CN102237789A - Control method and controller - Google Patents
Control method and controller Download PDFInfo
- Publication number
- CN102237789A CN102237789A CN2010101701890A CN201010170189A CN102237789A CN 102237789 A CN102237789 A CN 102237789A CN 2010101701890 A CN2010101701890 A CN 2010101701890A CN 201010170189 A CN201010170189 A CN 201010170189A CN 102237789 A CN102237789 A CN 102237789A
- Authority
- CN
- China
- Prior art keywords
- signal
- current
- detection signal
- current detection
- peak value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000001514 detection method Methods 0.000 claims abstract description 66
- 230000001939 inductive effect Effects 0.000 claims abstract 24
- 239000003990 capacitor Substances 0.000 claims description 16
- 238000004146 energy storage Methods 0.000 claims description 5
- 238000012797 qualification Methods 0.000 claims 10
- 230000003111 delayed effect Effects 0.000 claims 1
- 230000004224 protection Effects 0.000 description 16
- 230000001960 triggered effect Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Control Of Electrical Variables (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种开关式电源供应器(Switched-mode power supply,SMPS),更明确地说,涉及一种可以提供过电流(over current protection,OCP或过负载保护(over load protection,OVP)的开关式电源供应器。The present invention relates to a switch mode power supply (Switched-mode power supply, SMPS), more specifically, relates to a kind of can provide over current protection (over current protection, OCP or overload protection, OVP) switching power supply.
背景技术 Background technique
电源供应器作为一种电源管理装置,用来转换电源,以提供电源给电子装置或是组件。有时电源管理装置会以开关式电源供应器来实施,因为其所能源转换效率不错,且所需要的电感组件会相对的较小,可适用于多数当代的电子装置或是组件。开关式电源供应器需要有许多的保护机制,预防自己或是外界,在不正确或是不适当的状况之下,所遭受的损伤。一些现有的保护有过电压保护(over voltage protection,OVP)、过温度保护(overtemperature protection,OTP)、OCP、OLP等。其中,过电流保护一般意味着最大输出电流受限制;过负载保护一般意味着最大输出功率受限制。As a power management device, a power supply is used to convert power to provide power to electronic devices or components. Sometimes the power management device is implemented with a switching power supply, because its energy conversion efficiency is good, and the required inductance components are relatively small, which is suitable for most modern electronic devices or components. Switching power supplies need to have many protection mechanisms to prevent themselves or the outside world from being damaged under incorrect or inappropriate conditions. Some existing protections include over voltage protection (OVP), over temperature protection (OTP), OCP, OLP, etc. Among them, the overcurrent protection generally means that the maximum output current is limited; the overload protection generally means that the maximum output power is limited.
图1显示了一种具有过电流/负载保护的升压电路(booster)。升压电路(booster)10仅仅是用来作为过电流/负载保护的一个例子,过电流/负载保护也可以适用到其它架构的SMPS。Figure 1 shows a booster circuit (booster) with overcurrent/load protection. The booster circuit (booster) 10 is only used as an example of over-current/load protection, and the over-current/load protection can also be applied to SMPS of other architectures.
升压电路(booster)10中的开关14控制流经电感12的电流。当门控信号GATE使开关14导通时,电感12增加其中储存的能量。当门控信号GATE使开关14关闭时,电感12中的储存能量则通过二极管16,向负载释放,对负载电容20充电。检测电阻22则是在开关14导通时,检测流经电感12的电感电流。在端点CS上的检测信号VCS-的电压值,会反应出电感电流的大小,控制器18则据以产生门控信号GATE。A
图2则显示了现有的一种控制器18a,可以适用于图1。当控制器18a使图1中的开关14导通时,检测信号VCS-的电压值会随着开启时间而增加。比较器36使检测信号VCS的峰值,大约不大于限定信号VCS-LIMIT。一旦,检测信号VCS-高过了限定信号VCS-LIMIT时,比较器36就会使门控控制器34关闭开关14。藉此达到过电流/负载保护。但是,因为信号传递延迟(signalpropagation delay)的原因,检测信号VCS的峰值会些许地大于限定信号VCS-LIMIT,而这个差异会随着输入电源V-IN的电压增大而增大。如果限定信号VCS-LIMIT是个定值,那就意味着图2所提供的过电流/负载保护,其所限定的最高输出电流或是最高输出功率,将会随着输入电源V-IN的电压而改变。这样的结果所实现的OCP/OLP往往难以符合系统规格。FIG. 2 shows an
而且,就算把检测信号VCS的峰值精准的锁定在一定值,OCP/OLP所定义的最高输出电流/功率,也往往会随着电感12是操作于连续导通模式(continuous conduction mode,CCM)或是不连续导通模式(discontinuousconduction mode,DCM)而有所不同。Moreover, even if the peak value of the detection signal V CS is accurately locked at a certain value, the maximum output current/power defined by OCP/OLP will often follow the
因此,过电流/负载保护的电路,需要有特别的设计,使得触发时的最高输出电流/功率,大约为一定值,不随着操作模式或是输入电源电压而改变。Therefore, the circuit for overcurrent/load protection needs to be specially designed so that the maximum output current/power when triggered is about a certain value and does not change with the operation mode or input power voltage.
发明内容 Contents of the invention
本发明实施例提供一种控制方法,适用于一电源供应器,其包含有一开关以及一电感组件。当该开关被开启时,该电感组件储能增加。通过检测流经该电感组件的电感电流,以产生一电流检测信号。比较该电流检测信号的一峰值,与一限定信号,以产生一调整值。比较该电流检测信号与该限定信号,当该电流检测信号、该限定信号与该调整值大约为一特定关系时,关闭该开关,以使该电流检测信号的下一峰值,大约等于该限定信号,大致消除信号延迟影响。An embodiment of the present invention provides a control method suitable for a power supply, which includes a switch and an inductance component. When the switch is turned on, the energy storage of the inductance component increases. A current detection signal is generated by detecting the inductor current flowing through the inductor component. A peak value of the current detection signal is compared with a limit signal to generate an adjustment value. Comparing the current detection signal with the limit signal, when the current detection signal, the limit signal and the adjustment value are about a specific relationship, close the switch so that the next peak value of the current detection signal is approximately equal to the limit signal , roughly eliminating the effect of signal delay.
本发明实施例也提供一种一电源供应器的输出能量的控制方法。该电源供应器包含有一开关以及一电感组件。当该开关被开启时,该电感组件储能增加。检测流经该电感组件的电感电流,以产生一电流检测信号。提供一限定信号,用以大致限制该电感电流的一峰值。依据该峰值以及该电流检测信号所对应的一电感平均电流,更新该限定信号,以使该峰值与该电感平均电流随着开关周期,而接近一预设关系。该预设关系使使该电源供应器于一开关周期中所输出的该输出能量,大约为一定值。The embodiment of the present invention also provides a method for controlling the output energy of a power supply. The power supply includes a switch and an inductor. When the switch is turned on, the energy storage of the inductance component increases. The inductor current flowing through the inductor component is detected to generate a current detection signal. A limit signal is provided for roughly limiting a peak value of the inductor current. The limit signal is updated according to the peak value and an inductor average current corresponding to the current detection signal, so that the peak value and the inductor average current are close to a preset relationship with the switching cycle. The preset relationship makes the output energy output by the power supply in a switching cycle approximately a certain value.
本发明实施例也提供一种控制器,适用于一电源供应器,其包含有一开关以及一电感组件。该控制器包含有一峰值限定器以及一调整器。该峰值限定器接收一限定信号以及一电流检测信号,用以大致限制流经该电感组件的电感电流的一峰值。该电流检测信号对应该电感电流。该调整器用以更新该限定信号,以使该峰值以及该电流检测信号所对应的一电感平均电流,随着开关周期的进行,彼此逼近一预设关系。该预设关系使该电感组件于一开关周期所传输的功率,大约为一定值。An embodiment of the present invention also provides a controller suitable for a power supply, which includes a switch and an inductance component. The controller includes a peak limiter and a regulator. The peak limiter receives a limit signal and a current detection signal, and is used for roughly limiting a peak value of the inductor current flowing through the inductor component. The current detection signal corresponds to the inductor current. The adjuster is used for updating the limit signal, so that the peak value and an inductor average current corresponding to the current detection signal approach a preset relationship with each other as the switching cycle progresses. The predetermined relationship makes the power transmitted by the inductance component in a switching period approximately a certain value.
附图说明 Description of drawings
图1显示了一种具有过电流/负载保护的升压电路。Figure 1 shows a boost circuit with overcurrent/load protection.
图2则显示了现有的一种控制器。Figure 2 shows an existing controller.
图3中实线显示了VCS-PEAK与VCS-AVG的关系。The solid line in Figure 3 shows the relationship between V CS-PEAK and V CS-AVG .
图4则显示了依据本发明实施的一种控制器。Figure 4 shows a controller implemented in accordance with the present invention.
图5A以及图5B显示了两种信号延迟补偿器。Figure 5A and Figure 5B show two kinds of signal delay compensators.
图6显示了平均电流比较器、更新器、以及箝制器。Figure 6 shows the average current comparator, updater, and clamper.
图7显示限定信号VCS-LIMIT与预期电感平均电流信号VCS-AVG-EXP的关系,以及其简化的结果。FIG. 7 shows the relationship between the limit signal V CS-LIMIT and the expected inductor average current signal V CS-AVG-EXP , and its simplified results.
图8显示一转换器。Figure 8 shows a converter.
图9则显示了依据本发明实施的另一种控制器。Fig. 9 shows another controller implemented according to the present invention.
图10举例一峰值检测器。Figure 10 illustrates a peak detector.
图11显示一简化后的VCS-PEAK与VCS-AVG的关系。Figure 11 shows a simplified relationship between V CS-PEAK and V CS-AVG .
图12为实现图11的关系的一转换器。FIG. 12 is a converter implementing the relationship of FIG. 11. FIG.
附图符号说明Description of reference symbols
10 升压电路10 Boost circuit
12 电感12 Inductance
14 开关14 switch
16 二极管16 Diodes
18、18a、18b、18c 控制器18, 18a, 18b, 18c controller
20 负载电容20 Load Capacitance
22 检测电阻22 Sense resistor
34 门控控制器34 Door control controller
32 其它信号处理器32 Other signal processors
36 比较器36 Comparator
51、51a、51b 信号延迟补偿器51, 51a, 51b Signal delay compensator
52、52a 平均电流比较器52, 52a Average current comparator
54、54a 更新器54, 54a Updater
56、56a、57、57a 转换器56, 56a, 57, 57a converter
59、59a 箝制器59, 59a clamper
61、61a 峰值检测器61, 61a Peak detector
362、364 电流源362, 364 Current Source
366 电容366 Capacitance
502、504 比较器502, 504 Comparator
506、507 电流镜506, 507 Current Mirror
508 电容508 Capacitance
CS 端点CS Endpoint
GATE 门控信号GATE Gating signal
Icon 定电流I con constant current
IR、IL 电流源I R , I L current source
L 直线L straight line
V--bias 电容电压V-- bias capacitor voltage
VBIAS1 压降V BIAS1 voltage drop
VCS- 检测信号V CS- detection signal
VCS-AVG-EXP 预期电感平均电流信号V CS-AVG-EXP expected inductor average current signal
VCS-AVG-REAL 平均电流V CS-AVG-REAL average current
VCS-HIGHER 较高电流检测信号V CS-HIGHER Higher current detection signal
VCS-LIMIT 限定信号V CS-LIMIT limit signal
VCS-LIMIT-BOTTOM 下限V CS-LIMIT-BOTTOM lower limit
VCS-LIMIT-LOWER 较低限定信号V CS-LIMIT-LOWER lower limit signal
VCS-LIMIT-TOP 上限V CS-LIMIT-TOP upper limit
VCS-PEAK 峰值V CS-PEAK peak value
V-IN 输入电源V- IN input power supply
VM 输出电压 V output voltage
RB、RBIAS1、R1、R2 电阻R B , R BIAS1 , R 1 , R 2 resistors
具体实施方式 Detailed ways
本说明书中,相同的符号用以指称相同或是类似的装置/组件,本领域的技术人员可以依据本发明的揭示/教导,以相同或是相似的方法/架构来据以实施,因此不再重述。In this specification, the same symbols are used to refer to the same or similar devices/components, and those skilled in the art can implement them with the same or similar methods/structures based on the disclosure/teaching of the present invention, so no further restate.
本发明的一实施例提供一SMPS,OCP/OLP触发时的最高输出电流/功率,大致上不随着输入电压与操作模式变化。An embodiment of the present invention provides an SMPS, the highest output current/power when the OCP/OLP is triggered does not vary substantially with the input voltage and operating mode.
请参阅图1中的升压电路(booster)10。电感12传递到负载电容20的输出功率P,可以用以下公式(1)表示:Please refer to the booster circuit (booster) 10 in FIG. 1 . The output power P delivered by the
P=1/2*L*(ICS-PEAK 2-ICS-INI 2)*fSW ----(1)P=1/2*L*(I CS-PEAK 2 -I CS-INI 2 )*f SW ----(1)
其中,L为电感12的电感值;ICS-PEAK为流经电感12的电感电流的峰值,也是流经开关14的电流峰值;ICS-INI为每次开关14一开启时,流经电感12的电感电流的起始值,也是流经开关14的电流起始值;以及,fSW为开关14的开关频率。在DCM操作时,ICS-INI会是0;在DCM操作时,ICS-INI会大于0。Among them, L is the inductance value of the
当OLP被触发时,因为最高输出功率POLP需要为一定值,表示公式(1)的右半部需要为一个定值。当OCP被触发时,假定输出电源VOUT还是维持在为定电压,而最高输出电流COCP需要为一定值,所以公式(1)的右半部还是需要为一个定值。When the OLP is triggered, because the highest output power P OLP needs to be a certain value, it means that the right half of the formula (1) needs to be a constant value. When the OCP is triggered, it is assumed that the output power supply V OUT is still maintained at a constant voltage, and the maximum output current C OCP needs to be a certain value, so the right half of the formula (1) still needs to be a constant value.
假定升压电路(booster)10的开关频率fSW不变,则当OLP/OCP被触发时,公式(1)可以推导出以下公式(2)。Assuming that the switching frequency f SW of the booster circuit (booster) 10 is constant, when the OLP/OCP is triggered, the following formula (2) can be deduced from formula (1).
ICS-PEAK 2-ICS-INI 2=4*ICS-AVG*(ICS-PEAK-ICS-AVG)=K1 ---(2)I CS-PEAK 2 -I CS-INI 2 =4*I CS-AVG *(I CS-PEAK -I CS-AVG )=K 1 ---(2)
其中,ICS-AVG为1/2*(ICS-PEAK+ICS-INI),也可以视为当开关14导通时,流经开关14的电感平均电流值;以及,K1是个常数。Wherein, I CS-AVG is 1/2*( ICS-PEAK + ICS-INI ), which can also be regarded as the average current value of the inductor flowing through the
公式(2)可以整理出如下的公式(3)。Formula (2) can be sorted into the following formula (3).
VCS-PEAK=VCS-AVG+K/VCS-AVG ---(3)V CS-PEAK =V CS-AVG +K/V CS-AVG ---(3)
其中,K是常数;VCS-PEAK以及VCS-AVG分别是检测信号VCS对应至电感电流为ICS-PEAK以及ICS-AVG时的电压值。换言之,在OCP/OLP发生时,只要VCS-PEAK以及VCS-AVG符合了公式(3)的条件,那OCP/OLP所定义的最高电流/功率,就大约会是个定值。Wherein, K is a constant; V CS-PEAK and V CS-AVG are the voltage values when the detection signal V CS corresponds to the inductor current I CS-PEAK and I CS-AVG , respectively. In other words, when OCP/OLP occurs, as long as V CS-PEAK and V CS-AVG meet the conditions of formula (3), the maximum current/power defined by OCP/OLP will be approximately a constant value.
图3中的实线显示了公式(3)中,VCS-PEAK与VCS-AVG的关系;两条虚线分别是显示VCS-PEAK=VCS-AVG以及VCS-PEAK=K/VCS-AVG。举例来说,若升压电路(booster)10设计在DCM操作时,VCS-PEAK为0.9V就应该要触发OCP/OLP,那便意味着VCS-AVG为0.45V,且K应该就是0.45*0.45V2。图3的曲线,也就是触发OCP/OLP时,VCS-PEAK与VCS-AVG应有的关系,就可以清楚的定义出来。The solid line in Figure 3 shows the relationship between V CS-PEAK and V CS-AVG in formula (3); the two dashed lines show V CS-PEAK = V CS-AVG and V CS-PEAK = K/V respectively CS-AVG . For example, if the booster circuit (booster) 10 is designed to operate in DCM, and V CS-PEAK is 0.9V, OCP/OLP should be triggered, which means that V CS-AVG is 0.45V, and K should be 0.45 *0.45V 2 . The curve in Figure 3, that is, the relationship between V CS-PEAK and V CS-AVG when OCP/OLP is triggered, can be clearly defined.
因此,只要知道当下开关周期的VCS-PEAK以及VCS-AVG,并且代入公式(3)中计算,就可以知道目前输出的电流/功率,是比OCP/OLP所定义的最高电流/功率大还是小,进而更新限定信号VCS-LIMIT。这样经过几个开关周期后,那每一开关周期中所输出的电流/功率,就大约会是一个定值,就是OCP/OLP所定义的最高电流/功率。Therefore, as long as you know the V CS-PEAK and V CS-AVG of the current switching cycle, and substitute them into the formula (3) for calculation, you can know that the current output current/power is greater than the maximum current/power defined by OCP/OLP is still small, and then update the limit signal V CS-LIMIT . In this way, after several switching cycles, the output current/power in each switching cycle will be approximately a fixed value, which is the highest current/power defined by OCP/OLP.
图4则显示了依据本发明实施的一种控制器18b,可以适用于图1中的升压电路10,也可以适用到其它种SMPS。门控控制器34接受其它信号处理器32以及信号延迟补偿器51来的信号,以驱动开关14。信号延迟补偿器51可以大致的补偿信号延迟的影响,使检测信号VCS的峰值VCS-PEAK几乎完全等于限定信号VCS-LIMIT。因此,限定信号VCS-LIMIT就可以视为当下开关周期中检测信号VCS的峰值VCS-PEAK。转换器56大致依据一VCS-PEAK与VCS-AVG的关系(可从图3中的实线简化而来),并以限定信号VCS-LIMIT作为输入,然后输出预期电感平均电流信号VCS-AVG-EXP。平均电流比较器52比较检测信号VCS所对应的平均电流VCS-AVG-REAL(在开关14开启时)跟预期电感平均电流信号VCS-AVG-EXP的大小。平均电流比较器52的输出会促使更新器54更新限定信号VCS-LIMIT。箝制器(clamp)59用以限制限定信号VCS-LIMIT的最高值与最低值。Fig. 4 shows a
从图4中可以发现,转换器56、平均电流比较器52、以及更新器54大致构成了一个封闭循环(close loop)。这个循环的进行,经历过数个开关周期后,VCS-PEAK与VCS-AVG的关系,将会逼近图3中的实线或是相对的一线段,所以使得OCP/OLP所定义的最高电流/功率成为一固定值。It can be found from FIG. 4 that the
信号延迟补偿器51、转换器56、以及平均电流比较器52、以及更新器54可以视为一调整器,其更新限定信号VCS-LIMIT,以使峰值VCS-PEAK以及检测信号VCS所对应的平均电流VCS-AVG-REAL,随着开关周期的进行,彼此逼近图3中所预设的关系。The signal delay compensator 51, the
譬如说,当预期电感平均电流信号VCS-AVG-EXP比起平均电流VCS-AVG-REAL低时,下次开关周期时,限定信号VCS-LIMIT就增大。因此,在下次开关周期中,预期电感平均电流信号VCS-AVG-EXP就会往平均电流VCS-AVG-REAL接近。For example, when the expected inductor average current signal V CS-AVG-EXP is lower than the average current V CS-AVG-REAL , the limit signal V CS-LIMIT is increased during the next switching cycle. Therefore, in the next switching cycle, the average inductor current signal V CS-AVG-EXP is expected to approach the average current V CS-AVG-REAL .
图5A以及图5B显示了两种信号延迟补偿器51a与51b,每一种都可适用于图4中。图5A中,信号延迟补偿器51a主要有比较器502与504、电容508、电流源IR与IL、以及电阻RB与RBIAS1。如果检测信号VCS的峰值VCS-PEAK大于限定信号VCS-LIMIT,比较器504会使电流源IR对电容508充电,拉高电容电压V--bias。相反的,如果检测信号VCS的峰值VCS-PEAK一直小于限定信号VCS-LIMIT,比较器504会使电流源IL对电容508放电,拉低电容电压V--bias。电流源IL的电流必需要远小于电流源IR的电流。电容电压V--bias经过电阻以及电流镜506与507的转换,会在电阻RBIAS1产生压降VBIAS1,进而提供了一个比限定信号VCS-LIMIT低的较低限定信号VCS-LIMIT-LOWER。当检测信号VCS大于较低限定信号VCS-LIMIT-LOWER时,比较器502的信号会关闭开关14。由推论可知,经过几次开关周期后,电容电压V--bias会大概维持在一个定值,让比较器502在检测信号VCS等于较低限定信号VCS-LIMIT-LOWER就提早送出信号,最后使得检测信号VCS的峰值VCS-PEAK等于限定信号VCS-LIMIT。电流源IL可能可以省略,利用电容508自己漏电,或是接面漏电(junction leakage),使得电容电压V--bias很慢的下降。FIG. 5A and FIG. 5B show two kinds of
图5B的信号延迟补偿器51b也可以使检测信号VCS的峰值VCS-PEAK等于限定信号VCS-LIMIT。跟图5A中产生较低限定信号VCS-LIMIT-LOWER不一样的,图5B则是产生较高电流检测信号VCS-HIGHER。其它图5B中的电路架构或是操作原理,与图5A相同或是类似,可由图5A中类推得知。The
图6显示了平均电流比较器52a、更新器54a、以及箝制器59a,可适用于图4。FIG. 6 shows average
从平均电流比较器52a的输出电压VM的变化,可以看出平均电流VCS-AVG-REAL(检测信号VCS的平均)大于或是小于预期电感平均电流信号VCS-AVG-EXP。当检测信号VCS大于预期电感平均电流信号VCS-AVG-EXP时,电流源362提供定电流Icon对电容366充电;当检测信号VCS小于预期电感平均电流信号VCS-AVG-EXP时,电流源364提供定电流Icon对电容366放电。因为检测信号VCS是线性增加,所以在门控信号GATE使开关14导通时,如果平均电流VCS-AVG-REAL大于预期电感平均电流信号VCS-AVG-EXP,则输出电压VM会上升。相反的,如果平均电流VCS-AVG-REAL比较小,则输出电压VM会下降。From the variation of the output voltage V M of the average
在门控信号GATE使开关14关闭时,更新器54a依据输出电压VM来更新限定信号VCS-LIMIT。为避免过高或过低电压,箝制器59a以两个二极管,使限定信号VCS-LIMIT的电压介于上限VCS-LIMIT-TOP与下限VCS-LIMIT-BOTTOM之间。When the
图7的左半部显示了OCP/OLP触发时,限定信号VCS-LIMIT与预期电感平均电流信号VCS-AVG-EXP的关系,也就是图3中VCS-PEAK与VCS-AVG的关系;右半部显示了其简化的结果。因为图3中的VCS-PEAK与VCS-AVG关系是一条曲线,其用电路实现时将可能会比较复杂,故可以用一条或是多条线段(linesegment),以分段线性曲线(piecewise linear curve)近似表示。一种最简化的方式是用一条直线,来表示曲线的上半部,如同图7右半部中的直线L所示。至于曲线的下半部,因为实际操作上并不会发生,所以可以省略而不实现。图7右半部中的直线L可以用各种不同的电路来实施。譬如说,如同图8所示,一个简单的运算放大器(operational amplifier)以及电阻R1与R2便可以实现直线L,来做为一转换器56a,适用于图4的控制器18b。The left half of Figure 7 shows the relationship between the limit signal V CS-LIMIT and the expected inductor average current signal V CS-AVG-EXP when OCP/OLP is triggered, that is, the relationship between V CS-PEAK and V CS-AVG in Figure 3 relation; the right half shows its simplified result. Because the relationship between V CS-PEAK and V CS-AVG in Figure 3 is a curve, it may be more complicated when it is implemented with a circuit, so one or more line segments (linesegment) can be used to segment the linear curve (piecewise linear curve) approximate representation. One of the simplest ways is to use a straight line to represent the upper half of the curve, as shown by the straight line L in the right half of FIG. 7 . As for the lower half of the curve, since it does not happen in practice, it can be omitted and not implemented. The straight line L in the right half of Fig. 7 can be implemented with various circuits. For example, as shown in FIG. 8 , a simple operational amplifier and resistors R 1 and R 2 can realize the straight line L as a
图9则显示了依据本发明实施的另一种控制器18c,可以适用于图1中的升压电路10,也可以适用到其它种SMPS。FIG. 9 shows another
图9中并没有图4中的信号延迟补偿器51,而只是用比较器36来取代,使检测信号VCS的峰值VCS-PEAK,大约不大于限定信号VCS-LIMIT。如同先前所述,这样的架构,会因为信号延迟的原因,使得峰值VCS-PEAK很接近但是些许的大于限定信号VCS-LIMIT。图9中,峰值检测器61用来检测峰值VCS-PEAK。转换器57大致依据一VCS-PEAK与VCS-AVG的关系(可从图3中的实线简化而来),并以峰值VCS-PEAK作为输入,然后输出一预期电感平均电流信号VCS-AVG-EXP。The signal delay compensator 51 in FIG. 4 is not shown in FIG. 9, but is replaced by a
从图9中也隐含了一封闭循环,大致由峰值检测器61、转换器57、平均电流比较器52、更新器54、比较器36、门控控制器34、开关14、以及检测电阻22所构成。这个循环的进行,经历过数个开关周期后,VCS-PEAK与VCS-AVG的关系,将会逼近图3中的实线或是相对的一线段,所以使得OCP/OLP所定义的最高电流/功率成为一固定值。A closed loop is also implied from FIG. 9, consisting roughly of
峰值检测器61、转换器57、以及平均电流比较器52、以及更新器54可以视为另一调整器,其更新限定信号VCS-LIMIT,以使峰值VCS-PEAK以及检测信号VCS所对应的平均电流VCS-AVG-REAL,随着开关周期的进行,彼此逼近图3中所预设的关系。The
图10举例一峰值检测器61a,其中电容可以记录峰值VCS-PEAK。图11显示一简化后的VCS-PEAK与VCS-AVG的关系,可使OCP/OLP所定义的最高电流/功率大约成为一固定值。图12为实现图11的关系的一转换器57a,可适用于图9中。FIG. 10 exemplifies a
以上所述仅为本发明的较佳实施例,凡依本发明的权利要求所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010170189.0A CN102237789B (en) | 2010-04-21 | 2010-04-21 | Control method and controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010170189.0A CN102237789B (en) | 2010-04-21 | 2010-04-21 | Control method and controller |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102237789A true CN102237789A (en) | 2011-11-09 |
CN102237789B CN102237789B (en) | 2014-11-05 |
Family
ID=44888117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010170189.0A Active CN102237789B (en) | 2010-04-21 | 2010-04-21 | Control method and controller |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102237789B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102983739A (en) * | 2012-12-20 | 2013-03-20 | 西安电子科技大学 | Active power factor correction circuit |
CN103219888A (en) * | 2012-05-02 | 2013-07-24 | 极创电子股份有限公司 | Automatic correction device applied to output power supply |
CN107526033A (en) * | 2017-09-30 | 2017-12-29 | 衢州学院 | A kind of high-precision switching regulator electric inductance measuring-testing instrument |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2870285Y (en) * | 2005-11-10 | 2007-02-14 | 崇贸科技股份有限公司 | A switching control device for output power compensation |
JP2009183037A (en) * | 2008-01-29 | 2009-08-13 | Toyota Motor Corp | Switching power supply circuit and vehicle equipped with the same |
CN101662223A (en) * | 2009-09-24 | 2010-03-03 | 上海导向微电子有限公司 | System and method for compensating maximum output power of switching power supply |
CN101751060A (en) * | 2008-12-19 | 2010-06-23 | 立锜科技股份有限公司 | Method and device for controlling maximum output power of power supply |
-
2010
- 2010-04-21 CN CN201010170189.0A patent/CN102237789B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2870285Y (en) * | 2005-11-10 | 2007-02-14 | 崇贸科技股份有限公司 | A switching control device for output power compensation |
JP2009183037A (en) * | 2008-01-29 | 2009-08-13 | Toyota Motor Corp | Switching power supply circuit and vehicle equipped with the same |
CN101751060A (en) * | 2008-12-19 | 2010-06-23 | 立锜科技股份有限公司 | Method and device for controlling maximum output power of power supply |
CN101662223A (en) * | 2009-09-24 | 2010-03-03 | 上海导向微电子有限公司 | System and method for compensating maximum output power of switching power supply |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103219888A (en) * | 2012-05-02 | 2013-07-24 | 极创电子股份有限公司 | Automatic correction device applied to output power supply |
US9270181B2 (en) | 2012-05-02 | 2016-02-23 | Infinno Technology Corp. | Automatic adjusting device for output power |
CN103219888B (en) * | 2012-05-02 | 2016-05-11 | 极创电子股份有限公司 | Automatic correction device applied to output power |
CN102983739A (en) * | 2012-12-20 | 2013-03-20 | 西安电子科技大学 | Active power factor correction circuit |
CN102983739B (en) * | 2012-12-20 | 2015-04-08 | 西安电子科技大学 | Active power factor correction circuit |
CN107526033A (en) * | 2017-09-30 | 2017-12-29 | 衢州学院 | A kind of high-precision switching regulator electric inductance measuring-testing instrument |
CN107526033B (en) * | 2017-09-30 | 2023-09-08 | 衢州学院 | High-precision switch type inductance tester |
Also Published As
Publication number | Publication date |
---|---|
CN102237789B (en) | 2014-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190252875A1 (en) | Voltage converter having overcurrent protection | |
US8519691B2 (en) | Current limiting for DC-DC converters | |
US8669748B2 (en) | Device for synchronous DC-DC conversion and synchronous DC-DC converter | |
US8686703B2 (en) | Switching power supply with fixed off time mode and control method thereof | |
US8611106B2 (en) | Systems and methods for adjusting current consumption of control chips to reduce standby power consumption of power converters | |
CN102377336B (en) | Switching power supply unit | |
CN103780097B (en) | Switching power converter, clock module, control circuit and related control method | |
US20150364997A1 (en) | Control circuit, battery power supply device and control method | |
US20140286058A1 (en) | Undervoltage protection circuit, undervoltage protection method and switching power supply | |
US9608516B2 (en) | Battery discharge circuit and discharge method with over discharge protection | |
CN203840204U (en) | Switching power converter, clock module and control circuit | |
KR20120066603A (en) | Dc/dc converter, and power supply and electronic device using the same | |
TW201327089A (en) | Switch power circuit and its control method | |
TWI418124B (en) | Control method and controller | |
CN102611306A (en) | Switch converter and control circuit and control method thereof | |
TW201630323A (en) | Switching converter and its controller and control method | |
JP2016082818A (en) | Switching converter, control circuit therefor, current detection method, ac/dc converter, power source adapter and electronic apparatus | |
TW201630322A (en) | Dc-dc converter | |
US7688050B2 (en) | Switching power supply controller with unidirectional transient gain change | |
TWI470908B (en) | Control circuit, time calculating unit, and operating method for control circuit | |
CN105991011A (en) | Control circuit and method for programming output voltage of power converter | |
US20180153008A1 (en) | Electronic converter, and related method of operating an electronic converter | |
US20140167720A1 (en) | Power control device with snubber circuit | |
CN204168138U (en) | DC-DC converter and voltage adjusting circuit thereof | |
CN102237789B (en) | Control method and controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |