CN102221472A - 一种机器性能测试方法及装置 - Google Patents
一种机器性能测试方法及装置 Download PDFInfo
- Publication number
- CN102221472A CN102221472A CN2010101500707A CN201010150070A CN102221472A CN 102221472 A CN102221472 A CN 102221472A CN 2010101500707 A CN2010101500707 A CN 2010101500707A CN 201010150070 A CN201010150070 A CN 201010150070A CN 102221472 A CN102221472 A CN 102221472A
- Authority
- CN
- China
- Prior art keywords
- machine
- offset
- transparent plate
- test
- image data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明公开了一种机器性能测试装置,包括:透明板、扫描装置和计算装置;其中:透明板用于从被测试的机器采集测试样本;其中,测试样本包括由被测试的机器置于透明板上的至少一个物体;扫描装置用于扫描透明板以得到图像数据;计算装置用于根据来自扫描装置的图像数据确定被测试的机器的操作精度。本发明还公开了一种相应的机器性能测试方法以及用于采集测试样本图像的装置。
Description
技术领域
本发明涉及电子组装(Electronic Assembly)技术领域,特别涉及应用于表面组装技术(SMT,Surface Mounted Technology)产业中的机器性能测试方法、机器性能测试装置及用于采集测试样本图像的装置。
背景技术
表面组装技术(又称表面贴装技术)是目前电子组装行业里最流行的一种技术和工艺,其适合于组装密度高、体积小、重量轻的电子产品。其中,贴片元件的体积和重量只有传统插装元件的1/10左右,一般采用表面组装技术之后,电子产品体积能缩小40%~60%,重量减轻60%~80%。
在SMT中,为保证机器操作的精准性,很重要的一方面就是要对机器性能进行测试。比如:测试置放机(Placement Machine)、印刷机(Printer)等设备的定位准确度等性能;其中,在测试置放机时,需要测量置放机在某个板子上放置组件时的位置精度,在测试印刷机时,则需要测量印刷机在某个板子上印刷焊膏或胶水的位置精度。
目前,有两种方法来测试机器性能:
一、一种方法是使用坐标测量仪(CMM,Coordinate MeasuementMachine)。然而,在SMT中,在较小面积的一块板子中通常分布着大量待测量的组件,需要坐标测量仪逐个测量各个组件。但是,为保证测试精度,此坐标测量仪不能以高频率移动,进而测量效率过低。并且,此种测量仪非常昂贵。
二、另一种方法是使用基于电荷耦合摄像机(CCD Camera)的特定测量仪器。但是,这种方法的缺点是:1、此种测量仪器不能自动调节CCD摄像机的焦距,很大程度上依赖用户的经验;2、此种测量仪器需要逐个测量各个组件,然而在SMT的实际应用中往往需要通过测量大量的组件来确定机器性能,这样这种测量仪器的测量效率过低;3、体积太大,用户使用起来不方便;4、此测量仪器也比较昂贵。
发明内容
为解决上述技术问题,本发明提供了一种机器性能测试方法、一种机器性能测试装置以及一种用于采集测试样本图像的装置,采用本发明方法及装置能以较高效率完成SMT产业中的机器性能测试,且成本较低。
根据本发明的一种机器性能测试装置,其包括:透明板、扫描装置和计算装置;其中:所述透明板,用于从被测试的机器采集测试样本;其中,所述测试样本包括由所述被测试的机器置于所述透明板上的至少一个物体;所述扫描装置,用于扫描所述透明板以得到图像数据;以及,所述计算装置,用于根据来自所述扫描装置的图像数据确定所述被测试的机器的操作精度。
根据本发明的一种机器性能测试方法,其包括:使用透明板从被测试的机器采集测试样本;其中,所述测试样本包括由所述被测试的机器置于所述透明板上的至少一个物体;扫描所述透明板以得到图像数据;及,根据所述图像数据确定所述被测试的机器的操作精度。
根据本发明的一种用于采集测试样本图像的装置,其包括:上述透明板和上述扫描装置。
采用本发明,能够以较高效率完成SMT产业中的机器性能测试,且成本较低。
附图说明
下面将通过参照附图详细描述本发明的示例性实施例,使本领域的普通技术人员更清楚本发明的上述及其它特征和优点,附图中:
图1为依据本发明实施例的机器性能测试装置示意图;
图2为依据本发明实施例的用于采集测试样本图像的装置实现原理示意图;
图3为依据本发明实施例的机器性能测试方法流程图;
图4为依据本发明实施例的测量得到的偏移量一实例示意图;
图5为依据本发明实施例的测试置放机装配精度的方法流程图;
图6为依据本发明实施例的测试印刷机偏移量的方法流程图;及,
图7为依据本发明实施例的测试印刷机印刷精度的方法流程图。
具体实施方式
以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
图1为依据本发明实施例的机器性能测试装置示意图。如图1所示,此机器性能测试装置,包括:透明板101、扫描装置102和计算装置103。其中:
透明板101用于从被测试的机器100采集测试样本。在测试一机器的性能时,透明板101将被放置到合适的位置上,以使被测试的机器100能够将其所操作的物体104置于透明板101上(比如:被测试的置放机将组件放置到此透明板101上,或者被测试的印刷机将焊膏或胶水印制到此透明板101上)。这里,本发明实施例适于测试SMT机器(比如:置放机或者印刷机等),SMT机器在正常工作时要将其所操作的物体置于板子上,在依据本发明实施例对SMT机器进行测试时,对于SMT机器而言,将其所操作的物体104置于透明板101上的动作相当于进行了一次正常的诸如置放或印刷等操作,这样,透明板101上就采集到了一份测试样本,此测试样本包含被测试的机器100置于透明板101上的各个诸如组件、焊膏或胶水等物体104,并能体现出各个物体104的位置。这里,此透明板101可以为透明玻璃板或其它材质的适于从SMT机器中采集测试样本的透明板。
扫描装置102用于扫描透明板101以得到图像数据。其中,由于透明板101上已采集到了测试样本,显然,扫描得到的图像数据应能体现出测试样本中各个物体104的位置信息。这里,扫描装置102可以为目前通用的各种扫描仪,或者为任何一种包含现有扫描仪的核心部件(即光学成像部件)的扫描装置。关于扫描装置扫描得到图像数据的实现原理非本发明涉及的内容,这里不做详述。
计算装置103用于根据来自扫描装置102的图像数据确定被测试的机器100的操作精度。其中,计算装置103首先根据来自扫描装置102的图像数据模拟透明板101当前的图像,根据所模拟的图像计算得到透明板101上当前采集到的测试样本中各个物体104的实际位置与其各自的理想位置之间的偏移量(offset),再根据计算得到的各个物体104的偏移量确定被测试的机器100的操作精度。这里,此计算装置103可以为任何一种能够运行特定软件来完成计算和/或统计功能的装置,如:可采用通用的个人计算机(PC,Personal Computer)来实现。此计算装置103可以实现为硬件装置,也可以为一种以软件方式实现的虚拟装置。
其中,为了确定测试样本中各个物体104的实际位置与其各自的理想位置之间的偏移量,可以在透明板101上设置若干基准点以建立一坐标系来表示透明板101上物体104的实际位置。具体的,可以在透明板101上设置两个或三个基准点;优选的,这些基准点可以设置在透明板101的板角上;比如:在透明板101的四个板角中的相邻两个板角上各设一个基准点,或者,在透明板101的四个板角中的三个板角上各设一个基准点。其中,本领域技术人员可以知道,根据若干基准点可以确定出一坐标系的原点,这样就能依据物体104与此原点的相对距离确定出物体104在此坐标系中的坐标,进而可以用此坐标系来表示物体104的实际位置。这里,采用同一坐标系来表示物体104的实际位置及其理想位置,进而可以根据实际位置的坐标和预定的理想位置的坐标确定出偏移量。
基于上述本发明实施例提供的机器性能测试装置,本发明实施例还提供了一种用于从被测试的机器采集测试样本图像的装置,依据此装置采集到的测试样本的图像数据,能够确定被测试的机器的操作精度。此用于采集测试样本图像的装置至少包括:图1所示的透明板101和扫描装置102。
图2为依据本发明实施例的用于采集测试样本图像的装置的实现原理示意图。如图2所示,在透明板4的正面(设定:透明板4水平放置时朝向上的一面为正面),设有两个基准点2,还有若干物体3(比如:组件或焊膏)。扫描装置位于透明板4的下方,扫描装置在进行扫描时,其扫描光源为长条形,发出多行垂直于透明板4的光线1,这些光线1照射到透明板4的反面,能够逐行扫描到整个透明板4的图像信息,而照射到透明板4的光线1经反射后穿过一个很窄的缝隙,形成横向的光带5(beam)。此光带5再经过一组反光镜,由光学透镜聚焦并进入分光镜,经过棱镜和红绿蓝三色滤色镜得到的红绿蓝(RGB)三条彩色光带,分别照到各自的CCD上,CCD将RGB光带转变为模拟电子信号,此模拟电子信号又被模拟/数字(A/D)变换器转变为数字电子信号。至此,反映透明板4图像的光信号转变为二进制的数字电子信号。该数字电子信号可经计算装置处理而模拟形成透明板4的图像。这里,由于本发明实施例采用了透明板,所以,扫描得到的透明板的图像能够同时反映出透明板上各个物体的图像,进而,此图像可以用来确定各个物体的位置信息。
基于上述本发明实施例提供的机器性能测试装置,本发明实施例还提供了一种机器性能测试方法。
图3为依据本发明实施例的机器性能测试方法流程图。在本实施例中,此方法应用于图1所示的装置。如图3所示,该方法包括如下步骤:
步骤301:使用透明板101从被测试的机器100采集测试样本。此测试样本包含被测试的机器100置于透明板101上的各个诸如组件或焊膏等物体104,并能体现出各个物体104的位置。
步骤302:由扫描装置102扫描透明板101以得到图像数据。其中,扫描得到的图像数据能体现出透明板101采集到的测试样本中各个物体104的位置信息。
步骤303:由计算装置103根据来自扫描装置102的图像数据确定被测试的机器100的操作精度。其中,计算装置103首先根据来自扫描装置102的图像数据模拟透明板101当前的图像,根据所模拟的图像计算得到透明板101上当前采集到的测试样本中各个物体104的实际位置与其各自的理想位置之间的偏移量(offset),再根据计算得到的各个物体104的偏移量确定被测试的机器100的操作精度。
其中,在计算各个物体104的实际位置与其各自的理想位置之间的偏移量时,计算得到的偏移量可包括物体104的水平偏移量、垂直偏移量和角度偏移量中的任一者或任意组合。优选的,计算得到的偏移量不仅包括物体104在水平方向和垂直方向的偏移量,还可包括物体104的角度偏移量。具体的,图4为依据本发明实施例的测量得到的偏移量一实例示意图。如图4所示,在依据基准点确定的X-Y二维坐标系中,一方形物体的某一点的理想位置坐标为(x0,y0),而在透明板采集到的测试样本中,此方形物体的此点的实际位置坐标为(x1,y1)。通过比对此方形物体的理想位置坐标和其实际位置坐标可以确定此方形物体在水平方向的偏移量为x1-x0,而其垂直方向的偏移量为y1-y0。同时,还可通过比较此方形物体位于理想位置的图像和扫描得到的位于实际位置的图像确定此方形物体的角度偏移量为θ。这样,用户可以得到以参数(x,y,θ)表达的机器的操作精度。
采用上述本发明实施例提供的装置及方法,用户可以高效地获得SMT机器的操作精度。通常可以在对SMT机器进行日常维护时依据本发明实施例进行测试,可以在约半小时左右的时间获得测试结果,相对于现有的各种测试技术,测试效率显著提高。具体的,依据本发明实施例进行测试时,一次扫描可以测量透明板上的多个物体的偏移量,而现有技术方案中,一次只能测量一个物体的偏移量。此外,本发明实施例所提供的装置及方法还能保证较高的测试精度且成本不高。具体的,本发明实施例采用的扫描装置基于目前已非常成熟和普遍的扫描技术,其分辨率远高于CCD摄像机但成本却低于CCD摄像机,这意味着本发明实施例的测试精度远高于采用CCD摄像机的现有技术的测试精度并且其实现成本很低。另外,本发明实施例在使用上也比较方便,在测试过程中不必调整扫描装置的焦距或特定光学系统,发明实施例提供的测试装置相对于现有的测试装置还体积小、重量轻,非常适合于高频率的测量。
以下进一步结合实际的应用场景,对本发明实施例所提供的测试方法做进一步说明。
图5为依据本发明实施例的测试置放机操作精度的方法流程图。如图5所示,包括如下步骤:
步骤501:在透明板表面喷洒一层的胶水。
步骤502:将透明板放入置放机,由置放机在透明板上放置若干组件。
其中,在进行置放机的性能测试时,透明板上需喷洒一层胶水以固定组件,进而可以对组件的位置进行准确的测量。
经过上述步骤501和502,就使用透明板从置放机采集到了一份测试样本。
步骤503:将带有若干组件的透明板放入依据本发明实施例的测试装置,此测试装置将通过扫描此透明板确定置放机的装配精度指标(AssemblyAccuracy Index)。
其中,如前面所述测试装置及方法的实现原理,此测试装置中的扫描装置首先扫描透明板并输出图像数据给计算装置,计算装置根据此图像数据模拟透明板当前的图像,根据所模拟的图像计算得到透明板上各个组件的实际位置与其各自的理想位置之间的偏移量,再根据各个组件的偏移量确定置放机的装配精度指标。这里,可以对一定数量的组件的偏移量进行统计来得到置放机的装配精度指标,根据实际应用场景,可以设定仅对当前采集到的测试样本中的部分或全部组件的偏移量进行统计得到装配精度指标,也可以设定对已采集到的若干测试样本中的部分或全部组件的偏移量进行统计得到装配精度指标;此装配精度指标可以包括:制程能力指数(CPK,ComplexProcess Capability Index)和/或过程能力指数(PPK,Process PerformanceIndex)等,关于装配精度指标的具体计算方法非本发明涉及的内容,这里不做详述。
图6为依据本发明实施例的测试印刷机偏移量的方法流程图。如图6所示,包括如下步骤:
步骤601:将透明板放入印刷机,使用适合于透明板的模板来在透明板上印刷焊膏或胶水。这里,如果在透明板上印刷胶水,则此胶水应具有某种特性,以使得扫描装置在扫描透明板时能够扫描到所印制的胶水的图像。
经过步骤601,就使用透明板从印刷机采集到了一份测试样本。
步骤602:将印刷有焊膏或胶水的透明板放入依据本发明实施例的测试装置,此测试装置将通过扫描此透明板确定步骤601采集到的测试样本中所印刷的各处焊膏或胶水的偏移量,并将此偏移量设为初始偏移量。
其中,如前面所述测试装置及方法的实现原理,此测试装置中的扫描装置首先扫描透明板并输出图像数据给计算装置,计算装置根据此图像数据模拟透明板当前的图像,根据所模拟的图像计算得到透明板上的所印制的各处焊膏或胶水的实际位置与其各自的理想位置之间的偏移量。这里,焊膏或胶水的理想位置与用于印刷焊膏或胶水的模板相符。
步骤603:经过一段时间,再次依步骤601和602的方法确定当前从印刷机采集到的测试样本中所印刷的各处焊膏或胶水的偏移量,根据当前确定的偏移量和步骤602中的初始偏移量确定这段时间内印刷机未对准(misalignment)的量,即这段时间内印刷机的偏移量。
其中,通常在进行维修/维护时应用本发明实施例提供的测试装置测量印刷机的偏移量,这样,在图6所示的流程中,步骤601和602可以在初始维护/维修时执行,步骤603可以在之后的某次维护/维修时执行,进而可以确定在某次维护/维修与初始维护/维修之间印刷机的偏移量,并可以依据此偏移量对印刷机进行调整,使印刷机恢复到对应初始偏移量的初始维护/维修时的状态。
图7为依据本发明实施例的测试印刷机印刷精度的方法流程图。如图7所示,包括如下步骤:
步骤701:将透明板放入印刷机,使用适合于透明板的模板来在透明板上印刷焊膏或胶水。
经过步骤701,就使用透明板从印刷机采集到了一份测试样本。
步骤702:将印刷有焊膏或胶水的透明板放入依据本发明实施例的测试装置,此测试装置将通过扫描此透明板确定步骤701采集到的测试样本中所印刷的各处焊膏或胶水的偏移量,并记录当前所确定的各个偏移量。
这里,步骤701和702与前述的步骤601和602的实现原理相同。
步骤703:按预定次数重复执行步骤701和702,比如:重复执行步骤701和702二十次,并在每次执行步骤701和702时记录下所确定的偏移量。最后,根据所记录的各个偏移量确定印刷机的印刷精度指标。其中,根据各个偏移量确定印刷精度指标的方法与步骤503中确定装配精度指标的方法相同,这里不再赘述。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (11)
1.一种机器性能测试装置,包括:透明板、扫描装置和计算装置;其中:
所述透明板,用于从被测试的机器采集测试样本;其中,所述测试样本包括由所述被测试的机器置于所述透明板上的至少一个物体;
所述扫描装置,用于扫描所述透明板以得到图像数据;以及,
所述计算装置,用于根据来自所述扫描装置的图像数据确定所述被测试的机器的操作精度。
2.根据权利要求1所述的测试装置,其特征在于,所述计算装置根据来自所述扫描装置的图像数据模拟所述透明板的图像,根据所模拟的图像确定所述透明板上当前采集到的测试样本中各个物体的实际位置与其各自的理想位置之间的偏移量offset,再根据计算得到的各个物体的偏移量确定所述被测试的机器的操作精度。
3.根据权利要求1所述的测试装置,其特征在于,当所述被测试的机器为置放机时,所述测试样本包括的物体为放置在所述透明板上的组件;当所述被测试的机器为印刷机时,所述测试样本包括的物体为印刷在所述透明板上的焊膏或胶水。
4.一种机器性能测试方法,包括:
使用透明板从被测试的机器采集测试样本;其中,所述测试样本包括由所述被测试的机器置于所述透明板上的至少一个物体;
扫描所述透明板以得到图像数据;以及,
根据所述图像数据确定所述被测试的机器的操作精度。
5.根据权利要求4所述的测试方法,其特征在于,所述根据所述图像数据确定所述被测试的机器的操作精度,包括:
根据所述图像数据模拟所述透明板的图像;
根据所模拟的图像确定所述透明板当前采集到的测试样本中各个物体的实际位置与其各自的理想位置之间的偏移量;
根据所述各个物体的偏移量确定所述被测试的机器的操作精度。
6.根据权利要求5所述的测试方法,其特征在于,所述根据所述各个物体的偏移量确定所述被测试的机器的操作精度,包括:
根据当前采集到的测试样本中的部分或全部物体的偏移量确定所述操作精度;或者,
根据已采集到的多个测试样本中的部分或全部物体的偏移量确定所述操作精度。
7.根据权利要求5或6所述的测试方法,其特征在于,所述偏移量包括:水平偏移量、垂直偏移量和角度偏移量中的任一者或任意组合。
8.一种机器性能测试方法,所述被测试的机器为置放机、且要测试所述置放机的装配精度;
所述测试方法包括:
使用透明板从被测试的机器采集测试样本,其中,在所述透明板表面喷洒一层的胶水,将所述透明板放入所述置放机,由所述置放机在所述透明板上放置至少一个组件;
扫描所述透明板以得到图像数据;
根据所述图像数据模拟所述透明板的图像;
根据所模拟的图像确定所述透明板当前采集到的测试样本中各个组件的实际位置与其各自的理想位置之间的偏移量;
对当前采集到的测试样本中的部分或全部组件的偏移量进行统计,或者对已采集到的多个测试样本中的部分或全部组件的偏移量进行统计,并计算得到所述置放机的装配精度。
9.一种机器性能测试方法,所述被测试的机器为印刷机、且要测试所述印刷机的偏移量;
所述测试方法包括:
在初始阶段,使用透明板从所述印刷机采集测试样本,其中,将所述透明板放入所述印刷机,使用适合于所述透明板的模板来在所述透明板上印刷焊膏或胶水;扫描所述透明板以得到图像数据;根据所述图像数据模拟所述透明板的图像;根据所模拟的图像确定所述透明板上印刷的各处焊膏或胶水的实际位置与其各自的理想位置之间的偏移量,并将所述偏移量记录为初始偏移量;以及,
经过一段时间,再次使用所述透明板从所述印刷机采集测试样本;扫描所述透明板以得到图像数据;根据所述图像数据模拟所述透明板的图像;根据所模拟的图像确定所述透明板上印刷的各处焊膏或胶水的实际位置与其各自的理想位置之间的偏移量,将当前得到的偏移量与所述初始偏移量进行比较得到此段时间内所述印刷机的偏移量。
10.一种机器性能测试方法,所述被测试的机器为印刷机、且要测试所述印刷机的印刷精度;
所述测试方法包括:
使用透明板从所述印刷机采集测试样本,其中,将所述透明板放入所述印刷机,使用适合于所述透明板的模板来在所述透明板上印刷焊膏或胶水;扫描所述透明板以得到图像数据;根据所述图像数据模拟所述透明板的图像;根据所模拟的图像确定所述透明板上印刷的各处焊膏或胶水的实际位置与其各自的理想位置之间的偏移量,记录所述偏移量;
按预定次数重复执行上述步骤;以及,
对所记录的各个偏移量进行统计,并计算得到所述印刷机的印刷精度。
11.一种用于采集测试样本图像的装置,其特征在于,包括:透明板和扫描装置;其中:
所述透明板,用于从被测试的机器采集测试样本;其中,所述测试样本包括由所述被测试的机器置于所述透明板上的至少一个物体;
所述扫描装置,用于扫描所述透明板以得到图像数据。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101500707A CN102221472A (zh) | 2010-04-15 | 2010-04-15 | 一种机器性能测试方法及装置 |
EP11159695.3A EP2378852A3 (en) | 2010-04-15 | 2011-03-25 | A machine performance testing method and device |
US13/086,807 US20110255769A1 (en) | 2010-04-15 | 2011-04-14 | Machine performance testing method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101500707A CN102221472A (zh) | 2010-04-15 | 2010-04-15 | 一种机器性能测试方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102221472A true CN102221472A (zh) | 2011-10-19 |
Family
ID=44310938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101500707A Pending CN102221472A (zh) | 2010-04-15 | 2010-04-15 | 一种机器性能测试方法及装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20110255769A1 (zh) |
EP (1) | EP2378852A3 (zh) |
CN (1) | CN102221472A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109353103A (zh) * | 2018-10-25 | 2019-02-19 | 惠科股份有限公司 | 物体的贴附控制方法、贴附机及存储介质 |
CN110268220A (zh) * | 2017-02-09 | 2019-09-20 | Ckd株式会社 | 基板检查装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9558547B2 (en) * | 2014-01-09 | 2017-01-31 | The Boeing Company | System and method for determining whether an apparatus or an assembly process is acceptable |
CN104701211B (zh) * | 2015-03-30 | 2017-09-22 | 上海华力微电子有限公司 | 根据集成电路制程能力指数自动调整抽检频率的量测方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5237622A (en) * | 1991-12-04 | 1993-08-17 | Micron Technology, Inc. | Semiconductor pick-and-place machine automatic calibration apparatus |
US5537204A (en) * | 1994-11-07 | 1996-07-16 | Micron Electronics, Inc. | Automatic optical pick and place calibration and capability analysis system for assembly of components onto printed circuit boards |
US5942078A (en) * | 1997-07-17 | 1999-08-24 | Mcms, Inc. | Apparatus for calibrating surface mounting processes in printed circuit board assembly manufacturing |
CN1307707A (zh) * | 1998-06-02 | 2001-08-08 | 数字人公司 | 使用线性传感器扫描指纹的方法和设备 |
CN1543185A (zh) * | 2003-11-04 | 2004-11-03 | �������пƼ�����˾ | 具有定位传感器的扫描装置及其获取图像的处理方法 |
US20050276464A1 (en) * | 2001-11-13 | 2005-12-15 | Duquette David W | Image analysis for pick and place machines with in situ component placement inspection |
US20070177789A1 (en) * | 2006-01-31 | 2007-08-02 | Jeffrey Harrell | Solder paste inspection system and method |
-
2010
- 2010-04-15 CN CN2010101500707A patent/CN102221472A/zh active Pending
-
2011
- 2011-03-25 EP EP11159695.3A patent/EP2378852A3/en not_active Withdrawn
- 2011-04-14 US US13/086,807 patent/US20110255769A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5237622A (en) * | 1991-12-04 | 1993-08-17 | Micron Technology, Inc. | Semiconductor pick-and-place machine automatic calibration apparatus |
US5537204A (en) * | 1994-11-07 | 1996-07-16 | Micron Electronics, Inc. | Automatic optical pick and place calibration and capability analysis system for assembly of components onto printed circuit boards |
US5942078A (en) * | 1997-07-17 | 1999-08-24 | Mcms, Inc. | Apparatus for calibrating surface mounting processes in printed circuit board assembly manufacturing |
CN1307707A (zh) * | 1998-06-02 | 2001-08-08 | 数字人公司 | 使用线性传感器扫描指纹的方法和设备 |
US20050276464A1 (en) * | 2001-11-13 | 2005-12-15 | Duquette David W | Image analysis for pick and place machines with in situ component placement inspection |
CN1543185A (zh) * | 2003-11-04 | 2004-11-03 | �������пƼ�����˾ | 具有定位传感器的扫描装置及其获取图像的处理方法 |
US20070177789A1 (en) * | 2006-01-31 | 2007-08-02 | Jeffrey Harrell | Solder paste inspection system and method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110268220A (zh) * | 2017-02-09 | 2019-09-20 | Ckd株式会社 | 基板检查装置 |
CN109353103A (zh) * | 2018-10-25 | 2019-02-19 | 惠科股份有限公司 | 物体的贴附控制方法、贴附机及存储介质 |
CN109353103B (zh) * | 2018-10-25 | 2021-07-02 | 惠科股份有限公司 | 物体的贴附控制方法、贴附机及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
US20110255769A1 (en) | 2011-10-20 |
EP2378852A2 (en) | 2011-10-19 |
EP2378852A3 (en) | 2014-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN204730814U (zh) | 一种基于线激光三维测量的零部件质量检验装置 | |
CN111076665B (zh) | 一种线激光快速测高装置及方法 | |
CN201069355Y (zh) | 一种三维锡膏测厚仪 | |
CN107084748B (zh) | 基于视觉的激光投线仪自动检测系统 | |
CN105403183A (zh) | 一种用于检验车钩的工作样板计量检测方法 | |
CN105574845A (zh) | 一种多相机阵列烟标叠层数量测量方法及装置 | |
CN102221472A (zh) | 一种机器性能测试方法及装置 | |
CN103837537B (zh) | 一种无砂目金属喷墨印版网点面积率测量方法 | |
CN113781434A (zh) | 缺陷检测方法、装置、智能终端及计算机可读存储介质 | |
CN109461183A (zh) | 一种空间坐标点与点云位置点三维对比的方法 | |
JP2013130566A (ja) | レンズ検査装置及びその方法 | |
CN202994091U (zh) | 一种标定板精度检测仪 | |
CN206740363U (zh) | 一种检测光学系统像质的系统 | |
CN1223826C (zh) | 影像测量系统和方法 | |
CN110044266B (zh) | 基于散斑投影的摄影测量系统 | |
CN108398086A (zh) | 一种高效影像测量系统 | |
CN106225736A (zh) | 一种混凝土表面气泡检测装置 | |
US20090299690A1 (en) | Scanner based optical inspection system | |
CN211651516U (zh) | 一种线激光快速测高装置 | |
CN210571299U (zh) | 用于测量小视场投影模组光学参数的系统 | |
JP2013015413A (ja) | 三次元形状計測装置及び三次元形状計測方法 | |
CN104930972A (zh) | 盾构隧道管片弹性密封垫断面检测方法 | |
CN1673708A (zh) | 镜头光学解析量测系统 | |
CN107392955A (zh) | 一种基于亮度的景深估算装置及方法 | |
JPH0545135A (ja) | 精密輪郭の視覚測定方法及び装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20111019 |