 2011-07-20 Power equalizing control method for multi-module DC-DC (Direct Current-Direct Current) convertor

Publications (2)

Publication Number Publication Date
CN102263496A CN102263496A (en) 2011-11-30
CN102263496B true CN102263496B (en) 2013-07-31

Family

ID=45009996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110204089 Expired - Fee Related CN102263496B (en) 2011-07-20 2011-07-20 Power equalizing control method for multi-module DC-DC (Direct Current-Direct Current) convertor

Country Status (1)

Country Link
CN (1) CN102263496B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723870B (en) * 2012-06-21 2015-07-08 中国矿业大学(北京) Input-series and output-series full-bridge high-frequency isolated bidirectional direct current / direct current (DC/DC) converter
CN104753353A (en) * 2013-12-31 2015-07-01 国家电网公司 Two-way transmission converter applicable to high voltage and high power
CN104716859B (en) * 2015-04-14 2017-04-05 国家电网公司 A kind of isolated island micro-capacitance sensor multi-inverter parallel power-sharing control method
CN104767380B (en) * 2015-04-15 2017-07-28 扬州大学 A kind of automobile DC dc converter circuit and its control method
CN105207468B (en) * 2015-09-11 2018-07-31 哈尔滨工业大学深圳研究生院 A kind of voltage difference control method of DC/DC converters
US10700518B2 (en) * 2015-10-08 2020-06-30 Astec International Limited Constant current limiting protection for series coupled power supplies
CN106452068B (en) * 2016-10-14 2019-09-27 哈尔滨工业大学深圳研究生院 A DC/DC Converter Input Series Output Series Voltage Equalization Control Method
CN106533191B (en) * 2016-11-04 2018-09-28 北京交通大学 A kind of power electronics tractive transformer topological structure and its control method
CN107591792A (en) * 2017-10-16 2018-01-16 四川英杰电气股份有限公司 A kind of current sharing control method and device
CN107612309B (en) * 2017-10-16 2020-01-07 四川英杰电气股份有限公司 Series voltage-sharing control method and device
CN109088596B (en) * 2018-04-27 2020-01-31 华南师范大学 A photovoltaic redundant inverter system
CN111817564B (en) * 2019-04-10 2024-09-13 西安许继电力电子技术有限公司 ISOS (integrated services on demand) DC/DC (direct current/direct current) control method
EP4018539A1 (en) * 2019-08-19 2022-06-29 Signify Holding B.V. A switched power converter for converting a dc supply voltage to multiple balanced dc output voltages
CN112448574B (en) * 2019-08-30 2022-03-18 比亚迪股份有限公司 DC-DC converter and control method thereof
CN112821537A (en) * 2021-02-25 2021-05-18 中国电子科技集团公司第十八研究所 Novel unmanned aerial vehicle standard module and topological structure
CN114665722B (en) * 2022-03-31 2023-01-24 深圳信息职业技术学院 Input voltage equalization control method, system and storage medium based on switch current limitation
CN115085557B (en) * 2022-06-30 2025-01-17 福州大学 A power balancing method for multi-module DC converter based on model predictive control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013826A (en) * 2010-12-01 2011-04-13 北京理工大学 Stable current control method for input-series output-parallel high-frequency link inverter module
CN102035416A (en) * 2010-12-14 2011-04-27 北京理工大学 Method for controlling power equipartition of input-series output-series high-frequency link inverters

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151362B1 (en) * 2005-06-03 2006-12-19 The Aerospace Corporation Uniform converter output voltage distribution power system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013826A (en) * 2010-12-01 2011-04-13 北京理工大学 Stable current control method for input-series output-parallel high-frequency link inverter module
CN102035416A (en) * 2010-12-14 2011-04-27 北京理工大学 Method for controlling power equipartition of input-series output-series high-frequency link inverters

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Raja Ayyanar,et.Active Input–Voltage and Load–Current Sharing in Input-series and Output-patallel Connected Modular DC-DC Converter Using Dynamic Input-Voltage Reference Scheme.《IEEE TRANSACTIONS ON POWER ELECTRONICS》.2004,第19卷(第6期),1462-1473. *
方天治 等.输入串联输出串联逆变器系统的控制策略.《中国电机工程学报》.2009,第29卷(第27期),22-28.
输入串联输出串联逆变器系统的控制策略;方天治 等;《中国电机工程学报》;20090925;第29卷(第27期);22-28 *

Also Published As

Publication number Publication date
CN102263496A (en) 2011-11-30

Similar Documents

Publication Publication Date Title
CN102263496B (en) Power equalizing control method for multi-module DC-DC (Direct Current-Direct Current) convertor
KR102653533B1 (en) DC/DC converter and its converter control
US9281753B2 (en) LLC converter with dynamic gain transformation for wide input and output range
CN106169868B (en) DC Converter Topology with Wide Input and Its Feedforward Average Current Control Method
CN105576981B (en) A kind of switching frequency adjusting method based on current cross feedback
WO2019029250A1 (en) Power supply system
US10193464B2 (en) DC-DC converter
TWI543516B (en) Relative efficiency measurement in a pulse width modulation system
CN113746361B (en) AC-DC power conversion system with high voltage gain
Jiao et al. Voltage-lift split-inductor-type boost converters
CN104993694A (en) Input Voltage Equalization Control Method of Modular Combined DC Converter
CN104967309A (en) Control Method of Series Input Voltage Equalization of Independent Output DC Converter
KR20160027408A (en) Cascaded multilevel ac-ac converter
Esmaeili et al. Magnetically coupled single-phase AC-AC converter with reduced number of passive components
Chen et al. A new phase shedding scheme for improved transient behavior of interleaved Boost PFC converters
CN104702115A (en) Method of equally dividing power of input-parallel output-parallel modularized DC (Direct Current) converter
WO2011093269A1 (en) Power conversion device
US12301121B2 (en) System and method for a partial power transfer between two DC sources
WO2015052743A1 (en) Electrical power converter
WO2019019784A1 (en) High-voltage power supply circuit
TWI565205B (en) Power converter device
NL2029114B1 (en) Flying capacitor converter with voltage balancing circuit
Abdoli et al. An isolated high‐gain impedance source‐based single‐phase AC–AC converter with safe commutation and variable output frequency
Shenbagalakshmi et al. Design PID controller for positive output voltage converter
Urkin et al. Pfm-pwm digital controller for miniaturized high-frequency isolated llc converters integrated in advanced iot devices

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130731

Termination date: 20140720

EXPY Termination of patent right or utility model