CN102262263B - Optical fibre with multiple-sector fiber core at periphery of multiple-sector area of circular fiber core, and fabrication method thereof - Google Patents
Optical fibre with multiple-sector fiber core at periphery of multiple-sector area of circular fiber core, and fabrication method thereof Download PDFInfo
- Publication number
- CN102262263B CN102262263B CN201110256561A CN201110256561A CN102262263B CN 102262263 B CN102262263 B CN 102262263B CN 201110256561 A CN201110256561 A CN 201110256561A CN 201110256561 A CN201110256561 A CN 201110256561A CN 102262263 B CN102262263 B CN 102262263B
- Authority
- CN
- China
- Prior art keywords
- core
- shaped
- fan
- fiber
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 173
- 239000000835 fiber Substances 0.000 title claims abstract description 150
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title claims description 27
- 238000005253 cladding Methods 0.000 claims abstract description 97
- 230000003287 optical effect Effects 0.000 claims abstract description 84
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 64
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 30
- 150000002500 ions Chemical class 0.000 claims description 83
- -1 rare earth ions Chemical class 0.000 claims description 81
- 230000002093 peripheral effect Effects 0.000 claims description 26
- 239000010453 quartz Substances 0.000 claims description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 21
- GFUIDDAAIHYXJS-UHFFFAOYSA-N [Nd].[Yb] Chemical compound [Nd].[Yb] GFUIDDAAIHYXJS-UHFFFAOYSA-N 0.000 claims description 19
- 239000012792 core layer Substances 0.000 claims description 19
- KWMNWMQPPKKDII-UHFFFAOYSA-N erbium ytterbium Chemical compound [Er].[Yb] KWMNWMQPPKKDII-UHFFFAOYSA-N 0.000 claims description 19
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 17
- 229910052691 Erbium Inorganic materials 0.000 claims description 11
- 229910052776 Thorium Inorganic materials 0.000 claims description 9
- 229910052779 Neodymium Inorganic materials 0.000 claims description 8
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 7
- 229910052772 Samarium Inorganic materials 0.000 claims description 7
- 229910052689 Holmium Inorganic materials 0.000 claims description 5
- 238000007526 fusion splicing Methods 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 description 19
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 12
- 238000003698 laser cutting Methods 0.000 description 8
- 239000010410 layer Substances 0.000 description 7
- 238000005530 etching Methods 0.000 description 6
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- WCWKKSOQLQEJTE-UHFFFAOYSA-N praseodymium(3+) Chemical group [Pr+3] WCWKKSOQLQEJTE-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01211—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01225—Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
- C03B37/01228—Removal of preform material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01225—Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
- C03B37/01228—Removal of preform material
- C03B37/01234—Removal of preform material to form longitudinal grooves, e.g. by chamfering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/34—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/22—Radial profile of refractive index, composition or softening point
- C03B2203/23—Double or multiple optical cladding profiles
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/22—Radial profile of refractive index, composition or softening point
- C03B2203/29—Segmented core fibres
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Lasers (AREA)
Abstract
圆芯多扇形区外围多扇形纤芯光纤及其制作方法,属于大功率宽带光纤激光器、特种光纤领域。克服了单芯多掺稀土离子区双包层光纤承受光功率有限、分块包层光纤芯层直径有限。第一至第N扇形掺稀土离子区的光学折射率、半径与弧度均相等,组成完整圆形纤芯;3≤N≤9的整数;内包层内围绕圆形纤芯均匀分布相同半径与弧度α的第一至第M扇形纤芯;N≤M≤32的整数;π/2M≤α≤2π/M;第一至第M扇形纤芯的顶点与圆形纤芯外圆的距离相等,圆形纤芯与第一至第M扇形纤芯的掺稀土离子类型集合相等。该制作方法:制作圆形纤芯细棒、扇形纤芯细棒,组织成该光纤。该光纤成品率高,与单模光纤的熔接损耗小;实现大模场面积单模工作。
The invention relates to a multi-sector core optical fiber around a circular core multi-sector area and a manufacturing method thereof, belonging to the fields of high-power broadband fiber lasers and special optical fibers. It overcomes the limited optical power of single-core multi-doped rare earth ion region double-clad optical fiber and the limited core diameter of block-clad optical fiber. The optical refractive index, radius and radian of the first to N sector-shaped rare earth ion-doped regions are all equal to form a complete circular fiber core; an integer of 3≤N≤9; the same radius and radian are evenly distributed around the circular fiber core in the inner cladding The first to M fan-shaped cores of α; an integer of N≤M≤32; π/2M≤α≤2π/M; the distance between the vertices of the first to M fan-shaped cores and the outer circle of the circular core is equal, The rare earth ion type sets of the circular core and the first to Mth fan-shaped cores are equal. The manufacturing method is as follows: making circular fiber core thin rods and fan-shaped fiber core thin rods, and organizing them into the optical fiber. The optical fiber has a high yield rate, and the fusion splicing loss with the single-mode optical fiber is small; and single-mode operation with a large mode field area is realized.
Description
技术领域 technical field
本发明涉及一种圆芯多扇形区外围多扇形纤芯光纤及其制作方法,属于大功率宽带光纤放大器、激光器、特种光纤领域。The invention relates to a circular core multi-sector peripheral multi-sector fiber core optical fiber and a manufacturing method thereof, belonging to the fields of high-power broadband optical fiber amplifiers, lasers and special optical fibers.
背景技术 Background technique
掺稀土光纤放大器或激光器采用掺稀土元素(Nd,Sm,Ho,Er,Pr,Tm,Yb等)离子光纤,利用受激辐射机制实现光的直接放大。Rare earth-doped fiber amplifiers or lasers use ion fibers doped with rare earth elements (Nd, Sm, Ho, Er, Pr, Tm, Yb, etc.), and use the stimulated emission mechanism to achieve direct amplification of light.
每种稀土元素的吸收截面与发射截面都不相同,导致对应光纤的工作波长也不一样。例如,掺钕光纤工作波长为1000-1150nm,1320-1400nm;掺铒光纤工作波长550nm,850nm,980-1000nm,1500-1600nm,1660nm,1720nm,2700nm;掺镱光纤工作波长为970-1040nm;掺钍光纤工作波长为455nm,480nm,803-825nm,1460-1510nm,1700-2015nm,2250-2400nm;掺镨光纤工作波长为490nm,520nm,601-618nm,631-641nm,707-725nm,880-886nm,902-916nm,1060-1110nm,1260-1350nm;掺钬光纤工作波长为550nm,753nm,1380nm,2040-2080nm,2900nm。掺钐光纤工作波长为651nm,The absorption cross-section and emission cross-section of each rare earth element are different, resulting in different working wavelengths of the corresponding optical fibers. For example, the working wavelength of neodymium-doped fiber is 1000-1150nm, 1320-1400nm; the working wavelength of erbium-doped fiber is 550nm, 850nm, 980-1000nm, 1500-1600nm, 1660nm, 1720nm, 2700nm; the working wavelength of ytterbium-doped fiber is 970-1040nm; The working wavelength of thorium fiber is 455nm, 480nm, 803-825nm, 1460-1510nm, 1700-2015nm, 2250-2400nm; the working wavelength of praseodymium-doped fiber is 490nm, 520nm, 601-618nm, 631-641nm, 707-725nm, 880-886nm , 902-916nm, 1060-1110nm, 1260-1350nm; holmium-doped fiber working wavelengths are 550nm, 753nm, 1380nm, 2040-2080nm, 2900nm. The working wavelength of samarium-doped fiber is 651nm,
掺不同的玻璃基质的稀土离子,其增益带宽与性质也有差异。例如纯硅光纤玻璃基质的掺铒光纤,其1500nm增益半波谱宽为7.94nm,而铝磷硅光纤玻璃基质的掺铒光纤,其1500nm增益半波谱宽为43.3nm[W.J.Miniscalco.Opticaland electronic properties of rare-earth ions in glasses in rare-earth doped fiber lasersand amplifier.New York:Marcel Dekker.2001,pp:17-112]。现有的双包层光纤或者为单掺稀土的,或者为双掺稀土。即使是双掺稀土光纤,也是利用两种掺稀土元素对泵浦源的吸收截面不同,以及两种距离很近的元素能级相互作用,实现一种掺稀土元素吸收泵浦功率,另一种元素受激放大的目的,如铒镱共掺光纤。因此,现有的双包层光纤放大信号带宽通常只有几十nm,当要放大不同的波长信号,且波长间隔超过100nm时,就需要分别配置不同的双包层光纤,再进行信号合并,结构复杂且成本很高。Rare earth ions doped with different glass substrates have different gain bandwidths and properties. For example, the 1500nm gain half-wave spectral width of erbium-doped fiber with pure silica fiber glass matrix is 7.94nm, while the 1500nm gain half-wave spectral width of erbium-doped fiber with aluminum phospho-silicate fiber glass matrix is 43.3nm[W.J.Miniscalco.Optical and electronic properties of rare-earth ions in glasses in rare-earth doped fiber lasers and amplifier. New York: Marcel Dekker. 2001, pp: 17-112]. Existing double-clad optical fibers are either single-doped rare earth or double-doped rare earth. Even the double-doped rare earth fiber uses the different absorption cross-sections of the two doped rare earth elements for the pump source, and the interaction between the energy levels of the two elements that are very close to each other, so that one doped rare earth element absorbs the pump power, and the other The purpose of stimulated amplification of elements, such as erbium-ytterbium co-doped fiber. Therefore, the bandwidth of the existing double-clad optical fiber amplification signal is usually only tens of nm. When it is necessary to amplify signals of different wavelengths and the wavelength interval exceeds 100nm, it is necessary to configure different double-clad optical fibers separately, and then combine the signals. Complicated and costly.
中国专利号200910236162.4、提出了一种单芯多掺稀土离子区双包层光纤,这种光纤能够实现多波段光信号的放大或为多波段激光的增益介质;然而受到非线性、结构元素和衍射极限的限制,承受的光功率有限,单芯连续波损坏阈值约1W/m2[J.Nilsson,J.K.Sahu,Y.Jeong,W.A.Clarkson,R.Selvas,A.B.Grudinin,andS.U.Alam,”High Power Fiber Lasers:New Developments”,Proceedings of SPIEVol.4974,50-59(2003)],其光学损坏危险成为实现大功率单模光纤激光器的一大挑战.除了光学损坏外,由于大功率光产生的热也会损坏光纤,甚至会最终融化纤芯。Chinese Patent No. 200910236162.4 proposes a single-core multi-rare-earth-doped double-clad fiber, which can amplify multi-band optical signals or be a gain medium for multi-band lasers; however, it is subject to nonlinearity, structural elements and diffraction The limitation of the limit, the limited optical power, the single-core continuous wave damage threshold is about 1W/m 2 [J.Nilsson, JKSahu, Y.Jeong, WAClarkson, R.Selvas, ABGrudinin, andS.U.Alam,"High Power Fiber Lasers: New Developments", Proceedings of SPIEVol.4974, 50-59(2003)], the risk of optical damage has become a major challenge for the realization of high-power single-mode fiber lasers. In addition to optical damage, the heat generated by high-power light is also Can damage the fiber and even eventually melt the core.
多芯光纤激光器实现单模输出,已经得到实现证实。文献中采用的多芯光纤有效模场面积达到465μm2[Vogel,Moritx M,Abdou-Ahmed,Marwan,Voss,Andreas,Graf,Thomas,”Very large mode area single-mode multicore fiber”,Opt.Lett.34(18),2876-2878(2009)]。然而这种单模激光器采用的多芯光纤,对光纤纤芯的芯径以及相邻纤芯之间的距离需要精确的设计,对光纤纤芯之间的距离的容许误差小,批量生产成品率低。Multi-core fiber lasers achieve single-mode output, which has been verified. The multicore fiber used in the literature has an effective mode area of 465 μm 2 [Vogel, Moritx M, Abdou-Ahmed, Marwan, Voss, Andreas, Graf, Thomas, "Very large mode area single-mode multicore fiber", Opt. Lett. 34(18), 2876-2878(2009)]. However, the multi-core fiber used in this single-mode laser requires precise design of the core diameter of the fiber core and the distance between adjacent fiber cores. The allowable error of the distance between the fiber cores is small, and the mass production yield Low.
分块包层光纤是一种新型光纤,选取特定的光纤参数,能够实现单模工作[A.Yeung,K.S.Chiang,V.Rastogi,P.L.Chu,and G.D.Peng,″Experimental demonstrationof single-mode operation of large-core segmented cladding fiber,″in Optical FiberCommunication Conference,Technical Digest(CD)(Optical Society of America,2004),paper ThI4.]。这种光纤,其特定的结构是增加基模以外的损耗,实现了在芯层直径在50微米的光纤中实现单模工作,然而其功率的提高受限于芯层半径。Block-clad fiber is a new type of fiber. Selecting specific fiber parameters can achieve single-mode operation [A.Yeung, K.S.Chiang, V.Rastogi, P.L.Chu, and G.D.Peng, "Experimental demonstration of single-mode operation of large -core segmented cladding fiber, "in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper ThI4.]. This kind of fiber, whose specific structure is to increase the loss outside the fundamental mode, realizes single-mode operation in the fiber with a core diameter of 50 microns, but its power increase is limited by the radius of the core layer.
发明内容 Contents of the invention
为克服现有大模场单模多芯光纤批量生产成品率低、分块包层光纤芯层直径有限以及单芯多掺稀土离子区双包层光纤承受光功率有限等缺陷,提出了一种圆芯多扇形区外围多扇形纤芯光纤及其制备方法。In order to overcome the defects of the existing large-mode-field single-mode multi-core optical fiber with low batch production yield, limited core diameter of block-clad optical fiber, and limited optical power of single-core multi-doped rare earth ion region double-clad optical fiber, a new method was proposed. A circular core multi-sector peripheral multi-sector core fiber and a preparation method thereof.
本发明的目的是通过以下技术方案实现的:The purpose of the present invention is achieved through the following technical solutions:
圆芯多扇形区外围多扇形纤芯光纤,该光纤包括纤芯、内包层与外包层。The multi-sector core fiber around the circular core multi-sector area includes a core, an inner cladding and an outer cladding.
第一至第N扇形掺稀土离子区的光学折射率、半径与弧度均相等,组成一个完整圆形纤芯;圆形纤芯半径为2~20微米;3≤N≤9的整数。The optical refractive index, radius and radian of the first to Nth fan-shaped rare earth ion-doped regions are all equal to form a complete circular fiber core; the radius of the circular fiber core is 2-20 microns; an integer of 3≤N≤9.
内包层内围绕圆形纤芯均匀分布相同半径与相同弧度的第一至第M扇形纤芯;N≤M≤32的整数。The first to Mth fan-shaped cores with the same radius and the same radian are evenly distributed around the circular core in the inner cladding; the integer of N≤M≤32.
第一扇形纤芯、第二扇形纤芯、...、第M扇形纤芯的半径均为20~200微米,弧度均为α,π/2M≤α≤2π/M;The radius of the first fan-shaped fiber core, the second fan-shaped fiber core, ..., the M-th fan-shaped fiber core is 20-200 microns, and the radian is α, π/2M≤α≤2π/M;
第一扇形纤芯、第二扇形纤芯、...、第M扇形纤芯的顶点与圆形纤芯的外圆的距离相等,距离均为2~20微米。The apexes of the first fan-shaped core, the second fan-shaped core, .
圆形纤芯、第一至第M扇形纤芯的光学折射率相等,其光学折射率大于内包层的光学折射率,内包层的光学折射率大于外包层的光学折射率。The optical refractive index of the circular core and the first to Mth fan-shaped cores are equal, and the optical refractive index is greater than that of the inner cladding, and the optical refractive index of the inner cladding is greater than that of the outer cladding.
第一至第N扇形掺稀土离子区的掺稀土离子类型不全相同;掺稀土离子类型包括钕离子、铒离子、镱离子、钍离子、镨离子、钬离子、钐离子、钕镱共掺离子或铒镱共掺离子。The types of doped rare earth ions in the first to N sector-shaped rare earth ion doped regions are not all the same; the doped rare earth ion types include neodymium ions, erbium ions, ytterbium ions, thorium ions, praseodymium ions, holmium ions, samarium ions, neodymium ytterbium co-doped ions or Erbium-ytterbium co-doped ions.
第一至第M扇形纤芯的掺稀土离子类型不全相同,第一至第M扇形纤芯的掺稀土离子类型集合与第一至第N扇形掺稀土离子区的掺稀土离子类型集合相等。The types of rare earth doped ions in the first to Mth fan-shaped cores are not all the same, and the set of rare earth ion types in the first to Mth fan-shaped cores is equal to the set of rare earth ion types in the first to Nth fan-shaped rare earth ion-doped regions.
圆芯多扇形区外围多扇形纤芯光纤的制作方法,包括以下步骤:A method for making a multi-sector core optical fiber at the periphery of a circular core multi-sector area comprises the following steps:
步骤一制作含环形包层区的圆形纤芯细棒Step 1 Fabrication of a circular core thin rod containing an annular cladding region
选择N根芯层半径相等与光学折射率相等的掺掺稀土离子光纤预制棒;3≤N≤9的整数;Select N rare earth ion-doped optical fiber preforms with the same core radius and the same optical refractive index; an integer of 3≤N≤9;
将N根光纤预制棒的部分包层去掉,使得剩余包层的厚度相等;removing part of the cladding of the N optical fiber prefabricated rods, so that the thickness of the remaining cladding is equal;
将去掉部分包层的N根光纤预制棒拉制成芯层半径与包层厚度相等的细棒;Drawing N optical fiber preform rods from which part of the cladding has been removed into thin rods with the core radius equal to the cladding thickness;
将上述N根光纤预制棒处理成N个相同半径与相同弧度的扇形细棒,每个扇形细棒的弧度均为2π/N;N个扇形细棒组成一个完整的圆,构成含环形包层区的圆形纤芯细棒;Process the above N optical fiber preform rods into N fan-shaped thin rods with the same radius and same radian, and the radian of each fan-shaped thin rod is 2π/N; N fan-shaped thin rods form a complete circle, forming a ring-shaped cladding Circular core thin rods in the area;
步骤二制作扇形纤芯细棒Step 2 Make fan-shaped fiber core rods
选择M根芯层半径相等与光学折射率相等的掺掺稀土离子光纤预制棒;N≤M≤32的整数,选择的M根光纤预制棒芯层的光学折射率与步骤一中采用的N根光纤预制棒芯层的光学折射率相等;Select M doped rare earth ion optical fiber preforms with the same core radius and optical refractive index; the integer of N≤M≤32, the optical refractive index of the selected M optical fiber preform cores is the same as the N used in step one The optical refractive index of the core layer of the optical fiber preform is equal;
将M根光纤预制棒的包层去掉,只剩下芯层;Remove the cladding of the M optical fiber prefabricated rods, leaving only the core layer;
将上述M根光纤预制棒拉制成半径相等的细棒;drawing the above M optical fiber preforms into thin rods with equal radii;
再将上述M根光纤预制棒处理成M个相同半径与弧度的扇形细棒,每个扇形细棒的弧度均为α,π/2M≤α≤2π/M;Then process the above M optical fiber preform rods into M fan-shaped thin rods with the same radius and radian, and the radian of each fan-shaped thin rod is α, π/2M≤α≤2π/M;
步骤三制作成圆芯多扇形区外围多扇形纤芯光纤Step 3: Make a circular core multi-sector peripheral multi-sector core fiber
将完成步骤一的含环形包层区的圆形纤芯细棒与步骤二的M个扇形纤芯细棒组织起来,套上石英管,空隙处用光学折射率比扇形细棒低,但比石英管光学折射率高的细石英棒填充;拉制成圆芯多扇形区外围多扇形纤芯光纤。The circular fiber core thin rod containing the annular cladding area and the M fan-shaped fiber core thin rods of step two are organized to complete the step one, put on a quartz tube, and the optical refractive index in the gap is lower than that of the fan-shaped thin rod, but lower than that of the fan-shaped thin rod. The quartz tube is filled with thin quartz rods with high optical refractive index; it is drawn into a circular core multi-sector peripheral multi-sector core fiber.
本发明的有益效果具体如下:The beneficial effects of the present invention are specifically as follows:
圆芯多扇形区外围多扇形纤芯光纤,无需一致性要求,提高了光纤的成品率,而且采用单模圆形纤芯,而不是像分块包层光纤采用大芯径纤芯,减少了与单模光纤的熔接损耗;单模圆形纤芯与多个扇形纤芯之间存在距离,一方面增加彼此的耦合,实现大模场面积单模工作,另一方面有利于散热,保护了光纤。The multi-sector core fiber around the circular core multi-sector area does not require consistency, which improves the yield of the fiber, and uses a single-mode circular core instead of using a large-diameter core like a segmented cladding fiber, which reduces Splicing loss with single-mode fiber; there is a distance between the single-mode circular core and multiple fan-shaped cores, on the one hand, it increases the coupling with each other, and realizes single-mode operation with a large mode field area; on the other hand, it is conducive to heat dissipation and protects the optical fiber.
附图说明 Description of drawings
图1为三个扇形掺稀土离子区和三个扇形纤芯的圆芯多扇形区外围多扇形纤芯光纤截面图。Fig. 1 is a cross-sectional view of a multi-sector core fiber around a circular core multi-sector area with three sector-shaped rare earth ion-doped areas and three sector-shaped cores.
图2为四个扇形掺稀土离子区和六个扇形纤芯的圆芯多扇形区外围多扇形纤芯光纤截面图。Fig. 2 is a cross-sectional view of a multi-sector core fiber around a circular core multi-sector area with four sector-shaped rare earth ion-doped areas and six sector-shaped cores.
图3为六个扇形掺稀土离子区和十八个扇形纤芯的圆芯多扇形区外围多扇形纤芯光纤截面图。Fig. 3 is a cross-sectional view of a multi-sector core fiber around a circular core multi-sector area with six sector-shaped rare earth ion-doped areas and eighteen sector-shaped cores.
图4为九个扇形掺稀土离子区和三十二个扇形纤芯的圆芯多扇形区外围多扇形纤芯光纤截面图。Fig. 4 is a cross-sectional view of a multi-sector core fiber around a circular core multi-sector area with nine sector-shaped rare earth ion-doped regions and thirty-two sector-shaped cores.
具体实施方式 Detailed ways
本发明不涉及掺稀土离子纤芯光纤预制棒的制作,这些均为专利或文献报道的技术。The present invention does not relate to the manufacture of rare earth ion-doped fiber core optical fiber prefabricated rods, which are patented or documented technologies.
下面结合附图对本发明作进一步描述。The present invention will be further described below in conjunction with the accompanying drawings.
实施例一Embodiment one
三个扇形掺稀土离子区(11、12、13)和三个扇形纤芯(21、22、23)的圆芯多扇形区外围多扇形纤芯光纤,如图1所示;Three fan-shaped rare earth ion-doped regions (11, 12, 13) and three fan-shaped cores (21, 22, 23) circular core multi-sector peripheral multi-sector core fiber, as shown in Figure 1;
第一扇形掺钕离子区11、第二扇形掺铒离子区12、第三扇形掺镱离子区13光学折射率、半径与弧度均相等,组成一个完整圆形纤芯;圆形纤芯半径为2微米;The first sector-shaped neodymium-doped
内包层3内围绕圆形纤芯均匀分布三个相同半径与相同弧度的扇形纤芯;第一扇形纤芯21、第二扇形纤芯22、第三扇形纤芯23的半径均为20微米,弧度均为α=π/6,第一扇形纤芯21、第二扇形纤芯22、第三扇形纤芯23的掺稀土离子分别为铒离子、钕离子、镱离子;Three fan-shaped cores with the same radius and the same radian are evenly distributed around the circular core in the
第一扇形纤芯21、第二扇形纤芯22、第三扇形纤芯23顶点与圆形纤芯外圆的距离相等,距离均为2微米;The first fan-shaped
圆形纤芯、第一至第三扇形纤芯21、22、23的光学折射率相等,第一扇形纤芯21光学折射率大于内包层3的光学折射率,内包层3的光学折射率大于外包层4的光学折射率。The optical refractive index of the circular core, the first to the third fan-shaped
三个扇形掺稀土离子区(11、12、13)和三个扇形纤芯(21、22、23)的圆芯多扇形区外围多扇形纤芯光纤的制作方法,包括以下步骤:A method for making a circular core multi-sector peripheral multi-sector core fiber with three sector-shaped rare earth ion-doped regions (11, 12, 13) and three sector-shaped cores (21, 22, 23), comprising the following steps:
步骤一制作含环形包层区的圆形纤芯细棒Step 1 Fabrication of a circular core thin rod containing an annular cladding region
选择三根芯层半径相等与光学折射率相等的掺铒离子光纤预制棒、掺钕离子光纤预制棒、掺镱离子光纤预制棒;Choose three erbium-doped optical fiber preforms, neodymium-doped optical fiber preforms, and ytterbium-doped optical fiber preforms with the same core radius and optical refractive index;
用研磨方法将并将三根光纤预制棒的部分包层去掉,使得剩余包层的厚度相等;Part of the cladding of the three optical fiber preformed rods is removed by grinding, so that the thickness of the remaining cladding is equal;
将去掉部分包层的三根光纤预制棒拉制成芯层半径相等与包层厚度相等的细棒,芯层半径均为2mm,包层厚度均为2mm;Draw the three optical fiber preform rods with part of the cladding removed into thin rods with the same core radius and cladding thickness, the core radius is 2mm, and the cladding thickness is 2mm;
用激光切割的方法,将上述三根光纤预制棒处理成三个相同半径与相同弧度的扇形细棒,每个扇形细棒的弧度均为2π/3;三个扇形细棒组成一个完整的圆,构成含环形包层区的圆形纤芯细棒Using the method of laser cutting, the above three optical fiber preforms are processed into three fan-shaped thin rods with the same radius and the same radian, and the radian of each fan-shaped thin rod is 2π/3; the three fan-shaped thin rods form a complete circle, Thin rods forming a circular core with an annular cladding region
步骤二制作扇形纤芯细棒Step 2 Make fan-shaped fiber core rods
选择芯层半径相等与光学折射率相等的掺铒离子光纤预制棒、钕离子光纤预制棒、镱离子光纤预制棒,选择的三根光纤预制棒芯层的光学折射率与步骤一中采用的三根光纤预制棒芯层的光学折射率相等;Select erbium-doped optical fiber preforms, neodymium ion optical fiber preforms, and ytterbium ion optical fiber preforms with the same core radius and optical refractive index. The optical refractive index of the core layer of the three optical fiber preforms selected is the same as that of the three optical fibers used in step 1. The optical refractive index of the preform core layer is equal;
用氢氟酸腐蚀的方法将并将三根光纤预制棒的包层去掉,只剩下芯层;The cladding of the three optical fiber prefabricated rods is removed by hydrofluoric acid etching, leaving only the core layer;
将上述三根光纤预制棒拉制成半径相等的细棒,半径为20mm;Draw the above three optical fiber preforms into thin rods with the same radius, the radius is 20mm;
再用激光切割的方法,将上述三根光纤预制棒处理成三个相同半径与弧度的扇形细棒,每个扇形细棒的弧度均为π/6;Then use the method of laser cutting to process the above three optical fiber preforms into three fan-shaped thin rods with the same radius and radian, and the radian of each fan-shaped thin rod is π/6;
步骤三制作成圆芯多扇形区外围多扇形纤芯光纤Step 3: Make a circular core multi-sector peripheral multi-sector core fiber
将完成步骤一和二的的环形包层区的圆形纤芯细棒与三个扇形纤芯细棒组织起来,套上石英管,空隙处用光学折射率比扇形细棒低但比石英管光学折射率高的细石英棒填充;拉制成圆芯多扇形区外围多扇形纤芯光纤。Organize the circular core thin rods and three fan-shaped fiber core thin rods in the annular cladding area that have completed steps 1 and 2, put on a quartz tube, and use an optical refractive index lower than that of the fan-shaped thin rods but higher than that of the quartz tube at the gap. Filled with thin quartz rods with high optical refractive index; drawn into circular core multi-sector peripheral multi-sector core fiber.
实施例二Embodiment two
四个扇形掺稀土离子区(11、12、13、14)和六个扇形纤芯(21、22、23、24、25、26)的圆芯多扇形区外围多扇形纤芯光纤,如图2所示;Four fan-shaped rare earth ion-doped regions (11, 12, 13, 14) and six fan-shaped cores (21, 22, 23, 24, 25, 26) round core multi-sector core fiber at the periphery of the multi-sector area, as shown in the figure 2 shown;
第一扇形掺钕离子区11、第二扇形掺铒离子区12、第三扇形掺镱离子区13、第四扇形掺铒离子区14光学折射率、半径与弧度均相等,组成一个完整圆形纤芯;圆形纤芯半径为5微米;The first sector-shaped neodymium-doped
内包层3内围绕圆形纤芯均匀分布六个相同半径与相同弧度的扇形纤芯;第一扇形纤芯21、第二扇形纤芯22、...、第六扇形纤芯26的半径均为60微米,弧度均为α=π/6,第一扇形纤芯21、第二扇形纤芯22、...、第六扇形纤芯26的掺稀土离子分别为铒离子、钕离子、镱离子、铒离子、钕离子、镱离子;Six fan-shaped cores with the same radius and the same arc are evenly distributed around the circular core in the
第一扇形纤芯21、第二扇形纤芯22、...、第六扇形纤芯26顶点与圆形纤芯外圆的距离相等,距离均为4微米;The first fan-shaped
圆形纤芯、第一扇形纤芯21、第二扇形纤芯22、...、第六扇形纤芯26的光学折射率相等,第一扇形纤芯21光学折射率大于内包层3的光学折射率,内包层3的光学折射率大于外包层4的光学折射率。The optical refractive index of the circular fiber core, the first fan-shaped
四个扇形掺稀土离子区(11、12、13、14)和六个扇形纤芯(21、22、23、24、25、26)的圆芯多扇形区外围多扇形纤芯光纤的制作方法,包括以下步骤:Manufacturing method of circular core multi-sector peripheral multi-sector core fiber with four fan-shaped rare earth ion-doped regions (11, 12, 13, 14) and six fan-shaped cores (21, 22, 23, 24, 25, 26) , including the following steps:
步骤一制作含环形包层区的圆形纤芯细棒Step 1 Fabrication of a circular core thin rod containing an annular cladding region
选择四根芯层半径相等与光学折射率相等的掺铒离子光纤预制棒、掺钕离子光纤预制棒、掺镱离子光纤预制棒、掺铒离子光纤预制棒、掺钕离子光纤预制棒、掺镱离子光纤预制棒;Select four erbium-doped optical fiber preforms, neodymium-doped optical fiber preforms, ytterbium-doped optical fiber preforms, erbium-doped optical fiber preforms, neodymium-doped optical fiber preforms, and ytterbium-doped optical fiber preforms with the same core radius and optical refractive index. Ion fiber preform;
用氢氟酸腐蚀方法将并将四根光纤预制棒的部分包层去掉,使得剩余包层的厚度相等;Part of the cladding of the four optical fiber prefabricated rods is removed by hydrofluoric acid etching, so that the thickness of the remaining cladding is equal;
将去掉部分包层的四根光纤预制棒拉制成芯层半径相等与包层厚度相等的细棒,芯层半径均为5mm,包层厚度均为4mm;Draw the four optical fiber prefabricated rods with part of the cladding removed into thin rods with the same core radius and cladding thickness, the core radius is 5mm, and the cladding thickness is 4mm;
用激光切割的方法,将上述四根光纤预制棒处理成四个相同半径与相同弧度的扇形细棒,每个扇形细棒的弧度均为π/2;四个扇形细棒组成一个完整的圆,构成含环形包层区的圆形纤芯细棒Using the method of laser cutting, the above four optical fiber preform rods are processed into four fan-shaped thin rods with the same radius and the same radian, and the radian of each fan-shaped thin rod is π/2; the four fan-shaped thin rods form a complete circle , constituting a circular core thin rod with an annular cladding region
步骤二制作扇形纤芯细棒Step 2 Make fan-shaped fiber core rods
选择芯层半径相等与光学折射率相等的掺铒离子光纤预制棒、钕离子光纤预制棒、镱离子光纤预制棒、掺铒离子光纤预制棒、钕离子光纤预制棒、镱离子光纤预制棒,这里的光纤预制棒芯层的光学折射率与步骤一中采用的光纤预制棒芯层的光学折射率相等;Choose erbium-doped optical fiber preforms, neodymium ion optical fiber preforms, ytterbium ion optical fiber preforms, erbium-doped optical fiber preforms, neodymium ion optical fiber preforms, and ytterbium ion optical fiber preforms with the same core radius and optical refractive index, here The optical refractive index of the optical fiber preform core layer is equal to the optical refractive index of the optical fiber preform core layer adopted in step one;
用氢氟酸腐蚀的方法将并将六根光纤预制棒的包层去掉,只剩下芯层;The cladding of the six optical fiber prefabricated rods was removed by hydrofluoric acid etching, leaving only the core layer;
将上述六根光纤预制棒拉制成半径相等的细棒,半径为60mm;Draw the above six optical fiber preforms into thin rods with the same radius, the radius is 60mm;
再用激光切割的方法,将上述六根光纤预制棒处理成六个相同半径与弧度的扇形细棒,每个扇形细棒的弧度均为π/6;Then use the method of laser cutting to process the above six optical fiber preforms into six fan-shaped thin rods with the same radius and radian, and the radian of each fan-shaped thin rod is π/6;
步骤三制作成圆芯多扇形区外围多扇形纤芯光纤Step 3: Make a circular core multi-sector peripheral multi-sector core fiber
将完成步骤一和二的的环形包层区的圆形纤芯细棒与六个扇形纤芯细棒组织起来,套上石英管,空隙处用光学折射率比扇形细棒低但比石英管光学折射率高的细石英棒填充;拉制成圆芯多扇形区外围多扇形纤芯光纤。The circular core thin rods and six fan-shaped fiber core thin rods in the annular cladding area that have completed steps 1 and 2 are organized, put on a quartz tube, and the optical refractive index is lower than that of the fan-shaped thin rods but higher than that of the quartz tube at the gap. Filled with thin quartz rods with high optical refractive index; drawn into circular core multi-sector peripheral multi-sector core fiber.
实施例三Embodiment three
六个扇形掺稀土离子区(11、12、...、16)和十八个扇形纤芯(21、22、...、218)的圆芯多扇形区外围多扇形纤芯光纤,如图1所示;Six fan-shaped rare earth ion-doped regions (11, 12, ..., 16) and eighteen fan-shaped cores (21, 22, ..., 218) circular core multi-sector peripheral multi-sector core fiber, such as As shown in Figure 1;
第一扇形掺钕离子区11、第二扇形掺钬离子区12、第三扇形掺铒离子区13、第四扇形掺镱离子区14、第五扇形钕镱共掺离子区15、第六扇形掺钐离子区16光学折射率、半径与弧度均相等,组成一个完整圆形纤芯;圆形纤芯半径为12微米;The first sector-shaped neodymium-doped
内包层3内围绕圆形纤芯均匀分布十八个相同半径与相同弧度的扇形纤芯;第一扇形纤芯21、第二扇形纤芯22、...、第十八扇形纤芯18的半径均为100微米,弧度均为π/10,第一扇形纤芯21、第二扇形纤芯22、...、第十八扇形纤芯18的掺稀土离子分别为掺钕离子、掺钬离子、掺铒离子、掺镱离子、钕镱共掺离子、掺钐离子、掺钕离子、掺钬离子、掺铒离子、掺镱离子、钕镱共掺离子、掺钐离子、掺钕离子、掺钬离子、掺铒离子、掺镱离子、钕镱共掺离子、掺钐离子;Eighteen fan-shaped cores with the same radius and same radian are evenly distributed around the circular core in the
第一扇形纤芯21、第二扇形纤芯22、...、第十八扇形纤芯18顶点与圆形纤芯外圆的距离相等,距离均为10微米;The distance between the apex of the first fan-shaped
圆形纤芯、第一扇形纤芯21、第二扇形纤芯22、...、第十八扇形纤芯18的光学折射率相等,第一扇形纤芯21光学折射率大于内包层3的光学折射率,内包层3的光学折射率大于外包层4的光学折射率。The optical refractive indices of the circular core, the first fan-shaped
六个扇形掺稀土离子区(11、12、...、16)和十八个扇形纤芯(21、22、...、218)的圆芯多扇形区外围多扇形纤芯光纤的制作方法,包括以下步骤:Fabrication of circular core multi-sector peripheral multi-sector core fiber with six sector-shaped rare earth ion-doped regions (11, 12, ..., 16) and eighteen sector-shaped cores (21, 22, ..., 218) method, including the following steps:
步骤一制作含环形包层区的圆形纤芯细棒Step 1 Fabrication of a circular core thin rod containing an annular cladding region
选择六根芯层半径相等与光学折射率相等的掺钕离子光纤预制棒、掺钬离子光纤预制棒、掺铒离子光纤预制棒、掺镱离子光纤预制棒、钕镱共掺离子光纤预制棒、掺钐离子光纤预制棒;Select six neodymium-doped optical fiber preforms, holmium-doped optical fiber preforms, erbium-doped optical fiber preforms, ytterbium-doped optical fiber preforms, neodymium-ytterbium co-doped optical fiber preforms, and doped optical fiber preforms with the same core radius and optical refractive index. Samarium ion optical fiber preform;
用研磨方法将并将六根光纤预制棒的部分包层去掉,使得剩余包层的厚度相等;Part of the cladding of the six optical fiber preformed rods is removed by grinding, so that the thickness of the remaining cladding is equal;
将去掉部分包层的六根光纤预制棒拉制成芯层半径相等与包层厚度相等的细棒,芯层半径均为12mm,包层厚度均为10mm;Draw the six optical fiber preform rods with part of the cladding removed into thin rods with the same core radius and cladding thickness, the core radius is 12mm, and the cladding thickness is 10mm;
用激光切割的方法,将上述四根光纤预制棒处理成六个相同半径与相同弧度的扇形细棒,每个扇形细棒的弧度均为π/3;六个扇形细棒组成一个完整的圆,构成含环形包层区的圆形纤芯细棒Using the method of laser cutting, the above four optical fiber preforms are processed into six fan-shaped thin rods with the same radius and the same radian, and the radian of each fan-shaped thin rod is π/3; the six fan-shaped thin rods form a complete circle , constituting a circular core thin rod with an annular cladding region
步骤二制作扇形纤芯细棒Step 2 Make fan-shaped fiber core rods
选择芯层半径相等与光学折射率相等的掺钕离子光纤预制棒、掺钬离子光纤预制棒、掺铒离子光纤预制棒、掺镱离子光纤预制棒、钕镱共掺离子光纤预制棒、掺钐离子光纤预制棒、掺钕离子光纤预制棒、掺钬离子光纤预制棒、掺铒离子光纤预制棒、掺镱离子光纤预制棒、钕镱共掺离子光纤预制棒、掺钐离子光纤预制棒、掺钕离子光纤预制棒、掺钬离子光纤预制棒、掺铒离子光纤预制棒、掺镱离子光纤预制棒、钕镱共掺离子光纤预制棒、掺钐离子光纤预制棒,这里的光纤预制棒芯层的光学折射率与步骤一中采用的光纤预制棒芯层的光学折射率相等;Select neodymium-doped optical fiber preforms, holmium-doped optical fiber preforms, erbium-doped optical fiber preforms, ytterbium-doped optical fiber preforms, neodymium-ytterbium co-doped optical fiber preforms, samarium-doped optical fiber preforms with the same core radius and optical refractive index Ion optical fiber preform, neodymium-doped optical fiber preform, holmium-doped optical fiber preform, erbium-doped optical fiber preform, ytterbium-doped optical fiber preform, neodymium-ytterbium co-doped ion optical fiber preform, samarium-doped optical fiber preform, Neodymium ion optical fiber preform, holmium-doped optical fiber preform, erbium-doped optical fiber preform, ytterbium-doped optical fiber preform, neodymium-ytterbium co-doped ion optical fiber preform, samarium-doped optical fiber preform, the fiber preform core layer here The optical index of refraction is equal to the optical index of refraction of the optical fiber preform core layer adopted in step one;
用氢氟酸腐蚀的方法将并将十八根光纤预制棒的包层去掉,只剩下芯层;The cladding of eighteen optical fiber prefabricated rods was removed by hydrofluoric acid etching, leaving only the core layer;
将上述十八根光纤预制棒拉制成半径相等的细棒,半径为100mm;Draw the above eighteen optical fiber preforms into thin rods with the same radius, the radius is 100mm;
再用激光切割的方法,将上述十八根光纤预制棒处理成十八个相同半径与弧度的扇形细棒,每个扇形细棒的弧度均为π/10;Then use the method of laser cutting to process the above eighteen optical fiber preforms into eighteen fan-shaped thin rods with the same radius and radian, and the radian of each fan-shaped thin rod is π/10;
步骤三制作成圆芯多扇形区外围多扇形纤芯光纤Step 3: Make a circular core multi-sector peripheral multi-sector core fiber
将完成步骤一和二的的环形包层区的圆形纤芯细棒与十八个扇形纤芯细棒组织起来,套上石英管,空隙处用光学折射率比扇形细棒低但比石英管光学折射率高的细石英棒填充;拉制成圆芯多扇形区外围多扇形纤芯光纤。The circular core thin rods and eighteen fan-shaped fiber core thin rods in the annular cladding region that have completed steps one and two are organized, put on a quartz tube, and the optical refractive index in the gap is lower than that of the fan-shaped thin rods but higher than that of quartz. The tube is filled with thin quartz rods with high optical refractive index; it is drawn into a circular core multi-sector peripheral multi-sector core fiber.
实施例四Embodiment Four
九个扇形掺稀土离子区(11、12、...、19)和三十二个扇形纤芯(21、22、...、232)的圆芯多扇形区外围多扇形纤芯光纤,如图1所示;Nine sector-shaped rare earth ion-doped regions (11, 12, ..., 19) and thirty-two sector-shaped cores (21, 22, ..., 232) circular core multi-sector-shaped peripheral multi-sector core fiber optics, As shown in Figure 1;
第一扇形掺钕离子区11、第二扇形掺铒离子区12、第三扇形掺镱离子区13、第四扇形掺钍离子区14、第五扇形镨离子区15、第六扇形掺钬离子区16、第七扇形掺钐离子区17、第八扇形钕镱共掺离子区18、第九扇形铒镱共掺离子区19光学折射率、半径与弧度均相等,组成一个完整圆形纤芯;圆形纤芯半径为20微米;The first sector-shaped neodymium-doped
内包层3内围绕圆形纤芯均匀分布三十二个个相同半径与相同弧度的扇形纤芯;第一扇形纤芯21、第二扇形纤芯22、...、第三十二扇形纤芯232的半径均为200微米,弧度均为π/16,第一扇形纤芯21的掺稀土离子、第二扇形纤芯22的掺稀土离子、...、第32扇形纤芯232掺稀土离子分别为钕离子、钬离子、铒离子、镱离子、铒镱共掺离子、钕镱共掺离子、钐离子、钍离子、镨离子、铒离子、镱离子、铒镱共掺离子、镱离子、铒镱共掺离子、钍离子、镨离子、铒镱共掺离子、钕镱共掺离子、铒镱共掺离子、钕镱共掺离子、钐离子、钍离子、镨离子、铒离子、镱离子、铒镱共掺离子、镱离子、铒镱共掺离子、钍离子、镨离子、铒镱共掺离子、钕镱共掺离子;Thirty-two fan-shaped fiber cores with the same radius and the same radian are evenly distributed around the circular fiber core in the
第一扇形纤芯21、第二扇形纤芯22、...、第三十二扇形纤芯232顶点与圆形纤芯外圆的距离相等,距离均为20微米;The distance between the apex of the first fan-shaped
圆形纤芯、第一扇形纤芯21、第二扇形纤芯22、...、第三十二扇形纤芯232的光学折射率相等,第一扇形纤芯21光学折射率大于内包层3的光学折射率,内包层3的光学折射率大于外包层4的光学折射率。The optical refractive index of the circular fiber core, the first fan-shaped
九个扇形掺稀土离子区(11、12、...、19)和三十二个扇形纤芯(21、22、...、232)的圆芯多扇形区外围多扇形纤芯光纤的制作方法,包括以下步骤:Nine sector-shaped rare earth ion-doped regions (11, 12, ..., 19) and thirty-two sector-shaped cores (21, 22, ..., 232) circular core multi-sector area peripheral multi-sector core fiber The preparation method comprises the following steps:
步骤一制作含环形包层区的圆形纤芯细棒Step 1 Fabrication of a circular core thin rod containing an annular cladding region
选择九根芯层半径相等与光学折射率相等的掺钕离子光纤预制棒、掺铒离子光纤预制棒、掺镱离子光纤预制棒、掺钍离子光纤预制棒、掺镨离子光纤预制棒、掺钬离子光纤预制棒、掺钐离子光纤预制棒、钕镱共掺离子光纤预制棒、铒镱共掺离子光纤预制棒;Choose nine neodymium-doped optical fiber preforms, erbium-doped optical fiber preforms, ytterbium-doped optical fiber preforms, thorium-doped optical fiber preforms, praseodymium-doped optical fiber preforms, and holmium-doped optical fiber preforms with the same core radius and optical refractive index. Ion optical fiber preform, samarium-doped ion optical fiber preform, neodymium-ytterbium co-doped ion optical fiber preform, erbium-ytterbium co-doped ion optical fiber preform;
用研磨方法将并将九根光纤预制棒的部分包层去掉,使得剩余包层的厚度相等;Part of the cladding of the nine optical fiber prefabricated rods is removed by grinding, so that the thickness of the remaining cladding is equal;
将去掉部分包层的九根光纤预制棒拉制成芯层半径厚度相等与包层厚度相等的细棒,芯层半径均为20mm,包层厚度均为20mm;The nine optical fiber prefabricated rods with part of the cladding removed are drawn into thin rods with the same core radius and thickness as the cladding thickness, the core radius is 20mm, and the cladding thickness is 20mm;
用激光切割的方法,将上述九根光纤预制棒处理成九个相同半径与相同弧度的扇形细棒,每个扇形细棒的弧度均为2π/9;九个扇形细棒组成一个完整的圆,构成含环形包层区的圆形纤芯细棒。Using the method of laser cutting, the above nine optical fiber preform rods are processed into nine fan-shaped thin rods with the same radius and the same radian, and the radian of each fan-shaped thin rod is 2π/9; the nine fan-shaped thin rods form a complete circle , constituting a circular core thin rod with an annular cladding region.
步骤二制作扇形纤芯细棒Step 2 Make fan-shaped fiber core rods
选择芯层半径相等与光学折射率相等的掺钕离子光纤预制棒、掺钬离子光纤预制棒、掺铒离子光纤预制棒、掺镱离子光纤预制棒、铒镱共掺离子光纤预制棒、钕镱共掺离子光纤预制棒、掺钐离子光纤预制棒、掺钍离子光纤预制棒、掺镨离子光纤预制棒、掺铒离子光纤预制棒、掺镱离子光纤预制棒、铒镱共掺离子光纤预制棒、镱离子光纤预制棒、铒镱共掺离子光纤预制棒、掺钍离子光纤预制棒、掺镨离子光纤预制棒、铒镱共掺离子光纤预制棒、钕镱共掺离子光纤预制棒、铒镱共掺离子光纤预制棒、钕镱共掺离子光纤预制棒、掺钐离子光纤预制棒、掺钍离子光纤预制棒、掺镨离子光纤预制棒、掺铒离子光纤预制棒、镱离子光纤预制棒、铒镱共掺离子光纤预制棒、掺镱离子光纤预制棒、铒镱共掺离子光纤预制棒、掺钍离子光纤预制棒、掺镨离子光纤预制棒、铒镱共掺离子光纤预制棒、钕镱共掺离子光纤预制棒,这里的光纤预制棒芯层的光学折射率与步骤一中采用的光纤预制棒芯层的光学折射率相等;Choose neodymium-doped optical fiber preforms with the same core radius and optical refractive index, holmium-doped optical fiber preforms, erbium-doped optical fiber preforms, ytterbium-doped optical fiber preforms, erbium-ytterbium co-doped ion optical fiber preforms, neodymium-ytterbium Co-doped ion optical fiber preform, samarium-doped optical fiber preform, thorium-doped optical fiber preform, praseodymium-doped optical fiber preform, erbium-doped optical fiber preform, ytterbium-doped optical fiber preform, erbium-ytterbium co-doped ion optical fiber preform , Ytterbium Ion Optical Fiber Preform, Erbium Ytterbium Codoped Ion Optical Fiber Preform, Thorium Doped Ion Optical Fiber Preform, Praseodymium Ion Optical Fiber Preform, Erbium Ytterbium Codoped Ion Optical Fiber Preform, NdYtterbium Codoped Ion Optical Fiber Preform, Erbium Ytterbium Co-doped optical fiber preform, Nd-Yb co-doped optical fiber preform, samarium-doped optical fiber preform, thorium-doped optical fiber preform, praseodymium-doped optical fiber preform, erbium-doped optical fiber preform, ytterbium-ion optical fiber preform, Erbium-ytterbium co-doped ion optical fiber preform, ytterbium-doped ion optical fiber preform, erbium-ytterbium-doped ion optical fiber preform, thorium-doped ion optical fiber preform, praseodymium-doped optical fiber preform, erbium-ytterbium-doped ion optical fiber preform, neodymium ytterbium Co-doped ion optical fiber preform, where the optical refractive index of the optical fiber preform core layer is equal to the optical refractive index of the optical fiber preform core layer adopted in step one;
用氢氟酸腐蚀的方法将并将三十二根光纤预制棒的包层去掉,只剩下芯层;The cladding of thirty-two optical fiber prefabricated rods was removed by hydrofluoric acid etching, leaving only the core layer;
将上述三十二根光纤预制棒拉制成半径相等的细棒,半径为200mm;Draw the above thirty-two optical fiber preforms into thin rods with the same radius, the radius is 200mm;
再用激光切割的方法,将上述三十二根光纤预制棒处理成三十二个相同半径与弧度的扇形细棒,每个扇形细棒的弧度均为π/16;Then use the method of laser cutting to process the above thirty-two optical fiber preforms into thirty-two fan-shaped thin rods with the same radius and radian, and the radian of each fan-shaped thin rod is π/16;
步骤三制作成圆芯多扇形区外围多扇形纤芯光纤Step 3: Make a circular core multi-sector peripheral multi-sector core fiber
将完成步骤一和二的的环形包层区的圆形纤芯细棒与三十二个扇形纤芯细棒组织起来,套上石英管,空隙处用光学折射率比扇形细棒低但比石英管光学折射率高的细石英棒填充;拉制成圆芯多扇形区外围多扇形纤芯光纤。The circular fiber core thin rods and thirty-two fan-shaped fiber core thin rods of the annular cladding region that have completed steps one and two are organized, put on a quartz tube, and the optical refractive index is lower than the fan-shaped thin rods but lower than the fan-shaped thin rods at the gap. The quartz tube is filled with thin quartz rods with high optical refractive index; it is drawn into a circular core multi-sector peripheral multi-sector core fiber.
实施例五Embodiment five
N个扇形掺稀土离子区(11、12、...、1N)和M个扇形纤芯(21、22、...、2M)圆芯多扇形区外围多扇形纤芯光纤,该光纤包括纤芯、内包层与外包层;N sector-shaped rare-earth ion-doped regions (11, 12, ..., 1N) and M sector-shaped cores (21, 22, ..., 2M) circular-core multi-sector-shaped peripheral multi-sector core fiber, the optical fiber includes Fiber core, inner cladding and outer cladding;
第一至第N扇形掺稀土离子区光学折射率、半径与弧度均相等,组成一个完整圆形纤芯;圆形纤芯半径为2~20微米;The optical refractive index, radius and radian of the first to Nth fan-shaped rare earth ion-doped regions are all equal, forming a complete circular fiber core; the radius of the circular fiber core is 2 to 20 microns;
3≤N≤9的整数;Integer of 3≤N≤9;
内包层内围绕圆形纤芯均匀分布相同半径与相同弧度的第一至第M扇形纤芯;The first to Mth fan-shaped cores with the same radius and the same radian are evenly distributed around the circular core in the inner cladding;
N≤M≤32的整数;Integer of N≤M≤32;
第一扇形纤芯、第二扇形纤芯、...、第M扇形纤芯的半径为20~200微米,弧度为α,π/2M≤α≤2π/M;The radius of the first fan-shaped fiber core, the second fan-shaped fiber core, ..., the M-th fan-shaped fiber core is 20-200 microns, and the radian is α, π/2M≤α≤2π/M;
第一扇形纤芯、第二扇形纤芯、...、第M扇形纤芯与圆形纤芯外圆的距离相等,距离均为2~20微米;The distances between the first fan-shaped core, the second fan-shaped core, ..., the Mth fan-shaped core and the outer circle of the circular fiber core are equal, and the distances are all 2 to 20 microns;
圆形纤芯、第一至第M扇形纤芯的光学折射率相等,其光学折射率大于内包层的光学折射率,内包层的光学折射率大于外包层的光学折射率。The optical refractive index of the circular core and the first to Mth fan-shaped cores are equal, and the optical refractive index is greater than that of the inner cladding, and the optical refractive index of the inner cladding is greater than that of the outer cladding.
第一至第N扇形掺稀土离子区的掺稀土离子类型不全相同;掺稀土离子类型包括钕离子、铒离子、镱离子、钍离子、镨离子、钬离子、钐离子、钕镱共掺离子、铒镱共掺离子;The types of doped rare earth ions in the first to Nth fan-shaped rare earth ion-doped regions are not all the same; the types of doped rare earth ions include neodymium ions, erbium ions, ytterbium ions, thorium ions, praseodymium ions, holmium ions, samarium ions, neodymium ytterbium co-doped ions, Erbium and ytterbium co-doped ions;
第一至第M扇形纤芯的掺稀土离子类型不全相同,第一至第M扇形纤芯所含的掺稀土离子类型集合与第一至第N扇形掺稀土离子区所含的掺稀土离子类型集合相等。The rare earth ion types of the first to M fan-shaped cores are not all the same, and the rare earth ion types contained in the first to M fan-shaped cores are different from the rare earth ion types contained in the first to N fan-shaped rare earth ion regions. Sets are equal.
圆芯多扇形区外围多扇形纤芯光纤的制作方法,包括以下步骤:A method for making a multi-sector core optical fiber at the periphery of a circular core multi-sector area comprises the following steps:
圆芯多扇形区外围多扇形纤芯光纤的制作方法,包括以下步骤:A method for making a multi-sector core optical fiber at the periphery of a circular core multi-sector area comprises the following steps:
步骤一制作含环形包层区的圆形纤芯细棒Step 1 Fabrication of a circular core thin rod containing an annular cladding region
选择N根芯层半径相等与光学折射率相等的掺掺稀土离子光纤预制棒;3≤N≤9的整数;Select N rare earth ion-doped optical fiber preforms with the same core radius and the same optical refractive index; an integer of 3≤N≤9;
将N根光纤预制棒的部分包层去掉,使得剩余包层的厚度相等;removing part of the cladding of the N optical fiber prefabricated rods, so that the thickness of the remaining cladding is equal;
将去掉部分包层的N根光纤预制棒拉制成芯层半径相等与包层厚度相等的细棒;Drawing N optical fiber preform rods from which part of the cladding has been removed into thin rods with the same core radius and cladding thickness;
将上述N根光纤预制棒处理成N个相同半径与相同弧度的扇形细棒,每个扇形细棒的弧度均为2π/N;N个扇形细棒组成一个完整的圆,构成含环形包层区的圆形纤芯细棒;Process the above N optical fiber preform rods into N fan-shaped thin rods with the same radius and same radian, and the radian of each fan-shaped thin rod is 2π/N; N fan-shaped thin rods form a complete circle, forming a ring-shaped cladding Circular core thin rods in the area;
步骤二制作扇形纤芯细棒Step 2 Make fan-shaped fiber core rods
选择M根芯层半径相等与光学折射率相等的掺掺稀土离子光纤预制棒;N≤M≤32的整数,这里的光纤预制棒芯层的光学折射率与步骤一中采用的光纤预制棒芯层的光学折射率相等;Select M root doped rare earth ion optical fiber preforms whose core radius is equal to the optical refractive index; N≤M≤32 integers, the optical refractive index of the optical fiber preform core here is the same as the optical fiber preform core adopted in step one The optical indices of refraction of the layers are equal;
用氢氟酸腐蚀的方法将并将M根光纤预制棒的包层去掉,只剩下芯层;The cladding of the M optical fiber prefabricated rods is removed by hydrofluoric acid etching, leaving only the core layer;
将上述M根光纤预制棒拉制成半径相等的细棒;drawing the above M optical fiber preforms into thin rods with equal radii;
再将上述M根光纤预制棒处理成M个相同半径与弧度的扇形细棒,每个扇形细棒的弧度均为α,π/2M≤α≤2π/M;Then process the above M optical fiber preform rods into M fan-shaped thin rods with the same radius and radian, and the radian of each fan-shaped thin rod is α, π/2M≤α≤2π/M;
步骤三制作成圆芯多扇形区外围多扇形纤芯光纤Step 3: Make a circular core multi-sector peripheral multi-sector core fiber
将完成步骤一和二的的含环形包层区的圆形纤芯细棒与M个扇形纤芯细棒组织起来,套上石英管,空隙处用光学折射率比扇形细棒低但比石英管光学折射率高的细石英棒填充;拉制成圆芯多扇形区外围多扇形纤芯光纤。The circular fiber core thin rod containing the annular cladding region and M fan-shaped fiber core thin rods that have completed steps 1 and 2 are organized, put on a quartz tube, and the optical refractive index in the gap is lower than that of the fan-shaped thin rod but higher than that of quartz The tube is filled with thin quartz rods with high optical refractive index; it is drawn into a circular core multi-sector peripheral multi-sector core fiber.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110256561A CN102262263B (en) | 2011-09-01 | 2011-09-01 | Optical fibre with multiple-sector fiber core at periphery of multiple-sector area of circular fiber core, and fabrication method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110256561A CN102262263B (en) | 2011-09-01 | 2011-09-01 | Optical fibre with multiple-sector fiber core at periphery of multiple-sector area of circular fiber core, and fabrication method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102262263A CN102262263A (en) | 2011-11-30 |
CN102262263B true CN102262263B (en) | 2012-09-05 |
Family
ID=45008963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110256561A Expired - Fee Related CN102262263B (en) | 2011-09-01 | 2011-09-01 | Optical fibre with multiple-sector fiber core at periphery of multiple-sector area of circular fiber core, and fabrication method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102262263B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105589127A (en) * | 2016-01-07 | 2016-05-18 | 北京交通大学 | Optical fiber of single-mode multi-ring fiber core coupled to multiple rare-earth-doped segmented fiber cores |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590143B (en) * | 2012-03-26 | 2014-06-25 | 江苏大学 | Micro-structured optical fiber surface plasmon resonance sensor |
CN105607183B (en) * | 2016-01-07 | 2019-03-22 | 北京交通大学 | A kind of counter-bending petaloid larger-mode-area single-mode fiber |
CN106997071A (en) * | 2016-12-21 | 2017-08-01 | 北京交通大学 | A kind of flap optical fiber of large mode field single mode multilayer fibre core |
CN106842413A (en) * | 2016-12-21 | 2017-06-13 | 北京交通大学 | A kind of flap optical fiber of large mode field single mode multilayer fibre core |
CN107870389B (en) * | 2017-11-15 | 2019-10-25 | 北京交通大学 | A large-mode-field bending-resistant single-mode fiber with a parabolic core coupled to a lobe-shaped core |
CN110320591B (en) * | 2019-07-04 | 2020-08-25 | 山东大学 | Single crystal laser fiber based on surface microstructure and manufacturing method and application thereof |
CN111517637B (en) * | 2020-05-22 | 2021-04-27 | 长飞光纤光缆股份有限公司 | Rare earth doped multi-core optical fiber, optical fiber preform, preparation method and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0695003A1 (en) * | 1994-07-27 | 1996-01-31 | Hitachi Cable, Ltd. | Rare earth element-doped multiple-core optical fiber, method for fabricating the same, and optical amplifier using the same |
US5809189A (en) * | 1993-08-12 | 1998-09-15 | Virginia Tech Intellectual Properties, Inc. | Controlled dopant diffusion for fiber optic coupler |
CN1564033A (en) * | 2004-03-29 | 2005-01-12 | 烽火通信科技股份有限公司 | Double cladding rare-earth doped optical fiber and its mfg. method |
CN101694534A (en) * | 2009-10-22 | 2010-04-14 | 北京交通大学 | Single-core multiple rare-earth-doped ion region double-clad optical fiber and manufacturing method thereof |
CN101876773A (en) * | 2009-11-27 | 2010-11-03 | 北京交通大学 | High Power Multiband Single Core Fiber Amplifier |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63217314A (en) * | 1987-03-06 | 1988-09-09 | Nippon Telegr & Teleph Corp <Ntt> | Production of optical branching filter |
JPH0273205A (en) * | 1988-09-08 | 1990-03-13 | Fujikura Ltd | Optical fiber coupler |
-
2011
- 2011-09-01 CN CN201110256561A patent/CN102262263B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5809189A (en) * | 1993-08-12 | 1998-09-15 | Virginia Tech Intellectual Properties, Inc. | Controlled dopant diffusion for fiber optic coupler |
EP0695003A1 (en) * | 1994-07-27 | 1996-01-31 | Hitachi Cable, Ltd. | Rare earth element-doped multiple-core optical fiber, method for fabricating the same, and optical amplifier using the same |
CN1564033A (en) * | 2004-03-29 | 2005-01-12 | 烽火通信科技股份有限公司 | Double cladding rare-earth doped optical fiber and its mfg. method |
CN101694534A (en) * | 2009-10-22 | 2010-04-14 | 北京交通大学 | Single-core multiple rare-earth-doped ion region double-clad optical fiber and manufacturing method thereof |
CN101876773A (en) * | 2009-11-27 | 2010-11-03 | 北京交通大学 | High Power Multiband Single Core Fiber Amplifier |
Non-Patent Citations (4)
Title |
---|
JP平2-73205A 1990.03.13 |
JP昭63-217314A 1988.09.09 |
Moritz M. Vogel 等.Very-large-mode-area, single-mode multicore fiber.《OPTICS LETTERS》.2009,第34卷(第18期), * |
MoritzM.Vogel等.Very-large-mode-area single-mode multicore fiber.《OPTICS LETTERS》.2009 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105589127A (en) * | 2016-01-07 | 2016-05-18 | 北京交通大学 | Optical fiber of single-mode multi-ring fiber core coupled to multiple rare-earth-doped segmented fiber cores |
Also Published As
Publication number | Publication date |
---|---|
CN102262263A (en) | 2011-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102262263B (en) | Optical fibre with multiple-sector fiber core at periphery of multiple-sector area of circular fiber core, and fabrication method thereof | |
CN107329205B (en) | Rare earth doped optical fiber | |
US7450813B2 (en) | Rare earth doped and large effective area optical fibers for fiber lasers and amplifiers | |
CN102213792B (en) | Large-mode-area active optical fiber and preparation method thereof | |
CN101631751B (en) | Method for fabricating a preform, a preform, an optical fiber and an amplifier | |
CN102305958B (en) | Large mode field area single-mode chrysanthemum fiber core distribution fiber and manufacturing method thereof | |
WO2013038794A1 (en) | Optical fiber, optical fiber laser, optical fiber amplifier, and method for producing optical fiber | |
CN102508333B (en) | Preparation method of double clad all-solid-state photonic crystal fiber | |
CN101694534B (en) | Single-core multiple rare-earth-doped ion region double-clad optical fiber and manufacturing method thereof | |
CN103257399A (en) | Device used for fiber laser and capable of filtering out cladding light | |
CN113497404B (en) | Rare earth-doped hollow anti-resonance optical fiber and preparation method thereof | |
CN105589127A (en) | Optical fiber of single-mode multi-ring fiber core coupled to multiple rare-earth-doped segmented fiber cores | |
CN107500524B (en) | Rare earth doped optical fiber preform and preparation method thereof | |
CN105607183B (en) | A kind of counter-bending petaloid larger-mode-area single-mode fiber | |
CN112028468B (en) | Active and passive alternate optical fiber, preparation method thereof and optical fiber laser | |
CN106253038A (en) | A kind of middle-infrared band optical fiber pumping/signal bundling device | |
CN106842413A (en) | A kind of flap optical fiber of large mode field single mode multilayer fibre core | |
CN201576109U (en) | A multi-doped rare earth ion multi-core double-clad optical fiber | |
CN110112637A (en) | A kind of 1.0 mu m waveband multikilowatt polarization-maintaining single-frequency phosphate optical fiber lasers | |
Wang et al. | Compact single-mode Nd-doped silicate glass multitrench fiber with 40 μm core diameter | |
CN101620295A (en) | Large mode area multi-core fiber | |
CN118198838A (en) | All-solid-state anti-resonance optical fiber and preparation method thereof | |
CN101764343B (en) | Optical fiber of coupling multilayer rare earth blending ring-shaped fiber core with single-mold fiber core | |
CN107870389B (en) | A large-mode-field bending-resistant single-mode fiber with a parabolic core coupled to a lobe-shaped core | |
CN100559670C (en) | Single-mode active fiber companion coupled multimode active fiber ultra-brightness single-mode laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120905 Termination date: 20130901 |