CN102219505A - Microwave tuned composite ceramic material and preparation method thereof - Google Patents
Microwave tuned composite ceramic material and preparation method thereof Download PDFInfo
- Publication number
- CN102219505A CN102219505A CN2011100962173A CN201110096217A CN102219505A CN 102219505 A CN102219505 A CN 102219505A CN 2011100962173 A CN2011100962173 A CN 2011100962173A CN 201110096217 A CN201110096217 A CN 201110096217A CN 102219505 A CN102219505 A CN 102219505A
- Authority
- CN
- China
- Prior art keywords
- sio
- tio
- microwave
- mgo
- ceramic material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 29
- 229910010293 ceramic material Inorganic materials 0.000 title claims abstract description 19
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 229910004283 SiO 4 Inorganic materials 0.000 claims abstract description 40
- 239000000203 mixture Substances 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 14
- 239000000843 powder Substances 0.000 claims abstract description 13
- 238000005245 sintering Methods 0.000 claims abstract description 6
- 238000007599 discharging Methods 0.000 claims abstract description 4
- 238000005469 granulation Methods 0.000 claims abstract 2
- 230000003179 granulation Effects 0.000 claims abstract 2
- 239000002994 raw material Substances 0.000 claims description 9
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 claims description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 229910002367 SrTiO Inorganic materials 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims 2
- 238000000748 compression moulding Methods 0.000 claims 1
- 238000000498 ball milling Methods 0.000 abstract description 10
- 238000001035 drying Methods 0.000 abstract description 4
- 238000003491 array Methods 0.000 abstract 1
- 238000000465 moulding Methods 0.000 abstract 1
- 239000000919 ceramic Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000001354 calcination Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- -1 adjustable filters Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000011363 dried mixture Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种微波调谐复合陶瓷材料,该材料由Mn掺杂的Ba1-xSrxTiO3和混合物构成,Mn的摩尔百分含量为0.1-2%,Mn掺杂的Ba1-xSrxTiO3质量百分比为30-95%,x=0.3-0.7,混合物由Mg2SiO4和MgO构成,Mg2SiO4在混合物中质量百分比为1-99%。本发明还公开了该种复合陶瓷材料的制备方法,即首先按化学计量比分别配制Mn掺杂的Ba1-xSrxTiO3和Mg2SiO4,经球磨、出料、烘干、预烧,分别得到Mn掺杂的Ba1-xSrxTiO3和Mg2SiO4粉体,然后根据组成在Mn掺杂的Ba1-xSrxTiO3粉体中掺入Mg2SiO4和MgO,再经球磨、烘干,造粒、成型,排胶,最后在1200oC-1400oC的炉温内烧结2h-4h,即得到所需材料。该材料介电常数适中,介电损耗低,调谐率高,兼具高性能与低烧结温度的特点,可用于移相器,可调滤波器,延迟线,振荡器,共振器及相控阵天线等微波器件中。
The invention discloses a microwave tuning composite ceramic material, which is composed of Mn-doped Ba 1-x Sr x TiO 3 and a mixture, the molar percentage of Mn is 0.1-2%, and the Mn-doped Ba 1- The mass percentage of x Sr x TiO 3 is 30-95%, x=0.3-0.7, the mixture is composed of Mg 2 SiO 4 and MgO, and the mass percentage of Mg 2 SiO 4 in the mixture is 1-99%. The invention also discloses a preparation method of the composite ceramic material, that is, first preparing Mn-doped Ba 1-x Sr x TiO 3 and Mg 2 SiO 4 respectively according to the stoichiometric ratio, after ball milling, discharging, drying, pre- Burn to obtain Mn -doped Ba 1 -x Sr x TiO 3 and Mg 2 SiO 4 powders respectively, and then dope Mg 2 SiO 4 and MgO, ball milling, drying, granulation, molding, debinding, and finally sintering at a furnace temperature of 1200 o C-1400 o C for 2h-4h to obtain the required material. The material has moderate dielectric constant, low dielectric loss, high tuning rate, high performance and low sintering temperature, and can be used in phase shifters, tunable filters, delay lines, oscillators, resonators and phased arrays In microwave devices such as antennas.
Description
技术领域technical field
本发明属于微波陶瓷材料技术,具体涉及一种Mn掺杂的BaxSr1-xTiO3-MgO-Mg2SiO4微波调谐复合陶瓷材料及其制备方法。The invention belongs to microwave ceramic material technology, in particular to a Mn-doped Ba x Sr 1-x TiO 3 -MgO-Mg 2 SiO 4 microwave tuning composite ceramic material and a preparation method thereof.
背景技术Background technique
可调滤波器,延迟线,移相器,振荡器,共振器及相控阵天线等微波器件是微波通信领域的重要器件,但太高的成本限制了其广泛的商业应用。低成本调谐技术将引起微波元件及天线工业的革命。Microwave devices such as tunable filters, delay lines, phase shifters, oscillators, resonators and phased array antennas are important devices in the field of microwave communications, but their high cost limits their wide commercial application. Low-cost tuning technology will revolutionize the microwave components and antenna industry.
微波调谐材料的介电常数可随外加电压改变。应用于微波通讯领域,可通过外加电压改变元件的工作频率,如可让一个滤波器产生频率跳跃,这对未来的宽带通讯非常重要,因为这样可实现几个用户在一个共同频率范围传输和接受信号。新型微波调谐材料可大大降低相控阵天线的成本,将使相控阵天线的应用由目前的军用扩展至民用。相控阵天线的速度,精度及可靠性均比相应的机械操纵天线高。The dielectric constant of microwave tuning materials can change with the applied voltage. Applied in the field of microwave communication, the operating frequency of the component can be changed by applying an external voltage, such as a filter that can produce frequency hopping, which is very important for future broadband communication, because it can enable several users to transmit and receive in a common frequency range Signal. New microwave tuning materials can greatly reduce the cost of phased array antennas, and will expand the application of phased array antennas from the current military to civilian use. The speed, accuracy and reliability of the phased array antenna are higher than the corresponding mechanical steering antenna.
微波调谐材料可用于制造移相器。目前的移相器主要是铁氧体移相器和半导体二极管移相器。但在高频下,PIN二极管存在损耗大,功率低,需要逻辑电路控制相位移动,不能连续调谐等缺点;铁氧体在3GHz以上损耗低,功率大,但其调谐电路的价格昂贵,且体积大,笨重,功耗大,仅用于军事领域,另外,铁氧体在1-2GHz时的损耗比在10GHz时大,不适用于蜂窝电话及个人通讯服务。铁氧体移相器很难制成平面结构。Microwave tuning materials can be used to make phase shifters. The current phase shifters are mainly ferrite phase shifters and semiconductor diode phase shifters. However, at high frequencies, PIN diodes have the disadvantages of large loss and low power, which require a logic circuit to control phase shift and cannot be tuned continuously; ferrite has low loss and high power above 3GHz, but its tuning circuit is expensive and bulky. Big, bulky, high power consumption, only used in the military field, in addition, the loss of ferrite at 1-2GHz is greater than at 10GHz, not suitable for cellular phones and personal communication services. Ferrite phase shifters are difficult to make planar structures.
钛酸锶钡的介电常数可以随外加电场变化,是一种合适的微波调谐材料。钛酸锶钡可以应用于各种天线,但是,钛酸锶钡的微波介电损耗太高,需要对材料进行改进。另外,太大的介电常数会导致太大的插入损耗,与电路匹配困难。因此,如何获得具有适中的介电常数,较高调谐率的钛酸锶钡是一个技术难点。The dielectric constant of barium strontium titanate can change with the applied electric field, so it is a suitable microwave tuning material. Barium strontium titanate can be applied to various antennas, however, the microwave dielectric loss of barium strontium titanate is too high, and the material needs to be improved. In addition, too large a dielectric constant will lead to too large insertion loss, which makes it difficult to match with the circuit. Therefore, how to obtain barium strontium titanate with moderate dielectric constant and high tuning rate is a technical difficulty.
钛酸锶钡Ba1-xSrxTiO3复合陶瓷具有较小的介电常数、介电损耗和较高的调谐率,其中以Ba1-xSrxTiO3-MgO的综合性能最好。Ba1-xSrxTiO3-MgO-Mg2SiO4的烧结温度比Ba1-xSrxTiO3-MgO的明显降低,但加入Mg2SiO4会引起微波介电损耗增加。Barium strontium titanate Ba 1-x Sr x TiO 3 composite ceramics have low dielectric constant, dielectric loss and high tuning efficiency, among which Ba 1-x Sr x TiO 3 -MgO has the best comprehensive performance. The sintering temperature of Ba 1-x Sr x TiO 3 -MgO-Mg 2 SiO 4 is significantly lower than that of Ba 1-x Sr x TiO 3 -MgO, but the addition of Mg 2 SiO 4 will increase the microwave dielectric loss.
发明内容Contents of the invention
本发明是为了克服现有技术的不足,提供一种微波调谐复合陶瓷材料,该材料介电常数适中,介电损耗低,调谐率高,尤其适用于微波调谐元件;本发明还提供了该材料的制备方法。In order to overcome the deficiencies of the prior art, the present invention provides a microwave tuning composite ceramic material, which has moderate dielectric constant, low dielectric loss and high tuning rate, and is especially suitable for microwave tuning components; the invention also provides the material method of preparation.
本发明提供了一种微波调谐复合陶瓷材料,由Mn掺杂的Ba1-xSrxTiO3和混合物构成,其中,所述Mn掺杂的Ba1-xSrxTiO3的质量百分比为30-95%,x=0.3-0.7,Mn相对于Ba1-xSrxTiO3的摩尔百分比为0.1-2%,所述混合物由Mg2SiO4和MgO构成,Mg2SiO4在混合物中的质量百分比为1-99%。The invention provides a microwave tuning composite ceramic material, which is composed of Mn-doped Ba 1-x Sr x TiO 3 and a mixture, wherein the mass percentage of the Mn-doped Ba 1-x Sr x TiO 3 is 30 -95%, x=0.3-0.7, the molar percentage of Mn relative to Ba 1-x Sr x TiO 3 is 0.1-2%, the mixture is composed of Mg 2 SiO 4 and MgO, the Mg 2 SiO 4 in the mixture The mass percentage is 1-99%.
本发明还提供了制备上述微波调谐复合陶瓷材料的方法,包括下述步骤:The present invention also provides a method for preparing the above-mentioned microwave tuning composite ceramic material, comprising the following steps:
(1)配制Mn掺杂的Ba1-xSrxTiO3和Mg2SiO4粉体;(1) Prepare Mn-doped Ba 1-x Sr x TiO 3 and Mg 2 SiO 4 powders;
(2)按照配比在Mn掺杂的Ba1-xSrxTiO3粉体中掺入粉末状的Mg2SiO4和MgO,湿法球磨6-24小时后烘干;(2) According to the ratio, mix powdered Mg 2 SiO 4 and MgO into the Mn-doped Ba 1-x Sr x TiO 3 powder, dry it after wet ball milling for 6-24 hours;
(3)在烘干后的材料中加入3-8wt%的聚乙烯醇造粒,再压制成型生坯;(3) adding 3-8wt% polyvinyl alcohol to the dried material to granulate, and then pressing to form a green body;
(4)将生坯加热升温到400-800℃,升温速度小于等于30℃/分钟,然后保温2-4小时,排除生坯中的有机物质;(4) Heating the green body to 400-800° C. at a heating rate less than or equal to 30° C./minute, and then keeping it warm for 2-4 hours to remove organic matter in the green body;
(5)在1200℃-1400℃范围内烧结,再保温2-4小时,得到微波调谐复合陶瓷材料。(5) Sintering in the range of 1200° C. to 1400° C., followed by heat preservation for 2-4 hours, to obtain a microwave tuning composite ceramic material.
进一步的,上述步骤(1)包括以下子步骤:Further, the above-mentioned step (1) includes the following sub-steps:
(a)以粉末状的BaTiO3、SrTiO3和MnCO3按比例混合作为一组原料,以粉末状的SiO2和MgO按比例混合作为另一组原料;(a) mix powdered BaTiO 3 , SrTiO 3 and MnCO 3 in proportion as a group of raw materials, and mix powdered SiO 2 and MgO in proportion as another group of raw materials;
(b)将二组原料分别湿法球磨6-24小时,然后出料、烘干;(b) wet ball milling the two groups of raw materials for 6-24 hours respectively, then discharging and drying;
(c)在1000℃-1300℃范围内预烧2-6小时,分别得到Mn掺杂的Ba1-xSrxTiO3和Mg2SiO4粉体。(c) Calcining in the range of 1000°C-1300°C for 2-6 hours to obtain Mn-doped Ba 1-x Sr x TiO 3 and Mg 2 SiO 4 powders respectively.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
1.本发明所述的复合陶瓷材料,通过在Ba1-xSrxTiO3中加入Mn,抑制Ba1-xSrxTiO3中Ti还原,在对介电常数和调谐率的影响不大的情况下,降低Ba1-xSrxTiO3-Mg2SiO4-MgO的微波介电损耗,该复合陶瓷材料可以在1200℃-1400℃范围内烧结,且具有介电常数适中,介电损耗低,调谐率高等优异性能,取得了高性能与低烧结温度同时兼备的结果。1. The composite ceramic material of the present invention, by adding Mn in Ba 1-x Sr x TiO 3 , suppresses Ti reduction in Ba 1-x Sr x TiO 3 , and has little influence on dielectric constant and tuning rate In the case of Ba 1-x Sr x TiO 3 -Mg 2 SiO 4 -MgO, the microwave dielectric loss of Ba 1-x Sr x TiO 3 -Mg 2 SiO 4 -MgO can be sintered in the range of 1200 ° C -1400 ° C, and has a moderate dielectric constant, dielectric Excellent properties such as low loss and high tuning rate have achieved both high performance and low sintering temperature.
2.本发明所述的复合陶瓷材料,其成分以Ba1-xSrxTiO3,Mg2SiO4和MgO三相复合物存在,没有杂质相存在。2. The composite ceramic material of the present invention, its composition is Ba 1-x Sr x TiO 3 , Mg 2 SiO 4 and MgO three-phase composite, and there is no impurity phase.
3.本发明所述的复合陶瓷材料可广泛用于可变电容器,可调滤波器,移相器,可调延迟线,电压控制的振荡器,可调介电共振器,可调阻抗匹配器件等可调微波器件。其中移相器是相控阵天线的重要器件,直接决定相控阵天线的成本和性能。该材料可以取代相控阵天线中应用的昂贵的铁氧体,使相控阵天线体积变小,重量变轻,价格变便宜。3. The composite ceramic material of the present invention can be widely used in variable capacitors, adjustable filters, phase shifters, adjustable delay lines, voltage-controlled oscillators, adjustable dielectric resonators, and adjustable impedance matching devices and other tunable microwave devices. Among them, the phase shifter is an important component of the phased array antenna, which directly determines the cost and performance of the phased array antenna. The material can replace the expensive ferrite used in the phased array antenna, making the phased array antenna smaller in size, lighter in weight and cheaper in price.
4.本发明所述的复合陶瓷材料的制备方法采用传统的电子陶瓷制备工艺,工艺简单,成本低,材料体系环保无毒副作用。4. The preparation method of the composite ceramic material of the present invention adopts the traditional electronic ceramic preparation process, the process is simple, the cost is low, and the material system is environmentally friendly and has no toxic and side effects.
附图说明Description of drawings
图1Mn掺杂的Ba0.5Sr0.5TiO3-MgO-Mg2SiO4复合陶瓷的XRD谱;Figure 1 XRD spectrum of Mn-doped Ba 0.5 Sr 0.5 TiO 3 -MgO-Mg 2 SiO 4 composite ceramics;
图2Mn掺杂的Ba0.5Sr0.5TiO3-MgO-Mg2SiO4复合陶瓷的调谐率与外加直流场强的关系曲线。Fig. 2. Curves of the tuning ratio of Mn-doped Ba 0.5 Sr 0.5 TiO 3 -MgO-Mg 2 SiO 4 composite ceramics versus the applied DC field strength.
具体实施方式Detailed ways
下面通过借助实例更加详细地说明本发明,但以下实例仅是说明性的,本发明的保护范围并不受这些实例的限制。The present invention is described in more detail below by means of examples, but the following examples are only illustrative, and the protection scope of the present invention is not limited by these examples.
实例1-5:Examples 1-5:
以粉末状的MnCO3、BaTiO3、SrTiO3、SiO2和MgO为原料,按化学计量比分别配制不同含量Mn掺杂的Ba1-xSrxTiO3(x=0.5)和Mg2SiO4,在原料中加入无水乙醇或去离子水,以玛瑙球或二氧化锆为球磨介质,湿法球磨6h后,出料、烘干,粉料在1100℃下预烧2h,分别得到Mn掺杂含量为0、0.25、0.5、0.75和1mol%的Ba1-xSrxTiO3(x=0.5)和Mg2SiO4粉体,将不同含量Mn掺杂的Ba1-xSrxTiO3(x=0.5),Mg2SiO4和MgO按质量比50;40∶10混合(分别为实例1-5),湿法球磨6h,出料、烘干,采用5wt%的聚乙烯醇作为粘合剂造粒,在150MPa的压强下将粉体压制成型;经600℃排胶处理后,在空气气氛中于1330℃烧结3h,得到Mn掺杂的Ba1-xSrxTiO3-MgO-Mg2SiO4复合陶瓷。烧成后的样品经细磨加工,超声清洗后,再上银电极,可用于介电性能测试。柱状样品不上电极,用Hakki-Coleman方法测试微波介电性能。Using powdered MnCO 3 , BaTiO 3 , SrTiO 3 , SiO 2 and MgO as raw materials, Ba 1-x Sr x TiO 3 (x=0.5) and Mg 2 SiO 4 doped with different contents of Mn were prepared according to the stoichiometric ratio , adding absolute ethanol or deionized water to the raw material, using agate balls or zirconia as the ball milling medium, after wet ball milling for 6 hours, discharging, drying, and pre-calcining the powder at 1100°C for 2 hours to obtain Mn-doped Ba 1-x Sr x TiO 3 (x=0.5) and Mg 2 SiO 4 powders with impurity contents of 0, 0.25, 0.5, 0.75 and 1 mol%, Ba 1-x Sr x TiO 3 doped with different contents of Mn (x=0.5), Mg 2 SiO 4 and MgO were mixed in a mass ratio of 50; 40:10 (respectively examples 1-5), wet ball milled for 6 hours, discharged and dried, using 5wt% polyvinyl alcohol as a viscous The mixture is granulated, and the powder is compacted under a pressure of 150MPa; after debinding at 600°C, it is sintered at 1330°C for 3 hours in an air atmosphere to obtain Mn-doped Ba 1-x Sr x TiO 3 -MgO- Mg 2 SiO 4 composite ceramics. The fired samples are finely ground, ultrasonically cleaned, and then silver electrodes are applied, which can be used for dielectric property testing. The columnar sample is not connected to the electrode, and the microwave dielectric properties are tested by the Hakki-Coleman method.
Mn掺杂的Ba1-xSrxTiO3-MgO-Mg2SiO4复合陶瓷在10kHz下的介电常数、介电损耗、2kV/mm和3kV/mm电场强度下的调谐率及微波介电性能见表1。Dielectric Constant, Dielectric Loss, Tuning Ratio and Microwave Dielectric of Mn-doped Ba 1-x Sr x TiO 3 -MgO-Mg 2 SiO 4 Composite Ceramics at 10kHz The properties are shown in Table 1.
表1 Mn掺杂的Ba1-xSrxTiO3-MgO-Mg2SiO4复合陶瓷的介电性能Table 1 Dielectric properties of Mn-doped Ba 1-x Sr x TiO 3 -MgO-Mg 2 SiO 4 composite ceramics
实例1-5配方所得的Mn掺杂的Ba1-xSrxTiO3-MgO-Mg2SiO4复合陶瓷的XRD谱,如图1所示。复合陶瓷材料由Ba1-xSrxTiO3(x=0.5),MgO和Mg2SiO4三相组成。实例1-5配方所得的Ba1-xSrxTiO3-MgO-Mg2SiO4复合陶瓷在不同直流电场强度下的调谐率如图2所示。与没有Mn掺杂的实例1相比,复合陶瓷在10kHz下的介电损耗减小,微波频率下Qf增加。实例2的Qf比实例1增加了30%,而调谐率基本保持不变。实例3、4和5的Qf值也增加了20%以上,而调谐率甚至略有增加。显然,在Ba1-xSrxTiO3-MgO-Mg2SiO4复合陶瓷中掺Mn可以降低陶瓷的微波介电损耗而调谐率基本不变。The XRD spectrum of the Mn-doped Ba 1-x Sr x TiO 3 -MgO-Mg 2 SiO 4 composite ceramic obtained from the formula of Example 1-5 is shown in FIG. 1 . The composite ceramic material is composed of three phases of Ba 1-x Sr x TiO 3 (x=0.5), MgO and Mg 2 SiO 4 . The tuning ratios of the Ba 1-x Sr x TiO 3 -MgO-Mg 2 SiO 4 composite ceramics obtained from the formulas of Examples 1-5 under different DC electric field intensities are shown in Fig. 2 . Compared with Example 1 without Mn doping, the dielectric loss of the composite ceramics decreases at 10kHz, and the Qf increases at microwave frequencies. The Qf of Example 2 increases by 30% compared with Example 1, while the tuning rate remains basically unchanged. The Qf values of Examples 3, 4 and 5 are also increased by more than 20%, while the tuning rate is even slightly increased. Apparently, doping Mn in Ba 1-x Sr x TiO 3 -MgO-Mg 2 SiO 4 composite ceramics can reduce the microwave dielectric loss of the ceramics while the tuning rate is basically unchanged.
实例6:Mn摩尔百分比0.1%,Ba1-xSrxTiO3(x=0.3)的质量百分比为30%,Mg2SiO4在混合物中的质量百分比含量为1%;Example 6: The molar percentage of Mn is 0.1%, the mass percentage of Ba 1-x Sr x TiO 3 (x=0.3) is 30%, and the mass percentage of Mg 2 SiO 4 in the mixture is 1%;
实例7:Mn摩尔百分比0.6%,Ba1-xSrxTiO3(x=0.45)的质量百分比为40%,Mg2SiO4在混合物中的质量百分比含量为50%;Example 7: The molar percentage of Mn is 0.6%, the mass percentage of Ba 1-x Sr x TiO 3 (x=0.45) is 40%, and the mass percentage of Mg 2 SiO 4 in the mixture is 50%;
实例8:Mn摩尔百分比1.5%,Ba1-xSrxTiO3(x=0.6)的质量百分比为60%,Mg2SiO4在混合物中的质量百分比含量为80%;Example 8: The molar percentage of Mn is 1.5%, the mass percentage of Ba 1-x Sr x TiO 3 (x=0.6) is 60%, and the mass percentage of Mg 2 SiO 4 in the mixture is 80%;
实例9:Mn摩尔百分比2%,Ba1-xSrxTiO3(x=0.7)的质量百分比为95%,Mg2SiO4在混合物中的质量百分比含量为99%;Example 9: The molar percentage of Mn is 2%, the mass percentage of Ba 1-x Sr x TiO 3 (x=0.7) is 95%, and the mass percentage of Mg 2 SiO 4 in the mixture is 99%;
以上述实例6-9所述的材料及化学配比,按照下述过程制备微波调谐复合陶瓷材料,所得到的材料均能够达到本发明所述的技术效果。Using the materials and chemical ratios described in Examples 6-9 above, microwave tuning composite ceramic materials were prepared according to the following process, and the obtained materials could all achieve the technical effects described in the present invention.
(1)按化学计量比分别配制Mn掺杂的Ba1-xSrxTiO3和Mg2SiO4,(1) Prepare Mn-doped Ba 1-x Sr x TiO 3 and Mg 2 SiO 4 respectively according to the stoichiometric ratio,
原料采用粉末状的BaTiO3、SrTiO3、MnCO3、SiO2和MgO,然后加入无水乙醇或去离子水,以玛瑙球或二氧化锆为球磨介质,球磨6h-24h后,出料、烘干,粉料在1000℃-1300℃范围内预烧2h-6h,分别得到Mn掺杂的Ba1-xSrxTiO3和Mg2SiO4粉体;The raw materials are powdered BaTiO 3 , SrTiO 3 , MnCO 3 , SiO 2 and MgO, then add absolute ethanol or deionized water, use agate balls or zirconia as the ball milling medium, and after ball milling for 6h-24h, discharge and bake Dry, the powder is pre-calcined in the range of 1000°C-1300°C for 2h-6h to obtain Mn-doped Ba 1-x Sr x TiO 3 and Mg 2 SiO 4 powders respectively;
(2)根据组成配比,在Mn掺杂的Ba1-xSrxTiO3粉体中掺入Mg2SiO4和MgO,然后加入无水乙醇或去离子水,以玛瑙球或二氧化锆为球磨介质,球磨6h-24h;(2) According to the composition ratio, mix Mg 2 SiO 4 and MgO into Mn-doped Ba 1-x Sr x TiO 3 powder, then add absolute ethanol or deionized water, and use agate balls or zirconia For ball milling medium, ball milling 6h-24h;
(3)在烘干后的混合物中加入3-8wt%的聚乙烯醇造粒并压制成型生坯;(3) adding 3-8wt% polyvinyl alcohol to the dried mixture to granulate and press to form a green body;
(4)升温到800℃温度以下,保温2-4个小时,以排除生坯中的有机物质,排胶过程的升温速度不高于30℃/min;(4) Raise the temperature to below 800°C and keep it warm for 2-4 hours to remove the organic matter in the green body, and the temperature rise rate during the debinding process should not be higher than 30°C/min;
(5)生坯在1200℃-1400℃范围内烧结,保温2h-4h,得到所需的性能优异的块材。(5) The green body is sintered in the range of 1200°C-1400°C and kept for 2h-4h to obtain the required block with excellent performance.
本发明中的实例仅用于对本发明进行说明,并不构成对权利要求范围的限制,本领域内技术人员可以想到的其他实质上等同的替代,均在本发明保护范围。The examples in the present invention are only used to illustrate the present invention, and do not constitute a limitation to the scope of the claims. Other substantially equivalent substitutions that can be imagined by those skilled in the art all fall within the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100962173A CN102219505A (en) | 2011-04-18 | 2011-04-18 | Microwave tuned composite ceramic material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100962173A CN102219505A (en) | 2011-04-18 | 2011-04-18 | Microwave tuned composite ceramic material and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102219505A true CN102219505A (en) | 2011-10-19 |
Family
ID=44776243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100962173A Pending CN102219505A (en) | 2011-04-18 | 2011-04-18 | Microwave tuned composite ceramic material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102219505A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108863347A (en) * | 2018-08-02 | 2018-11-23 | 广东国华新材料科技股份有限公司 | A kind of microwave-medium ceramics and preparation method thereof |
CN108975907A (en) * | 2018-09-05 | 2018-12-11 | 天津大学 | The method for improving barium titanate dielectric material resistance to reduction is adulterated by transition-metal ions |
CN109020537A (en) * | 2018-09-05 | 2018-12-18 | 天津大学 | A kind of anti-reduction low-loss type barium phthalate base dielectric material |
CN115925401A (en) * | 2022-11-10 | 2023-04-07 | 华中科技大学 | A kind of low dielectric silicate microwave dielectric ceramic material and preparation method thereof |
CN119241228A (en) * | 2024-11-11 | 2025-01-03 | 江苏芯声微电子科技有限公司 | A C0G dielectric ceramic material with high dielectric constant and high temperature stability and its preparation method and application |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002059059A2 (en) * | 2001-01-24 | 2002-08-01 | Paratek Microwave, Inc. | Electronically tunable, low-loss ceramic materials including a tunable dielectric phase and multiple metal oxide phases |
-
2011
- 2011-04-18 CN CN2011100962173A patent/CN102219505A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002059059A2 (en) * | 2001-01-24 | 2002-08-01 | Paratek Microwave, Inc. | Electronically tunable, low-loss ceramic materials including a tunable dielectric phase and multiple metal oxide phases |
Non-Patent Citations (4)
Title |
---|
《Journal of Alloys and Compounds》 20091009 Jiandong Cui et al. "Low dielectric loss and enhanced tunable properties of Mn-doped BST/MgO" 第353-357页 1 第490卷, * |
《功能材料》 20061231 刘恒 等 "溶胶-凝胶法制备Mn掺杂的BaxSr1-xTiO3热释电陶瓷材料及其性能研究" 第234-236页 1-3 , * |
JIANDONG CUI ET AL.: ""Low dielectric loss and enhanced tunable properties of Mn-doped BST/MgO"", 《JOURNAL OF ALLOYS AND COMPOUNDS》 * |
刘恒 等: ""溶胶-凝胶法制备Mn掺杂的BaxSr1-xTiO3热释电陶瓷材料及其性能研究"", 《功能材料》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108863347A (en) * | 2018-08-02 | 2018-11-23 | 广东国华新材料科技股份有限公司 | A kind of microwave-medium ceramics and preparation method thereof |
CN108975907A (en) * | 2018-09-05 | 2018-12-11 | 天津大学 | The method for improving barium titanate dielectric material resistance to reduction is adulterated by transition-metal ions |
CN109020537A (en) * | 2018-09-05 | 2018-12-18 | 天津大学 | A kind of anti-reduction low-loss type barium phthalate base dielectric material |
CN115925401A (en) * | 2022-11-10 | 2023-04-07 | 华中科技大学 | A kind of low dielectric silicate microwave dielectric ceramic material and preparation method thereof |
CN115925401B (en) * | 2022-11-10 | 2023-07-25 | 华中科技大学 | A kind of low dielectric silicate microwave dielectric ceramic material and preparation method thereof |
CN119241228A (en) * | 2024-11-11 | 2025-01-03 | 江苏芯声微电子科技有限公司 | A C0G dielectric ceramic material with high dielectric constant and high temperature stability and its preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100456393C (en) | High dielectric constant microwave dielectric ceramics and preparation method thereof | |
CN100434392C (en) | Ba1-xSrxTiO3-Mg2TiO4 two-phase composite ceramic material and its preparing process | |
CN105254299A (en) | Low-temperature sintered magnesium lithium niobate system microwave dielectric ceramic | |
CN106116574A (en) | A kind of preparation method of low temperature sintering lithium magnesium niobium series microwave dielectric ceramic | |
CN107311646A (en) | A kind of preparation method for improving strontium titanate ceramicses dielectric material performance | |
CN102219505A (en) | Microwave tuned composite ceramic material and preparation method thereof | |
CN104844206B (en) | A kind of preparation method of high performance microwave medium ceramic material | |
CN105693241A (en) | High-quality-factor lithium-magnesium-niobium microwave dielectric ceramic and preparation method thereof | |
CN101172850B (en) | A Dielectric Adjustable Composite Ceramic Material | |
CN102718473A (en) | Bismuth-base microwave dielectric ceramic sintered at low temperature and preparation method thereof | |
CN106565234A (en) | Dielectric material with ultra-high dielectric constant and preparation method thereof | |
CN101844919A (en) | Composite barium strontium titanate ceramics and preparation method thereof | |
CN102515746A (en) | Microwave dielectrically-adjustable material of barium strontium titanate composite molybdate and preparation method for same | |
CN104671773A (en) | Low-dielectric-constant microwave dielectric ceramic material and preparation method thereof | |
CN101723664A (en) | Method for preparing dielectric tunable medium ceramic material | |
CN103833351A (en) | Microwave dielectric ceramic and preparation method thereof | |
CN110386815A (en) | A kind of compound zinc aluminate ceramic material of barium strontium titanate that can be practical with higher adjustable rate low-loss | |
CN105060888B (en) | A kind of stable niobic acid neodymium ceramics of alumina doped preparation low-loss | |
CN104876542A (en) | MgO-B2O3 binary system low-temperature sintered microwave dielectric ceramics and its preparation method | |
CN102633500B (en) | Dielectric-adjustable low-temperature co-firing ceramic material and preparation method thereof | |
CN104710175B (en) | A kind of low-k magnesium zirconate lithium microwave dielectric ceramic materials and preparation method thereof | |
CN106007707A (en) | Mg-Nb doped bismuth titanate microwave dielectric ceramic and preparation method thereof | |
CN102358698A (en) | Microwave dielectric ceramic material with medium dielectric constant, and preparation method thereof | |
CN114573344B (en) | Two-phase composite microwave dielectric ceramic material and preparation method and application thereof | |
CN103964841B (en) | A kind of microwave-tuned composite ceramic material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20111019 |