CN102219764A - Method for separating and purifying paclitaxel industrially - Google Patents
Method for separating and purifying paclitaxel industrially Download PDFInfo
- Publication number
- CN102219764A CN102219764A CN2011101216508A CN201110121650A CN102219764A CN 102219764 A CN102219764 A CN 102219764A CN 2011101216508 A CN2011101216508 A CN 2011101216508A CN 201110121650 A CN201110121650 A CN 201110121650A CN 102219764 A CN102219764 A CN 102219764A
- Authority
- CN
- China
- Prior art keywords
- paclitaxel
- separation
- column chromatography
- mobile phase
- alkane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 title claims abstract description 97
- 229930012538 Paclitaxel Natural products 0.000 title claims abstract description 92
- 229960001592 paclitaxel Drugs 0.000 title claims abstract description 92
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000000926 separation method Methods 0.000 claims abstract description 40
- -1 alkane esters Chemical class 0.000 claims abstract description 16
- 238000000746 purification Methods 0.000 claims abstract description 16
- 238000004440 column chromatography Methods 0.000 claims abstract description 10
- 150000001335 aliphatic alkanes Chemical class 0.000 claims abstract description 7
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 6
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 claims abstract description 5
- 150000001875 compounds Chemical class 0.000 claims abstract description 5
- 150000001298 alcohols Chemical class 0.000 claims abstract description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 23
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 12
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical group CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 12
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 claims description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 claims 1
- 229950005499 carbon tetrachloride Drugs 0.000 claims 1
- 229960001701 chloroform Drugs 0.000 claims 1
- 238000002955 isolation Methods 0.000 claims 1
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 claims 1
- DBXFAPJCZABTDR-KUEXGRMWSA-N Cephalomannine Natural products O=C(O[C@@H]1C(C)=C2[C@@H](OC(=O)C)C(=O)[C@]3(C)[C@@H](O)C[C@@H]4[C@](OC(=O)C)([C@H]3[C@H](OC(=O)c3ccccc3)[C@@](O)(C2(C)C)C1)CO4)[C@@H](O)[C@H](NC(=O)/C(=C\C)/C)c1ccccc1 DBXFAPJCZABTDR-KUEXGRMWSA-N 0.000 abstract description 19
- DBXFAPJCZABTDR-WBYYIXQISA-N cephalomannine Chemical compound O([C@@H]1[C@]2(O)C[C@@H](C(=C([C@@H](OC(C)=O)C(=O)[C@]3(C)[C@@H](O)C[C@H]4OC[C@]4([C@H]31)OC(C)=O)C2(C)C)C)OC(=O)[C@H](O)[C@@H](NC(=O)C(/C)=C/C)C=1C=CC=CC=1)C(=O)C1=CC=CC=C1 DBXFAPJCZABTDR-WBYYIXQISA-N 0.000 abstract description 19
- 239000002994 raw material Substances 0.000 abstract description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 13
- 239000000741 silica gel Substances 0.000 abstract description 13
- 229910002027 silica gel Inorganic materials 0.000 abstract description 13
- 238000010828 elution Methods 0.000 abstract description 10
- 239000002904 solvent Substances 0.000 abstract description 10
- 239000000126 substance Substances 0.000 abstract description 10
- 230000005526 G1 to G0 transition Effects 0.000 abstract description 4
- 238000009776 industrial production Methods 0.000 abstract description 4
- 238000011068 loading method Methods 0.000 abstract description 3
- 239000012046 mixed solvent Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 238000004809 thin layer chromatography Methods 0.000 description 5
- OVMSOCFBDVBLFW-VHLOTGQHSA-N 5beta,20-epoxy-1,7beta,13alpha-trihydroxy-9-oxotax-11-ene-2alpha,4alpha,10beta-triyl 4,10-diacetate 2-benzoate Chemical compound O([C@@H]1[C@@]2(C[C@H](O)C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)O)C(=O)C1=CC=CC=C1 OVMSOCFBDVBLFW-VHLOTGQHSA-N 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- BEHTXUBGUDGCNQ-IEAAAIHOSA-N taxol c Chemical compound O([C@@H]1[C@]2(O)C[C@@H](C(=C([C@@H](OC(C)=O)C(=O)[C@]3(C)[C@@H](O)C[C@H]4OC[C@]4([C@H]31)OC(C)=O)C2(C)C)C)OC(=O)[C@H](O)[C@@H](NC(=O)CCCCC)C=1C=CC=CC=1)C(=O)C1=CC=CC=C1 BEHTXUBGUDGCNQ-IEAAAIHOSA-N 0.000 description 4
- 241001116500 Taxus Species 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 229940041181 antineoplastic drug Drugs 0.000 description 3
- 239000003480 eluent Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000000967 suction filtration Methods 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- YWLXLRUDGLRYDR-ZHPRIASZSA-N 5beta,20-epoxy-1,7beta,10beta,13alpha-tetrahydroxy-9-oxotax-11-ene-2alpha,4alpha-diyl 4-acetate 2-benzoate Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](O)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 YWLXLRUDGLRYDR-ZHPRIASZSA-N 0.000 description 2
- 229940123237 Taxane Drugs 0.000 description 2
- 229930014667 baccatin III Natural products 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000011031 large-scale manufacturing process Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- TYLVGQKNNUHXIP-MHHARFCSSA-N 10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)C=4C=CC=CC=4)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 TYLVGQKNNUHXIP-MHHARFCSSA-N 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- RNKGEVWLVUMKGE-UHFFFAOYSA-N C(Cl)(Cl)(Cl)Cl.CCl Chemical compound C(Cl)(Cl)(Cl)Cl.CCl RNKGEVWLVUMKGE-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000031709 bromination Effects 0.000 description 1
- 238000005893 bromination reaction Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000001012 micellar electrokinetic chromatography Methods 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 230000029115 microtubule polymerization Effects 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910002059 quaternary alloy Inorganic materials 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000006257 total synthesis reaction Methods 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
Landscapes
- Epoxy Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明公开了一种工业化高效分离纯化紫杉醇的方法,属化合物分离纯化领域。该方法采用柱层析法分离紫杉醇,以C1-10烷烃类、氯化烃类、C1-4醇类、饱和烷烃酯类、烷烃酮类化合物中的任意三种或四种与胺类化合物的组合作为流动相,普通200目~300目硅胶作为固定相,以正相柱层析法对紫杉醇进行分离纯化。该多元体系混合溶剂流动相增大了难分离物质对的分离度,解决了以往分离方法中不能有效分离紫杉醇与三尖杉宁碱的现象。经柱层析法分离及纯化后,原料紫杉醇粗品的纯度可提高至98%以上,根据原料情况,仅一至两次洗脱总收率可高达90%。该方法使用常见溶剂及硅胶,成本低廉,操作简便,上样量大,易于工业化生产。The invention discloses an industrialized method for efficiently separating and purifying paclitaxel, which belongs to the field of compound separation and purification. The method uses column chromatography to separate paclitaxel, and any three or four of C1-10 alkanes, chlorinated hydrocarbons, C1-4 alcohols, saturated alkane esters, and alkane ketones are combined with amine compounds. The combination was used as the mobile phase, and ordinary 200-300 mesh silica gel was used as the stationary phase, and paclitaxel was separated and purified by normal phase column chromatography. The mixed solvent mobile phase of the multi-component system increases the separation degree of difficult-to-separate substance pairs, and solves the phenomenon that paclitaxel and cephalomannine cannot be effectively separated in previous separation methods. After separation and purification by column chromatography, the purity of the raw material paclitaxel can be increased to over 98%. According to the condition of the raw material, the total yield can be as high as 90% after only one or two elutions. The method uses common solvents and silica gel, and has the advantages of low cost, simple operation, large sample loading, and easy industrial production.
Description
技术领域technical field
本发明涉及紫杉醇的分离纯化方法,具体涉及一种工业化高效分离纯化紫杉醇与三尖杉宁碱的方法,属化合物分离纯化领域。The invention relates to a separation and purification method of paclitaxel, in particular to an industrialized high-efficiency separation and purification method of paclitaxel and cephalomannine, which belongs to the field of compound separation and purification.
背景技术Background technique
紫杉醇是从红豆杉属植物中分离提取的一种具有紫杉烷二萜骨架的新型抗癌药物,也是目前所了解的唯一一种可促进微管聚合和稳定已聚合微管的药物。它对大多数实体瘤有强力抑制作用,而对正常细胞基本无影响,尤其对晚期卵巢癌、乳腺癌、非小细胞肺癌和卡波济氏肉瘤的疗效确切、副作用较小。随着研究的进一步深入,紫杉醇类药物的抗癌作用越来越得到更加广泛的应用,现已成为一线抗癌药物和广谱的抗肿瘤药物。Paclitaxel is a new type of anticancer drug isolated from Taxus genus with a taxane diterpene skeleton. It is also the only drug known to promote microtubule polymerization and stabilize the polymerized microtubules. It has a strong inhibitory effect on most solid tumors, but basically has no effect on normal cells, especially for advanced ovarian cancer, breast cancer, non-small cell lung cancer and Kaposi's sarcoma, with definite curative effect and less side effects. With the further research, the anti-cancer effect of paclitaxel drugs has been more and more widely used, and has now become a first-line anti-cancer drug and a broad-spectrum anti-tumor drug.
作为紫杉醇主要来源的红豆杉类植物属于珍稀物种,在我国被列为国家一级保护植物。红豆杉树皮中紫杉醇含量极低,约占0.01%,远远不能满足市场对紫杉醇的需求。近20年来, 紫杉醇的制备方法相继有多学科,多角度地探索性报道。有紫杉醇细胞培养、真菌发酵、化学半合成与全合成方法。无论采取何方法制备紫杉醇,都需要将紫杉醇从紫杉醇类似物中分离并纯化出来。常见的紫杉醇类似物主要有三尖杉宁碱、巴卡亭III、10-去乙酰基紫杉醇、7-表-紫杉醇、紫杉醇C等。由于结构和性质比较相近,从而造成紫杉醇与其类似物的分离十分困难。此外,作为一种生物大分子物质,紫杉醇受温度、有机溶剂、酸、碱等环境条件的影响,容易发生降解或异构而生成其他紫杉烷类物质。例如紫杉醇在强酸性或弱碱性条件下会降解为巴卡亭III或者发生异构生成7-表-紫杉醇;温度较高时紫杉醇也会发生降解反应,生成相应的小分子物质。作为临床使用中的药品,紫杉醇在实际应用中其纯度要求很高。紫杉醇资源珍贵、价格居高不下,分离的纯度和收率成为制约药用紫杉醇成本的关键因素。基于上述几个方面,使得开发更加高效、廉价的工业化分离纯化技术以及新型的生产分离纯化工艺,成为紫杉醇研究中的焦点问题。Taxus plants, which are the main source of paclitaxel, are rare species and are listed as national first-class protected plants in my country. The paclitaxel content in yew bark is extremely low, accounting for about 0.01%, which is far from meeting the market demand for paclitaxel. In the past 20 years, the preparation methods of paclitaxel have been exploratoryly reported from multiple disciplines and perspectives. There are paclitaxel cell culture, fungal fermentation, chemical semi-synthesis and total synthesis methods. No matter what method is used to prepare paclitaxel, it is necessary to separate and purify paclitaxel from paclitaxel analogues. The common paclitaxel analogs mainly include cephalomannine, baccatin III, 10-deacetyl paclitaxel, 7-epi-paclitaxel, paclitaxel C and so on. Due to the similar structure and properties, it is very difficult to separate paclitaxel and its analogues. In addition, as a biological macromolecular substance, paclitaxel is easily degraded or isomerized to generate other taxanes under the influence of environmental conditions such as temperature, organic solvent, acid, and alkali. For example, paclitaxel will be degraded to baccatin III or isomerized to 7-epi-paclitaxel under strong acidic or weak alkaline conditions; paclitaxel will also undergo degradation reaction at higher temperature to generate corresponding small molecular substances. As a drug in clinical use, paclitaxel has high requirements for its purity in practical applications. The resource of paclitaxel is precious and the price remains high. The purity and yield of separation become the key factors restricting the cost of paclitaxel for pharmaceutical use. Based on the above aspects, the development of more efficient and cheap industrial separation and purification technology and new production separation and purification technology has become the focus of paclitaxel research.
目前常用的分离纯化紫杉醇与紫杉醇类似物的方法主要有柱层析法、薄层色谱法、沉淀法、胶束动电色谱法、膜分离法、树脂吸附分离法、化学反应法等。但是,适用于工业化大规模生产的仅有柱层析法一种,其他方法都只局限于实验室研究,柱层析法又分为正相柱法和反相柱两种方法。At present, the commonly used methods for separation and purification of paclitaxel and paclitaxel analogues mainly include column chromatography, thin layer chromatography, precipitation method, micellar electrokinetic chromatography, membrane separation method, resin adsorption separation method, chemical reaction method and so on. However, column chromatography is the only method suitable for industrialized large-scale production, and other methods are limited to laboratory research. Column chromatography is divided into two methods: normal phase column method and reversed phase column method.
有关紫杉醇分离纯化的专利申请有多项:如中国专利CN 1377882A “一种联合制备高纯度紫杉醇、三尖杉宁碱,10-脱乙酰基巴卡亭Ⅲ的方法”;中国专利CN 1611496A“一种利用高压液相色谱制备高纯度紫杉醇的方法”;中国专利CN 101391989A“一种制备多羟基紫杉烷及紫杉醇的方法”。There are many patent applications related to the separation and purification of paclitaxel: such as Chinese patent CN 1377882A "a method for jointly preparing high-purity paclitaxel, cephalomannine, and 10-deacetylbaccatin III"; Chinese patent CN 1611496A "a A method for preparing high-purity paclitaxel by high-pressure liquid chromatography"; Chinese patent CN 101391989A "a method for preparing polyhydroxytaxane and paclitaxel".
现有紫杉醇分离纯化方法的不足之处主要在于:目前各种分离紫杉醇的方法尚不能够有效地分离紫杉醇和三尖杉宁碱;就能够大规模工业化分离纯化紫杉醇与紫杉醇类似物的柱层析法而言,正相法和反相法又各自存在缺陷。正相柱层析法往往需要引入氧化反应,通过改变三尖杉宁碱的化学结构,以增加三尖杉宁碱与紫杉醇的分离度,这不仅改变了分离对象的化学结构,而且要多次过柱,多次重结晶进行纯化。操作步骤的繁琐不仅降低了目标紫杉醇的收率,增加生产成本,而且分离结果仅能得到紫杉醇一种产品,改变结构后的三尖杉宁碱只能被当做废料丢弃,既浪费资源又污染环境。反相柱层析法虽然不用改变分离对象的化学结构,但实际应用中,该方法需要使用特制的反相柱硅胶,其市场价格高昂,达50万元/公斤。工业化生产中,每分离1公斤紫杉醇至少会用到50公斤的反相柱硅胶,仅反相柱硅胶一项的成本就要2500万元,大大增加了分离紫杉醇的生产成本,限制了其工业化大规模生产。The deficiency of existing paclitaxel separation and purification method mainly lies in: the method for various separation paclitaxel at present still can't separate paclitaxel and cephalomannine effectively; As far as the method is concerned, the normal phase method and the reverse phase method have their own defects. Normal phase column chromatography often needs to introduce an oxidation reaction to increase the separation degree of cephalomannine and paclitaxel by changing the chemical structure of cephalomannine. This not only changes the chemical structure of the separated object, but also requires multiple Pass through the column and recrystallize several times for purification. The cumbersome operation steps not only reduce the yield of the target paclitaxel and increase the production cost, but also only one product of paclitaxel can be obtained as a result of separation, and the cephalomannine after the structure change can only be discarded as waste, which wastes resources and pollutes the environment . Although reversed-phase column chromatography does not need to change the chemical structure of the separated object, in practical application, this method needs to use a special reversed-phase column silica gel, and its market price is as high as 500,000 yuan/kg. In industrial production, at least 50 kg of reversed-phase column silica gel will be used to separate 1 kg of paclitaxel, and the cost of reversed-phase column silica gel alone will be 25 million yuan, which greatly increases the production cost of separating paclitaxel and limits its industrial scale. mass production.
发明内容Contents of the invention
本发明的目的在于提供一种分离效率高、成本低廉、易于工业化操作的紫杉醇分离纯化方法。The object of the present invention is to provide a paclitaxel separation and purification method with high separation efficiency, low cost and easy industrial operation.
为实现本发明目的,采用正相柱层析法,通过选用多元(四元或五元)体系混合溶剂作为流动相,对紫杉醇粗产品进行分离纯化。流动相为C1-10烷烃类、氯化烃类、C1-4醇类、饱和烷烃酯类、烷烃酮类化合物中的任意三种或四种与胺类化合物的组合。In order to achieve the purpose of the present invention, normal phase column chromatography is used to separate and purify the crude product of paclitaxel by selecting a multi-component (quaternary or pentadic) system mixed solvent as the mobile phase. The mobile phase is a combination of any three or four of C1-10 alkanes, chlorinated hydrocarbons, C1-4 alcohols, saturated alkane esters, alkane ketones and amine compounds.
所述胺类溶剂选自二乙胺或三乙胺;C1-10烷烃类溶剂选自正己烷、正戊烷或环己烷;氯化烃类溶剂选自二氯甲烷、三氯甲烷或四氯甲烷;所述C1-4醇类溶剂选自甲醇或乙醇;所述饱和烷烃酯类溶剂选自乙酸乙酯;所述烷烃酮类溶剂选自丙酮或异丙酮。胺类溶剂的用量占流动相体积的8%~16%。The amine solvent is selected from diethylamine or triethylamine; the C1-10 alkane solvent is selected from normal hexane, normal pentane or cyclohexane; the chlorinated hydrocarbon solvent is selected from dichloromethane, chloroform or tetrachloromethane Chloromethane; the C1-4 alcohol solvent is selected from methanol or ethanol; the saturated alkane ester solvent is selected from ethyl acetate; the alkane ketone solvent is selected from acetone or isopropanone. The amount of amine solvent accounts for 8% to 16% of the mobile phase volume.
通常经一至两次层析柱洗脱后纯度93%~95%的紫杉醇占80%~90%;经一至两次层析柱洗脱后纯度30%~90%的紫杉醇占5%~15%;经一至两次层析柱洗脱后纯度低于30%的紫杉醇占1%~3%;样品进行一次重结晶,得目标紫杉醇。Usually, paclitaxel with a purity of 93% to 95% accounts for 80% to 90% after one or two column elutions; paclitaxel with a purity of 30% to 90% after one or two column elutions accounts for 5% to 15%. ; Paclitaxel with a purity lower than 30% after one or two elutions from the chromatographic column accounts for 1% to 3%; the sample is recrystallized once to obtain the target paclitaxel.
实际应用中,原料紫杉醇的含量越高,所需层析柱的洗脱次数越少。采用本方法分离紫杉醇时,如原料紫杉醇含量高于70%,则仅需一次层析柱洗脱就可获得理想的分离效果;如原料紫杉醇含量为50%~70%,两次层析柱洗脱就可获得理想的分离效果。In practical applications, the higher the content of the raw material paclitaxel, the less the number of elution times required for the chromatographic column. When using this method to separate paclitaxel, if the paclitaxel content of the raw material is higher than 70%, then only one column elution is required to obtain the ideal separation effect; if the paclitaxel content of the raw material is 50% to 70%, two column washes The ideal separation effect can be obtained.
本发明创新点在于多元(四元或五元)体系流动相的选择,使得分离纯化过程中省去了溴化法等化学反应步骤,避免了分离对象中化学结构的改变,减少了原料样品的过柱次数,仅过一次层析柱便可将80%以上的紫杉醇分离出来。同时,分离结果得到高纯度的紫杉醇和三尖杉宁碱两种物质。三尖杉宁碱除了本身可作为高附加值的原料药直接利用外(15万元/公斤),还可被制成多烯紫杉醇或紫杉醇,获得更多的经济效益。The innovation of the present invention lies in the selection of mobile phase of the multi-element (quaternary or quinary) system, which saves the chemical reaction steps such as bromination method in the separation and purification process, avoids the change of the chemical structure in the separation object, and reduces the concentration of raw material samples. More than 80% of paclitaxel can be separated by only passing through the column once. At the same time, as a result of the separation, two substances, paclitaxel and cephalomannine, were obtained with high purity. In addition to direct utilization of cephalomannine itself as a high value-added raw material drug (150,000 yuan/kg), it can also be made into docetaxel or paclitaxel to obtain more economic benefits.
本发明创新点在于流动相选用C1-10烷烃类、氯化烃类、C1-4醇类、饱和烷烃酯类、烷烃酮类化合物中的任意三种或四种与胺类化合物的组合;固定相为50元/Kg的普通200目~300目正相柱硅胶。分离纯化过程中所用材料均为简单易得、成本低廉的材料,易于开展工业化生产及降低生产成本。与目前常用的反相柱分离紫杉醇方法相比,可有效分离紫杉醇与三尖杉宁碱,过柱次数少,分离效率高,生产成本低廉,可大规模开展工业化生产。The innovation point of the present invention is that the mobile phase selects the combination of any three or four of C1-10 alkanes, chlorinated hydrocarbons, C1-4 alcohols, saturated alkane esters, alkane ketones and amine compounds; The phase is ordinary 200-300 mesh normal-phase column silica gel at 50 yuan/Kg. The materials used in the separation and purification process are simple, easy-to-obtain and low-cost materials, which are easy to carry out industrial production and reduce production costs. Compared with the currently commonly used reversed-phase column separation paclitaxel method, the paclitaxel and cephalomannine can be effectively separated, the number of column passes is small, the separation efficiency is high, the production cost is low, and industrial production can be carried out on a large scale.
本发明创新点在于胺类试剂的应用,调节了流动相的pH值,使分离过程在碱性条件下进行,此时被分离物质均以分子形式存在,减少了在硅胶上的吸附,且提高了难分离物质对紫杉醇和三尖杉宁碱的分离度,很好地解决了以往各种分离方法中不能有效分离紫杉醇和三尖杉宁碱的难题。The innovation point of the present invention lies in the application of amine reagents, which adjusts the pH value of the mobile phase, so that the separation process is carried out under alkaline conditions. At this time, the separated substances all exist in molecular form, which reduces the adsorption on silica gel, and improves The separation degree of paclitaxel and cephalomannine for difficult-to-separate substances has been improved, and the problem that paclitaxel and cephalomannine cannot be effectively separated by various separation methods in the past has been well solved.
本发明创新点在于层析柱的洗脱液中,含三尖杉宁碱的液体先流出,含紫杉醇的液体后流出。这与多元(四元或五元)体系流动相及胺类试剂的使用有关,碱性分离环境使得三尖杉宁碱先于紫杉醇流出。The innovative point of the present invention is that in the eluent of the chromatographic column, the liquid containing cephalomannine flows out first, and the liquid containing paclitaxel flows out later. This is related to the use of multiple (quaternary or pentadic) system mobile phases and amine reagents, and the alkaline separation environment makes cephalomannine elute before paclitaxel.
采用本发明方法可有效分离紫杉醇与三尖杉宁碱,分离纯化效果好,能很方便地将紫杉醇粗产品纯度提高至98%以上,根据原料情况,仅一至两次洗脱总收率就可高达90%。与现有紫杉醇分离方法比,本方法过柱洗脱次数少,操作简便,安全,分离效率高,成本低廉,上样量大,易于工业化开展大规模生产。Adopting the method of the present invention can effectively separate paclitaxel and cephalomannine, the effect of separation and purification is good, and the purity of the crude paclitaxel product can be easily increased to more than 98%. Up to 90%. Compared with the existing separation method of paclitaxel, the method has fewer column elution times, simple and safe operation, high separation efficiency, low cost, large loading amount, and easy industrialized large-scale production.
具体实施方式Detailed ways
为对本发明进行更好地说明,具体实施方式如下:For a better description of the present invention, the specific implementation is as follows:
实施例1Example 1
取紫杉醇含量70%的样品为原料,原料与硅胶重量比为2:100。原料用二氯甲烷溶解后备用。四元体系流动相为正己烷:二氯甲烷:甲醇:三乙胺体积比= 3:6:2:2,200目~300目硅胶作为固定相。采用湿法上柱,采用湿法上柱,上样后,用二氯甲烷溶剂冲一个柱体积后再用配好的流动相进行分离。流动相冲1.4个柱体积后,开始有紫杉醇C流出,紧接着为三尖杉宁碱流出,经0.3个柱体积后,为单一紫杉醇流出,再经2个柱体积后紫杉醇可被完全分离出来,一次洗脱后纯度90%以上的紫杉醇占85%。合并纯度30%~90%的紫杉醇流出液并进行二次洗脱。(分离过程可用TLC或HPLC进行监测)合并两次洗脱液中纯度90%以上的紫杉醇流出液,在45℃下进行真空浓缩,浓缩物在室温下(25℃)用丙酮:正己烷 = 1: 6体积比进行重结晶,搅拌10min后有大量白色沉淀析出,搅拌20min后,紫杉醇可完全析出。进行抽滤和真空干燥后,得到纯度达98.6%的紫杉醇纯品,紫杉醇总收率达97.6%。A sample with a paclitaxel content of 70% was taken as a raw material, and the weight ratio of the raw material to silica gel was 2:100. The raw material was dissolved in dichloromethane for later use. The mobile phase of the quaternary system is n-hexane: dichloromethane: methanol: triethylamine volume ratio = 3:6:2:2, 200-300 mesh silica gel as the stationary phase. The wet method is used to load the column. After the sample is loaded, the column volume is flushed with dichloromethane solvent and then separated with the prepared mobile phase. After 1.4 column volumes of the mobile phase were flushed, paclitaxel C began to flow out, followed by cephalomannine, and after 0.3 column volumes, single paclitaxel flowed out, and paclitaxel could be completely separated after 2 column volumes , Paclitaxel with a purity of more than 90% after one elution accounted for 85%. The paclitaxel effluent with a purity of 30% to 90% was combined and eluted twice. (The separation process can be monitored by TLC or HPLC) Combine the effluents of paclitaxel with a purity of more than 90% in the two eluents, and concentrate them in vacuum at 45°C. : 6 volume ratio for recrystallization, a large amount of white precipitates precipitated after stirring for 10 minutes, paclitaxel can be completely precipitated after stirring for 20 minutes. After suction filtration and vacuum drying, the pure paclitaxel with a purity of 98.6% was obtained, and the total yield of paclitaxel reached 97.6%.
实施例2Example 2
取紫杉醇含量60%的样品为原料,原料与硅胶重量比为1.5:100。原料用二氯甲烷溶解后备用。五元体系流动相为正己烷:二氯甲烷:丙酮:三乙胺:乙酸乙酯体积比 = 6:3:1:1:1.5,200目~300目硅胶作为固定相。采用湿法上柱,上样后,用二氯甲烷溶剂冲一个柱体积后再用配好的流动相进行分离。流动相冲1.7个柱体积后,开始有紫杉醇C流出,紧接着为三尖杉宁碱流出,经0.5个柱体积后,为单一紫杉醇流出,再经2个柱体积后紫杉醇可被完全分离出来,一次洗脱后纯度90%以上的紫杉醇占75%。合并纯度30%~90%的紫杉醇流出液并进行二次洗脱。(分离过程可用TLC或HPLC进行监测)合并两次洗脱液中纯度90%以上的紫杉醇流出液,(分离过程可用TLC或HPLC进行监测)含紫杉醇的流出液在45℃下进行真空浓缩,浓缩物在室温下(25℃)用丙酮:正己烷 = 1: 6体积比进行重结晶,搅拌10min后有大量白色沉淀析出,搅拌20min后,紫杉醇可完全析出。进行抽滤和真空干燥后,得到纯度达98.5%的紫杉醇纯品,紫杉醇总收率达94.6%。A sample with a paclitaxel content of 60% was taken as a raw material, and the weight ratio of the raw material to silica gel was 1.5:100. The raw material was dissolved in dichloromethane for later use. The mobile phase of the five-component system is n-hexane: dichloromethane: acetone: triethylamine: ethyl acetate volume ratio = 6:3:1:1:1.5, and 200-300 mesh silica gel is used as the stationary phase. The wet method is used to load the column. After the sample is loaded, the column volume is flushed with dichloromethane solvent and then separated with the prepared mobile phase. After flushing the mobile phase for 1.7 column volumes, paclitaxel C began to flow out, followed by cephalomannine, and after 0.5 column volumes, single paclitaxel flowed out, and paclitaxel could be completely separated after 2 column volumes , Paclitaxel with a purity of more than 90% after one elution accounted for 75%. The paclitaxel effluent with a purity of 30% to 90% was combined and eluted twice. (The separation process can be monitored by TLC or HPLC.) The paclitaxel effluent with a purity of more than 90% in the two eluents can be combined. (The separation process can be monitored by TLC or HPLC.) The paclitaxel-containing effluent is vacuum concentrated at 45°C, concentrated The product was recrystallized at room temperature (25°C) with acetone: n-hexane = 1: 6 volume ratio. After stirring for 10 minutes, a large amount of white precipitates precipitated. After stirring for 20 minutes, paclitaxel could be completely precipitated. After suction filtration and vacuum drying, the pure paclitaxel with a purity of 98.5% was obtained, and the total yield of paclitaxel reached 94.6%.
实施例3Example 3
取紫杉醇含量50%的样品为原料,原料与硅胶重量比为2:100。原料用三氯甲烷溶解后备用。五元体系流动相为正己烷:三氯甲烷:丙酮:二乙胺:乙酸乙酯体积比 = 4:3:1:1:1.5,200目~300目硅胶作为固定相。采用湿法上柱,上样后,用三氯甲烷溶剂冲2个柱体积后再用配好的流动相进行分离。流动相冲2个柱体积后,开始有紫杉醇C流出,紧接着为三尖杉宁碱流出,经0.5个柱体积后,为单一紫杉醇流出,再经2.5个柱体积后紫杉醇可被完全分离出来,一次洗脱后纯度90%以上的紫杉醇占66.7%。合并纯度30%~90%的紫杉醇流出液并进行二次洗脱。(分离过程可用TLC或HPLC进行监测)含紫杉醇的流出液在45℃下进行真空浓缩,浓缩物在室温下(25℃)用丙酮:正己烷=1:6体积比进行重结晶,搅拌10min后有大量白色沉淀析出,搅拌20min后,紫杉醇可完全析出,进行抽滤和真空干燥后,得到纯度达98.3%的紫杉醇纯品,紫杉醇总收率达90.7%。A sample with a paclitaxel content of 50% was taken as a raw material, and the weight ratio of the raw material to silica gel was 2:100. The raw materials were dissolved in chloroform for later use. The mobile phase of the five-component system is n-hexane: chloroform: acetone: diethylamine: ethyl acetate volume ratio = 4:3:1:1:1.5, and 200-300 mesh silica gel is used as the stationary phase. The wet method is used to load the column. After loading the sample, rinse the column volume with chloroform solvent for 2 column volumes and then separate with the prepared mobile phase. After the mobile phase was flushed for 2 column volumes, paclitaxel C began to flow out, followed by cephalomannine, and after 0.5 column volumes, single paclitaxel flowed out, and paclitaxel could be completely separated after 2.5 column volumes , paclitaxel with a purity of more than 90% after one elution accounted for 66.7%. The paclitaxel effluent with a purity of 30% to 90% was combined and eluted twice. (The separation process can be monitored by TLC or HPLC) The paclitaxel-containing effluent was concentrated in vacuo at 45°C, and the concentrate was recrystallized at room temperature (25°C) with acetone:n-hexane=1:6 volume ratio, and stirred for 10 minutes A large amount of white precipitates were precipitated, and paclitaxel could be completely precipitated after stirring for 20 minutes. After suction filtration and vacuum drying, pure paclitaxel with a purity of 98.3% was obtained, and the total yield of paclitaxel was 90.7%.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110121650 CN102219764B (en) | 2011-05-12 | 2011-05-12 | A kind of method for industrial separation and purification of paclitaxel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110121650 CN102219764B (en) | 2011-05-12 | 2011-05-12 | A kind of method for industrial separation and purification of paclitaxel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102219764A true CN102219764A (en) | 2011-10-19 |
CN102219764B CN102219764B (en) | 2013-06-26 |
Family
ID=44776494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110121650 Expired - Fee Related CN102219764B (en) | 2011-05-12 | 2011-05-12 | A kind of method for industrial separation and purification of paclitaxel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102219764B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102417492A (en) * | 2011-12-07 | 2012-04-18 | 福建紫杉园生物有限公司 | Method for separating and purifying paclitaxel |
CN103232416A (en) * | 2013-04-22 | 2013-08-07 | 无锡尔云科技有限公司 | Method for separating and purifying 10-deacetylated paclitaxel (10-DAP) |
CN105457337A (en) * | 2015-11-17 | 2016-04-06 | 重庆臻源红豆杉发展有限公司 | A silica gel loading and sample loading method of a chromatographic column |
CN109384749A (en) * | 2018-12-26 | 2019-02-26 | 重庆市碚圣医药科技股份有限公司 | A kind of purification process of taxol |
CN112645906A (en) * | 2020-12-29 | 2021-04-13 | 重庆臻源红豆杉发展有限公司 | Method for separating and purifying paclitaxel by high-efficiency chromatography |
CN113444060A (en) * | 2021-08-09 | 2021-09-28 | 怀化市盛德生物科技有限责任公司 | Paclitaxel separation and purification process |
CN113717131A (en) * | 2021-08-27 | 2021-11-30 | 常熟纳微生物科技有限公司 | Separation and purification method of paclitaxel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1069965A (en) * | 1991-04-19 | 1993-03-17 | 密西西比大学 | Separate the method for derivative of taxane and contain its composition |
CN1377882A (en) * | 2001-04-02 | 2002-11-06 | 北京普瑞孚天然药物现代纯化和分离研究所有限公司 | Process for coproducing high purity taxol cephalomtanine, and 10-deacetyl Bakating III |
CN1396917A (en) * | 2000-11-28 | 2003-02-12 | 因德纳有限公司 | Chromatographic separation method of paclitaxel and cephalomannin |
CN1791590A (en) * | 2003-03-17 | 2006-06-21 | 天然医药品公司 | Purification of taxanes and taxane mixtures using polyethyleneimine-bonded resins |
-
2011
- 2011-05-12 CN CN 201110121650 patent/CN102219764B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1069965A (en) * | 1991-04-19 | 1993-03-17 | 密西西比大学 | Separate the method for derivative of taxane and contain its composition |
CN1396917A (en) * | 2000-11-28 | 2003-02-12 | 因德纳有限公司 | Chromatographic separation method of paclitaxel and cephalomannin |
CN1377882A (en) * | 2001-04-02 | 2002-11-06 | 北京普瑞孚天然药物现代纯化和分离研究所有限公司 | Process for coproducing high purity taxol cephalomtanine, and 10-deacetyl Bakating III |
CN1791590A (en) * | 2003-03-17 | 2006-06-21 | 天然医药品公司 | Purification of taxanes and taxane mixtures using polyethyleneimine-bonded resins |
Non-Patent Citations (1)
Title |
---|
雒丽娜: "《北京化工大学硕士研究生学位论文》", 31 December 2005 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102417492A (en) * | 2011-12-07 | 2012-04-18 | 福建紫杉园生物有限公司 | Method for separating and purifying paclitaxel |
CN103232416A (en) * | 2013-04-22 | 2013-08-07 | 无锡尔云科技有限公司 | Method for separating and purifying 10-deacetylated paclitaxel (10-DAP) |
CN103232416B (en) * | 2013-04-22 | 2015-03-18 | 无锡尔云科技有限公司 | Method for separating and purifying 10-deacetylated paclitaxel (10-DAP) |
CN105457337A (en) * | 2015-11-17 | 2016-04-06 | 重庆臻源红豆杉发展有限公司 | A silica gel loading and sample loading method of a chromatographic column |
CN109384749A (en) * | 2018-12-26 | 2019-02-26 | 重庆市碚圣医药科技股份有限公司 | A kind of purification process of taxol |
CN112645906A (en) * | 2020-12-29 | 2021-04-13 | 重庆臻源红豆杉发展有限公司 | Method for separating and purifying paclitaxel by high-efficiency chromatography |
CN113444060A (en) * | 2021-08-09 | 2021-09-28 | 怀化市盛德生物科技有限责任公司 | Paclitaxel separation and purification process |
CN113717131A (en) * | 2021-08-27 | 2021-11-30 | 常熟纳微生物科技有限公司 | Separation and purification method of paclitaxel |
CN113717131B (en) * | 2021-08-27 | 2023-09-22 | 常熟纳微生物科技有限公司 | Separation and purification method of paclitaxel |
Also Published As
Publication number | Publication date |
---|---|
CN102219764B (en) | 2013-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102219764A (en) | Method for separating and purifying paclitaxel industrially | |
Kim et al. | A novel prepurification for paclitaxel from plant cell cultures | |
CN102260227B (en) | Method for separating paclitaxel and related taxane substances | |
CN102653528B (en) | Method for separating purified paclitaxel and 10 diaminobenzidine (DAB) III by utilizing macroporous resin | |
CN110357933B (en) | A kind of punicalagin purification method based on isomerization characteristics | |
CN108299462A (en) | Mixed source terpene compound and its separation method and application | |
CN101235022B (en) | Method for extracting and purifying two kinds of taxane compound from yew branches and leaves | |
JP2002534422A (en) | Method for high yield extraction of paclitaxel from paclitaxel-containing materials | |
US7880022B2 (en) | Method for separation and purification of 13-dehydroxybaccatin III and 10-deacetylpaclitaxel from taxans-containing materials | |
CN106226426B (en) | A kind of method that high performance liquid chromatography splits canagliflozin five-membered ring impurity enantiomer | |
CN101307040A (en) | A method for separating and preparing paclitaxel | |
Tao et al. | Separation and purification of two taxanes and one xylosyl‐containing taxane from Taxus wallichiana Zucc.: A comparison between high‐speed countercurrent chromatography and reversed‐phase flash chromatography | |
CN101391989B (en) | A method for preparing polyhydroxytaxane and paclitaxel | |
CN104961716B (en) | Method for separating high-purity lactone type lovastatin from fermentum rubrum powder | |
CN103788032A (en) | Preparation method of paclitaxel | |
CN108250273A (en) | Knob not Kangding high efficiency separation and purification method | |
US6229027B1 (en) | Process for manufacturing paclitaxel and 13-acetyl-9-dihydrobaccatin IV | |
CN103819430B (en) | Paclitaxel purifying method of paclitaxel crude product produced by Chinese yew cell culture | |
Lee et al. | Increasing the efficiency of the separation and purification process for paclitaxel by pre-treatment with water | |
CN101798294B (en) | Preparation method of anti-tumour medicine intermediate 10-deacetylbacctin III | |
CN104892551B (en) | A kind of method of separating-purifying 10-deacetylate baccatin III from Ramulus et folium taxi cuspidatae | |
CN101143883A (en) | A mixture containing taxane xyloside compound and its preparation method | |
CN104650011A (en) | Method of purifying taxane-type derivative | |
CN112645906A (en) | Method for separating and purifying paclitaxel by high-efficiency chromatography | |
Zhang et al. | Highly efficient and simultaneous production of thirteen taxanes from Taxus× media and mining of their new bioactivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130626 |