[go: up one dir, main page]

CN102217101A - Group-iii nitride semiconductor light emitting device - Google Patents

Group-iii nitride semiconductor light emitting device Download PDF

Info

Publication number
CN102217101A
CN102217101A CN2009801423284A CN200980142328A CN102217101A CN 102217101 A CN102217101 A CN 102217101A CN 2009801423284 A CN2009801423284 A CN 2009801423284A CN 200980142328 A CN200980142328 A CN 200980142328A CN 102217101 A CN102217101 A CN 102217101A
Authority
CN
China
Prior art keywords
nitride semiconductor
emitting device
light emitting
group iii
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801423284A
Other languages
Chinese (zh)
Inventor
金昌台
罗珉圭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EpiValley Co Ltd
Original Assignee
EpiValley Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EpiValley Co Ltd filed Critical EpiValley Co Ltd
Publication of CN102217101A publication Critical patent/CN102217101A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/819Bodies characterised by their shape, e.g. curved or truncated substrates
    • H10H20/82Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/819Bodies characterised by their shape, e.g. curved or truncated substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/813Bodies having a plurality of light-emitting regions, e.g. multi-junction LEDs or light-emitting devices having photoluminescent regions within the bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/824Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
    • H10H20/825Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN

Landscapes

  • Led Devices (AREA)

Abstract

本发明涉及一种Ⅲ族氮化物半导体发光器件,更具体而言涉及下述Ⅲ族氮化物半导体发光器件:其包括衬底;多个Ⅲ族氮化物半导体层,其包括形成在所述衬底上且具有第一导电类型的第一氮化物半导体层,形成在所述第一氮化物半导体层上且具有不同于所述第一导电类型的第二导电类型的第二氮化物半导体层,以及位于所述第一和第二氮化物半导体层之间且通过电子和空穴的复合产生光的有源层;以及从所述衬底形成到所述多个Ⅲ族氮化物半导体层且具有第一和第二散射面的开口。所述第一散射面使所述有源层中产生的光散射,所述第二散射面具有与第一散射表面不同的倾斜度。

The present invention relates to a group III nitride semiconductor light emitting device, more specifically to the following group III nitride semiconductor light emitting device: it includes a substrate; a plurality of group III nitride semiconductor layers, including a group III nitride semiconductor layer formed on the substrate a first nitride semiconductor layer having a first conductivity type on it, a second nitride semiconductor layer having a second conductivity type different from the first conductivity type formed on the first nitride semiconductor layer, and an active layer that is located between the first and second nitride semiconductor layers and that generates light by recombination of electrons and holes; and is formed from the substrate to the plurality of group III nitride semiconductor layers and has a first openings of the first and second scattering surfaces. The first scattering surface scatters light generated in the active layer, and the second scattering surface has a different inclination from the first scattering surface.

Description

Ⅲ族氮化物半导体发光器件Group III Nitride Semiconductor Light-Emitting Devices

技术领域technical field

本发明主要涉及一种III族氮化物半导体发光器件,更具体而言,涉及下述III族氮化物半导体发光器件:所述器件包括其中形成有散射区的衬底以改善光引出效率(light extraction efficiency)。所述III族氮化物半导体发光器件是指诸如包括由Al(x)Ga(y)In(1-x-y)N(0≤x≤1,0≤y≤1,0≤x+y≤1)构成的化合物半导体层的发光二极管等发光器件,所述III族氮化物半导体发光器件还可以包括由其它族元素构成的材料(如SiC,SiN,SiCN和CN),以及由这些材料制成的半导体层。The present invention mainly relates to a group III nitride semiconductor light emitting device, and more specifically, to a group III nitride semiconductor light emitting device including a substrate in which a scattering region is formed to improve light extraction efficiency. efficiency). The III-nitride semiconductor light-emitting device refers to a device made of Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1) Light-emitting devices such as light-emitting diodes composed of compound semiconductor layers, the Group III nitride semiconductor light-emitting devices may also include materials composed of other group elements (such as SiC, SiN, SiCN and CN), and semiconductors made of these materials layer.

背景技术Background technique

本部分提供了涉及本发明的背景信息,其不一定是现有技术。This section provides background information related to the present disclosure which is not necessarily prior art.

图1是常规III族氮化物半导体发光器件的一个实例的视图。该III族氮化物半导体发光器件包括衬底100,生长在衬底100上的缓冲层200,生长在缓冲层200上的n型III族氮化物半导体层300,生长在n型III族氮化物半导体层300上的有源层400,生长在有源层400上的p型III族氮化物半导体层500,形成在p型III族氮化物半导体层500上的p侧电极600,形成在p侧电极600上的p侧焊盘700,形成在通过台面刻蚀p型III族氮化物半导体层500和有源层400而露出的n型III族氮化物半导体层300上的n侧电极800,以及可选的保护膜900。FIG. 1 is a view of one example of a conventional group III nitride semiconductor light emitting device. The III-nitride semiconductor light-emitting device includes a substrate 100, a buffer layer 200 grown on the substrate 100, an n-type III-nitride semiconductor layer 300 grown on the buffer layer 200, and an n-type III-nitride semiconductor layer grown on the n-type III-nitride semiconductor layer. The active layer 400 on the layer 300, the p-type group III nitride semiconductor layer 500 grown on the active layer 400, the p-side electrode 600 formed on the p-type group III nitride semiconductor layer 500, the p-side electrode 600 formed on the p-side electrode The p-side pad 700 on 600, the n-side electrode 800 formed on the n-type group III nitride semiconductor layer 300 exposed by mesa etching the p-type group III nitride semiconductor layer 500 and the active layer 400, and the Selected protective film 900.

就衬底100而言,GaN衬底可以用作同质衬底。蓝宝石衬底、SiC衬底或Si衬底可以用作异质衬底。然而,可以使用在其上能够生长氮化物半导体层的任何类型的衬底。在使用SiC衬底的情况下,可以在SiC衬底表面上形成n侧电极800。As for the substrate 100, a GaN substrate can be used as a homogeneous substrate. A sapphire substrate, SiC substrate, or Si substrate can be used as the heterogeneous substrate. However, any type of substrate on which a nitride semiconductor layer can be grown may be used. In the case of using a SiC substrate, n-side electrode 800 may be formed on the surface of the SiC substrate.

外延生长在衬底100上的氮化物半导体层通常使用金属有机化学气相沉积(MOCVD)来生长。The nitride semiconductor layer epitaxially grown on the substrate 100 is generally grown using metal organic chemical vapor deposition (MOCVD).

缓冲层200用于克服异质衬底100和氮化物半导体层之间的晶格常数和热膨胀系数的差异。美国专利第5,122,845号描述了一种于380℃~800℃下在蓝宝石衬底上生长厚度为

Figure BPA00001375059000011
的AlN缓冲层的技术。另外,美国专利第5,290,393号描述了一种于200℃~900℃下在蓝宝石衬底上生长厚度为
Figure BPA00001375059000021
的Al(x)Ga(1-x)N(0≤x<1)缓冲层的技术。此外,美国专利申请公开第2006/154454号描述了一种在600℃~990℃下生长SiC缓冲层(晶种层),以及在其上生长In(x)Ga(1-x)N(0<x≤1)的技术。优选地,在生长n型III族氮化物半导体层300之前应生长未掺杂的GaN层。可以将其看作缓冲层200或n型III族氮化物半导体层300的一部分。The buffer layer 200 serves to overcome differences in lattice constant and thermal expansion coefficient between the heterogeneous substrate 100 and the nitride semiconductor layer. US Patent No. 5,122,845 describes a sapphire substrate grown at 380°C to 800°C with a thickness of
Figure BPA00001375059000011
AlN buffer layer technology. In addition, U.S. Patent No. 5,290,393 describes a method of growing on a sapphire substrate at 200°C to 900°C with a thickness of
Figure BPA00001375059000021
Al(x)Ga(1-x)N(0≤x<1) buffer layer technology. In addition, US Patent Application Publication No. 2006/154454 describes a method of growing a SiC buffer layer (seed layer) at 600°C to 990°C, and growing an In(x)Ga(1-x)N(0 <x≤1) technology. Preferably, an undoped GaN layer should be grown before growing the n-type group III nitride semiconductor layer 300 . It can be regarded as a part of the buffer layer 200 or the n-type group III nitride semiconductor layer 300 .

在n型氮化物半导体层300中,至少n侧电极800形成区(n型接触层)掺杂有掺杂剂。一些实施方式中,n型接触层由GaN制成并掺杂有Si。美国专利第5,733,796号描述了一种通过调节Si和其它源材料的混合比例而以目标掺杂浓度掺杂n型接触层的技术。In the n-type nitride semiconductor layer 300, at least the n-side electrode 800 formation region (n-type contact layer) is doped with a dopant. In some embodiments, the n-type contact layer is made of GaN doped with Si. US Patent No. 5,733,796 describes a technique of doping an n-type contact layer at a target doping concentration by adjusting a mixing ratio of Si and other source materials.

有源层400通过电子和空穴的复合产生光量子。例如,有源层400含有In(x)Ga(1-x)N(0<x≤1)并具有单量子阱层或多量子阱层。The active layer 400 generates photons by recombination of electrons and holes. For example, the active layer 400 contains In(x)Ga(1-x)N (0<x≦1) and has a single quantum well layer or multiple quantum well layers.

p型氮化物半导体层500掺杂有诸如Mg等适当的掺杂剂,并且通过激活过程而具有p型导电性。美国专利第5,247,533号描述了一种通过电子束辐照来激活p型氮化物半导体层的技术。此外,美国专利第5,306,662号描述了一种通过在高于400℃退火来激活p型氮化物半导体层的技术。美国专利申请公开第2006/157714号描述了通过使用氨和肼类源材料一起作为氮前体来生长p型氮化物半导体层,从而在没有激活过程的情况下使p型氮化物半导体层具有p型导电性的技术。The p-type nitride semiconductor layer 500 is doped with a suitable dopant such as Mg, and has p-type conductivity through an activation process. US Patent No. 5,247,533 describes a technique for activating a p-type nitride semiconductor layer by electron beam irradiation. Furthermore, US Patent No. 5,306,662 describes a technique of activating a p-type nitride semiconductor layer by annealing at higher than 400°C. U.S. Patent Application Publication No. 2006/157714 describes growing a p-type nitride semiconductor layer by using ammonia and hydrazine-based source materials together as nitrogen precursors, thereby making the p-type nitride semiconductor layer have p type conductivity technology.

提供p侧电极600来促进电流供应给p型氮化物半导体层500。美国专利第5,563,422号描述了一种与透光性电极有关的技术,所述透光性电极由Ni和Au构成,并形成在p型氮化物半导体层500的几乎整个表面上,并且与p型氮化物半导体层500欧姆接触。另外,美国专利第6,515,306号描述了一种在p型氮化物半导体层上形成n型超晶格层,并且在其上形成由氧化铟锡(ITO)制成的透光性电极的技术。The p-side electrode 600 is provided to facilitate current supply to the p-type nitride semiconductor layer 500 . U.S. Patent No. 5,563,422 describes a technology related to a light-transmitting electrode composed of Ni and Au, formed on almost the entire surface of a p-type nitride semiconductor layer 500, and connected to a p-type nitride semiconductor layer 500. The nitride semiconductor layer is in 500-ohm contact. In addition, US Patent No. 6,515,306 describes a technique of forming an n-type superlattice layer on a p-type nitride semiconductor layer, and forming a light-transmitting electrode made of indium tin oxide (ITO) thereon.

p侧电极600可以形成为厚至不透光而使光反射向衬底100。这项技术称为倒装晶片技术。美国专利第6,194,743号描述了一种与电极结构体有关的技术,所述电极结构体包括厚度超过20nm的Ag层,覆盖该Ag层的扩散阻挡层,以及包含Au和Al且覆盖该扩散阻挡层的结合层。The p-side electrode 600 may be formed so thick that it does not transmit light to reflect light toward the substrate 100 . This technology is called flip-chip technology. U.S. Patent No. 6,194,743 describes a technique related to an electrode structure comprising an Ag layer with a thickness exceeding 20 nm, a diffusion barrier layer covering the Ag layer, and a diffusion barrier layer containing Au and Al covering the diffusion barrier layer. the bonding layer.

提供p侧焊盘700和n侧电极800来用于电流供应和外部引线接合。美国专利第5,563,422号描述了一种用Ti和Al形成n侧电极的技术。A p-side pad 700 and an n-side electrode 800 are provided for current supply and external wire bonding. US Patent No. 5,563,422 describes a technique of forming an n-side electrode using Ti and Al.

可选的保护膜900可以由SiO2制成。The optional protective film 900 can be made of SiO 2 .

n型氮化物半导体层300或p型氮化物半导体层500可以构造为单层或多层。通过使用激光技术或湿法刻蚀使衬底100与氮化物半导体层分离而引入了立式发光器件。The n-type nitride semiconductor layer 300 or the p-type nitride semiconductor layer 500 may be configured as a single layer or multiple layers. A vertical light emitting device is introduced by separating the substrate 100 from the nitride semiconductor layer using laser technology or wet etching.

图2和图3是美国专利申请公开第2006/0192247号中描述的发光器件的实例的视图。图2示出了发光器件A内部产生的光没有发射到该发光器件外部而消失的状态,以及图3示出了在发光器件表面上形成倾斜表面120使得发光器件A内部产生的光可以发射到该发光器件外部的状态。2 and 3 are views of an example of a light emitting device described in US Patent Application Publication No. 2006/0192247. 2 shows a state where the light generated inside the light emitting device A disappears without being emitted to the outside of the light emitting device, and FIG. 3 shows that an inclined surface 120 is formed on the surface of the light emitting device so that the light generated inside the light emitting device A can be emitted to The state of the exterior of the light emitting device.

图4是日本特开第2001-24222号公报中描述的发光器件的一个实例的视图。该发光器件包括形成在p侧电极600到n型氮化物半导体层300间的沟槽920。因而,发光器件内部产生的光可以容易地发射到该发光器件外部。Fig. 4 is a view of an example of a light emitting device described in Japanese Patent Laid-Open No. 2001-24222. The light emitting device includes a trench 920 formed between the p-side electrode 600 and the n-type nitride semiconductor layer 300 . Thus, light generated inside the light emitting device can be easily emitted to the outside of the light emitting device.

但是,如上所述的常规发光器件具有下述缺点:发光器件或有源层400内部A产生并入射到衬底100上的光受到反射,并且因而未被引出到发光器件的外部。However, the conventional light emitting device as described above has a disadvantage that light generated inside A of the light emitting device or active layer 400 and incident on the substrate 100 is reflected, and thus is not extracted to the outside of the light emitting device.

发明内容Contents of the invention

技术方案Technical solutions

本部分提供本发明的总体概要,而不是其全部范围或其全部特征的全面公开。This section provides a general summary of the invention, rather than a comprehensive disclosure of its full scope or all of its features.

根据本发明的一个方面,提供了一种III族氮化物半导体发光器件,所述III族氮化物半导体发光器件包括:衬底;多个III族氮化物半导体层,所述多个III族氮化物半导体层包括形成在所述衬底上且具有第一导电类型的第一氮化物半导体层,形成在所述第一氮化物半导体层上且具有不同于所述第一导电类型的第二导电类型的第二氮化物半导体层,以及布置在所述第一氮化物半导体层和所述第二氮化物半导体层之间且通过电子和空穴的复合产生光的有源层;以及从所述衬底沿着所述多个III族氮化物半导体层形成的开口,所述开口包括使所述有源层中产生的光散射的第一散射表面和与所述第一散射表面具有不同倾斜度的第二散射表面。According to one aspect of the present invention, there is provided a group III nitride semiconductor light emitting device, the group III nitride semiconductor light emitting device comprising: a substrate; a plurality of group III nitride semiconductor layers, the plurality of group III nitride semiconductor layers The semiconductor layer includes a first nitride semiconductor layer formed on the substrate and having a first conductivity type, and a second conductivity type different from the first conductivity type formed on the first nitride semiconductor layer. a second nitride semiconductor layer, and an active layer disposed between the first nitride semiconductor layer and the second nitride semiconductor layer and generating light by recombination of electrons and holes; An opening formed along the plurality of group III nitride semiconductor layers, the opening including a first scattering surface for scattering light generated in the active layer and a first scattering surface having a different inclination from the first scattering surface. Second scattering surface.

有益效果Beneficial effect

根据本发明的III族氮化物半导体发光器件,可以改善发光器件的光引出效率。According to the group III nitride semiconductor light emitting device of the present invention, the light extraction efficiency of the light emitting device can be improved.

在一个实施方式中,根据本发明的III族氮化物半导体发光器件,可以改善入射到发光器件衬底上的光的引出效率。In one embodiment, according to the III-nitride semiconductor light emitting device of the present invention, extraction efficiency of light incident on a light emitting device substrate can be improved.

在另一个实施方式中,根据本发明的III族氮化物半导体发光器件,可以改善该III族氮化物半导体发光器件的氮化物半导体层的光引出效率。In another embodiment, according to the group III nitride semiconductor light emitting device of the present invention, the light extraction efficiency of the nitride semiconductor layer of the group III nitride semiconductor light emitting device can be improved.

附图说明Description of drawings

图1是常规III族氮化物半导体发光器件的一个实例的视图。FIG. 1 is a view of one example of a conventional group III nitride semiconductor light emitting device.

图2是美国专利申请公开第2006/0192247号中描述的发光器件的一个实例的视图。FIG. 2 is a view of one example of a light emitting device described in US Patent Application Publication No. 2006/0192247.

图3是美国专利申请公开第2006/0192247号中描述的发光器件的另一实例的视图。FIG. 3 is a view of another example of the light emitting device described in US Patent Application Publication No. 2006/0192247.

图4是日本特开第2001/24222号公报中描述的发光器件的一个实例的视图。Fig. 4 is a view of an example of a light emitting device described in Japanese Patent Laid-Open Publication No. 2001/24222.

图5是本发明的III族氮化物半导体发光器件的一个实施方式的视图。Fig. 5 is a view of one embodiment of a group III nitride semiconductor light emitting device of the present invention.

图6是本发明的III族氮化物半导体发光器件的另一实施方式的视图。Fig. 6 is a view of another embodiment of the group III nitride semiconductor light emitting device of the present invention.

图7是用于制造本发明的III族氮化物半导体发光器件的方法的一个实施方式的视图。FIG. 7 is a view of one embodiment of a method for manufacturing a group III nitride semiconductor light emitting device of the present invention.

图8是本发明的多种形状的图案的视图。Figure 8 is a view of a pattern of various shapes of the present invention.

图9是本发明的III族氮化物半导体发光器件中形成的开口的一个实例的图像。Fig. 9 is an image of one example of openings formed in the group III nitride semiconductor light emitting device of the present invention.

图10是本发明的III族氮化物半导体发光器件的实施方式的图像。Fig. 10 is an image of an embodiment of a Group III nitride semiconductor light emitting device of the present invention.

图11是图10的发光器件的放大图像。FIG. 11 is an enlarged image of the light emitting device of FIG. 10 .

具体实施方式Detailed ways

下面,将参照附图详细描述本发明。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

图5是本发明的III族氮化物半导体发光器件的一个实施方式的视图。该III族氮化物半导体发光器件包括衬底10,形成在衬底10上的缓冲层20,生长在缓冲层20上的n型氮化物半导体层30,生长在n型氮化物半导体层30上且通过电子和空穴的复合产生光的有源层40,生长在有源层40上的p型氮化物半导体层50以及开口90。Fig. 5 is a view of one embodiment of a group III nitride semiconductor light emitting device of the present invention. The group III nitride semiconductor light emitting device comprises a substrate 10, a buffer layer 20 formed on the substrate 10, an n-type nitride semiconductor layer 30 grown on the buffer layer 20, grown on the n-type nitride semiconductor layer 30 and The active layer 40 that generates light by recombination of electrons and holes, the p-type nitride semiconductor layer 50 grown on the active layer 40 , and the opening 90 .

开口90从衬底10沿着缓冲层20、n型氮化物半导体层30、有源层40和p型氮化物半导体层50形成。开口90包括散射表面92和散射表面94。散射表面92形成在衬底10上。散射表面94沿着缓冲层20、n型氮化物半导体层30、有源层40和p型氮化物半导体层50形成。The opening 90 is formed from the substrate 10 along the buffer layer 20 , the n-type nitride semiconductor layer 30 , the active layer 40 and the p-type nitride semiconductor layer 50 . Opening 90 includes scattering surface 92 and scattering surface 94 . The scattering surface 92 is formed on the substrate 10 . Scattering surface 94 is formed along buffer layer 20 , n-type nitride semiconductor layer 30 , active layer 40 , and p-type nitride semiconductor layer 50 .

当衬底10略微下陷时散射表面92大体上呈垫盘的形状并且可以使有源层40中产生并入射到衬底10上的光散射。散射表面94从衬底10沿着缓冲层20、n型氮化物半导体层30、有源层40和p型氮化物半导体层50变窄,并且可以使有源层40中产生的光散射。开口90可以包括连在一起或隔开的散射表面92和94。但是,当开口90包括连在一起的散射表面92和94时,有源层40中产生的光将发射到该发光器件的外部(下文中称作“光引出效率”)。The scattering surface 92 is generally in the shape of a pad when the substrate 10 is slightly depressed and may scatter light generated in the active layer 40 and incident on the substrate 10 . Scattering surface 94 narrows from substrate 10 along buffer layer 20 , n-type nitride semiconductor layer 30 , active layer 40 , and p-type nitride semiconductor layer 50 , and can scatter light generated in active layer 40 . Opening 90 may include scattering surfaces 92 and 94 joined together or spaced apart. However, when the opening 90 includes the scattering surfaces 92 and 94 connected together, the light generated in the active layer 40 will be emitted to the outside of the light emitting device (hereinafter referred to as "light extraction efficiency").

在一些实施方式中,该发光器件包括多个开口90以改善光引出效率。In some embodiments, the light emitting device includes a plurality of openings 90 to improve light extraction efficiency.

图6是本发明的III族氮化物半导体发光器件的另一实施方式的视图。该III族氮化物半导体发光器件包括形成在其表面上的散射表面96和散射表面98。Fig. 6 is a view of another embodiment of the group III nitride semiconductor light emitting device of the present invention. The group III nitride semiconductor light emitting device includes a scattering surface 96 and a scattering surface 98 formed on the surface thereof.

散射表面96形成在衬底10上,并且散射表面98沿着缓冲层20、n型氮化物半导体层30、有源层40和p型氮化物半导体层50形成。散射表面96和散射表面98大体上呈楔形。该发光器件可以同时或分别包括散射表面96和98。在一些实施方式中,该发光器件同时包括散射表面96和98以改善光引出效率。Scattering surface 96 is formed on substrate 10 , and scattering surface 98 is formed along buffer layer 20 , n-type nitride semiconductor layer 30 , active layer 40 , and p-type nitride semiconductor layer 50 . Scattering surface 96 and scattering surface 98 are generally wedge-shaped. The light emitting device may comprise scattering surfaces 96 and 98 simultaneously or separately. In some embodiments, the light emitting device includes both scattering surfaces 96 and 98 to improve light extraction efficiency.

下面,将详细描述用于制造本发明的III族氮化物半导体发光器件的方法。图7是用于制造本发明的III族氮化物半导体发光器件的方法的一个实施方式的视图。Next, a method for manufacturing the Group III nitride semiconductor light emitting device of the present invention will be described in detail. FIG. 7 is a view of one embodiment of a method for manufacturing a group III nitride semiconductor light emitting device of the present invention.

制备出衬底10,并且随后在衬底10上生长氮化物半导体层20、30、40和50。接下来,在氮化物半导体层20、30、40和50上形成保护膜77。保护膜77可以由SiO2等制成(参考图7(a))。根据本发明,衬底10可以是蓝宝石衬底。Substrate 10 is prepared, and nitride semiconductor layers 20 , 30 , 40 , and 50 are then grown on substrate 10 . Next, a protective film 77 is formed on the nitride semiconductor layers 20 , 30 , 40 and 50 . The protective film 77 can be made of SiO 2 or the like (refer to FIG. 7( a )). According to the present invention, the substrate 10 may be a sapphire substrate.

在保护膜77上形成图案78(参考图7(b))。图8示出了可用于本发明的多种形状的图案78,如圆形或六边形。A pattern 78 is formed on the protective film 77 (refer to FIG. 7(b)). Figure 8 shows a variety of shaped patterns 78, such as circles or hexagons, that may be used in the present invention.

将其上形成有图案78的衬底10浸入氧化物蚀刻剂(BOE)缓冲溶液中,以根据图案78刻蚀并移除保护膜77(参考图7(c))。The substrate 10 on which the pattern 78 is formed is immersed in an oxide etchant (BOE) buffer solution to etch and remove the protective film 77 according to the pattern 78 (refer to FIG. 7( c )).

根据图案78对氮化物半导体层20、30、40和50进行干法刻蚀直至露出衬底10。此时将形成开口90。可以使用感应耦合等离子体(ICP)等来进行所述干法刻蚀(参考图7(d))。The nitride semiconductor layers 20 , 30 , 40 and 50 are dry etched according to the pattern 78 until the substrate 10 is exposed. At this point the opening 90 will be formed. The dry etching may be performed using inductively coupled plasma (ICP) or the like (refer to FIG. 7( d )).

将该衬底10和氮化物半导体层20、30、40和50分割成单个发光器件。可以使用激光划线方法来进行所述分割。在一些实施方式中,通过激光划线方法形成的切割面距衬底10表面的深度D为0.5μm~30μm。因此,可以通过物理力容易地将整个发光器件分割为单个发光器件。如果切割面的深度D低于0.5μm,那么当将整个发光器件物理地分割为单个发光器件时,发光器件上和其中可能产生裂缝或者电学特性可能劣化。如果切割面的深度D超过30μm,那么当制造单个发光器件时,其可能易于受到损坏而导致较低的产率(参考图7(e))。The substrate 10 and nitride semiconductor layers 20, 30, 40, and 50 are divided into individual light emitting devices. The division can be performed using a laser scribing method. In some embodiments, the depth D of the cutting surface formed by laser scribing method from the surface of the substrate 10 is 0.5 μm˜30 μm. Therefore, the entire light emitting device can be easily divided into individual light emitting devices by physical force. If the depth D of the cut face is lower than 0.5 μm, cracks may be generated on and in the light emitting device or electrical characteristics may be deteriorated when the entire light emitting device is physically divided into individual light emitting devices. If the depth D of the cut face exceeds 30 μm, it may be easily damaged when manufacturing a single light emitting device, resulting in lower yield (refer to FIG. 7( e )).

对该发光器件进行湿法刻蚀。例如,当衬底10是平面衬底时,可以在280℃将该发光器件浸入H2SO4和H3PO4(3∶1)的混合物中13分钟。在该过程中,由于衬底10与缓冲层20、n型氮化物半导体层30、有源层40和p型氮化物半导体层50之间的刻蚀速率存在差异,会在开口90上形成散射表面92和94并且会在该发光器件的侧面上形成散射表面96和98。在一些实施方式中,散射表面92、94、96和98的粗糙度保持为低于数十纳米。如果其粗糙度超过数十纳米,散射表面92、94、96和98可能因充当残留杂质而降低该发光器件的光引出效率(参考图7(f))。Wet etching is performed on the light emitting device. For example, when the substrate 10 is a planar substrate, the light emitting device may be immersed in a mixture of H 2 SO 4 and H 3 PO 4 (3:1) at 280° C. for 13 minutes. During this process, due to the differences in the etch rates between the substrate 10 and the buffer layer 20, n-type nitride semiconductor layer 30, active layer 40, and p-type nitride semiconductor layer 50, scattering will be formed on the opening 90. Surfaces 92 and 94 and will form scattering surfaces 96 and 98 on the sides of the light emitting device. In some embodiments, the roughness of scattering surfaces 92, 94, 96, and 98 is kept below tens of nanometers. If the roughness thereof exceeds several tens of nanometers, the scattering surfaces 92, 94, 96, and 98 may reduce the light extraction efficiency of the light emitting device by acting as residual impurities (refer to FIG. 7(f)).

图9是本发明的III族氮化物半导体发光器件中形成的开口90的一个实例的图像。散射表面92形成在衬底10上,并且散射表面94沿着氮化物半导体层20、30、40和50形成。FIG. 9 is an image of one example of the opening 90 formed in the group III nitride semiconductor light emitting device of the present invention. Scattering surface 92 is formed on substrate 10 , and scattering surface 94 is formed along nitride semiconductor layers 20 , 30 , 40 , and 50 .

图10是本发明的III族氮化物半导体发光器件的实施方式的图像,图11是图10的发光器件的放大图像。该III族氮化物半导体发光器件中形成有开口90。为了形成开口90,以12μm的间隔形成了一侧边长为4μm的六边形图案。FIG. 10 is an image of an embodiment of a Group III nitride semiconductor light emitting device of the present invention, and FIG. 11 is an enlarged image of the light emitting device of FIG. 10 . An opening 90 is formed in the III-nitride semiconductor light emitting device. In order to form the openings 90 , a hexagonal pattern with a side length of 4 μm was formed at an interval of 12 μm.

下面,将说明本发明的多种实例。In the following, various examples of the present invention will be described.

(1)所述III族氮化物半导体发光器件,其中所述第一散射表面形成在所述衬底上。(1) The group III nitride semiconductor light emitting device, wherein the first scattering surface is formed on the substrate.

(2)所述III族氮化物半导体发光器件,其中所述第一散射表面在所述衬底下陷时形成。(2) The group III nitride semiconductor light emitting device, wherein the first scattering surface is formed when the substrate is depressed.

(3)所述III族氮化物半导体发光器件,其中所述第二散射表面沿着所述多个III族氮化物半导体层形成。(3) The group III nitride semiconductor light emitting device, wherein the second scattering surface is formed along the plurality of group III nitride semiconductor layers.

(4)所述III族氮化物半导体发光器件,其中所述第二散射表面具有从所述衬底沿着所述多个III族氮化物半导体层变窄的开口。(4) The group III nitride semiconductor light emitting device, wherein the second scattering surface has an opening that narrows from the substrate along the plurality of group III nitride semiconductor layers.

(5)所述III族氮化物半导体发光器件,其中开口形成为多个。(5) The group III nitride semiconductor light-emitting device, wherein the opening is formed in plural.

(6)所述III族氮化物半导体发光器件,其中所述第一散射表面和所述第二散射表面通过湿法刻蚀形成。(6) The Group III nitride semiconductor light emitting device, wherein the first scattering surface and the second scattering surface are formed by wet etching.

(7)所述III族氮化物半导体发光器件,其中所述第一散射表面在衬底下陷时形成,并且所述第二散射表面从所述衬底沿着所述多个III族氮化物半导体层变窄。(7) The group III nitride semiconductor light emitting device, wherein the first scattering surface is formed when the substrate is sunken, and the second scattering surface is formed along the plurality of group III nitride semiconductors from the substrate layer narrows.

(8)所述III族氮化物半导体发光器件,在其表面上包括楔形散射表面。(8) The Group III nitride semiconductor light-emitting device including a wedge-shaped scattering surface on its surface.

Claims (7)

1.一种III族氮化物半导体发光器件,所述III族氮化物半导体发光器件包括:1. A group III nitride semiconductor light emitting device, the group III nitride semiconductor light emitting device comprising: 衬底;Substrate; 多个III族氮化物半导体层,所述多个III族氮化物半导体层包括,形成在所述衬底上且具有第一导电类型的第一氮化物半导体层,形成在所述第一氮化物半导体层上且具有不同于所述第一导电类型的第二导电类型的第二氮化物半导体层,以及布置在所述第一氮化物半导体层和所述第二氮化物半导体层之间且通过电子和空穴的复合产生光的有源层;以及a plurality of group III nitride semiconductor layers, the plurality of group III nitride semiconductor layers including a first nitride semiconductor layer formed on the substrate and having a first conductivity type, formed on the first nitride semiconductor layer a second nitride semiconductor layer on the semiconductor layer and having a second conductivity type different from the first conductivity type, and arranged between the first nitride semiconductor layer and the second nitride semiconductor layer through an active layer where the recombination of electrons and holes produces light; and 从所述衬底沿着所述多个III族氮化物半导体层形成的开口,所述开口包括使所述有源层中产生的光散射的第一散射表面和与所述第一散射表面具有不同倾斜度的第二散射表面。An opening formed from the substrate along the plurality of group III nitride semiconductor layers, the opening including a first scattering surface for scattering light generated in the active layer and Second scattering surface with different inclination. 2.如权利要求1所述的III族氮化物半导体发光器件,其中,所述第一散射表面形成在所述衬底上。2. The Ill-nitride semiconductor light emitting device of claim 1, wherein the first scattering surface is formed on the substrate. 3.如权利要求2所述的III族氮化物半导体发光器件,其中,将所述第一散射表面形成为所述衬底的凹陷部分。3. The Ill-nitride semiconductor light emitting device according to claim 2, wherein the first scattering surface is formed as a recessed portion of the substrate. 4.如权利要求1所述的III族氮化物半导体发光器件,其中,所述第二散射表面沿着所述多个III族氮化物半导体层形成。4. The Ill-nitride semiconductor light emitting device of claim 1, wherein the second scattering surface is formed along the plurality of Ill-nitride semiconductor layers. 5.如权利要求4所述的III族氮化物半导体发光器件,其中,所述第二散射表面具有从所述衬底沿着所述多个III族氮化物半导体层变窄的开口。5. The group III nitride semiconductor light emitting device according to claim 4, wherein the second scattering surface has an opening narrowed from the substrate along the plurality of group III nitride semiconductor layers. 6.如权利要求1所述的III族氮化物半导体发光器件,其中,所述第一散射表面在所述衬底下陷时形成,并且所述第二散射表面从所述衬底沿着所述多个III族氮化物半导体层变窄。6. The III-nitride semiconductor light emitting device according to claim 1, wherein the first scattering surface is formed when the substrate is sunken, and the second scattering surface is formed from the substrate along the Multiple group III nitride semiconductor layers are narrowed. 7.如权利要求6所述的III族氮化物半导体发光器件,所述III族氮化物半导体发光器件在其表面上包括楔形散射表面。7. The group III nitride semiconductor light emitting device according to claim 6, comprising a wedge-shaped scattering surface on a surface thereof.
CN2009801423284A 2008-10-24 2009-10-07 Group-iii nitride semiconductor light emitting device Pending CN102217101A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2008-0104567 2008-10-24
KR1020080104567A KR101009652B1 (en) 2008-10-24 2008-10-24 Group III nitride semiconductor light emitting device
PCT/KR2009/005710 WO2010047483A2 (en) 2008-10-24 2009-10-07 Group-iii nitride semiconductor light emitting device

Publications (1)

Publication Number Publication Date
CN102217101A true CN102217101A (en) 2011-10-12

Family

ID=42119802

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801423284A Pending CN102217101A (en) 2008-10-24 2009-10-07 Group-iii nitride semiconductor light emitting device

Country Status (3)

Country Link
KR (1) KR101009652B1 (en)
CN (1) CN102217101A (en)
WO (1) WO2010047483A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108198923A (en) * 2017-11-23 2018-06-22 华灿光电(浙江)有限公司 Light emitting diode chip and manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119784A (en) 1982-12-24 1984-07-11 Agency Of Ind Science & Technol Monitor built-in semiconductor laser element
JPH0632329B2 (en) 1984-08-01 1994-04-27 松下電器産業株式会社 Method for manufacturing optical integrated circuit device
US7803648B2 (en) * 2005-03-09 2010-09-28 Showa Denko K.K. Nitride semiconductor light-emitting device and method for fabrication thereof
JP2007067257A (en) * 2005-09-01 2007-03-15 Kyocera Corp Light emitting element
KR100622817B1 (en) * 2005-09-27 2006-09-14 엘지전자 주식회사 High output light emitting device and its manufacturing method
KR100648813B1 (en) * 2005-12-23 2006-11-23 엘지전자 주식회사 Vertical light emitting device manufacturing method
JP2008140918A (en) 2006-11-30 2008-06-19 Eudyna Devices Inc Method for manufacturing light emitting device
JP2009076647A (en) * 2007-09-20 2009-04-09 Tekcore Co Ltd Manufacturing method of light emitting diode element
KR20100021243A (en) * 2008-08-14 2010-02-24 전북대학교산학협력단 Light emitting device and method of manufacturing the same

Also Published As

Publication number Publication date
WO2010047483A2 (en) 2010-04-29
KR20100045580A (en) 2010-05-04
WO2010047483A3 (en) 2010-08-05
KR101009652B1 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
CN101582474B (en) Semiconductor light emitting device
KR101009651B1 (en) Group III nitride semiconductor light emitting device
US20110062487A1 (en) Semiconductor light emitting device
KR100956456B1 (en) Group III nitride semiconductor light emitting device
JP2011061036A (en) Group-iii nitride semiconductor light emitting element
KR20110018563A (en) Group III nitride semiconductor light emitting device and method of manufacturing the same
KR100960277B1 (en) Method of manufacturing group III nitride semiconductor light emitting device
KR100960278B1 (en) Group III nitride semiconductor light emitting device and manufacturing method
KR100972852B1 (en) Group III nitride semiconductor light emitting device and manufacturing method
CN102239577A (en) Semiconductor light-emitting device
KR100957742B1 (en) Group III nitride semiconductor light emitting device
KR101098589B1 (en) Iii-nitride semiconductor light emitting device
KR20090073946A (en) Group III nitride semiconductor light emitting device
CN102217101A (en) Group-iii nitride semiconductor light emitting device
CN102239575A (en) Group iii nitride semiconductor light-emitting device
US20100102338A1 (en) III-Nitride Semiconductor Light Emitting Device
US20100102352A1 (en) III-Nitride Semiconductor Light Emitting Device
KR101009653B1 (en) Group III nitride semiconductor light emitting device
KR20090117865A (en) Group III nitride semiconductor light emitting device
KR20080020206A (en) Group III nitride semiconductor light emitting device
KR101008286B1 (en) Group III nitride semiconductor light emitting device
KR20110077363A (en) Group III nitride semiconductor light emitting device
KR20100064048A (en) Semiconductor light emitting device
KR20110029256A (en) Group III nitride semiconductor light emitting device
KR20080010964A (en) Group III nitride semiconductor light emitting device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111012