CN102248536A - Mobile mechanical arm control system used for extendable modularization - Google Patents
Mobile mechanical arm control system used for extendable modularization Download PDFInfo
- Publication number
- CN102248536A CN102248536A CN2011101601083A CN201110160108A CN102248536A CN 102248536 A CN102248536 A CN 102248536A CN 2011101601083 A CN2011101601083 A CN 2011101601083A CN 201110160108 A CN201110160108 A CN 201110160108A CN 102248536 A CN102248536 A CN 102248536A
- Authority
- CN
- China
- Prior art keywords
- pin
- module
- dsp chip
- mechanical arm
- zone controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Manipulator (AREA)
Abstract
本发明涉及一种用于可拓展模块化的移动机械臂控制系统。其方案是:工业计算机(1)通过1~3个运动规划控制器(2)分别与1~6个机械臂区域控制器(4)和1~6个移动平台区域控制器(9)连接;每个机械臂区域控制器(4)分别与1~6个关节驱动模块(5)连接;每个关节驱动模块(5)与第一信息采集反馈器(6)对应连接;每1~6个第一信息采集反馈器(6)与各自对应的关节驱动模块(5)连接的机械臂区域控制器(4)连接;每个移动平台区域控制器(9)分别与2~4个轮子驱动模块(8)连接;每个轮子驱动模块(8)与第二信息采集反馈器(7)对应连接;每2~4个第二信息采集反馈器(7)与各自对应的轮子驱动模块(8)连接的移动平台区域控制器(9)连接。本发明具有鲁棒性、抗干扰性和实时性强等特点。
The invention relates to a control system for an expandable modular mobile robot arm. The solution is: the industrial computer (1) is respectively connected to 1 to 6 manipulator area controllers (4) and 1 to 6 mobile platform area controllers (9) through 1 to 3 motion planning controllers (2); Each manipulator area controller (4) is respectively connected with 1 to 6 joint drive modules (5); each joint drive module (5) is correspondingly connected with the first information collection feedback device (6); every 1 to 6 The first information collection feedback device (6) is connected with the robot arm area controllers (4) connected to the corresponding joint drive modules (5); each mobile platform area controller (9) is respectively connected with 2 to 4 wheel drive modules (8) connection; each wheel drive module (8) is correspondingly connected with the second information collection feedback device (7); every 2 to 4 second information collection feedback devices (7) are respectively corresponding to the wheel drive module (8) The connected mobile platform area controller (9) is connected. The invention has the characteristics of robustness, anti-interference and strong real-time performance.
Description
技术领域: Technical field:
本发明属于移动机械臂控制技术领域。具体涉及一种用于可拓展模块化的移动机械臂控制系统。The invention belongs to the technical field of mobile mechanical arm control. In particular, it relates to a control system for an expandable modular mobile manipulator.
背景技术: Background technique:
近年来,移动机械臂在国防、工业、农业及医疗行业展现了较高的应用价值。模块化机械臂由各种功能模块组成,各模块完整而单一,使得系统有柔性、可拓展、易于修改、重构和添加配置功能,同时根据任务的需要或外界环境的变化,通过随机自主调整各关节模块,以达到相同的目标位姿。In recent years, mobile robotic arms have shown high application value in national defense, industry, agriculture and medical industries. The modular manipulator is composed of various functional modules. Each module is complete and single, making the system flexible, expandable, easy to modify, reconfigure and add configuration functions. Each joint module to achieve the same target pose.
将模块化的思想应用到机械臂上,当某一模块发生故障时,其他模块的参数耦合可以代替失效模块所负担的任务,大大增强了系统的自我修复能力。集成式6自由度微动并联机器人系统(王振华,陈立国,孙立宁.集成式6自由度微动并联机器人系统.光学精密工程.2007年第15卷第9期)具有定位精度和可靠性高、使用灵活方便的特点,但是其采用机构、驱动、检测一体化的思想,集成度高、结构封闭,无法根据需要更改系统配置,同时当系统任一单元出现故障时,便无法完成工作任务,使得移动机械臂系统鲁棒性不够高。Applying the idea of modularization to the robotic arm, when a module fails, the parameter coupling of other modules can replace the tasks borne by the failed module, which greatly enhances the self-healing ability of the system. Integrated 6-DOF micro-motion parallel robot system (Wang Zhenhua, Chen Liguo, Sun Lining. Integrated 6-DOF micro-motion parallel robot system. Optical Precision Engineering. Volume 15,
随着机器人应用领域的扩展,如危险环境下机器人作业等,本地控制已无法满足控制要求,远程操作能力是机器人系统必须具备的要求,模块化可重构履带式微小型机器人的研究(李满天,黄博,刘国才,立宁.模块化可重构履带式微小型机器人的研究.机器人.2006年第28卷第5期)用了微控制器和PC机两级控制体系,这种分层设计系统虽结构合理,但两级间采用蓝牙通讯,其工作频段为全球统一开放的2.4GHz工业、科学和医学频段,会受到诸如微波炉、无绳电话、科研仪器、工业或医疗设备的干扰,抗干扰能力差。同时,也限制了对机器人的远程控制,其控制灵活性有待进一步提高。With the expansion of robot application fields, such as robot operations in dangerous environments, local control can no longer meet the control requirements, and remote operation capability is a must-have requirement for robot systems. Research on modular reconfigurable tracked micro-robots (Li Mantian, Huang Bo, Liu Guocai, Li Ning. Research on Modular Reconfigurable Tracked Micro-robots. Robotics. 2006, Vol. 28, No. 5) used a two-level control system of microcontroller and PC. The structure is reasonable, but Bluetooth communication is used between the two stages. Its working frequency band is the 2.4GHz industrial, scientific and medical frequency band that is unified and open globally. It will be interfered by such as microwave ovens, cordless phones, scientific research instruments, industrial or medical equipment, and has poor anti-interference ability. . At the same time, it also limits the remote control of the robot, and its control flexibility needs to be further improved.
在机械臂关节模块运动规划中,存在着大量的数学计算如坐标变换、正逆运动学方程求解和高次插补运算等。同时,运动规划控制器与伺服驱动器之间需要进行大量的数据交换,对于运动规划控制的实时性要求需要采用高速的处理器才能满足。“基于分布式控制的即插即用机械臂系统”(CN1586829)专利技术采用了分布式的控制技术,该技术虽提高了控制精度,但采用8位单片机完成运动规划控制,运算和数据处理能力有限,运动规划控制器的实时性受到影响;嵌入式系统在机器人控制系统中应用(周杰,陈伟海,于守谦.基于ARM的嵌入式系统在机器人控制系统中应用.微计算机信息,2007年第23卷第2期)技术,虽具有层次化的体系结构,但用于完成控制算法的控制器为ARM,主频为67.5MHZ,运算速度低,不能较好的满足实时性的要求。In the motion planning of the joint module of the manipulator, there are a large number of mathematical calculations such as coordinate transformation, solution of forward and reverse kinematic equations, and high-order interpolation operations. At the same time, a large amount of data needs to be exchanged between the motion planning controller and the servo drive, and the real-time requirements for motion planning control need to be met by using a high-speed processor. "Plug and Play Manipulator System Based on Distributed Control" (CN1586829) patent technology adopts distributed control technology. Although this technology improves the control accuracy, it uses 8-bit single-chip microcomputer to complete motion planning control, calculation and data processing capabilities. Limited, the real-time performance of the motion planning controller is affected; the application of embedded systems in robot control systems (Zhou Jie, Chen Weihai, Yu Shouqian. The application of ARM-based embedded systems in robot control systems. Microcomputer Information, 2007
移动机械臂系统涉及到机械臂和移动平台两个子系统。分散独立控制机械臂和移动平台时,精度必然受到影响;集中控制机械臂和移动平台时,机械臂子系统和移动平台子系统之间存在较强的动力学耦合,这对于系统的性能有着较大的影响。所以,如何协调移动平台动态避障和移动机械臂末端的实时操作是一个至关重要的问题。“一种智能移动机械臂控制系统”(CN101817182)专利技术采用了分布式的控制技术,该技术虽然对自主移动小车和模块化机械臂能够进行远程控制,但在自主移动小车和模块化机械臂的协调控制方面不强,没有充分发挥移动机械臂可同时实现移动和操作的优点。The mobile manipulator system involves two subsystems, the manipulator and the mobile platform. When the manipulator and the mobile platform are controlled separately and independently, the accuracy will inevitably be affected; when the manipulator and the mobile platform are controlled centrally, there is a strong dynamic coupling between the manipulator subsystem and the mobile platform subsystem, which has a greater impact on the performance of the system. big impact. Therefore, how to coordinate the dynamic obstacle avoidance of the mobile platform and the real-time operation of the end of the mobile manipulator is a crucial issue. "An Intelligent Mobile Robotic Arm Control System" (CN101817182) patent technology adopts distributed control technology. Although this technology can remotely control the autonomous mobile trolley and modular robotic The coordinated control aspect of the robot is not strong, and the advantages of the mobile robot arm that can move and operate at the same time are not fully utilized.
综上所述,现有技术中的移动机械臂控制系统存在以下问题:鲁棒性不强;远程操作时抗干扰性不强;操作时不能满足任务的实时性需求;不易拓展和修改;移动平台和机械臂的协调控制能力较差。To sum up, the mobile manipulator control system in the prior art has the following problems: the robustness is not strong; the anti-interference is not strong during remote operation; Coordinated control of the platform and the robotic arm is poor.
发明内容: Invention content:
本发明旨在克服现有技术缺陷,目的是提供一种易于修改、鲁棒性好、协调控制能力强、实时运动规划和远程操作时抗干扰性强的用于可拓展模块化的移动机械臂控制系统。The purpose of the present invention is to overcome the defects of the existing technology, and the purpose is to provide a mobile robot arm for scalable modularization that is easy to modify, has good robustness, strong coordination control ability, real-time motion planning and strong anti-interference during remote operation Control System.
为了实现上述目的,本发明采用的技术方案是:工业计算机通过以太网以有线或无线方式与1~3个运动规划控制器分别连接;每个运动规划控制器各自通过CAN-bus分别与1~6个机械臂区域控制器和1~6个移动平台区域控制器连接;每个机械臂区域控制器各自通过CAN-bus分别与1~6个关节驱动模块连接;每个关节驱动模块分别与各自对应的第一信息采集反馈器连接;每1~6个第一信息采集反馈器分别与各自对应的关节驱动模块连接的机械臂区域控制器连接;每个移动平台区域控制器各自通过CAN-bus分别与2~4个轮子驱动模块连接;每个轮子驱动模块分别与各自对应的第二信息采集反馈器连接;每2~4个第二信息采集反馈器分别与各自对应的轮子驱动模块连接的移动平台区域控制器连接。电源模块与每个运动规划控制器、每个机械臂区域控制器、每个移动平台区域控制器、每个关节驱动模块、每个轮子驱动模块、每个第一信息采集反馈器和每个第二信息采集反馈器分别连接。In order to achieve the above object, the technical solution adopted by the present invention is: the industrial computer is connected to 1 to 3 motion planning controllers in a wired or wireless manner through Ethernet; each motion planning controller is connected to 1 to 3 motion planning controllers respectively through CAN-
运动规划控制软件嵌入在运动规划控制器中。The motion planning control software is embedded in the motion planning controller.
所述的电源模块包括直流电源、第一电压转换芯片、第二电压转换芯片和第三电压转换芯片。直流电源与第一电压转换芯片的INPUT端口连接,第一电压转换芯片的OUTPUT端口与第二电压转换芯片的INPUT端口连接,第二电压转换芯片的OUTPUT端口与第三电压转换芯片的INPUT端口连接。第一电压转换芯片的输出端口OUTPUT与每个轮子驱动模块和每个关节驱动模块分别连接,第二电压转换芯片的输出端口OUTPUT与每个第一信息采集反馈器和每个第二信息采集反馈器分别连接,第三电压转换芯片的输出端口OUTPUT与每个运动规划控制器、每个机械臂区域控制器和每个移动平台区域控制器分别连接。第一电压转换芯片的输出端口OUTPUT的输出电压为+12V,第二电压转换芯片的输出端口OUTPUT的输出电压为+5V,第三电压转换芯片的输出端口OUTPUT的输出电压为+3.3V。The power module includes a DC power supply, a first voltage conversion chip, a second voltage conversion chip and a third voltage conversion chip. The DC power supply is connected to the INPUT port of the first voltage conversion chip, the OUTPUT port of the first voltage conversion chip is connected to the INPUT port of the second voltage conversion chip, and the OUTPUT port of the second voltage conversion chip is connected to the INPUT port of the third voltage conversion chip . The output port OUTPUT of the first voltage conversion chip is connected to each wheel drive module and each joint drive module respectively, and the output port OUTPUT of the second voltage conversion chip is connected to each first information collection feedback device and each second information collection feedback device. The output port OUTPUT of the third voltage conversion chip is respectively connected with each motion planning controller, each manipulator area controller and each mobile platform area controller. The output voltage of the output port OUTPUT of the first voltage conversion chip is +12V, the output voltage of the output port OUTPUT of the second voltage conversion chip is +5V, and the output voltage of the output port OUTPUT of the third voltage conversion chip is +3.3V.
所述的运动规划控制器包括第一DSP芯片、以太网控制器、以太网连接器和第一CAN通讯模块。第一DSP芯片的XCLKOUT、GPIOB7、XINT1、XINT2、SPISIMO、SPISOMI和SPICLK引脚分别与以太网控制器的OSC1、SI、SO和SCK引脚对应连接,第一DSP芯片的CANTX和CANRX引脚分别与第一CAN通讯模块的TXD和RXD引脚对应连接,运动规划控制软件嵌入在第一DSP芯片中;以太网控制器的TPOUT+、TPOUT-、TPIN+和TPIN-引脚分别与以太网连接器的TP_OUT+、TP_OUT-、TP_IN+和TP_IN-引脚对应连接。第一DSP芯片的VDDIO引脚、以太网控制器的VDD引脚和以太网连接器的TX_CT引脚分别与电源模块连接;第一CAN通讯模块通过CAN-bus与每个机械臂区域控制器和每个移动平台区域控制器连接,以太网连接器的J1~J8输出端通过双绞线与工业计算机连接。The motion planning controller includes a first DSP chip, an Ethernet controller, an Ethernet connector and a first CAN communication module. XCLKOUT, GPIOB7, XINT1, XINT2, SPISIMO, SPISOMI and SPICLK pins of the first DSP chip are respectively connected to OSC1, The SI, SO and SCK pins are correspondingly connected, the CANTX and CANRX pins of the first DSP chip are respectively connected with the TXD and RXD pins of the first CAN communication module, and the motion planning control software is embedded in the first DSP chip; Ethernet The TPOUT + , TPOUT - , TPIN + and TPIN - pins of the controller are connected to the TP_OUT + , TP_OUT - , TP_IN + and TP_IN - pins of the Ethernet connector respectively. The VDDIO pin of the first DSP chip, the VDD pin of the Ethernet controller and the TX_CT pin of the Ethernet connector are respectively connected to the power supply module; the first CAN communication module communicates with each robot arm area controller and the Each mobile platform is connected to the regional controller, and the J1-J8 output terminals of the Ethernet connector are connected to the industrial computer through a twisted pair.
所述的机械臂区域控制器包括第二DSP芯片和第二CAN通讯模块。第二DSP芯片的CANTX和CANRX引脚分别与第二CAN通讯模块的TXD和RXD引脚对应连接;第二DSP芯片的IOPA2和IOPA3引脚分别与每个第一信息采集反馈器连接;第二CAN通讯模块通过CAN-bus与运动规划控制器和每个关节驱动模块连接;第二DSP芯片的VDDIO引脚与电源模块连接。The manipulator area controller includes a second DSP chip and a second CAN communication module. The CANTX and CANRX pins of the second DSP chip are respectively connected with the TXD and RXD pins of the second CAN communication module; the IOPA2 and IOPA3 pins of the second DSP chip are respectively connected with each first information collection feedback device; the second The CAN communication module is connected with the motion planning controller and each joint drive module through CAN-bus; the VDDIO pin of the second DSP chip is connected with the power module.
所述的移动平台区域控制器包括第三DSP芯片和第三CAN通讯模块。第三DSP芯片的CANTX和CANRX引脚分别与第三CAN通讯模块的TXD和RXD引脚对应连接;第三DSP芯片的IOPA2和IOPA3引脚分别与每个第二信息采集反馈器连接,第三CAN通讯模块通过CAN-bus与运动规划控制器和每个轮子驱动模块连接;第三DSP芯片的VDDIO引脚与电源模块连接。The mobile platform area controller includes a third DSP chip and a third CAN communication module. The CANTX and CANRX pins of the third DSP chip are respectively connected with the TXD and RXD pins of the third CAN communication module; the IOPA2 and IOPA3 pins of the third DSP chip are respectively connected with each second information collection feedback device, and the third The CAN communication module is connected with the motion planning controller and each wheel drive module through CAN-bus; the VDDIO pin of the third DSP chip is connected with the power module.
所述的关节驱动模块包括第四DSP芯片、第一光电耦合模块、第一电机驱动模块和第一自我保护单元。第四DSP芯片的PWM1和PWM2引脚分别与第一光电藕合模块的ANODE1和ANODE2引脚对应连接,第四DSP芯片的IOPE3引脚与第一自我保护单元的ENABLE_BRAKE引脚连接,第一光电藕合模块的OV1和OV2引脚分别与第一电机驱动模块的BHI和BLI引脚对应连接,第一自我保护单元的BRAKE1和BRAKE2引脚分别与第一电机驱动模块的OUT1和OUT2引脚对应连接。第四DSP芯片通过CAN-bus与机械臂区域控制器连接,第四DSP芯片的APP1_SENSOR和APP2_SENSOR引脚分别与各自对应的第一信息采集反馈器连接,第四DSP芯片的VDDIO引脚、第一光电耦合模块的VCC引脚和第一电机驱动模块的VCC引脚分别与电源模块连接。The joint drive module includes a fourth DSP chip, a first photoelectric coupling module, a first motor drive module and a first self-protection unit. The PWM1 and PWM2 pins of the fourth DSP chip are respectively connected to the ANODE1 and ANODE2 pins of the first photoelectric coupling module, and the IOPE3 pin of the fourth DSP chip is connected to the ENABLE_BRAKE pin of the first self-protection unit. The OV1 and OV2 pins of the coupling module are respectively connected to the BHI and BLI pins of the first motor drive module, and the BRAKE1 and BRAKE2 pins of the first self-protection unit are respectively corresponding to the OUT1 and OUT2 pins of the first motor drive module connect. The fourth DSP chip is connected to the robot arm area controller through the CAN-bus, the APP1_SENSOR and APP2_SENSOR pins of the fourth DSP chip are respectively connected to the corresponding first information collection feedback device, the VDDIO pin of the fourth DSP chip, the first The VCC pin of the photoelectric coupling module and the VCC pin of the first motor driving module are respectively connected to the power module.
所述的轮子驱动模块包括第五DSP芯片、第二光电耦合模块、第二电机驱动模块和第二自我保护单元。第五DSP芯片的PWM1和PWM2引脚分别与第二光电藕合模块的ANODE1和ANODE2引脚对应连接,第五DSP芯片的IOPE3引脚与第二自我保护单元的ENABLE_BRAKE引脚连接,第二光电藕合模块的OV1和OV2引脚分别与第二电机驱动模块的BHI和BLI引脚对应连接,第二自我保护单元的BRAKE1和BRAKE2引脚分别与第二电机驱动模块的OUT1和OUT2引脚对应连接。第五DSP芯片通过CAN-bus与移动平台区域控制器连接;第五DSP芯片的APP1_SENSOR和APP2_SENSOR引脚分别与各自对应的第二信息采集反馈器连接,第五DSP芯片的VDDIO引脚、第二光电耦合模块的VCC引脚和第二电机驱动模块的VCC引脚分别与电源模块连接。The wheel drive module includes a fifth DSP chip, a second photoelectric coupling module, a second motor drive module and a second self-protection unit. The PWM1 and PWM2 pins of the fifth DSP chip are respectively connected to the ANODE1 and ANODE2 pins of the second photoelectric coupling module, the IOPE3 pin of the fifth DSP chip is connected to the ENABLE_BRAKE pin of the second self-protection unit, and the second photoelectric coupling module The OV1 and OV2 pins of the coupling module are respectively connected to the BHI and BLI pins of the second motor drive module, and the BRAKE1 and BRAKE2 pins of the second self-protection unit are respectively corresponding to the OUT1 and OUT2 pins of the second motor drive module connect. The fifth DSP chip is connected with the mobile platform area controller through the CAN-bus; the APP1_SENSOR and APP2_SENSOR pins of the fifth DSP chip are respectively connected with the corresponding second information collection feedback device respectively, the VDDIO pin of the fifth DSP chip, the second The VCC pin of the photoelectric coupling module and the VCC pin of the second motor drive module are respectively connected to the power module.
所述的第一信息采集反馈器包括第一滞回比较器和第一光电编码器。第一滞回比较器的1A和2A引脚分别与第一光电编码器的XA和XB引脚对应连接;第一滞回比较器的1Y和2Y引脚分别与机械臂区域控制器连接,第一光电编码器的XFSIPUTA和XFSIPUTB引脚分别与各自对应的关节驱动模块连接,第一滞回比较器的VCC引脚和第一光电编码器的VCC引脚分别与电源模块连接。The first information collection feedback device includes a first hysteresis comparator and a first photoelectric encoder. The 1A and 2A pins of the first hysteresis comparator are respectively connected to the XA and XB pins of the first photoelectric encoder; the 1Y and 2Y pins of the first hysteresis comparator are respectively connected to the robot arm area controller, and The XFSIPUTA and XFSIPUTB pins of a photoelectric encoder are respectively connected to the corresponding joint drive modules, and the VCC pins of the first hysteresis comparator and the VCC pins of the first photoelectric encoder are respectively connected to the power supply module.
所述的第二信息采集反馈器包括第二滞回比较器和第二光电编码器。第二滞回比较器的1A和2A引脚分别与第二光电编码器的XA和XB引脚对应连接;第二滞回比较器的1Y和2Y引脚分别与移动平台区域控制器连接,第二光电编码器的XFSIPUTA和XFSIPUTB引脚分别与各自对应的轮子驱动模块连接,第二滞回比较器的VCC引脚和第二光电编码器的VCC引脚分别与电源模块连接。The second information collection feedback device includes a second hysteresis comparator and a second photoelectric encoder. The 1A and 2A pins of the second hysteresis comparator are respectively connected with the XA and XB pins of the second photoelectric encoder; the 1Y and 2Y pins of the second hysteresis comparator are respectively connected with the mobile platform area controller, the first The XFSIPUTA and XFSIPUTB pins of the second photoelectric encoder are respectively connected to the corresponding wheel drive modules, and the VCC pins of the second hysteresis comparator and the VCC pins of the second photoelectric encoder are respectively connected to the power supply module.
所述的运动规划控制软件的主流程为:The main flow of the motion planning control software is:
S-1:初始化,进入循环;S-1: Initialize, enter the cycle;
S-2:判断运动规划控制器是否接收到工业计算机的指令,不是则关节驱动模块驱动的关节和轮子驱动模块驱动的轮子停止运动,是则进行S-3;S-2: Determine whether the motion planning controller has received an instruction from the industrial computer, if not, the joints driven by the joint drive module and the wheels driven by the wheel drive module stop moving, and if so, proceed to S-3;
S-3:运动规划控制器发送指令至每个机械臂区域控制器和移动平台区域控制器;S-3: The motion planning controller sends commands to each robot arm area controller and mobile platform area controller;
S-4:判断机械臂区域控制器和移动平台区域控制器是否接收到运动规划控制器的指令,不是则重新判断:是则进行S-5;S-4: Judging whether the robot arm area controller and the mobile platform area controller have received the instructions from the motion planning controller, if not, re-judgment: if yes, proceed to S-5;
S-5:判断关节驱动模块和轮子驱动模块是否进行零位置检测,是则进行零位置检测,再返回S-4,不是则进行S-6;S-5: Determine whether the joint drive module and the wheel drive module are performing zero position detection, if yes, perform zero position detection, and then return to S-4, if not, perform S-6;
S-6:关节驱动模块和轮子驱动模块分别接收各自对应的机械臂区域控制器和移动平台区域控制器相应的指令;S-6: The joint drive module and the wheel drive module respectively receive the corresponding instructions from the respective robot arm area controllers and mobile platform area controllers;
S-7:读取关节驱动模块和轮子驱动模块接收到的信息;通过运动控制算法,关节驱动模块控制关节动作,轮子驱动模块控制轮子运动;S-7: Read the information received by the joint drive module and the wheel drive module; through the motion control algorithm, the joint drive module controls the joint movement, and the wheel drive module controls the wheel movement;
S-8:判断关节驱动模块所驱动的关节和轮子驱动模块所驱动的轮子是否正常工作,正常工作则分别发送信息至第一信息采集反馈器和第二信息采集反馈器,非正常工作则分别启动第一自我保护单元和第二自我保护单元,再分别发送信息至第一信息采集反馈器和第二信息采集反馈器;S-8: Determine whether the joints driven by the joint drive module and the wheels driven by the wheel drive module are working normally. If they work normally, they will send information to the first information collection feedback device and the second information collection feedback device respectively. Start the first self-protection unit and the second self-protection unit, and then send information to the first information collection feedback device and the second information collection feedback device respectively;
S-9:判断第一信息采集反馈器和第二信息采集反馈器是否接收到关节和轮子的状态信息,是则进行S-10,不是则返回S-7;S-9: Judging whether the first information collection feedback device and the second information collection feedback device have received the state information of joints and wheels, if yes, go to S-10, if not, return to S-7;
S-10:发送关节驱动模块所驱动的关节和轮子驱动模块所驱动的轮子的状态信息至相应的机械臂区域控制器和移动平台区域控制器,再返回S-2。S-10: Send the state information of the joints driven by the joint drive module and the wheels driven by the wheel drive module to the corresponding robot arm area controller and mobile platform area controller, and then return to S-2.
由于采用上述技术方案,本发明由各种模块单元按一定的拓扑结构拼接而成,降低了整个系统的复杂性;同时,模块化的设计使系统在硬件发生改变的情况下,仅需改动与它相连的总线配置,大大减少了系统硬件改动所需的时间,能非常方便地增加或减少机器人的自由度,增强了系统的可拓展性。当系统出现故障时,只需查出哪个模块出现故障,便可将该模块进行相应的处理或替换,使系统的维护和修改变得非常方便。同时,当某一关节出现故障时,移动机械臂可通过自身调整使得另外的关节协调控制完成工作任务,提高了移动机械臂控制系统的鲁棒性。Due to the adoption of the above-mentioned technical scheme, the present invention is formed by splicing various modular units according to a certain topological structure, which reduces the complexity of the entire system; at the same time, the modular design makes the system only need to change and The bus configuration it is connected to greatly reduces the time required for system hardware changes, can easily increase or decrease the degree of freedom of the robot, and enhances the scalability of the system. When the system fails, it is only necessary to find out which module fails, and the module can be processed or replaced accordingly, which makes the maintenance and modification of the system very convenient. At the same time, when a joint fails, the mobile manipulator can adjust itself to make other joints coordinate and control to complete the task, which improves the robustness of the control system of the mobile manipulator.
本发明采用CAN-bus通讯方式解决了传统控制器点对点数据传输方式中传输效率低和接口电路复杂的问题,有利于移动机械臂模块的组成,并具有可拓展性,提高了移动机械臂控制系统的抗干扰性,尤其是提高了远程操作时的抗干扰性。The invention adopts the CAN-bus communication mode to solve the problems of low transmission efficiency and complex interface circuit in the point-to-point data transmission mode of the traditional controller, which is beneficial to the composition of the mobile manipulator module, has scalability, and improves the control system of the mobile manipulator The anti-jamming performance, especially improves the anti-jamming performance during remote operation.
本发明采用分级式结构,在工业计算机与机械臂区域控制器和移动平台区域控制器之间加入运动规划控制器,通过运动规划控制器对机械臂区域控制器和移动平台区域控制器协调控制,有效地解决了机械臂子系统和移动平台子系统之间的耦合问题,充分发挥了移动机械臂移动和操作功能的优点。The invention adopts a hierarchical structure, adding a motion planning controller between the industrial computer, the area controller of the manipulator and the area controller of the mobile platform, and coordinates and controls the area controller of the manipulator and the area controller of the mobile platform through the motion planning controller. The coupling problem between the manipulator subsystem and the mobile platform subsystem is effectively solved, and the advantages of the mobile manipulator's moving and operating functions are fully utilized.
本发明采用DSP芯片作为核心处理器,不仅具有数字信号处理器的优点,同时又具有微控制器的特点,无论在运算速度和数据的处理能力上都可满足运动控制的高实时性要求,为完成复杂的实时运动控制算法提供了可靠的平台,也使得移动机械臂的实时运动规划能力得到加强。The present invention uses a DSP chip as the core processor, which not only has the advantages of a digital signal processor, but also has the characteristics of a microcontroller, and can meet the high real-time requirements of motion control in terms of computing speed and data processing capacity. Completing complex real-time motion control algorithms provides a reliable platform and also enhances the real-time motion planning capabilities of the mobile manipulator.
本发明采用以太网方式与上位机进行通讯,不仅具有传输速率高、信息量大、兼容性强和编址灵活方便等显著优点,且可通过以太网将系统接入局域网或者英特网,从而实现系统的远程控制,提高了系统控制的灵活性和使用价值。The present invention adopts Ethernet to communicate with the upper computer, which not only has significant advantages such as high transmission rate, large amount of information, strong compatibility, flexible and convenient addressing, etc., but also can connect the system to a local area network or the Internet through Ethernet, thereby The remote control of the system is realized, and the flexibility and use value of the system control are improved.
因此,本发明具有易于修改、可拓展、重构和添加配置、鲁棒性好、协调控制能力强、实时运动规划和远程操作时抗干扰能力强的特点。可广泛用于工业机器人、机械臂、空间机器人、类人机器人等具有多个自由度模块的机器人控制系统。Therefore, the present invention has the characteristics of easy modification, expandability, reconfiguration and configuration addition, good robustness, strong coordination control ability, real-time motion planning and strong anti-interference ability in remote operation. It can be widely used in robot control systems with multiple degrees of freedom modules such as industrial robots, manipulators, space robots, and humanoid robots.
附图说明 Description of drawings
图1是本发明的一种结构示意图;Fig. 1 is a kind of structural representation of the present invention;
图2是图1中的电源模块3的电路连接示意图;Fig. 2 is a schematic diagram of the circuit connection of the
图3是图1中的运动规划控制器2的电路连接示意图;Fig. 3 is the circuit connection schematic diagram of
图4是图1中的机械臂区域控制器4的电路连接示意图;Fig. 4 is a schematic diagram of the circuit connection of the
图5是图1中的移动平台区域控制器9的电路连接示意图;Fig. 5 is a schematic diagram of the circuit connection of the mobile
图6是图1中的关节驱动模块5的电路连接示意图;Fig. 6 is a schematic diagram of the circuit connection of the
图7是图1中的轮子驱动模块8的电路连接示意图;Fig. 7 is a schematic diagram of the circuit connection of the
图8是图1中的第一信息采集反馈器6的电路连接示意图;FIG. 8 is a schematic diagram of the circuit connection of the first information
图9是图1中的第二信息采集反馈器7的电路连接示意图;FIG. 9 is a schematic diagram of the circuit connection of the second information
图10是运动规划控制软件的主流程示意图。Fig. 10 is a schematic diagram of the main flow of the motion planning control software.
具体实施方式 Detailed ways
下面结合附图和具体实施方式对本发明作进一步的描述,并非对其保护范围的限制:Below in conjunction with accompanying drawing and specific embodiment, the present invention will be further described, not limitation to its protection scope:
实施例1Example 1
一种用于可拓展模块化的移动机械臂控制系统。其结构示意图如图1所示:工业计算机1通过以太网以有线方式与1个运动规划控制器2连接;运动规划控制器2通过CAN-bus分别与2个机械臂区域控制器4和2个移动平台区域控制器9连接;每个机械臂区域控制器4各自通过CAN-bus分别与2个关节驱动模块5连接;每个关节驱动模块5分别与各自对应的第一信息采集反馈器6连接;每2个第一信息采集反馈器6分别与各自对应的关节驱动模块5连接的机械臂区域控制器4连接。每个移动平台区域控制器9各自通过CAN-bus分别与2个轮子驱动模块8连接;每个轮子驱动模块8分别与各自对应的第二信息采集反馈器7连接;每2个第二信息采集反馈器7分别与各自对应的轮子驱动模块8连接的移动平台区域控制器9连接。电源模块3与运动规划控制器2、每个机械臂区域控制器4、每个移动平台区域控制器9、每个关节驱动模块5、每个轮子驱动模块8、每个第一信息采集反馈器6和每个第二信息采集反馈器7分别连接。A control system for scalable modular mobile manipulators. Its structural diagram is shown in Figure 1: industrial computer 1 is connected to a
运动规划控制软件嵌入在运动规划控制器2中。The motion planning control software is embedded in the
所述的电源模块3包括直流电源13、第一电压转换芯片12、第二电压转换芯片11和第三电压转换芯片10。直流电源13与第一电压转换芯片12的INPUT端口连接,第一电压转换芯片12的OUTPUT端口与第二电压转换芯片11的INPUT端口连接,第二电压转换芯片11的OUTPUT端口与第三电压转换芯片10的INPUT端口连接。第一电压转换芯片12的输出端口OUTPUT与每个轮子驱动模块8和每个关节驱动模块5分别连接,第二电压转换芯片11的输出端口OUTPUT与每个第一信息采集反馈器6和每个第二信息采集反馈器7分别连接,第三电压转换芯片10的输出端口OUTPUT与每个运动规划控制器2、每个机械臂区域控制器4和每个移动平台区域控制器9分别连接。第一电压转换芯片12的输出端口OUTPUT的输出电压为+12V,第二电压转换芯片11的输出端口OUTPUT的输出电压为+5V,第三电压转换芯片10的输出端口OUTPUT的输出电压为+3.3V。The
所述的运动规划控制器2包括第一DSP芯片14、以太网控制器15、以太网连接器16和第一CAN通讯模块17。第一DSP芯片14的XCLKOUT、GPIOB7、XINT1、XINT2、SPISIMO、SPISOMI和SPICLK引脚分别与以太网控制器15的OSC1、SI、SO和SCK引脚对应连接,第一DSP芯片14的CANTX和CANRX引脚分别与第一CAN通讯模块17的TXD和RXD引脚对应连接,运动规划控制软件嵌入在第一DSP芯片14中;以太网控制器15的TPOUT+、TPOUT-、TPIN+和TPIN-引脚分别与以太网连接器16的TP_OUT+、TP_OUT-、TP_IN+和TP_IN-引脚对应连接。第一DSP芯片14的VDDIO引脚、以太网控制器15的VDD引脚和以太网连接器16的TX_CT引脚分别与电源模块3连接;第一CAN通讯模块17通过CAN-bus与每个机械臂区域控制器4和每个移动平台区域控制器9连接,以太网连接器16的J1~J8输出端通过双绞线与工业计算机1连接。The
所述的机械臂区域控制器4包括第二DSP芯片18和第二CAN通讯模块19。第二DSP芯片18的CANTX和CANRX引脚分别与第二CAN通讯模块19的TXD和RXD引脚对应连接;第二DSP芯片18的IOPA2和IOPA3引脚分别与每个第一信息采集反馈器6连接;第二CAN通讯模块19通过CAN-bus与运动规划控制器2和每个关节驱动模块5连接;第二DSP芯片18的VDDIO引脚与电源模块3连接。The
所述的移动平台区域控制器9包括第三DSP芯片20和第三CAN通讯模块21。第三DSP芯片20的CANTX和CANRX引脚分别与第三CAN通讯模块21的TXD和RXD引脚对应连接;第三DSP芯片20的IOPA2和IOPA3引脚分别与每个第二信息采集反馈器7连接,第三CAN通讯模块21通过CAN-bus与运动规划控制器2和每个轮子驱动模块8连接;第三DSP芯片20的VDDIO引脚与电源模块3连接。The mobile platform
所述的关节驱动模块5包括第四DSP芯片22、第一光电耦合模块23、第一电机驱动模块24和第一自我保护单元25。第四DSP芯片22的PWM1和PWM2引脚分别与第一光电藕合模块23的ANODE1和ANODE2引脚对应连接,第四DSP芯片22的IOPE3引脚与第一自我保护单元25的ENABLE BRAKE引脚连接,第一光电藕合模块23的OV1和OV2引脚分别与第一电机驱动模块24的BHI和BLI引脚对应连接,第一自我保护单元25的BRAKE1和BRAKE2引脚分别与第一电机驱动模块24的OUT1和OUT2引脚对应连接。第四DSP芯片22通过CAN-bus与机械臂区域控制器4连接,第四DSP芯片22的APP1_SENSOR和APP2_SENSOR引脚分别与各自对应的第一信息采集反馈器6连接,第四DSP芯片22的VDDIO引脚、第一光电耦合模块23的VCC引脚和第一电机驱动模块24的VCC引脚分别与电源模块3连接。The
所述的轮子驱动模块8包括第五DSP芯片26、第二光电耦合模块27、第二电机驱动模块28和第二自我保护单元29。第五DSP芯片26的PWM1和PWM2引脚分别与第二光电藕合模块27的ANODE1和ANODE2引脚对应连接,第五DSP芯片26的IOPE3引脚与第二自我保护单元29的ENABLE_BRAKE引脚连接,第二光电藕合模块27的OV1和OV2引脚分别与第二电机驱动模块28的BHI和BLI引脚对应连接,第二自我保护单元29的BRAKE1和BRAKE2引脚分别与第二电机驱动模块28的OUT1和OUT2引脚对应连接。第五DSP芯片26通过CAN-bus与移动平台区域控制器9连接;第五DSP芯片26的APP1_SENSOR和APP2_SENSOR引脚分别与各自对应的第二信息采集反馈器7连接,第五DSP芯片26的VDDIO引脚、第二光电耦合模块27的VCC引脚和第二电机驱动模块28的VCC引脚分别与电源模块3连接。The
所述的第一信息采集反馈器6包括第一滞回比较器30和第一光电编码器31。第一滞回比较器30的1A和2A引脚分别与第一光电编码器31的XA和XB引脚对应连接;第一滞回比较器30的1Y和2Y引脚分别与机械臂区域控制器4连接,第一光电编码器31的XFSIPUTA和XFSIPUTB引脚分别与各自对应的关节驱动模块5连接,第一滞回比较器30的VCC引脚和第一光电编码器31的VCC引脚分别与电源模块3连接。The first information
所述的第二信息采集反馈器7包括第二滞回比较器32和第二光电编码器33。第二滞回比较器32的1A和2A引脚分别与第二光电编码器33的XA和XB引脚对应连接;第二滞回比较器32的1Y和2Y引脚分别与移动平台区域控制器9连接,第二光电编码器33的XFSIPUTA和XFSIPUTB引脚分别与各自对应的轮子驱动模块8连接,第二滞回比较器32的VCC引脚和第二光电编码器33的VCC引脚分别与电源模块3连接。The second information
所述的运动规划控制软件的主流程为:The main flow of the motion planning control software is:
S-1:初始化,进入循环;S-1: Initialize, enter the cycle;
S-2:判断运动规划控制器2是否接收到工业计算机1的指令,不是则关节驱动模块5驱动的关节和轮子驱动模块8驱动的轮子停止运动,是则进行S-3;S-2: Determine whether the
S-3:运动规划控制器2发送指令至每个机械臂区域控制器4和移动平台区域控制器9;S-3: The
S-4:判断机械臂区域控制器4和移动平台区域控制器9是否接收到运动规划控制器2的指令,不是则重新判断:是则进行S-5;S-4: Judging whether the
S-5:判断关节驱动模块5和轮子驱动模块8是否进行零位置检测,是则进行零位置检测,再返回S-4,不是则进行S-6;S-5: Determine whether the
S-6:关节驱动模块5和轮子驱动模块8分别接收各自对应的机械臂区域控制器4和移动平台区域控制器9相应的指令;S-6: the
S-7:读取关节驱动模块5和轮子驱动模块8接收到的信息;通过运动控制算法,关节驱动模块5控制关节动作,轮子驱动模块8控制轮子运动;S-7: Read the information received by the
S-8:判断关节驱动模块5所驱动的关节和轮子驱动模块8所驱动的轮子是否正常工作,正常工作则分别发送信息至第一信息采集反馈器6和第二信息采集反馈器7,非正常工作则分别启动第一自我保护单元25和第二自我保护单元29,再分别发送信息至第一信息采集反馈器6和第二信息采集反馈器7;S-8: Determine whether the joints driven by the
S-9:判断第一信息采集反馈器6和第二信息采集反馈器7是否接收到关节和轮子的状态信息,是则进行S-10,不是则返回S-7;S-9: Judging whether the first information
S-10:发送关节驱动模块5所驱动的关节和轮子驱动模块8所驱动的轮子的状态信息至相应的机械臂区域控制器4和移动平台区域控制器9,再返回S-2。S-10: Send the status information of the joints driven by the
实施例2Example 2
一种用于可拓展模块化的移动机械臂控制系统。工业计算机1通过以太网以无线方式与2个运动规划控制器2分别连接;每个运动规划控制器2各自通过CAN-bus分别与3~6个机械臂区域控制器4和3~6个移动平台区域控制器9连接;每个机械臂区域控制器4各自通过CAN-bus分别与1个关节驱动模块5连接;每个关节驱动模块5分别与各自对应的第一信息采集反馈器6连接;每3~6个第一信息采集反馈器6分别与各自对应的关节驱动模块5连接的机械臂区域控制器4连接。每个移动平台区域控制器9各自通过CAN-bus分别与1个轮子驱动模块8连接;每个轮子驱动模块8分别与各自对应的第二信息采集反馈器7连接;每3~4个第二信息采集反馈器7分别与各自对应的轮子驱动模块8连接的移动平台区域控制器9连接。电源模块3与每个运动规划控制器2、每个机械臂区域控制器4、每个移动平台区域控制器9、每个关节驱动模块5、每个轮子驱动模块8、每个第一信息采集反馈器6和每个第二信息采集反馈器7分别连接。A control system for scalable modular mobile manipulators. The industrial computer 1 is connected to two
其余同实施例1。All the other are with embodiment 1.
实施例3Example 3
一种用于可拓展模块化的移动机械臂控制系统。工业计算机1通过以太网以无线方式与3个运动规划控制器2分别连接;每个运动规划控制器2各自通过CAN-bus分别与1个机械臂区域控制器4和1个移动平台区域控制器9连接;每个机械臂区域控制器4各自通过CAN-bus分别与1个关节驱动模块5连接;每个关节驱动模块5分别与各自对应的第一信息采集反馈器6连接;每个第一信息采集反馈器6分别与各自对应的关节驱动模块5连接的机械臂区域控制器4连接。每个移动平台区域控制器9各自通过CAN-bus分别与1个轮子驱动模块8连接;每个轮子驱动模块8分别与各自对应的第二信息采集反馈器7连接;每个第二信息采集反馈器7分别与各自对应的轮子驱动模块8连接的移动平台区域控制器9连接。电源模块3与每个运动规划控制器2、每个机械臂区域控制器4、每个移动平台区域控制器9、每个关节驱动模块5、每个轮子驱动模块8、每个第一信息采集反馈器6和每个第二信息采集反馈器7分别连接。A control system for scalable modular mobile manipulators. The industrial computer 1 is connected to the three
其余同实施例1。All the other are with embodiment 1.
本具体实施方式由各种模块单元按一定的拓扑结构拼接而成,降低了整个系统的复杂性;同时,模块化的设计使系统在硬件发生改变的情况下,仅需改动与它相连的总线配置,大大减少了系统硬件改动所需的时间,能非常方便地增加或减少机器人的自由度,增强了系统的可拓展性。当系统出现故障时,只需查出哪个模块出现故障,便可将该模块进行相应的处理或替换,使系统的维护和修改变得非常方便。同时,当某一关节出现故障时,移动机械臂可通过自身调整使得另外的关节协调控制完成工作任务,提高了移动机械臂控制系统的鲁棒性。This specific implementation mode is composed of various modular units spliced according to a certain topology structure, which reduces the complexity of the entire system; at the same time, the modular design makes the system only need to change the bus connected to it when the hardware changes. The configuration greatly reduces the time required for system hardware changes, and can easily increase or decrease the degree of freedom of the robot, enhancing the scalability of the system. When the system fails, it is only necessary to find out which module fails, and the module can be processed or replaced accordingly, which makes the maintenance and modification of the system very convenient. At the same time, when a joint fails, the mobile manipulator can adjust itself to make other joints coordinate and control to complete the task, which improves the robustness of the control system of the mobile manipulator.
本具体实施方式采用CAN-bus通讯方式解决了传统控制器点对点数据传输方式中传输效率低和接口电路复杂的问题,有利于移动机械臂模块的组成,并具有可拓展性,提高了移动机械臂控制系统的抗干扰性,尤其是提高了远程操作时的抗干扰性。This specific implementation adopts the CAN-bus communication method to solve the problems of low transmission efficiency and complex interface circuits in the point-to-point data transmission method of the traditional controller, which is beneficial to the composition of the mobile manipulator module, and has scalability, and improves the mobile manipulator. The anti-jamming performance of the control system, especially improves the anti-jamming performance during remote operation.
本具体实施方式采用分级式结构,在工业计算机1与机械臂区域控制器4和移动平台区域控制器9之间加入运动规划控制器2,通过运动规划控制器2对机械臂区域控制器4和移动平台区域控制器9协调控制,有效地解决了机械臂子系统和移动平台子系统之间的耦合问题,充分发挥了移动机械臂移动和操作功能的优点。This specific embodiment adopts a hierarchical structure, and a
本具体实施方式采用DSP芯片作为核心处理器,不仅具有数字信号处理器的优点,同时又具有微控制器的特点,无论在运算速度和数据的处理能力上都可满足运动控制的高实时性要求,为完成复杂的实时运动控制算法提供了可靠的平台,也使得移动机械臂的实时运动规划能力得到加强。This specific embodiment adopts the DSP chip as the core processor, which not only has the advantages of a digital signal processor, but also has the characteristics of a microcontroller, and can meet the high real-time requirements of motion control in terms of computing speed and data processing capacity. , which provides a reliable platform for completing complex real-time motion control algorithms, and also enhances the real-time motion planning capability of the mobile manipulator.
本具体实施方式采用以太网方式与上位机进行通讯,不仅具有传输速率高、信息量大、兼容性强和编址灵活方便等显著优点,且可通过以太网将系统接入局域网或者英特网,从而实现系统的远程控制,提高了系统控制的灵活性和使用价值。This specific implementation mode uses Ethernet to communicate with the upper computer, which not only has significant advantages such as high transmission rate, large amount of information, strong compatibility, flexible and convenient addressing, etc., but also can connect the system to a local area network or the Internet through Ethernet , so as to realize the remote control of the system and improve the flexibility and use value of the system control.
因此,本具体实施方式具有易于修改、可拓展、重构和添加配置、鲁棒性好、协调控制能力强、实时运动规划和远程操作时抗干扰能力强的特点。可广泛用于工业机器人、机械臂、空间机器人、类人机器人等具有多个自由度模块的机器人控制系统。Therefore, this specific embodiment has the characteristics of easy modification, expandability, reconfiguration and configuration addition, good robustness, strong coordination control ability, real-time motion planning and strong anti-interference ability in remote operation. It can be widely used in robot control systems with multiple degrees of freedom modules such as industrial robots, manipulators, space robots, and humanoid robots.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110160108 CN102248536B (en) | 2011-06-14 | 2011-06-14 | Mobile mechanical arm control system used for extendable modularization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110160108 CN102248536B (en) | 2011-06-14 | 2011-06-14 | Mobile mechanical arm control system used for extendable modularization |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102248536A true CN102248536A (en) | 2011-11-23 |
CN102248536B CN102248536B (en) | 2013-07-24 |
Family
ID=44976287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110160108 Expired - Fee Related CN102248536B (en) | 2011-06-14 | 2011-06-14 | Mobile mechanical arm control system used for extendable modularization |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102248536B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103092153A (en) * | 2012-12-19 | 2013-05-08 | 中国电子科技集团公司第三十四研究所 | Distributed control device of laser device multi-channel optical fiber system |
CN103240739A (en) * | 2013-05-07 | 2013-08-14 | 武汉科技大学 | Automatic switching control method for decentralization and centralization of mobile manipulators |
CN104097197A (en) * | 2013-04-08 | 2014-10-15 | 上海优爱宝机器人技术有限公司 | Modular robot |
CN104669269A (en) * | 2013-11-26 | 2015-06-03 | 中国科学院沈阳自动化研究所 | Efficient and extensible autonomous control system for high-complexity underwater robot |
CN105082136A (en) * | 2015-10-07 | 2015-11-25 | 陈超 | Plug-and-play tentacle robot control system |
CN105196294A (en) * | 2015-10-29 | 2015-12-30 | 长春工业大学 | Reconfigurable mechanical arm decentralized control system and control method adopting position measuring |
CN106489262A (en) * | 2014-07-03 | 2017-03-08 | 阿特拉斯·科普柯工业技术公司 | Be conducive to method and the node communicating between the tool server in Work tool communication system and multiple tool controllers |
CN111482965A (en) * | 2020-04-24 | 2020-08-04 | 深圳国信泰富科技有限公司 | Remote control system and method for robot |
CN112571397A (en) * | 2019-09-30 | 2021-03-30 | 精工爱普生株式会社 | Mobile robot |
CN114603563A (en) * | 2022-04-25 | 2022-06-10 | 国网湖南省电力有限公司 | Multi-screw rod motor bus type embedded control system of continuum mechanical arm |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5218709A (en) * | 1989-12-28 | 1993-06-08 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Special purpose parallel computer architecture for real-time control and simulation in robotic applications |
US20020184674A1 (en) * | 2001-04-13 | 2002-12-05 | Ning Xi | Synchronization and task control of real-time internet based super-media |
CN101045298A (en) * | 2007-04-12 | 2007-10-03 | 武汉科技大学 | Apparatus for controlling movement programming of multi-freedom robot |
CN101045297A (en) * | 2007-04-12 | 2007-10-03 | 武汉科技大学 | Distribution multiple freedom robot controlling system |
CN101045299A (en) * | 2007-04-12 | 2007-10-03 | 武汉科技大学 | Independent joint control device for modularized robot based on DSP |
CN101053954A (en) * | 2007-04-29 | 2007-10-17 | 东北大学 | Control system for modular robot based on CAN bus |
US20080046121A1 (en) * | 2006-08-17 | 2008-02-21 | Innovati, Inc. | Developing system of re-configurable modularized robot |
CN201489361U (en) * | 2009-09-27 | 2010-05-26 | 贾恒石 | An Extensible Regional Controller Based on CAN Bus |
CN101751038A (en) * | 2008-12-05 | 2010-06-23 | 沈阳新松机器人自动化股份有限公司 | Navigation control device of mobile robot |
CN101817182A (en) * | 2010-03-30 | 2010-09-01 | 杭州电子科技大学 | Intelligent moving mechanical arm control system |
CN201716570U (en) * | 2009-12-18 | 2011-01-19 | 中国科学院沈阳自动化研究所 | Modularized reconstructible robot joint module control device |
-
2011
- 2011-06-14 CN CN 201110160108 patent/CN102248536B/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5218709A (en) * | 1989-12-28 | 1993-06-08 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Special purpose parallel computer architecture for real-time control and simulation in robotic applications |
US20020184674A1 (en) * | 2001-04-13 | 2002-12-05 | Ning Xi | Synchronization and task control of real-time internet based super-media |
US20080046121A1 (en) * | 2006-08-17 | 2008-02-21 | Innovati, Inc. | Developing system of re-configurable modularized robot |
CN101045298A (en) * | 2007-04-12 | 2007-10-03 | 武汉科技大学 | Apparatus for controlling movement programming of multi-freedom robot |
CN101045297A (en) * | 2007-04-12 | 2007-10-03 | 武汉科技大学 | Distribution multiple freedom robot controlling system |
CN101045299A (en) * | 2007-04-12 | 2007-10-03 | 武汉科技大学 | Independent joint control device for modularized robot based on DSP |
CN101053954A (en) * | 2007-04-29 | 2007-10-17 | 东北大学 | Control system for modular robot based on CAN bus |
CN101751038A (en) * | 2008-12-05 | 2010-06-23 | 沈阳新松机器人自动化股份有限公司 | Navigation control device of mobile robot |
CN201489361U (en) * | 2009-09-27 | 2010-05-26 | 贾恒石 | An Extensible Regional Controller Based on CAN Bus |
CN201716570U (en) * | 2009-12-18 | 2011-01-19 | 中国科学院沈阳自动化研究所 | Modularized reconstructible robot joint module control device |
CN101817182A (en) * | 2010-03-30 | 2010-09-01 | 杭州电子科技大学 | Intelligent moving mechanical arm control system |
Non-Patent Citations (1)
Title |
---|
王明辉等: "可重构机器人体系结构及模块化控制体系的实现", 《仪器仪表学报》, vol. 27, no. 10, 31 October 2006 (2006-10-31) * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103092153A (en) * | 2012-12-19 | 2013-05-08 | 中国电子科技集团公司第三十四研究所 | Distributed control device of laser device multi-channel optical fiber system |
CN104097197A (en) * | 2013-04-08 | 2014-10-15 | 上海优爱宝机器人技术有限公司 | Modular robot |
CN103240739A (en) * | 2013-05-07 | 2013-08-14 | 武汉科技大学 | Automatic switching control method for decentralization and centralization of mobile manipulators |
CN103240739B (en) * | 2013-05-07 | 2015-04-15 | 武汉科技大学 | Automatic switching control method for decentralization and centralization of mobile manipulators |
CN104669269A (en) * | 2013-11-26 | 2015-06-03 | 中国科学院沈阳自动化研究所 | Efficient and extensible autonomous control system for high-complexity underwater robot |
CN106489262A (en) * | 2014-07-03 | 2017-03-08 | 阿特拉斯·科普柯工业技术公司 | Be conducive to method and the node communicating between the tool server in Work tool communication system and multiple tool controllers |
CN105082136A (en) * | 2015-10-07 | 2015-11-25 | 陈超 | Plug-and-play tentacle robot control system |
CN105196294A (en) * | 2015-10-29 | 2015-12-30 | 长春工业大学 | Reconfigurable mechanical arm decentralized control system and control method adopting position measuring |
CN105196294B (en) * | 2015-10-29 | 2017-03-22 | 长春工业大学 | Reconfigurable mechanical arm decentralized control system and control method adopting position measuring |
CN112571397A (en) * | 2019-09-30 | 2021-03-30 | 精工爱普生株式会社 | Mobile robot |
CN112571397B (en) * | 2019-09-30 | 2024-01-02 | 精工爱普生株式会社 | Mobile robot |
CN111482965A (en) * | 2020-04-24 | 2020-08-04 | 深圳国信泰富科技有限公司 | Remote control system and method for robot |
CN114603563A (en) * | 2022-04-25 | 2022-06-10 | 国网湖南省电力有限公司 | Multi-screw rod motor bus type embedded control system of continuum mechanical arm |
Also Published As
Publication number | Publication date |
---|---|
CN102248536B (en) | 2013-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102248536B (en) | Mobile mechanical arm control system used for extendable modularization | |
CN101817182A (en) | Intelligent moving mechanical arm control system | |
CN101045297A (en) | Distribution multiple freedom robot controlling system | |
CN101592951A (en) | Common distributed control system for humanoid robot | |
CN105892412B (en) | Hardware Architecture of Multi-axis Motion Control System Based on Custom Bus | |
CN204366962U (en) | Six axle heavy-load robot control systems | |
CN101045298A (en) | Apparatus for controlling movement programming of multi-freedom robot | |
CN105700465A (en) | Robot compliance control system and method based on EtherCAT bus | |
CN103056883B (en) | Double-manipulator coordination control system and double-manipulator coordination control method | |
CN103786157A (en) | Embedded type control system based on upper limb exoskeleton assisting robots | |
CN105033996A (en) | Control system based on hand-push teaching type five-shaft horizontal joint robot | |
CN117047774A (en) | Multi-joint hydraulic mechanical arm servo control method and system based on sliding film self-adaption | |
CN111497964A (en) | A distributed control system for an electric-driven quadruped robot | |
CN108772839A (en) | Master-slave operation and human-machine system | |
CN105650064B (en) | A kind of Pneumatic position control device based on DSP | |
CN204883256U (en) | High real -time control system of robot framework | |
CN103454945B (en) | A kind of Distributed Motion Control System of sufficient formula walking robot | |
CN102126222A (en) | Control system for remote-controlled robot | |
CN108663958A (en) | A kind of full-automatic coupling control system of power transmission line crusing robot | |
CN104669269A (en) | Efficient and extensible autonomous control system for high-complexity underwater robot | |
Chen et al. | Design of Distributed Control System for the Pick-up Robot Based on CAN Bus | |
CN113043272B (en) | Control system applied to space multi-degree-of-freedom rope-driven parallel robot | |
Gao et al. | Implementation of open-architecture kinematic controller for articulated robots under ROS | |
CN105373109A (en) | Delta robot drive-control system | |
CN205503628U (en) | Pneumatic position servo controller based on DSP |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130724 |
|
CF01 | Termination of patent right due to non-payment of annual fee |