CN102260655B - Cutinase mutants and preparation method thereof - Google Patents
Cutinase mutants and preparation method thereof Download PDFInfo
- Publication number
- CN102260655B CN102260655B CN2011101394628A CN201110139462A CN102260655B CN 102260655 B CN102260655 B CN 102260655B CN 2011101394628 A CN2011101394628 A CN 2011101394628A CN 201110139462 A CN201110139462 A CN 201110139462A CN 102260655 B CN102260655 B CN 102260655B
- Authority
- CN
- China
- Prior art keywords
- cutinase
- mutant
- mutation
- mutants
- thermobifida fusca
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
本发明提供了一种嗜热放线菌(Thermobifida fusca)角质酶的突变体及其制备方法,突变体包括一个或两个相应于嗜热放线菌(Thermobifida fusca)的角质酶活性中心位点附近的氨基酸残基的取代,I218A、Q132A/T101A和W195A/F249A对棉纤维的催化效率均有所提高,其中突变体I218A对角质的催化效率比原角质酶提高50%;Q132A/T101A对合成纤维对苯二甲酸乙二酯(PET)的催化效率比原角质酶提高3倍,这三种突变体在纺织纤维前处理中有广阔的应用前景。The present invention provides a mutant of cutinase from Thermobifida fusca and a preparation method thereof. The mutant includes one or two cutinase active center sites corresponding to Thermobifida fusca The substitution of nearby amino acid residues, the catalytic efficiency of I218A, Q132A/T101A and W195A/F249A on cotton fiber was improved, and the catalytic efficiency of mutant I218A on cutin was 50% higher than that of the original cutinase; Q132A/T101A on synthetic The catalytic efficiency of fiber ethylene terephthalate (PET) is 3 times higher than that of pro-cutinase. These three mutants have broad application prospects in the pretreatment of textile fibers.
Description
技术领域 technical field
本发明涉及一种酶突变体及其制备方法,尤其涉及角质酶的突变体及其制备方法,本发明属于基因工程和酶工程领域,具体地说本发明是利用蛋白质工程的定点突变方法改善耐热角质酶的底物特异性的技术。 The present invention relates to an enzyme mutant and a preparation method thereof, in particular to a cutinase mutant and a preparation method thereof. A technique for the substrate specificity of thermocutinases. the
背景技术 Background technique
角质酶是能够水解角质大分子的水解酶。作为一种多功能酶,在纺织工业、食品工业以及化工工业等诸多领域都有着广泛的应用。尤其在纺织工业中,角质酶可用于棉纤维生物精练,以去除棉纤维表面蜡质和角质,并有助于果胶、蛋白质等杂质的进一步去除,从而达到精练目的。近年来研究表明,角质酶还可用于合成纤维聚对苯二甲酸乙二酯(PET)的改性,增加织物吸水性,改善手感,提高织物品质。上述两工艺目前均采用传统碱处理工艺,存在水耗、能耗大,排放废水碱性强、色度深、COD值高以及对纤维损伤大等弊病。酶精练工艺作为一种节能降耗、环境友好的纺织品清洁生产技术,已成为国内外染整行业发展的新趋势。 Cutinases are hydrolytic enzymes capable of hydrolyzing macromolecules of cutin. As a multifunctional enzyme, it has been widely used in many fields such as textile industry, food industry and chemical industry. Especially in the textile industry, cutinase can be used in cotton fiber bioscouring to remove wax and cutin on the surface of cotton fiber, and help to further remove impurities such as pectin and protein, so as to achieve the purpose of scouring. Studies in recent years have shown that cutinase can also be used to modify synthetic fiber polyethylene terephthalate (PET), increase fabric water absorption, improve hand feel, and improve fabric quality. Both of the above two processes currently adopt the traditional alkali treatment process, which has disadvantages such as high water consumption and energy consumption, strong alkalinity of discharged wastewater, deep color, high COD value, and great damage to fibers. Enzyme scouring process, as an energy-saving and environmentally friendly textile clean production technology, has become a new trend in the development of dyeing and finishing industries at home and abroad. the
国外对角质酶进行了大量的研究,主要集中于Fusarium solani等真菌来源角质酶。但真菌角质酶热稳定性差,不适合在纺织工业中的应用。而本实验室开发的嗜热放线菌(Thermobifida fusca)产耐热角质酶可有效水解角质、PET等聚酯,但水解效率较低(陈坚,吴敬,陈晟.一种耐热角质酶及其编码基因和表达.申请号200710026074.2)。因此通过结构模拟确定突变位点,通过定点突变技术提高耐热角质酶对角质和PET的催化效率极为重要,具有较强的工业应用价值。 A large number of studies on cutinase have been carried out abroad, mainly focusing on cutinase derived from fungi such as Fusarium solani. However, fungal cutinase has poor thermal stability and is not suitable for application in the textile industry. And the heat-resistant cutinase produced by Thermobifida fusca developed by our laboratory can effectively hydrolyze polyesters such as cutin and PET, but the hydrolysis efficiency is low (Chen Jian, Wu Jing, Chen Sheng. A kind of heat-resistant cutin Enzyme and its coding gene and expression. Application No. 200710026074.2). Therefore, it is extremely important to determine the mutation site by structural simulation and improve the catalytic efficiency of thermostable cutinase on cutin and PET by site-directed mutagenesis technology, which has strong industrial application value. the
发明内容 Contents of the invention
本发明所要解决的一个技术问题是提供一种角质酶的突变体,包括一个或两个相应于嗜热放线菌(Thermobifida fusca)的角质酶活性中心位点附近的氨基酸残基的取代,与亲代角质酶相比具有更强的角质或PET水解能力。 A technical problem to be solved by the present invention is to provide a cutinase mutant, comprising one or two substitutions corresponding to the amino acid residues near the cutinase active center site of thermophilic actinomycete (Thermobifida fusca), and Compared with the parent cutinase, it has a stronger ability to hydrolyze cutin or PET. the
所述嗜热放线菌(Thermobifida fusca)产角质酶的基因与NCBI数据库中Thermobifida fusca编码的蛋白Tfu_0883极其类似,基因全长906个核苷酸,编码301个氨基酸,和蛋白Tfu_0883的基因有两个核苷酸的差异,编码氨基酸相同(陈坚,吴敬,陈晟.一种耐热角质酶及其编码基因和表达.申请号200710026074.2)。 The cutinase-producing gene of Thermobifida fusca is very similar to the protein Tfu_0883 encoded by Thermobifida fusca in the NCBI database. The gene has a full length of 906 nucleotides and encodes 301 amino acids. 1 nucleotide difference, the coded amino acid is the same (Chen Jian, Wu Jing, Chen Sheng. A heat-resistant cutinase and its coding gene and expression. Application No. 200710026074.2). the
所述角质酶突变体是218位氨基酸异亮氨酸Ile突变为丙氨酸Ala,命名为I218A。 The cutinase mutant is 218-position amino acid isoleucine Ile is mutated into alanine Ala, named I218A. the
所述角质酶突变体是第132位氨基酸谷氨酰胺Gln和第101位氨基酸苏氨酸Thr同时突变为丙氨酸Ala,命名为Q132A/T101A。 The cutinase mutant is a simultaneous mutation of the 132nd amino acid glutamine Gln and the 101st amino acid threonine Thr to alanine Ala, named Q132A/T101A. the
所述角质酶突变体是第195位氨基酸色氨酸Trp和第249位氨基酸苯丙氨酸Phe同时突变为丙氨酸Ala,命名为W195A/F249A。 The cutinase mutant is a simultaneous mutation of the 195th amino acid tryptophan Trp and the 249th amino acid phenylalanine Phe to alanine Ala, named W195A/F249A. the
本发明的所要解决的另一个技术问题是提供上述突变体的制备方法。 Another technical problem to be solved by the present invention is to provide a method for preparing the above-mentioned mutant. the
为解决上述问题,本发明的技术方案是:在嗜热放线菌(Thermobifida fusca)角质酶模拟结构的基础上确定突变位点;设计定点突变的突变引物,以携带角质酶基因的载体为模板进行定点突变构建突变质粒I218A-pet20b(+)、W195/F249-pet20b(+)、Q132A/T101A-pet20b(+);将突变质粒转化转化大肠杆菌BL21(DE3)细胞,挑选验证后的阳性单克隆进行发酵培养,25℃恒温培养至80h,对上清液进行硫酸铵沉淀、离子交换柱纯化角质酶突变体I218A、Q132A/T101A和W195A/F249A。 In order to solve the above problems, the technical scheme of the present invention is: determine the mutation site on the basis of the cutinase simulation structure of thermophilic actinomycete (Thermobifida fusca); design the mutation primer of site-directed mutation, take the carrier carrying the cutinase gene as template Conduct site-directed mutagenesis to construct mutant plasmids I218A-pet20b(+), W195/F249-pet20b(+), Q132A/T101A-pet20b(+); transform the mutant plasmids into Escherichia coli BL21(DE3) cells, and select positive cells after verification. The clones were fermented and cultured at a constant temperature of 25°C for 80 hours, and the supernatant was subjected to ammonium sulfate precipitation and ion exchange column purification of cutinase mutants I218A, Q132A/T101A and W195A/F249A. the
所述携带角质酶的载体为pUC系列,pET系列, 或pGEX中的任一一种。 The carrier carrying cutinase is any one of pUC series, pET series, or pGEX. the
本发明的有益效果:本发明提供了一组具有纤维高催化效率的角质酶突变体及其制备方法,I218A、Q132A/T101A和W195A/F249A对棉纤维的催化效率均有所提高,其中突变体I218A对角质的催化效率比原角质酶提高50%;Q132A/T101A对合成纤维聚对苯二甲酸乙二酯(PET)的催化效率比原角质酶提高3倍。这三种突变体在纺织工业中有重要的应用价值。 Beneficial effects of the present invention: the present invention provides a group of cutinase mutants with high fiber catalytic efficiency and a preparation method thereof. The catalytic efficiency of I218A, Q132A/T101A and W195A/F249A to cotton fibers has been improved, and the mutants The catalytic efficiency of I218A on cutin is 50% higher than that of original cutinase; the catalytic efficiency of Q132A/T101A on synthetic fiber polyethylene terephthalate (PET) is 3 times higher than that of original cutinase. These three mutants have important application value in the textile industry. the
附图说明 Description of drawings
图1嗜热放线菌(Thermobifida fusca)角质酶突变体纯化SDS-PAGE电泳图。 Figure 1 SDS-PAGE electrophoresis diagram of purified cutinase mutants from Thermobifida fusca. the
泳道1:标准分子量蛋白; Lane 1: standard molecular weight protein;
泳道2:I218A发酵液; Swimming lane 2: I218A fermentation broth;
泳道3:I218A纯化制品; Lane 3: I218A purified product;
泳道4:W195A/F249A发酵液; Swimming lane 4: W195A/F249A fermentation broth;
泳道5:W195A/F249A纯化制品; Lane 5: W195A/F249A purified product;
泳道6:Q132A/T101A发酵液; Lane 6: Q132A/T101A fermentation broth;
泳道7:Q132A/T101A纯化制品。 Lane 7: Q132A/T101A purified preparation. the
图2嗜热放线菌(Thermobifida fusca)角质酶突变体角质水解活力分析。 Fig. 2 Analysis of cutinolysis activity of cutinase mutants from Thermobifida fusca. the
△:嗜热放线菌(Thermobifida fusca)角质酶;□:I218A;■:W195A/F249A;▲:Q132A/T101A △: Thermobifida fusca cutinase; □: I218A; ■: W195A/F249A; ▲: Q132A/T101A
图3嗜热放线菌(Thermobifida fusca)角质酶突变体PET水解活力分析。 Figure 3 Analysis of PET hydrolysis activity of cutinase mutants from Thermobifida fusca. the
△:嗜热放线菌(Thermobifida fusca)角质酶;□:I218A;■:W195A/F249A;▲:Q132A/T101A △: Thermobifida fusca cutinase; □: I218A; ■: W195A/F249A; ▲: Q132A/T101A
具体实施方式 Detailed ways
实施例1:嗜热放线菌(Thermobifida fusca)角质酶突变体突变位点确定的方法。 Embodiment 1: the method for determining the mutation site of the cutinase mutant of thermophilic actinomycete (Thermobifida fusca). the
角质等聚酯是由大量脂肪酸构成的疏水性大分子物质,角质酶活性中心周围氨基酸的大小对聚酯大分子和活性中心的结合造成影响,此外氨基酸的疏水性影响底物结合位点和底物的结合,因此,以角质酶模拟结构为基础,从以上两方面出发,确定突变位点进而对角质酶基因进行定点突变。通过对嗜热放线菌(Thermobifida fusca)角质酶模拟结构的分析,设计三组突变系列:(1)位于丝氨酸活性中心正上方的氨基酸异亮氨酸I218所占空间较大,对活性中心和大分子底物的结合形成较大的位阻,因此将其突变为位阻较小的丙氨酸,以提高底物和活性中心的亲和力;(2)位于丝氨酸活性中心两侧的芳香族氨基酸色氨酸W195和苯丙氨酸F249由于苯环的存在,也占用大量空间,因此也将其突变为丙氨酸减少位阻效应;(3)位于活性中心附近的亲水性氨基酸谷氨酰胺Q132 和苏氨酸T101对疏水性底物的结合力较差,将其突变为疏水性氨基酸丙氨酸以增加对疏水性底物的结合力,提高催化效率。 Polyesters such as cutin are hydrophobic macromolecules composed of a large number of fatty acids. The size of amino acids around the active center of cutinase affects the combination of polyester macromolecules and active centers. In addition, the hydrophobicity of amino acids affects the substrate binding site and substrate. Therefore, based on the cutinase mimic structure, starting from the above two aspects, the mutation site was determined and then the cutinase gene was subjected to site-directed mutation. Based on the analysis of the simulated structure of the cutinase of Thermobifida fusca, three sets of mutation series were designed: (1) The amino acid isoleucine I218 located directly above the active center of serine occupies a large space, which has a large impact on the active center and The combination of macromolecular substrates forms a large steric hindrance, so it is mutated into alanine with less steric hindrance to improve the affinity between the substrate and the active center; (2) Aromatic amino acids located on both sides of the serine active center Tryptophan W195 and phenylalanine F249 also take up a lot of space due to the presence of the benzene ring, so they are also mutated into alanine to reduce steric hindrance; (3) glutamine, a hydrophilic amino acid located near the active center Q132 and threonine T101 have poor binding ability to hydrophobic substrates, so they were mutated into hydrophobic amino acid alanine to increase the binding ability to hydrophobic substrates and improve catalytic efficiency. the
实施例2:嗜热放线菌(Thermobifida fusca)角质酶突变体的制备方法。 Embodiment 2: the preparation method of thermophilic actinomycete (Thermobifida fusca) cutinase mutant. the
利用快速PCR定点突变方法构建I218A-pet20b(+)、W195/F249-pet20b(+)、Q132A/T101A-pet20b(+)突变质粒。 I218A-pet20b(+), W195/F249-pet20b(+), Q132A/T101A-pet20b(+) mutant plasmids were constructed by rapid PCR site-directed mutagenesis. the
I218A-pet20b(+)、W195-pet20b(+)、Q132A-pet20b(+)突变质粒的构建以CUT-pet20b(+)质粒为模板(陈坚,吴敬,陈晟.一种耐热角质酶及其编码基因和表达.申请号200710026074.2),分别用I218A、W195A和Q132A的突变引物通过一次PCR得到大小为4500bp左右产物,将PCR产物经Dpn I处理后转化大肠杆菌JM109感受态细胞,挑选转化子测序验证。 Construction of I218A-pet20b(+), W195-pet20b(+), Q132A-pet20b(+) mutant plasmids using the CUT-pet20b(+) plasmid as a template (Chen Jian, Wu Jing, Chen Sheng. A heat-resistant cutinase And its coding gene and expression. Application No. 200710026074.2), use the mutant primers of I218A, W195A and Q132A to obtain the product with a size of about 4500bp by PCR respectively, transform the Escherichia coli JM109 competent cells after the PCR product is treated with Dpn I, and select the Subsequence verification. the
W195/F249-pet20b(+)、Q132A/T101A-pet20b(+)突变质粒的构建分别以验证正确的W195-pet20b(+)、Q132A-pet20b(+)质粒为模板,用F249A和T101A为突变引物,PCR扩增得到大小为4500bp左右产物,将PCR产物Dpn I处理后转化大肠杆菌JM109感受态细胞,挑选转化子测序验证。 The W195/F249-pet20b(+), Q132A/T101A-pet20b(+) mutant plasmids were constructed using the verified correct W195-pet20b(+), Q132A-pet20b(+) plasmids as templates, and F249A and T101A as mutation primers , PCR amplified to obtain a product with a size of about 4500bp, the PCR product was treated with Dpn I and transformed into Escherichia coli JM109 competent cells, and the transformants were selected for sequencing verification. the
测序验证结果表明除了所需突变位点外,没有出现随机突变,因此突变质粒I218A-pet20b(+)、W195/F249-pet20b(+)、Q132A/T101A-pet20b(+)构建成功。 Sequencing verification results showed that there were no random mutations except the required mutation sites, so the mutant plasmids I218A-pet20b(+), W195/F249-pet20b(+), and Q132A/T101A-pet20b(+) were successfully constructed. the
突变引物如下所示(方框为突变位点): The mutation primers are as follows (the box is the mutation site):
1、I218A突变引物对: 1. I218A mutation primer pair:
P I218A1:5’-GCCGACCTCGACACG GCGCCGTCGCCACG-3’ P I218A1: 5'-GCCGACCTCGACACG GCGCCGTCGCCACG-3'
P I218A2:5’-CGTGGCGACCGGCGC CGTGTCGAGGTC-3’ P I218A2: 5'-CGTGGCGACCGGCGC CGTGTCGAGGTC-3'
2、W195A突变引物对: 2. W195A mutation primer pair:
P W195A1:5’-ATCCCGCTCACCCCG CACCTCAACA AGAA C-3’ P W195A1: 5'-ATCCCGCTCACCCCG CACCTCAACA AGAA C-3'
P W195A 2: P W195A 2:
5’-GTTCTTGTTGAGGTG CGGGGTGAGCGGGATGG-3’ 5'-GTTCTTGTTGAGGTG CGGGGTGAGCGGGATGG-3'
3、F249A突变引物对: 3. F249A mutation primer pair:
P F249A1:5’-gACGGCGCAACCCAC GCCCCGAACATCC-3’ P F249A1: 5'-gACGGCGCAACCCAC GCCCCGAACATCC-3'
P F249A2:5’-GGATGTTCGGGGC GTGGGTTGCGCCGTC-3’ P F249A2: 5'-GGATGTTCGGGGC GTGGGTTGCGCCGTC-3'
4、Q132A突变引物对: 4. Q132A mutation primer pair:
P Q132A1:5’-CATCACCACCCTCGAC CCGGACAGCCGGGC Ag-3’ P Q132A1: 5'-CATCACCACCCTCGAC CCGGACAGCCGGGC Ag-3'
P Q132A2:5’-CTGCCCGGCTGTCCGG GTCGAGGGTGGTGATG-3’ P Q132A2: 5'-CTGCCCGGCTGTCCGG GTCGAGGGTGGTGATG-3'
5、T101A突变引物对: 5. T101A mutation primer pair:
P T101A1:5’-GATCTCCCCCGGCTAC GGCACTGAGGCTTC-3’ P T101A1: 5'-GATCTCCCCCGGCTAC GGCACTGAGGCTTC-3'
P T101A2:5’-GAAGCCTCAGTGCC GTAGCCGGGGAGATC-3’ P T101A2: 5'-GAAGCCTCAGTGCC GTAGCCGGGGAGATC-3'
上述PCR体系均为: The above PCR systems are:
上述PCR条件均为: The above PCR conditions are:
94℃预变性4min,然后进行以下循环:98℃变性10s,60℃退火5s,72℃延伸4min;30个循环;72℃延伸10min,4℃保温。 Pre-denaturation at 94°C for 4 minutes, followed by the following cycles: denaturation at 98°C for 10 seconds, annealing at 60°C for 5 seconds, extension at 72°C for 4 minutes; 30 cycles; extension at 72°C for 10 minutes, and incubation at 4°C. the
实施例3:嗜热放线菌(Thermobifida fusca)角质酶突变体的表达纯化方法。 Embodiment 3: the expression purification method of thermophilic actinomycete (Thermobifida fusca) cutinase mutant. the
将突变质粒I218A-pet20b(+)、W195/F249-pet20b(+)、Q132A/T101A-pet20b(+)转化大肠杆菌BL21(DE3)细胞,挑选转化子进行测序验证。将验证后的阳性转化子在TB培养基(甘油5g/L,蛋白胨12g/L,酵母膏24g/L,K2HPO4 12.54g/L,KH2PO4 2.31g/L)中37℃液体培养过夜,后接入TB 发酵液体培养基37℃培养3h后用4mg/L IPTG(异丙基硫代βD半乳糖苷)诱导,降温至25℃恒温培养80h。 The mutant plasmids I218A-pet20b(+), W195/F249-pet20b(+), Q132A/T101A-pet20b(+) were transformed into E. coli BL21(DE3) cells, and the transformants were selected for sequencing verification. Put the verified positive transformants in TB medium (glycerol 5g/L, peptone 12g/L, yeast extract 24g/L, K 2 HPO 4 12.54g/L, KH 2 PO 4 2.31g/L) at 37°C Cultivate overnight, then insert into TB fermentation liquid medium and culture at 37°C for 3h, then induce with 4mg/L IPTG (isopropylthioβD-galactoside), cool down to 25°C and cultivate at constant temperature for 80h.
发酵液于4℃,10000rpm离心20min除菌体。上清液通过活性炭柱收集。在通过活性炭柱的清液中加入70%固体硫酸铵盐析过夜,4℃,10000rpm离心20min,取沉淀物用适量缓冲液A(20mM Tris-HCl,pH 8)溶解,加入20%硫酸铵,0.22μm膜过滤后制成上样样品。Phenyl HP疏水柱用加入20%硫酸铵的缓冲液A平衡后,将上样样品吸入疏水柱,使之完全吸附后,分别用含20%硫酸铵的缓冲液A、20%-0%硫酸铵梯度的缓冲液A、缓冲液A和去离子水洗脱,流速1mL/min,检测波长为280nm,洗脱液分部收集。酶活力部分用缓冲液A平衡的DEAE Sepharose阴离子交换柱进行进一步纯化,洗脱流速1mL/min,收集酶活力组分,用10000道尔顿膜离心浓缩,得纯化角质酶突变体。纯化后角质酶突变体达到电泳纯,表观分子量30KDa。纯化结果如图1所示。 The fermentation broth was centrifuged at 10,000 rpm for 20 minutes at 4°C to remove bacteria. The supernatant was collected through an activated carbon column. Add 70% solid ammonium sulfate to the clear solution passing through the active carbon column for salting out overnight, centrifuge at 10000rpm for 20min at 4°C, dissolve the precipitate with an appropriate amount of buffer A (20mM Tris-HCl, pH 8), add 20% ammonium sulfate, Samples were prepared after filtration with a 0.22 μm membrane. After the Phenyl HP hydrophobic column is equilibrated with buffer A containing 20% ammonium sulfate, the loaded sample is sucked into the hydrophobic column to make it completely adsorbed, and the buffer A containing 20% ammonium sulfate and 20%-0% ammonium sulfate are used respectively. Gradient buffer A, buffer A and deionized water were used for elution, the flow rate was 1 mL/min, the detection wavelength was 280 nm, and the eluate was collected in sections. The enzyme activity fraction was further purified with a DEAE Sepharose anion exchange column equilibrated with buffer A, the elution flow rate was 1mL/min, the enzyme activity fraction was collected, and concentrated by centrifugation with a 10,000 Dalton membrane to obtain a purified cutinase mutant. After purification, the cutinase mutant is electrophoretically pure, with an apparent molecular weight of 30KDa. The purification results are shown in Figure 1. the
实施例4:嗜热放线菌(Thermobifida fusca)角质酶突变体对角质或PET水解的效率。 Example 4: Efficiency of Thermobifida fusca cutinase mutants for hydrolysis of cutin or PET. the
角质酶对角质的水解效果测定使用如下方法:反应体系包括1%(w/v)苹果角质、25mM磷酸钾缓冲液(pH 8.0)、1mg酶液,60℃保温,不同时间取样,用0.02M NaOH溶液滴定生成的脂肪酸。 The hydrolysis effect of cutinase on cutin was determined using the following method: the reaction system included 1% (w/v) apple cutin, 25mM potassium phosphate buffer (pH 8.0), 1mg enzyme solution, kept at 60°C, sampled at different times, and used 0.02M NaOH solution was used to titrate the generated fatty acids. the
角质酶对PET的水解效果测定使用如下方法:反应体系为10ml,包括0.3g PET、25mM磷酸盐缓冲液(pH 8.0)、0.1mg酶液,150rpm 60℃保温72h以上,保温过程中取样进行RP-HPLC分析。水解活性通过水解产物的总和进行计算。水解产物对苯二甲酸(TPA)、单(对苯二甲酸-2-羟基乙酯)(MHET)、二(对苯二甲酸-2-羟基乙酯)(BHET)、1,2-乙烯基-单对苯二甲酸-单(对苯二甲酸-2-羟基乙酯)(EMT)通过LC-MS进行定量分析。 The hydrolysis effect of cutinase on PET is determined by the following method: the reaction system is 10ml, including 0.3g PET, 25mM phosphate buffer (pH 8.0), 0.1mg enzyme solution, 150rpm, 60℃ for more than 72h, and samples are taken during the incubation for RP - HPLC analysis. Hydrolytic activity was calculated from the sum of hydrolyzed products. Hydrolysis products Terephthalic acid (TPA), mono(2-hydroxyethyl terephthalate) (MHET), bis(2-hydroxyethyl terephthalate) (BHET), 1,2-vinyl - Monoterephthalic acid - Mono(2-hydroxyethyl terephthalate) (EMT) was quantitatively analyzed by LC-MS. the
如图2所示,I218A、W195A/F249A和Q132A/T101A突变体水解角质的能力较未改造嗜热放线菌(Thermobifida fusca)角质酶有明显的提高。其中W195A/F249A在水解过程的前期水解角质速度较快,并很快达到平衡;I218A和Q132A/T101A角质水解效率比原酶分别提高50%和20%。 As shown in Figure 2, the ability of I218A, W195A/F249A and Q132A/T101A mutants to hydrolyze cutin was significantly improved compared with that of the unmodified Thermobifida fusca cutinase. Among them, W195A/F249A hydrolyzed cutin at a faster rate in the early stage of the hydrolysis process, and quickly reached equilibrium; the cutin hydrolysis efficiency of I218A and Q132A/T101A increased by 50% and 20% respectively compared with the original enzyme. the
如图3所示,Q132A/T101A突变体水解PET的能力较未改造嗜热放线菌(Thermobifida fusca)角质酶有明显的提高,水解效率达原酶的3倍。 As shown in Figure 3, the ability of the Q132A/T101A mutant to hydrolyze PET was significantly improved compared with the unmodified Thermobifida fusca cutinase, and the hydrolysis efficiency was 3 times that of the original enzyme. the
核苷酸序列表Nucleotide Sequence Listing
<110>江南大学<110> Jiangnan University
the
<120>一种角质酶的突变体及其制备方法<120> A mutant of cutinase and its preparation method
the
<140> 201110139462.8<140> 201110139462.8
<141> 2009-12-18<141> 2009-12-18
the
<160> 10 <160> 10
the
<170> PatentIn version 3.3<170> PatentIn version 3.3
the
<210> 1<210> 1
<211> 32<211> 32
<212> DNA<212>DNA
<213>人工序列<213> Artificial sequence
the
<220><220>
<223>根据基因序列设计,用于定向突变。<223> Designed according to the gene sequence for directed mutation.
the
<400> 1<400> 1
gccgacctcg acacggccgc gccgtcgcca cg 32gccgacctcg acacggccgc gccgtcgcca cg 32
the
<210> 2<210> 2
<211> 30<211> 30
<212> DNA<212> DNA
<213>人工序列<213> Artificial sequence
the
<220><220>
<223>根据基因序列设计,用于定向突变。<223> Designed according to the gene sequence for directed mutation.
the
<400> 2<400> 2
cgtggcgacc ggcgcggccg tgtcgaggtc 30cgtggcgacc ggcgcggccg tgtcgaggtc 30
the
<210> 3<210> 3
<211> 33<211> 33
<212> DNA<212>DNA
<213>人工序列<213> Artificial sequence
the
<220><220>
<223>根据基因序列设计,用于定向突变。<223> Designed according to the gene sequence for directed mutation.
the
<400> 3<400> 3
atcccgctca ccccggcgca cctcaacaag aac 33atcccgctca ccccggcgca cctcaacaag aac 33
the
<210> 4<210> 4
<211> 35<211> 35
<212> DNA<212> DNA
<213>人工序列<213> Artificial sequence
the
<220><220>
<223>根据基因序列设计,用于定向突变。<223> Designed according to the gene sequence for directed mutation.
the
<400> 4<400> 4
gttcttgttg aggtgcgccg gggtgagcgg gatgg 35gttcttgttg aggtgcgccg gggtgagcgg gatgg 35
the
<210> 5<210> 5
<211> 31<211> 31
<212> DNA<212> DNA
<213>人工序列<213> Artificial sequence
the
<220><220>
<223>根据基因序列设计,用于定向突变。<223> Designed according to the gene sequence for directed mutation.
the
<400> 5<400> 5
gacggcgcaa cccacgccgc cccgaacatc c 31gacggcgcaa cccacgccgc cccgaacatc c 31
the
<210> 6<210> 6
<211> 31<211> 31
<212> DNA<212> DNA
<213>人工序列<213> Artificial sequence
the
<220><220>
<223>根据基因序列设计,用于定向突变。<223> Designed according to the gene sequence for directed mutation.
the
<400> 6<400> 6
ggatgttcgg ggcggcgtgg gttgcgccgt c 31ggatgttcgg ggcggcgtgg gttgcgccgt c 31
the
the
<210> 7<210> 7
<211> 35<211> 35
<212> DNA<212> DNA
<213>人工序列<213> Artificial sequence
the
<220><220>
<223>根据基因序列设计,用于定向突变。<223> Designed according to the gene sequence for directed mutation.
the
<400> 7<400> 7
catcaccacc ctcgacgcgc cggacagccg ggcag 35catcaccacc ctcgacgcgc cggacagccg ggcag 35
the
<210> 8<210> 8
<211> 35<211> 35
<212> DNA<212> DNA
<213>人工序列<213> Artificial sequence
the
<220><220>
<223>根据基因序列设计,用于定向突变。<223> Designed according to the gene sequence for directed mutation.
the
<400> 8<400> 8
ctgcccggct gtccggcgcg tcgagggtgg tgatg 35ctgcccggct gtccggcgcg tcgagggtgg tgatg 35
the
<210> 9<210> 9
<211> 33<211> 33
<212> DNA<212>DNA
<213>人工序列<213> Artificial sequence
the
<220><220>
<223>根据基因序列设计,用于定向突变。<223> Designed according to the gene sequence for directed mutation.
the
<400> 9<400> 9
gatctccccc ggctacgccg gcactgaggc ttc 33gatctccccc ggctacgccg gcactgaggc ttc 33
the
<210> 10<210> 10
<211> 32<211> 32
<212> DNA<212> DNA
<213>人工序列<213> Artificial sequence
the
<220><220>
<223>根据基因序列设计,用于定向突变。<223> Designed according to the gene sequence for directed mutation.
the
<400> 10<400> 10
gaagcctcag tgccggcgta gccggggaga tc 32gaagcctcag tgccggcgta gccggggaga tc 32
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101394628A CN102260655B (en) | 2009-12-18 | 2009-12-18 | Cutinase mutants and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101394628A CN102260655B (en) | 2009-12-18 | 2009-12-18 | Cutinase mutants and preparation method thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009102609935A Division CN101775382B (en) | 2009-12-18 | 2009-12-18 | A mutant of cutinase and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102260655A CN102260655A (en) | 2011-11-30 |
CN102260655B true CN102260655B (en) | 2012-07-25 |
Family
ID=45007496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011101394628A Expired - Fee Related CN102260655B (en) | 2009-12-18 | 2009-12-18 | Cutinase mutants and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102260655B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102899298B (en) * | 2012-07-05 | 2015-04-15 | 江南大学 | Method for expressing T.fusca cutinase by matrix |
CL2013003356A1 (en) | 2013-11-22 | 2014-08-08 | Univ Pontificia Catolica Chile | Mutants of the gene coding for the phenylacetone monooxygenase (pamo) enzyme isolated from fusca or thermononospora fusca thermofibide with substitutions at positions 93.94, and 440 (n, dyf, respectively) and specific combinations of positions 441,442,443 and / or 444 (god , poe, t, v, iowyq respectively) with high performance as catalysts in the conversion of cyclohexanone to epailon-caprolactone and high thermal stability, DNA conditioning and encoded amino acidic sequences. |
CN110343637B (en) * | 2019-06-28 | 2021-06-08 | 浙江工业大学 | Enterobacter HY1 and its application in the degradation of bishydroxyethyl terephthalate |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1090328A (en) * | 1992-12-18 | 1994-08-03 | 尤尼利弗公司 | Improved lipolytic enzyme and its purposes |
CN1426463A (en) * | 2000-06-02 | 2003-06-25 | 诺维信公司 | Cutinase variants |
-
2009
- 2009-12-18 CN CN2011101394628A patent/CN102260655B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1090328A (en) * | 1992-12-18 | 1994-08-03 | 尤尼利弗公司 | Improved lipolytic enzyme and its purposes |
CN1426463A (en) * | 2000-06-02 | 2003-06-25 | 诺维信公司 | Cutinase variants |
Also Published As
Publication number | Publication date |
---|---|
CN102260655A (en) | 2011-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105950586B (en) | A low-temperature xylosidase HJ14GH43 and its salt-tolerant mutant | |
CN110129301B (en) | A lipase mutant with improved catalytic activity and its application | |
CN105441404A (en) | Omega-transaminase mutant and encoding gene and preparation method thereof | |
CN108588061B (en) | Low-temperature alkaline pectinase mutant with improved specific enzyme activity and thermal stability | |
CN101942025B (en) | Heparanase III fusion protein and coding gene and expression method thereof | |
CN101168735A (en) | A heat-resistant cutinase and its coding gene and expression | |
CN102260654B (en) | Mutant of cutinase and preparation method thereof | |
CN103981161A (en) | Salt-tolerant ethanol-tolerant protease-tolerant surfactant-tolerant exoinulinase, gene thereof, vector and strain | |
CN101591648A (en) | Preparation of a heat-resistant cutinase-CBD and its application in cotton fiber scouring | |
CN113122526B (en) | Nitrile hydratase lysine mutant HBA-K1, encoding gene and application | |
CN102260655B (en) | Cutinase mutants and preparation method thereof | |
CN104774813A (en) | Leucine dehydrogenase and preparation method and application thereof | |
CN102358896B (en) | A kind of thermostable cutinase-CBD fusion enzyme and its mutant and application | |
CN101942024B (en) | Heparanase II fusion protein and coding gene and expression method thereof | |
CN101775382B (en) | A mutant of cutinase and its preparation method | |
CN102653742B (en) | High-temperature resistant rhizopuschinensis lipase mutant | |
CN102653743B (en) | Thermal stability improved lipase mutant constructed through orthogenesis | |
CN112941062B (en) | Nitrile hydratase lysine mutant HBA-K2H1, coding gene and application | |
CN104031892A (en) | Leucine dehydrogenase and gene for coding same | |
CN106399334A (en) | Thermally stable mutant aromatic sulfatase and its gene and use | |
CN106085994B (en) | An Alkaline Pectinase Mutant with Increased Specific Enzyme Activity | |
CN113151234B (en) | Nitrile hydratase lysine mutant HBA-K2H2R, encoding gene and application | |
CN107446903B (en) | Salt-tolerant ethanol-tolerant pectinase with 3 optimal pH values and gene thereof | |
CN113151233B (en) | Nitrile hydratase lysine mutant HBA-K2H2, encoding gene and application | |
CN107488645B (en) | Lipase TTL mutant TTL-Ser61Asn with improved thermal stability and gene and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120725 Termination date: 20141218 |
|
EXPY | Termination of patent right or utility model |