CN102215390B - Processing method and device for image coding and decoding - Google Patents
Processing method and device for image coding and decoding Download PDFInfo
- Publication number
- CN102215390B CN102215390B CN201010147587.0A CN201010147587A CN102215390B CN 102215390 B CN102215390 B CN 102215390B CN 201010147587 A CN201010147587 A CN 201010147587A CN 102215390 B CN102215390 B CN 102215390B
- Authority
- CN
- China
- Prior art keywords
- prediction
- blocks
- block
- intra
- inter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
本发明实施例提供一种图像编解码处理方法和装置。图像编码处理方法,包括:对所需编码的宏块进行下采样划分,获取复数个块;对所述复数个块进行空域预测帧内编码,获取与所述复数个块分别对应的预测残差,其中所述空域预测帧内编码至少包括采用预测模式进行块间预测帧内编码;对所述预测残差中至少一个预测残差进行基于所述预测模式的方向性变换。本发明实施例能够有效提高预测精度,改善编码压缩性能。
Embodiments of the present invention provide an image codec processing method and device. An image coding processing method, comprising: performing down-sampling division on macroblocks to be coded to obtain a plurality of blocks; performing spatial prediction intra-frame encoding on the plurality of blocks, and obtaining prediction residuals respectively corresponding to the plurality of blocks , wherein the spatial predictive intra-frame encoding at least includes performing inter-block predictive intra-frame encoding using a prediction mode; performing directional transformation based on the prediction mode on at least one of the prediction residuals. The embodiments of the present invention can effectively improve prediction accuracy and improve coding and compression performance.
Description
技术领域 technical field
本发明实施例涉及通信领域,尤其涉及一种图像编解码处理方法和装置。Embodiments of the present invention relate to the communication field, and in particular, to an image encoding and decoding processing method and device.
背景技术 Background technique
视频编码压缩是一种利用视频图像的空域、时域和码字之间的相关性,尽可能去除冗余的一种视频压缩处理方法。帧内编码方法是一种基于块的混合视频编码方法。Video coding compression is a video compression processing method that utilizes the correlation between the space domain, time domain and codewords of video images to remove redundancy as much as possible. The intra coding method is a block-based hybrid video coding method.
在现有技术中,帧内编码方法可以包括:空域预测、变换、量化和熵编码。其中,空域预测可以利用相邻块之间的相关性,进行空域预测编码。举例来说,H.264标准中的空域预测可以利用已编码的相邻块,对当前所需预测的块进行预测编码。由于H.264标准中,亮度分量有9种预测模式,而色度分量有5种预测模式。在这些预测模式中,除了直流模式外,其余预测模式实际上表征了图像不同方向的纹理信息。在进行空域预测编码时,可以根据选中的预测模式对当前块进行预测编码,得到预测残差,然后对预测残差进行变换、量化和熵编码,最终生成压缩码流。通过这些步骤即可去除视频图像的空域冗余,从而达到压缩编码的目的。相应地,解码端也可以根据预测模式、预测残差等信息进行解码,从而得到解码后的图像。In the prior art, intra-frame coding methods may include: spatial prediction, transformation, quantization and entropy coding. Wherein, the spatial domain prediction can utilize the correlation between adjacent blocks to perform spatial domain prediction coding. For example, the spatial domain prediction in the H.264 standard can use coded adjacent blocks to perform predictive coding on the block currently required to be predicted. In the H.264 standard, there are 9 prediction modes for the luma component and 5 prediction modes for the chrominance component. Among these prediction modes, except the DC mode, the remaining prediction modes actually represent the texture information of different directions of the image. When performing spatial prediction coding, the current block can be predicted and coded according to the selected prediction mode to obtain a prediction residual, and then the prediction residual is transformed, quantized, and entropy coded to finally generate a compressed code stream. Through these steps, the spatial redundancy of the video image can be removed, thereby achieving the purpose of compression coding. Correspondingly, the decoder can also perform decoding according to information such as prediction mode and prediction residual, so as to obtain a decoded image.
在实现本发明过程中,发明人发现,高清视频图像的数据量较大,传输时占用网络带宽资源较多,现有网络带宽资源难以满足高清视频图像的传输。因此,如何进一步提高视频编码压缩性能成为亟待解决的问题。In the process of realizing the present invention, the inventors found that the data volume of high-definition video images is large, and the transmission takes up more network bandwidth resources, and the existing network bandwidth resources are difficult to meet the transmission of high-definition video images. Therefore, how to further improve video coding compression performance has become an urgent problem to be solved.
发明内容 Contents of the invention
本发明实施例提供一种图像编解码处理方法和装置。Embodiments of the present invention provide an image codec processing method and device.
本发明实施例提供一种图像编码处理方法,包括:An embodiment of the present invention provides an image coding processing method, including:
对所需编码的宏块进行下采样划分,获取复数个块;Subsampling and dividing the macroblocks to be coded to obtain multiple blocks;
对所述复数个块进行空域预测帧内编码,获取与所述复数个块分别对应的预测残差,其中所述空域预测帧内编码至少包括采用预测模式进行块间预测帧内编码;Perform spatial predictive intra-frame encoding on the plurality of blocks, and obtain prediction residuals corresponding to the plurality of blocks, wherein the spatial predictive intra-frame encoding at least includes performing inter-block predictive intra-frame encoding using a prediction mode;
对所述预测残差中至少一个预测残差进行基于所述预测模式的方向性变换。A directional transformation based on the prediction mode is performed on at least one of the prediction residuals.
本发明实施例提供一种图像解码处理方法,包括:An embodiment of the present invention provides an image decoding processing method, including:
对与复数个块分别对应的预测残差系数中至少一个块对应的预测残差系数进行基于预测模式的方向性反变换,获取预测残差;performing a directional inverse transformation based on a prediction mode on the prediction residual coefficients corresponding to at least one of the prediction residual coefficients corresponding to the plurality of blocks respectively, to obtain a prediction residual;
对所述预测残差进行空域预测帧内解码处理,获取所述复数个块,其中所述空域预测帧内解码处理至少包括采用所述预测模式进行块间预测帧内解码;Performing spatial prediction intra-frame decoding processing on the prediction residual to obtain the plurality of blocks, wherein the spatial domain prediction intra-frame decoding processing at least includes performing inter-block prediction intra-frame decoding using the prediction mode;
对所述复数个块进行上采样合成,获取解码后的宏块。Perform upsampling and synthesis on the plurality of blocks to obtain decoded macroblocks.
本发明实施例提供一种图像编码处理装置,包括:An embodiment of the present invention provides an image coding processing device, including:
编码划分模块,用于对所需编码的宏块进行下采样划分,获取复数个块;The coding division module is used to perform down-sampling division on the macroblocks to be coded to obtain a plurality of blocks;
编码预测模块,用于对所述复数个块进行空域预测帧内编码,获取与所述复数个块分别对应的预测残差,其中所述空域预测帧内编码至少包括采用预测模式进行块间预测帧内编码;An encoding prediction module, configured to perform spatial prediction intra-frame encoding on the plurality of blocks, and obtain prediction residuals respectively corresponding to the plurality of blocks, wherein the spatial prediction intra-frame encoding at least includes performing inter-block prediction using a prediction mode intraframe coding;
编码变换模块,用于对所述预测残差中至少一个预测残差进行基于所述预测模式的方向性变换。A coding transformation module, configured to perform directional transformation based on the prediction mode on at least one of the prediction residuals.
本发明实施例提供一种图像解码处理装置,包括:An embodiment of the present invention provides an image decoding processing device, including:
解码变换模块,用于对与复数个块分别对应的预测残差系数中至少一个块对应的预测残差系数进行基于预测模式的方向性反变换,获取预测残差;The decoding transformation module is used to perform directional inverse transformation based on the prediction mode on the prediction residual coefficient corresponding to at least one of the prediction residual coefficients corresponding to the plurality of blocks respectively, to obtain the prediction residual;
解码预测模块,用于对所述预测残差进行空域预测帧内解码处理,获取所述复数个块,其中所述空域预测帧内解码处理至少包括采用所述预测模式进行块间预测帧内解码;A decoding prediction module, configured to perform spatial prediction intra-frame decoding processing on the prediction residual, and obtain the plurality of blocks, wherein the spatial prediction intra-frame decoding processing at least includes using the prediction mode to perform inter-block prediction intra-frame decoding ;
解码合成模块,用于对所述复数个块进行上采样合成,获取解码后的宏块。The decoding and combining module is configured to perform upsampling and combining on the plurality of blocks to obtain decoded macroblocks.
本发明实施例,通过对所需编码的宏块进行下采样划分,可以充分利用像素间的相关性,从而提高预测精度,改善编码压缩性能;通过对空域预测帧内编码处理后获取的预测残差中至少一个预测残差进行基于模式的方向性变换,可以进一步去除预测残差中的方向纹理信息相关性,提高编码压缩性能。In the embodiment of the present invention, by downsampling the macroblocks to be coded, the correlation between pixels can be fully utilized, thereby improving prediction accuracy and coding compression performance; At least one of the prediction residuals in the difference is subjected to mode-based directional transformation, which can further remove the correlation of directional texture information in the prediction residuals and improve the coding compression performance.
附图说明 Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为本发明图像编码处理方法实施例一的流程图;FIG. 1 is a flow chart of Embodiment 1 of the image coding processing method of the present invention;
图2为本发明图像编码处理方法实施例二的流程图;FIG. 2 is a flow chart of Embodiment 2 of the image coding processing method of the present invention;
图3为本发明图像编码处理方法实施例二中下采样划分的结构示意图;FIG. 3 is a schematic structural diagram of downsampling division in Embodiment 2 of the image coding processing method of the present invention;
图4为本发明图像编码处理方法实施例二进行帧内预测的结构示意图;FIG. 4 is a schematic structural diagram of performing intra-frame prediction in Embodiment 2 of the image coding processing method of the present invention;
图5为本发明图像编码处理方法实施例三的流程图;FIG. 5 is a flow chart of Embodiment 3 of the image coding processing method of the present invention;
图6为本发明图像编码处理方法实施例四的流程图;FIG. 6 is a flow chart of Embodiment 4 of the image coding processing method of the present invention;
图7为本发明图像编码处理方法实施例四进行帧内预测的结构示意图;7 is a schematic structural diagram of performing intra-frame prediction in Embodiment 4 of the image coding processing method of the present invention;
图8为本发明图像编码处理方法实施例五的流程图;FIG. 8 is a flow chart of Embodiment 5 of the image coding processing method of the present invention;
图9本发明图像编码处理方法实施例六的流程图;FIG. 9 is a flow chart of Embodiment 6 of the image coding processing method of the present invention;
图10为本发明图像编码处理方法实施例六进行帧内预测的结构示意图;FIG. 10 is a schematic structural diagram of performing intra-frame prediction in Embodiment 6 of the image coding processing method of the present invention;
图11为本发明图像编码处理方法实施例七的流程图;FIG. 11 is a flow chart of Embodiment 7 of the image coding processing method of the present invention;
图12为本发明解码处理方法实施例一的流程图;FIG. 12 is a flow chart of Embodiment 1 of the decoding processing method of the present invention;
图13为本发明解码处理方法实施例二的流程图;FIG. 13 is a flowchart of Embodiment 2 of the decoding processing method of the present invention;
图14为本发明解码处理方法实施例三的流程图;FIG. 14 is a flow chart of Embodiment 3 of the decoding processing method of the present invention;
图15为本发明解码处理方法实施例四的流程图;FIG. 15 is a flowchart of Embodiment 4 of the decoding processing method of the present invention;
图16为本发明解码处理方法实施例五的流程图;FIG. 16 is a flowchart of Embodiment 5 of the decoding processing method of the present invention;
图17为本发明解码处理方法实施例六的流程图;FIG. 17 is a flow chart of Embodiment 6 of the decoding processing method of the present invention;
图18为本发明解码处理方法实施例七的流程图;FIG. 18 is a flow chart of Embodiment 7 of the decoding processing method of the present invention;
图19为本发明图像编码处理装置实施例一的结构示意图;FIG. 19 is a schematic structural diagram of Embodiment 1 of an image encoding processing device according to the present invention;
图20为本发明图像编码处理装置实施例二的结构示意图;FIG. 20 is a schematic structural diagram of Embodiment 2 of an image encoding processing device according to the present invention;
图21为本发明图像编码处理装置实施例三的结构示意图;FIG. 21 is a schematic structural diagram of Embodiment 3 of an image encoding processing device according to the present invention;
图22为本发明图像编码处理装置实施例四的结构示意图;FIG. 22 is a schematic structural diagram of Embodiment 4 of an image encoding processing device according to the present invention;
图23为本发明图像编码处理装置实施例五的结构示意图;FIG. 23 is a schematic structural diagram of Embodiment 5 of an image encoding processing device according to the present invention;
图24为本发明图像解码处理装置实施例一的结构示意图;FIG. 24 is a schematic structural diagram of Embodiment 1 of an image decoding processing device according to the present invention;
图25为本发明图像解码处理装置实施例二的结构示意图;FIG. 25 is a schematic structural diagram of Embodiment 2 of an image decoding processing device according to the present invention;
图26为本发明图像解码处理装置实施例三的结构示意图;FIG. 26 is a schematic structural diagram of Embodiment 3 of an image decoding processing device according to the present invention;
图27为本发明图像解码处理装置实施例四的结构示意图;FIG. 27 is a schematic structural diagram of Embodiment 4 of an image decoding processing device according to the present invention;
图28为本发明图像解码处理装置实施例五的结构示意图;FIG. 28 is a schematic structural diagram of Embodiment 5 of an image decoding processing device according to the present invention;
图29为本发明图像解码处理装置实施例六的结构示意图。FIG. 29 is a schematic structural diagram of Embodiment 6 of an image decoding processing device according to the present invention.
具体实施方式 Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
图1为本发明图像编码处理方法实施例一的流程图,如图1所示,本实施例的方法可以包括:Fig. 1 is a flow chart of Embodiment 1 of the image coding processing method of the present invention. As shown in Fig. 1, the method of this embodiment may include:
步骤101、对所需编码的宏块进行下采样划分,获取复数个块。Step 101: Perform down-sampling division on the macroblocks to be coded to obtain a plurality of blocks.
具体来说,图像编码处理装置在对所需编码的宏块(Macroblock,以下简称:MB)进行编码处理时,可以对所需编码的宏块进行下采样划分,从而获取复数个块(以下简称:Block)。举例来说,所需编码的MB为16×16,图像编码处理装置可以对该MB进行1/2下采样,也即对16×16的MB的行和列分别进行1/2抽取,从而可以获取4个8×8的Block。在本实施例中,采用下采样划分方法对所需编码的MB进行划分,可以充分利用像素间的相关性,从而提高预测精度,改善编码压缩性能。Specifically, when the image coding processing device performs coding processing on a macroblock to be coded (Macroblock, hereinafter referred to as MB), it may perform down-sampling division on the macroblock to be coded, so as to obtain a plurality of blocks (hereinafter referred to as MB). : Block). For example, the MB to be coded is 16×16, and the image coding processing device can perform 1/2 downsampling on the MB, that is, perform 1/2 extraction on the rows and columns of the 16×16 MB, so that Get four 8×8 Blocks. In this embodiment, the downsampling division method is used to divide the MB to be coded, which can make full use of the correlation between pixels, thereby improving the prediction accuracy and the coding compression performance.
需要说明的是,本实施例中所述的MB的大小既可以为上述16×16的,也可以为32×32、64×64、128×128或者其它任意尺寸,该下采样划分既可以对亮度块进行处理,也可以对色度块进行处理,而且该下采样划分也可以采用除1/2下采样之外的其它下采样方式,本实施例不作限制。It should be noted that the size of the MB described in this embodiment can be the above-mentioned 16×16, or 32×32, 64×64, 128×128 or any other size. The luma blocks may be processed, and the chrominance blocks may also be processed, and the downsampling division may also adopt other downsampling methods except 1/2 downsampling, which is not limited in this embodiment.
步骤102、对所述复数个块进行空域预测帧内编码,获取与所述复数个块分别对应的预测残差,其中所述空域预测帧内编码至少包括采用预测模式进行块间预测帧内编码。Step 102: Perform spatial predictive intra-frame encoding on the plurality of blocks, and obtain prediction residuals corresponding to the plurality of blocks, wherein the spatial predictive intra-frame encoding at least includes inter-block predictive intra-frame encoding using a prediction mode .
图像编码处理装置在获取所需编码的Macroblock中的复数个Block后,即可对这复数个Block进行空域预测帧内编码,从而可以获取与这复数个Block分别对应的预测残差。举例来说,图像编码处理装置可以对4个8×8的Block均采用块间预测帧内编码处理,或者可以对4个8×8的Block中的1个8×8的Block进行块间预测帧内编码处理,对其它3个8×8的Block可以参考采用块间预测帧内编码处理的Block进行像素间预测帧内编码处理。其中,块间预测帧内编码处理即为以相邻的已编码块为参考进行预测,像素间预测帧内编码处理即为以相邻的已编码像素为参考进行预测。因此,本实施例中,图像编码处理装置可以将4个8×8的Block分别对应的空域预测帧内编码处理结果与4个8×8的Block的原始像素对应相减,从而可以分别获取与4个8×8的Block分别对应的预测残差。After the image encoding processing device acquires the plurality of Blocks in the Macroblock to be encoded, it can perform spatial prediction intra-frame encoding on the plurality of Blocks, so as to obtain prediction residuals corresponding to the plurality of Blocks respectively. For example, the image coding processing device may use inter-block prediction and intra-frame coding for all four 8×8 Blocks, or may perform inter-block prediction on one 8×8 Block among the four 8×8 Blocks For the intra-frame encoding process, for the other three 8×8 Blocks, the inter-pixel predictive intra-frame encoding process can be performed with reference to the Block that adopts the inter-block prediction intra-frame encoding process. Wherein, inter-block prediction and intra-frame encoding processing refer to adjacent coded blocks for prediction, and inter-pixel prediction intra-frame coding processing refers to adjacent coded pixels as reference for prediction. Therefore, in this embodiment, the image coding processing device may subtract the spatial prediction intra-frame coding processing results respectively corresponding to the four 8×8 Blocks from the corresponding original pixels of the four 8×8 Blocks, so as to obtain the corresponding The prediction residuals corresponding to the four 8×8 Blocks respectively.
需要说明的是,本实施例中的空域预测帧内编码可以采用现有技术中任意的空域预测帧内编码方法实现,例如采用传统的块间预测帧内编码处理,或者采用像素间预测帧内编码处理等其它空域预测帧内编码方法,只要该空域预测帧内编码至少包括采用预测模式进行块间预测帧内编码即可,本实施例不作限制。It should be noted that the spatial prediction intra-frame coding in this embodiment can be realized by any spatial prediction intra-frame coding method in the prior art, for example, the traditional inter-block prediction intra-frame coding process, or the inter-pixel prediction intra-frame coding process. For other spatial predictive intra-frame encoding methods such as encoding processing, as long as the spatial predictive intra-frame encoding at least includes inter-block predictive intra-frame encoding using a prediction mode, this embodiment does not limit it.
步骤103、对所述预测残差中至少一个预测残差进行基于所述预测模式的方向性变换。Step 103: Perform directional transformation based on the prediction mode on at least one of the prediction residuals.
由于空域预测帧内编码的帧内预测模式(Intra prediction mode)在一定程度上可以反映Block本身的纹理方向信息,而这些纹理方向信息在复数个Block的预测残差中仍然存在。因此,本实施例可以对与复数个Block分别对应的预测残差中至少一个预测残差采用基于预测模式的方向性变换(Mode-Dependent Directional Transform,以下简称:MDDT),例如采用步骤102中所采用的预测模式进行方向性变换,从而可以进一步去除预测残差中的方向纹理信息相关性,提高编码压缩性能。Since the intra prediction mode (Intra prediction mode) of spatial prediction intra-frame coding can reflect the texture direction information of the Block itself to a certain extent, and the texture direction information still exists in the prediction residuals of multiple Blocks. Therefore, in this embodiment, a prediction mode-based directional transform (Mode-Dependent Directional Transform, MDDT for short) may be used for at least one of the prediction residuals respectively corresponding to a plurality of Blocks, for example, the method described in step 102 is adopted. The adopted prediction mode performs directional transformation, so that the correlation of directional texture information in the prediction residual can be further removed, and the coding and compression performance can be improved.
具体来说,MDDT可以为各种Intra prediction mode定制一个变换,以更好的适应预测残差中的不同的方向纹理信息。举例来说,在关键技术领域(KeyTechnology Area,以下简称:KTA)参考软件中,MDDT为除了直流(以下简称:DC)模式以外的其它Intra prediction mode分别定制一个方向性变换,如对于H.264中的8×8和4×4MB中除DC模式以外的其它8种Intraprediction mode,分别对应8种方向性变换,而对于DC模式则仍然采用与方向纹理信息无关的变换,例如离散余弦变换(discrete cosine transform,以下简称:DCT)、离散正弦变换、小波变换等,这些变换与表征方向纹理信息的预测模式无关,例如与上述8种Intra prediction mode无关。在本实施例中,采用MDDT,可以进一步去除预测残差中的方向纹理信息相关性,提高编码压缩性能。Specifically, MDDT can customize a transformation for various Intra prediction modes to better adapt to different directional texture information in the prediction residual. For example, in the Key Technology Area (hereinafter referred to as: KTA) reference software, MDDT customizes a directional transformation for other Intra prediction modes except the direct current (hereinafter referred to as: DC) mode, such as for H.264 In the 8×8 and 4×4MB, the other 8 Intraprediction modes except DC mode correspond to 8 kinds of directional transformations respectively, while for the DC mode, transformations that have nothing to do with directional texture information are still used, such as discrete cosine transform (discrete cosine transform) cosine transform, hereinafter referred to as: DCT), discrete sine transform, wavelet transform, etc. These transforms have nothing to do with the prediction mode that characterizes the directional texture information, for example, it has nothing to do with the above 8 Intra prediction modes. In this embodiment, by adopting MDDT, the correlation of directional texture information in the prediction residual can be further removed, and the coding compression performance can be improved.
本实施例,通过对所需编码的MB进行下采样划分,可以充分利用像素间的相关性,从而提高预测精度,改善编码压缩性能;通过对空域预测帧内编码处理后获取的预测残差中至少一个预测残差进行MDDT,可以进一步去除预测残差中的方向纹理信息相关性,提高编码压缩性能。In this embodiment, by down-sampling the MBs to be coded, the correlation between pixels can be fully utilized, thereby improving prediction accuracy and coding compression performance; At least one prediction residual is subjected to MDDT, which can further remove the correlation of direction texture information in the prediction residual, and improve the coding compression performance.
下面采用几个具体的实施例对本发明图像编码处理方法的技术方案进行详细说明。The technical solution of the image coding processing method of the present invention will be described in detail below using several specific embodiments.
图2为本发明图像编码处理方法实施例二的流程图,如图2所示,本实施例的方法可以包括:FIG. 2 is a flow chart of Embodiment 2 of the image coding processing method of the present invention. As shown in FIG. 2, the method of this embodiment may include:
步骤201、对所需编码的宏块进行下采样划分,获取复数个块。Step 201: Perform down-sampling division on the macroblocks to be coded to obtain a plurality of blocks.
本实施例中,步骤201与图1所示的步骤101的实现原理类似。在本实施例中,可以假设所需编码的MB为16×16。图3为本发明图像编码处理方法实施例二中下采样划分的结构示意图,如图3所示,图像编码处理装置可以对16×16的MB进行1/2下采样划分,即在垂直和水平方向上每隔1个像素抽取1个像素,并将抽取后的像素组成新块,共可形成4个8×8的Block。在本实施例中,这4个8×8的Block可以分别记为Block0、Block1、Block2和Block3。In this embodiment, the implementation principle of step 201 is similar to that of step 101 shown in FIG. 1 . In this embodiment, it may be assumed that the MB to be coded is 16×16. Fig. 3 is a schematic structural diagram of downsampling division in Embodiment 2 of the image coding processing method of the present invention. As shown in Fig. 3 , the image coding processing device can perform 1/2 downsampling division on 16×16 MB, that is, vertically and horizontally Extract every other pixel in the direction, and form a new block with the extracted pixels, forming a total of four 8×8 Blocks. In this embodiment, the four 8×8 Blocks can be respectively marked as Block0, Block1, Block2 and Block3.
步骤202、采用预测模式对所述复数个块中的第一块进行块间预测帧内编码处理,获取与所述第一块对应的第一预测残差,并应用所述第一块的块间预测帧内编码处理结果对所述复数个块中的其余块进行像素间预测帧内编码处理,获取与所述复数个块中的其余块分别对应的第二预测残差。Step 202: Perform inter-block prediction and intra-frame coding processing on the first block of the plurality of blocks by using the prediction mode, obtain the first prediction residual corresponding to the first block, and apply the block of the first block Inter-prediction and intra-frame encoding processing results are performed on the rest of the plurality of blocks by inter-pixel prediction and intra-frame encoding to obtain second prediction residuals respectively corresponding to the remaining blocks of the plurality of blocks.
在本实施例中,图像编码处理装置可以采用Intra prediction mode对8×8的Block3进行块间预测帧内编码处理,得到该Block3的块间预测帧内编码处理结果,并将该块间预测帧内编码处理结果与8×8的Block3的原始像素作减法处理,获取与Block3对应的第一预测残差。然后,图像编码处理装置可以以该Block3的块间预测帧内编码处理结果作为参考,对其余3个8×8的Block,即Block0、Block1、Blcok2进行像素间预测帧内编码处理,从而获取与Block0、Block1、Blcok2分别对应的第二预测残差。具体来说,本实施例可以对Block3的像素进行插值,以便获得更准确的预测估计。举例来说,本实施例可以采用一种基于4-tap的水平和垂直方向的插值滤波器的插值方法对Block3的像素进行插值,因此,Block0、Block1、Blcok2中的像素可以参考相邻已编码Block3的像素进行预测,此种像素间预测比块间预测的精度更准确。至此,图像编码处理装置即可获取与Block0、Block1、Blcok2分别对应的像素间预测帧内编码处理结果,然后图像编码处理装置可以分别将Block0、Block1、Blcok2的像素间预测帧内编码处理结果与Block0、Block1、Blcok2的原始像素对应相减,从而获取与Block0、Block1、Blcok2分别对应的第二预测残差。In this embodiment, the image coding processing device can use Intra prediction mode to perform inter-block prediction intra-frame coding processing on the 8×8 Block3, obtain the inter-block prediction intra-frame coding processing result of the Block3, and convert the inter-block prediction frame The intra-coding processing result is subtracted from the original pixels of the 8×8 Block3 to obtain the first prediction residual corresponding to the Block3. Then, the image coding processing device can use the inter-block prediction intra-frame coding processing result of Block3 as a reference, and perform inter-pixel prediction intra-frame coding processing on the remaining three 8×8 Blocks, namely Block0, Block1, and Block2, so as to obtain the same The second prediction residuals corresponding to Block0, Block1, and Block2 respectively. Specifically, in this embodiment, interpolation can be performed on the pixels of Block3, so as to obtain a more accurate prediction estimate. For example, this embodiment can use an interpolation method based on 4-tap horizontal and vertical interpolation filters to interpolate the pixels of Block3. Therefore, the pixels in Block0, Block1, and Block2 can refer to the adjacent coded The pixels of Block3 are predicted, and the inter-pixel prediction is more accurate than the inter-block prediction. So far, the image coding processing device can obtain the inter-pixel prediction intra-frame coding processing results corresponding to Block0, Block1, and Block2 respectively, and then the image coding processing device can respectively combine the inter-pixel prediction intra-frame coding processing results of Block0, Block1, and Block2 with The original pixels of Block0, Block1, and Block2 are correspondingly subtracted, so as to obtain second prediction residuals respectively corresponding to Block0, Block1, and Block2.
图4为本发明图像编码处理方法实施例二进行帧内预测的结构示意图,如图4所示,其中I3表示对Block3进行块间预测帧内编码处理,获取第一预测残差,因此,该第一预测残差具有Intra prediction mode;而P0、P1、P2分别表示以Block3的块间预测帧内编码处理结果为参考对Block0、Block1、Blcok2进行像素间预测帧内编码处理,分别获取第二预测残差,因此,第二预测残差没有Intra prediction mode。FIG. 4 is a schematic structural diagram of intra-frame prediction in Embodiment 2 of the image coding processing method of the present invention. As shown in FIG. The first prediction residual has an Intra prediction mode; and P0, P1, and P2 respectively indicate that the inter-pixel prediction intra-frame coding processing of Block0, Block1, and Block2 is performed with the inter-block prediction intra-frame coding processing result of Block3 as a reference, and the second Prediction residuals, therefore, there is no Intra prediction mode for second prediction residuals.
需要说明的是,在本实施例中,所使用的预测模式可以为预先选定的最佳匹配模式,本领域技术人员可以采用现有技术选择最佳匹配模式,此处不再赘述。It should be noted that, in this embodiment, the prediction mode used may be a pre-selected best matching mode, and those skilled in the art may select the best matching mode by using existing technologies, which will not be repeated here.
步骤203、对所述第一预测残差进行基于所述预测模式的方向性变换,对所述第二预测残差进行与方向性无关的变换。Step 203: Perform directional transformation based on the prediction mode on the first prediction residual, and perform directivity-independent transformation on the second prediction residual.
由于I3采用传统的块间预测帧内编码处理获取,其具有表征方向纹理信息的Intra prediction mode,P0、P1和P2采用像素间预测帧内编码处理获取,其不存在Intra prediction mode。而MDDT必须要有Intra prediction mode,因此,本实施例可以对I3采用MDDT变换,即采用与步骤202中所使用的Intraprediction mode对应的变换矩阵对I3进行MDDT变换,而对P0、P1和P2采用与方向纹理信息无关的变换,例如DCT变换。Since I3 is obtained by traditional inter-block prediction and intra-frame coding processing, it has an Intra prediction mode representing directional texture information, and P0, P1, and P2 are obtained by inter-pixel prediction and intra-frame coding processing, and there is no Intra prediction mode. And MDDT must have Intra prediction mode, therefore, the present embodiment can adopt MDDT transformation to I3, promptly adopt the transformation matrix corresponding to the Intraprediction mode used in step 202 to carry out MDDT transformation to I3, and adopt to P0, P1 and P2 Transforms that are independent of directional texture information, such as DCT transforms.
需要说明的是,在本实施例中,对于Intra prediction mode中的DC模式,由于其不表征方向纹理信息,故不使用MDDT变换,而可以使用DCT变换。It should be noted that, in this embodiment, for the DC mode in the Intra prediction mode, since it does not represent directional texture information, MDDT transformation is not used, but DCT transformation can be used.
本实施例,通过对所需编码的MB进行下采样划分,可以充分利用像素间的相关性,从而提高预测精度,改善编码压缩性能;通过对块间预测帧内编码处理后获取的第一预测残进行MDDT,可以去除第一预测残差中的方向纹理信息相关性,提高Block3的编码压缩性能,而采用Block3的块间预测帧内编码处理结果作为参考对Block0、Block1、Blcok2进行像素间预测帧内编码处理,可以进一步提高编码压缩性能。In this embodiment, by down-sampling the MB to be coded, the correlation between pixels can be fully utilized, thereby improving prediction accuracy and coding compression performance; the first prediction obtained after inter-block prediction and intra-frame coding Residual MDDT can remove the directional texture information correlation in the first prediction residual and improve the encoding and compression performance of Block3, and use the inter-block prediction and intra-frame encoding processing results of Block3 as a reference to perform inter-pixel prediction on Block0, Block1, and Block2 Intra-frame encoding processing can further improve encoding and compression performance.
图5为本发明图像编码处理方法实施例三的流程图,如图5所示,本实施例的方法可以包括:FIG. 5 is a flow chart of Embodiment 3 of the image coding processing method of the present invention. As shown in FIG. 5, the method of this embodiment may include:
步骤301、对所需编码的宏块进行下采样划分,获取复数个块。Step 301: Perform down-sampling division on the macroblocks to be coded to obtain a plurality of blocks.
步骤302、采用预测模式对所述复数个块中的第一块进行块间预测帧内编码处理,获取与所述第一块对应的第一预测残差,并应用所述第一块的块间预测帧内编码处理结果对所述复数个块中的其余块进行像素间预测帧内编码处理,获取与所述复数个块中的其余块分别对应的第二预测残差。Step 302: Perform inter-block prediction and intra-frame coding processing on the first block of the plurality of blocks by using the prediction mode, obtain the first prediction residual corresponding to the first block, and apply the block of the first block Inter-prediction and intra-frame encoding processing results are performed on the rest of the plurality of blocks by inter-pixel prediction and intra-frame encoding to obtain second prediction residuals respectively corresponding to the remaining blocks of the plurality of blocks.
本实施例中,步骤301和步骤302的实现原理与上述图2所示的步骤201和步骤202的实现原理相同,此处不再赘述。In this embodiment, the implementation principles of step 301 and step 302 are the same as the implementation principles of step 201 and step 202 shown in FIG. 2 above, and will not be repeated here.
步骤303、对所述第一预测残差和第二预测残差进行基于所述预测模式的方向性变换。Step 303: Perform directional transformation based on the prediction mode on the first prediction residual and the second prediction residual.
本实施例与图2所示的本发明图像编码处理方法实施例二的差别在于,本实施例可以采用步骤302中使用的预测模式对第一预测残差和第二预测残差均采用MDDT进行处理。需要说明的是,在本实施例中,对第二预测残差进行MDDT进行处理时采用的预测模式与第一预测残差的预测模式相同。The difference between this embodiment and Embodiment 2 of the image coding processing method of the present invention shown in FIG. deal with. It should be noted that, in this embodiment, the prediction mode adopted when performing MDDT processing on the second prediction residual is the same as the prediction mode of the first prediction residual.
举例来说,如图4所示,由于I3为采用传统的块间预测帧内编码处理获取第一预测残差,具有表征方向纹理信息的Intra prediction mode,因此,其可以直接应用MDDT,而P0、P1和P2为采用像素间预测帧内编码处理分别获取的第二预测残差,其不存在Intra prediction mode,因此无法直接应用MDDT。但是,在基于下采样划分的空域预测帧内编码处理的框架下,每个下采样块,即Block0、Block1、Block2和Block3均为整个MB的一个缩影,其纹理方向信息与整个MB的纹理方向信息一致。也就是说,各个下采样块的纹理方向信息相同或相似。因此,P0、P1和P2实际上与I3的纹理方向信息相同或相似,因此,与P0、P1和P2分别对应的第二预测残差中也留存有类似的纹理方向信息。因此,P0、P1和P2可以采用I3的Intra prediction mode进行MDDT变换。也就是说,对P0、P1和P2进行MDDT时,使用与I3的Intra prediction mode对应的变换矩阵。这样,便实现了对MB中的所有下采样块全部使用MDDT变换。For example, as shown in Figure 4, since I3 uses the traditional inter-block prediction intra-frame coding process to obtain the first prediction residual, and has an Intra prediction mode representing directional texture information, it can directly apply MDDT, while P0 , P1 and P2 are the second prediction residuals respectively obtained by inter-pixel prediction and intra-frame coding processing, which do not have an Intra prediction mode, so MDDT cannot be directly applied. However, under the framework of spatial prediction intra-frame coding processing based on downsampling partition, each downsampled block, namely Block0, Block1, Block2 and Block3 is a microcosm of the whole MB, and its texture direction information is consistent with the texture direction of the whole MB The message is consistent. That is to say, the texture direction information of each downsampling block is the same or similar. Therefore, P0, P1, and P2 are actually the same or similar to the texture direction information of I3, and therefore, similar texture direction information remains in the second prediction residual corresponding to P0, P1, and P2 respectively. Therefore, P0, P1, and P2 can use the Intra prediction mode of I3 for MDDT transformation. That is, when performing MDDT on P0, P1, and P2, the transformation matrix corresponding to the Intra prediction mode of I3 is used. In this way, the MDDT transformation is implemented for all down-sampled blocks in the MB.
需要说明的是,在本实施例中,对于Intra prediction mode中的DC模式,由于其不表征方向纹理信息,故不使用MDDT变换,而可以使用DCT变换。It should be noted that, in this embodiment, for the DC mode in the Intra prediction mode, since it does not represent directional texture information, MDDT transformation is not used, but DCT transformation can be used.
本实施例,通过对所需编码的MB进行下采样划分,可以充分利用像素间的相关性,从而提高预测精度,改善编码压缩性能;通过对块间预测帧内编码处理后获取的第一预测残以及对像素间预测帧内编码处理后获取的第二预测残差均进行MDDT变换,可以去除第一预测残差和第二预测残差中的方向纹理信息相关性,提高全部下采样块的编码压缩性能。In this embodiment, by down-sampling the MB to be coded, the correlation between pixels can be fully utilized, thereby improving prediction accuracy and coding compression performance; the first prediction obtained after inter-block prediction and intra-frame coding MDDT transformation is performed on the residual and the second prediction residual obtained after inter-pixel prediction and intra-frame encoding, which can remove the directional texture information correlation between the first prediction residual and the second prediction residual, and improve the accuracy of all downsampled blocks. Encoding compression performance.
图6为本发明图像编码处理方法实施例四的流程图,如图6所示,本实施例的方法可以包括:FIG. 6 is a flow chart of Embodiment 4 of the image coding processing method of the present invention. As shown in FIG. 6, the method of this embodiment may include:
步骤401、对宏块进行第一下采样划分,获取第一块和复数个第二块,并对所述第一块进行第二下采样划分,获取第一子块和复数个第二子块。Step 401: Perform the first downsampling division on the macroblock, obtain the first block and the plurality of second blocks, and perform the second downsampling division on the first block, obtain the first subblock and the plurality of second subblocks .
本实施例对所需编码的MB采用多层划分方式。具体来说,本实施例可以在图4所示的第一下采样划分基础上,对I3再次进行第二下采样划分。举例来说,图像编码处理装置可以对所需编码的16×16MB进行第一下采样划分,即1/2下采样划分,获取8×8的第一块Block3和3个8×8的第二块Block0、Block1和Block2,然后图像编码处理装置可以对第一块Block3进行第二下采样划分,例如1/2下采样划分,获取4×4的第一子块sub-Block3以及3个4×4的第二子块sub-Block0、sub-Block1和sub-Block2。In this embodiment, a multi-layer division method is adopted for the MBs to be coded. Specifically, in this embodiment, on the basis of the first downsampling division shown in FIG. 4 , the second downsampling division can be performed on I3 again. For example, the image encoding processing device may divide the 16×16 MB to be coded by first downsampling, that is, divide by 1/2 downsampling, and obtain the first 8×8 block Block3 and three 8×8 second blocks. blocks Block0, Block1, and Block2, and then the image encoding processing device can perform second downsampling division on the first block Block3, such as 1/2 downsampling division, to obtain the first sub-block sub-Block3 of 4×4 and three 4× 4's second sub-blocks sub-Block0, sub-Block1 and sub-Block2.
需要说明的是,本实施例中,第一下采样划分和第二下采样划分均选取1/2下采样划分,但是本领域技术人员可以理解的是,第一下采样划分和第二下采样划分也可以不同,本领域技术人员可以根据MB的大小选取下采样划分方法,此处不作限制。It should be noted that, in this embodiment, both the first down-sampling division and the second down-sampling division are 1/2 down-sampling divisions, but those skilled in the art can understand that the first down-sampling division and the second down-sampling division The division may also be different, and those skilled in the art may select a downsampling division method according to the size of the MB, which is not limited here.
步骤402、采用预测模式对所述第一子块进行块间预测帧内编码处理,获取与所述第一子块对应的第一预测残差,并应用所述第一子块的块间预测帧内编码处理结果对所述复数个第二块和所述复数个第二子块进行像素间预测帧内编码处理,获取与所述复数个第二块和所述复数个第二子块分别对应的第二预测残差。Step 402: Perform inter-prediction and intra-frame encoding processing on the first sub-block by using the prediction mode, obtain the first prediction residual corresponding to the first sub-block, and apply the inter-block prediction of the first sub-block The intra-frame encoding processing result performs inter-pixel prediction intra-frame encoding processing on the plurality of second blocks and the plurality of second sub-blocks, and obtains The corresponding second prediction residual.
在本实施例中,图像编码处理装置可以采用Intra prediction mode对4×4的sub-Block3进行块间预测帧内编码处理,得到该sub-Block3的块间预测帧内编码处理结果,并将该块间预测帧内编码处理结果与4×4的sub-Block3的原始像素作减法处理,获取与sub-Block3对应的第一预测残差。然后,图像编码处理装置可以以该sub-Block3的块间预测帧内编码处理结果作为参考,对其余3个4×4的第二子块sub-Block0、sub-Block1和sub-Block2以及3个8×8的第二块Block0、Block1、Blcok2进行像素间预测帧内编码处理,从而获取与sub-Block0、sub-Block1、sub-Block2、Block0、Block1和Blcok2分别对应的第二预测残差。In this embodiment, the image coding processing device can use Intra prediction mode to perform inter-block prediction intra-frame coding processing on 4×4 sub-Block3, obtain the inter-block prediction intra-frame coding processing result of the sub-Block3, and convert the The inter-block prediction intra-frame coding processing result is subtracted from the original pixels of the 4×4 sub-Block3 to obtain the first prediction residual corresponding to the sub-Block3. Then, the image encoding processing device can use the inter-block prediction intra-frame encoding processing result of the sub-Block3 as a reference to perform the remaining three 4×4 second sub-blocks sub-Block0, sub-Block1 and sub-Block2 and the three The 8×8 second blocks Block0, Block1, and Block2 are subjected to inter-pixel prediction and intra-frame coding processing, so as to obtain second prediction residuals corresponding to sub-Block0, sub-Block1, sub-Block2, Block0, Block1, and Block2 respectively.
图7为本发明图像编码处理方法实施例四进行帧内预测的结构示意图,如图7所示,其中,I表示对sub-Block3进行块间预测帧内编码处理获取第一预测残差、p0、p1、p2、P0、P1、P2分别表示以sub-Block3的块间预测帧内编码处理结果为参考,对sub-Block0、sub-Block1、sub-Block2、Block0、Block1和Block2分别进行像素间预测帧内编码处理,分别获取第二预测残差。7 is a schematic structural diagram of intra-frame prediction in Embodiment 4 of the image coding processing method of the present invention. As shown in FIG. , p1, p2, P0, P1, and P2 represent the intra-frame coding processing results of sub-Block3's inter-block prediction as a reference, respectively, for sub-Block0, sub-Block1, sub-Block2, Block0, Block1, and Block2. The intra-frame coding process is predicted, and the second prediction residuals are obtained respectively.
步骤403、对所述第一预测残差进行基于所述预测模式的方向性变换,对所述第二预测残差进行与方向性无关的变换。Step 403: Perform directional transformation based on the prediction mode on the first prediction residual, and perform directivity-independent transformation on the second prediction residual.
由于I采用传统的块间预测帧内编码处理获取,其具有表征方向纹理信息的Intra prediction mode,p0、p1、p2、P0、P1和P2采用像素间预测帧内编码处理获取,其不存在Intra prediction mode。而MDDT必须要有Intraprediction mode,因此,本实施例可以对I采用MDDT变换,即采用与步骤402中所使用的Intra prediction mode对应的变换矩阵对I进行MDDT变换,而对p0、p1、p2、P0、P1和P2采用与方向纹理信息无关的变换,例如DCT变换。Since I is acquired by traditional inter-block prediction and intra-frame coding, it has an Intra prediction mode representing directional texture information, and p0, p1, p2, P0, P1, and P2 are obtained by inter-pixel prediction and intra-frame coding, and there is no Intra prediction mode. prediction mode. And MDDT must have Intraprediction mode, therefore, the present embodiment can adopt MDDT transformation to I, promptly adopts the transformation matrix corresponding to the Intra prediction mode used in step 402 to carry out MDDT transformation to I, and p0, p1, p2, P0, P1 and P2 adopt a transform independent of directional texture information, such as DCT transform.
需要说明的是,在本实施例中,对于Intra prediction mode中的DC模式,由于其不表征方向纹理信息,故不使用MDDT变换,而可以使用DCT变换。It should be noted that, in this embodiment, for the DC mode in the Intra prediction mode, since it does not represent directional texture information, MDDT transformation is not used, but DCT transformation can be used.
本实施例,通过对所需编码的MB进行多层下采样划分,可以充分利用像素间的相关性,从而提高预测精度,改善编码压缩性能;通过对块间预测帧内编码处理后获取的第一预测残进行MDDT,可以去除第一预测残差中的方向纹理信息相关性,提高sub-Block3的编码压缩性能,而采用sub-Block3的块间预测帧内编码处理结果作为参考对sub-Block0、sub-Block1、sub-Block2、Block0、Block1和Block2进行像素间预测帧内编码处理,可以进一步提高编码压缩性能。In this embodiment, by performing multi-layer down-sampling division on the MB to be coded, the correlation between pixels can be fully utilized, thereby improving prediction accuracy and coding compression performance; Performing MDDT on the first prediction residual can remove the directional texture information correlation in the first prediction residual and improve the encoding and compression performance of sub-Block3, and use the inter-block prediction and intra-frame encoding processing results of sub-Block3 as a reference for sub-Block0 , sub-Block1, sub-Block2, Block0, Block1 and Block2 perform inter-pixel prediction and intra-frame coding processing, which can further improve the coding compression performance.
图8为本发明图像编码处理方法实施例五的流程图,如图8所示,本实施例的方法可以包括:FIG. 8 is a flow chart of Embodiment 5 of the image coding processing method of the present invention. As shown in FIG. 8, the method of this embodiment may include:
步骤501、对宏块进行第一下采样划分,获取第一块和复数个第二块,并对所述第一块进行第二下采样划分,获取第一子块和复数个第二子块。Step 501, perform first downsampling division on the macroblock, obtain the first block and a plurality of second blocks, and perform second downsampling division on the first block, obtain the first subblock and the plurality of second subblocks .
步骤502、采用预测模式对所述第一子块进行块间预测帧内编码处理,获取与所述第一子块对应的第一预测残差,并应用所述第一子块的块间预测帧内编码处理结果对所述复数个第二块和所述复数个第二子块进行像素间预测帧内编码处理,获取与所述复数个第二块和所述复数个第二子块分别对应的第二预测残差。Step 502: Perform inter-prediction and intra-frame encoding processing on the first sub-block by using the prediction mode, obtain the first prediction residual corresponding to the first sub-block, and apply the inter-block prediction of the first sub-block The intra-frame encoding processing result performs inter-pixel prediction intra-frame encoding processing on the plurality of second blocks and the plurality of second sub-blocks, and obtains The corresponding second prediction residual.
本实施例的步骤501和步骤502,其实现原理与图6所示的步骤401和步骤402的实现原理类似,此处不再赘述。The implementation principles of step 501 and step 502 in this embodiment are similar to those of step 401 and step 402 shown in FIG. 6 , and will not be repeated here.
步骤503、对所述第一预测残差和所述第二预测残差进行基于所述预测模式的方向性变换。Step 503: Perform directional transformation based on the prediction mode on the first prediction residual and the second prediction residual.
本实施例与图4所示的本发明图像编码处理方法实施例四的区别在于,本实施例可以采用步骤502中使用的预测模式对第一预测残差和第二预测残差均采用MDDT进行变换。The difference between this embodiment and Embodiment 4 of the image coding processing method of the present invention shown in FIG. transform.
举例来说,如图7所示,由于I为采用传统的块间预测帧内编码处理获取第一预测残差,具有表征方向纹理信息的Intra prediction mode,因此,其可以直接应用MDDT,而p0、p1、p2、P0、P1和P2为采用像素间预测帧内编码处理分别获取的第二预测残差,其不存在Intra prediction mode,因此无法直接应用MDDT。但是,在基于下采样划分的空域预测帧内编码处理的框架下,每个下采样块,即sub-Block0、sub-Block 1、sub-Block2、sub-Block3、Block0、Block1和Block2均为整个MB的一个缩影,其纹理方向信息与整个MB的纹理方向信息一致。也就是说,各个下采样块的纹理方向信息相同或相似。因此,p0、p1、p2、P0、P1和P2实际上与I的纹理方向信息相同或相似,因此,与p0、p1、p2、P0、P1和P2分别对应的第二预测残差中也留存有类似的纹理方向信息。因此,p0、p1、p2、P0、P1和P2可以采用I的Intra prediction mode进行MDDT变换。也就是说,对p0、p1、p2、P0、P1和P2进行MDDT时,使用与I的Intra prediction mode对应的变换矩阵。这样,便实现了对MB中的所有下采样块全部使用MDDT变换。For example, as shown in Figure 7, since I is to obtain the first prediction residual by using the traditional inter-block prediction intra-frame coding process, and has an Intra prediction mode representing directional texture information, it can directly apply MDDT, and p0 , p1, p2, P0, P1, and P2 are the second prediction residuals respectively obtained by inter-pixel prediction and intra-frame encoding, which do not have an Intra prediction mode, so MDDT cannot be directly applied. However, under the framework of the spatially predictive intra-frame coding process based on downsampling partition, each downsampled block, namely sub-Block0, sub-Block1, sub-Block2, sub-Block3, Block0, Block1 and Block2 is the entire A microcosm of an MB whose texture direction information is consistent with that of the entire MB. That is to say, the texture direction information of each downsampling block is the same or similar. Therefore, p0, p1, p2, P0, P1, and P2 are actually the same as or similar to the texture direction information of I, and therefore, the second prediction residuals corresponding to p0, p1, p2, P0, P1, and P2 respectively are also retained There is similar texture direction information. Therefore, p0, p1, p2, P0, P1 and P2 can use the Intra prediction mode of I for MDDT transformation. That is, when performing MDDT on p0, p1, p2, P0, P1, and P2, the transformation matrix corresponding to the Intra prediction mode of I is used. In this way, the MDDT transformation is implemented for all down-sampled blocks in the MB.
需要说明的是,在本实施例中,对于Intra prediction mode中的DC模式,由于其不表征方向纹理信息,故不使用MDDT变换,而可以使用DCT变换。It should be noted that, in this embodiment, for the DC mode in the Intra prediction mode, since it does not represent directional texture information, MDDT transformation is not used, but DCT transformation can be used.
本实施例,通过对所需编码的MB进行多层下采样划分,可以充分利用像素间的相关性,从而提高预测精度,改善编码压缩性能;通过对块间预测帧内编码处理后获取的第一预测残差以及对像素间预测帧内编码处理后获取的第二预测残差均进行MDDT,可以去除第一预测残差和第二预测残差中的方向纹理信息相关性,进一步提高整个MB的编码压缩性能。In this embodiment, by performing multi-layer down-sampling division on the MB to be coded, the correlation between pixels can be fully utilized, thereby improving prediction accuracy and coding compression performance; Both the first prediction residual and the second prediction residual obtained after inter-pixel prediction and intra-frame encoding are subjected to MDDT, which can remove the correlation of directional texture information in the first prediction residual and the second prediction residual, and further improve the overall MB encoding compression performance.
图9本发明图像编码处理方法实施例六的流程图,如图9所示,本实施例的方法可以包括:FIG. 9 is a flow chart of Embodiment 6 of the image coding processing method of the present invention. As shown in FIG. 9, the method of this embodiment may include:
步骤601、对所述宏块进行下采样划分,获取第一块和复数个第二块,并对所述第一块进行空域划分处理,获取复数个第一子块。Step 601: Perform down-sampling division on the macroblock to obtain a first block and a plurality of second blocks, and perform spatial division processing on the first block to obtain a plurality of first sub-blocks.
本实施例与图8所示的步骤501的区别在于,本实施例是将8×8的第一块Block3在空域上划分为4个4×4的第一子块sub-Block3,对应于预测模式的表现形式即为4个I子块。图10为本发明图像编码处理方法实施例六进行帧内预测的结构示意图,如图10所示,在本实施例中,4个4×4的sub-Block3均为需要采用块间预测编码的I子块,其余3个第二块Block0、Block1和Block2均为需要采用像素间预测编码的P块,分别对应P0、P1和P2。The difference between this embodiment and step 501 shown in FIG. 8 is that this embodiment divides the 8×8 first block Block3 into four 4×4 first sub-blocks sub-Block3 in the spatial domain, corresponding to the predicted The representation form of the mode is 4 I sub-blocks. Fig. 10 is a schematic structural diagram of intra-frame prediction in Embodiment 6 of the image coding processing method of the present invention. As shown in Fig. 10 , in this embodiment, all four 4×4 sub-Block3s need to adopt inter-block predictive coding The I sub-block, and the remaining three second blocks Block0, Block1 and Block2 are all P blocks that need to be coded by inter-pixel prediction, corresponding to P0, P1 and P2 respectively.
步骤602、采用预测模式对所述复数个第一子块分别进行块间预测帧内编码处理,获取与所述复数个第一子块分别对应的第一预测残差,并应用所述复数个第一子块的块间预测帧内编码处理结果对所述复数个第二块进行像素间预测帧内编码处理,获取与所述复数个第二块分别对应的第二预测残差。Step 602: Perform inter-block prediction and intra-frame coding processing on the plurality of first sub-blocks respectively in the prediction mode, obtain first prediction residuals respectively corresponding to the plurality of first sub-blocks, and apply the plurality of first sub-blocks Inter-prediction and intra-frame coding processing results of the first sub-block are performed on the plurality of second blocks with inter-pixel prediction and intra-frame coding processing, and second prediction residuals respectively corresponding to the plurality of second blocks are obtained.
在本实施例中,图像编码处理装置可以采用Intra prediction mode分别对4个4×4的sub-Block3进行块间预测帧内编码处理,分别得到该4个sub-Block3的块间预测帧内编码处理结果,从而获取与4个sub-Block3分别对应的第一预测残差,并且,该图像编码处理装置可以将4个块间预测帧内编码处理结果视为一个整体作为参考,对其余3个8×8的Block,即Block0、Block1、Blcok2进行像素间预测帧内编码处理,从而获取与Block0、Block1、Blcok2分别对应的第二预测残差。In this embodiment, the image coding processing device can use the Intra prediction mode to perform inter-block prediction intra-frame coding processing on four 4×4 sub-Block3s respectively, and obtain the inter-block prediction intra-frame coding of the four sub-Block3s respectively. Processing the results, thereby obtaining the first prediction residuals corresponding to the four sub-Block3 respectively, and the image coding processing device can regard the four inter-block prediction intra-frame coding processing results as a whole as a reference, and for the remaining three The 8×8 Blocks, that is, Block0, Block1, and Block2 are subjected to inter-pixel prediction and intra-frame coding processing, so as to obtain second prediction residuals corresponding to Block0, Block1, and Block2 respectively.
步骤603、对所述第一预测残差进行基于所述预测模式的方向性变换,对所述第二预测残差进行与方向性无关的变换。Step 603: Perform directional transformation based on the prediction mode on the first prediction residual, and perform directionality-independent transformation on the second prediction residual.
在本实施例中,由于4个4×4的sub-Block3,即4个I子块组合在一起相当于是整个MB的一个缩影,而单个4×4的sub-Block3,即单个I子块并不是整个MB的一个缩影。因此,在这种情况下,P0、P1和P2无法利用I子块的Intra prediction mode进行MDDT变换。因此,本实施例对I子块采用MDDT变换,即采用与步骤402中所使用的Intra prediction mode对应的变换矩阵对I子块进行MDDT变换,而对P0、P1和P2采用与方向纹理信息无关的变换,例如DCT变换。In this embodiment, since four 4×4 sub-Block3, that is, the combination of four I sub-blocks is equivalent to a microcosm of the entire MB, and a single 4×4 sub-Block3, that is, a single I sub-block and Not a microcosm of the whole MB. Therefore, in this case, P0, P1, and P2 cannot utilize the Intra prediction mode of the I sub-block for MDDT transformation. Therefore, in this embodiment, the MDDT transformation is adopted for the I sub-block, that is, the MDDT transformation is performed on the I sub-block by using the transformation matrix corresponding to the Intra prediction mode used in step 402, and the P0, P1, and P2 adopt an transformation, such as DCT transformation.
需要说明的是,在本实施例中,对于Intra prediction mode中的DC模式,由于其不表征方向纹理信息,故不使用MDDT变换,而可以使用DCT变换。It should be noted that, in this embodiment, for the DC mode in the Intra prediction mode, since it does not represent directional texture information, MDDT transformation is not used, but DCT transformation can be used.
本实施例,通过对所需编码的MB进行多层下采样划分,可以充分利用像素间的相关性,从而提高预测精度,改善编码压缩性能;通过对块间预测帧内编码处理后获取的第一预测残进行MDDT,可以去除第一预测残差中的方向纹理信息相关性,提高Block3的编码压缩性能,而采用Block3的块间预测帧内编码处理结果作为参考对Block0、Block1和Block2进行像素间预测帧内编码处理,可以进一步提高编码压缩性能。In this embodiment, by performing multi-layer down-sampling division on the MB to be coded, the correlation between pixels can be fully utilized, thereby improving prediction accuracy and coding compression performance; Performing MDDT on the first prediction residual can remove the directional texture information correlation in the first prediction residual and improve the coding compression performance of Block3, and use the inter-block prediction and intra-frame coding processing results of Block3 as a reference to perform pixel coding on Block0, Block1 and Block2 Inter-prediction and intra-frame coding processing can further improve coding and compression performance.
图11为本发明图像编码处理方法实施例七的流程图,如图11所示,本实施例的方法可以包括:FIG. 11 is a flow chart of Embodiment 7 of the image coding processing method of the present invention. As shown in FIG. 11, the method of this embodiment may include:
步骤701、对所述宏块进行下采样划分,获取第一块和复数个第二块,并对所述第一块进行空域划分处理,获取复数个第一子块。Step 701: Perform down-sampling division on the macroblock to obtain a first block and a plurality of second blocks, and perform spatial division processing on the first block to obtain a plurality of first sub-blocks.
步骤702、采用预测模式对所述复数个第一子块分别进行块间预测帧内编码处理,获取与所述复数个第一子块分别对应的第一预测残差,并应用所述复数个第一子块的块间预测帧内编码处理结果对所述复数个第二块进行像素间预测帧内编码处理,获取与所述复数个第二块分别对应的第二预测残差。Step 702: Perform inter-prediction and intra-frame encoding processing on the plurality of first sub-blocks by using the prediction mode, obtain first prediction residuals respectively corresponding to the plurality of first sub-blocks, and apply the plurality of first sub-blocks Inter-prediction and intra-frame coding processing results of the first sub-block are performed on the plurality of second blocks with inter-pixel prediction and intra-frame coding processing, and second prediction residuals respectively corresponding to the plurality of second blocks are obtained.
本实施例的步骤701和步骤702,其实现原理与图9所示的步骤601和步骤602的实现原理类似,此处不再赘述。The implementation principles of step 701 and step 702 in this embodiment are similar to the implementation principles of step 601 and step 602 shown in FIG. 9 , and will not be repeated here.
步骤703、对所述第一预测残差和所述第二预测残差进行基于所述预测模式的方向性变换。Step 703: Perform directional transformation based on the prediction mode on the first prediction residual and the second prediction residual.
本实施例与图9所示的本发明图像编码处理方法实施例六的区别在于,本实施例可以采用步骤702中使用的预测模式对第一预测残差和第二预测残差均采用MDDT进行变换。The difference between this embodiment and Embodiment 6 of the image coding processing method of the present invention shown in FIG. transform.
具体来说,在本实施例中,4个I子块可以被认为具有相同的Intraprediction mode,那么,每个I子块的方向纹理信息仍然表征了整个MB的方向纹理信息,这些方向纹理信息可以进一步被P0、P1和P2所利用,从而使得P0、P1和P2均可以使用MDDT,从而进一步去除P0、P1和P2块的第二预测残差中留存的方向纹理信息相关性,从而提升编码压缩性能。Specifically, in this embodiment, the four I sub-blocks can be considered to have the same Intraprediction mode, then the directional texture information of each I sub-block still represents the directional texture information of the entire MB, and these directional texture information can be It is further utilized by P0, P1, and P2, so that P0, P1, and P2 can all use MDDT, thereby further removing the correlation of directional texture information retained in the second prediction residual of P0, P1, and P2 blocks, thereby improving coding compression performance.
需要说明的是,在本实施例中,对于Intra prediction mode中的DC模式,由于其不表征方向纹理信息,故不使用MDDT变换,而可以使用DCT变换。It should be noted that, in this embodiment, for the DC mode in the Intra prediction mode, since it does not represent directional texture information, MDDT transformation is not used, but DCT transformation can be used.
本实施例,通过对所需编码的MB进行多层下采样划分,可以充分利用像素间的相关性,从而提高预测精度,改善编码压缩性能;通过对块间预测帧内编码处理后获取的第一预测残差以及对像素间预测帧内编码处理后获取的第二预测残差均进行MDDT,可以去除第一预测残差和第二预测残差中的方向纹理信息相关性,进一步提高整个MB的编码压缩性能。In this embodiment, by performing multi-layer down-sampling division on the MB to be coded, the correlation between pixels can be fully utilized, thereby improving prediction accuracy and coding compression performance; Both the first prediction residual and the second prediction residual obtained after inter-pixel prediction and intra-frame encoding are subjected to MDDT, which can remove the correlation of directional texture information in the first prediction residual and the second prediction residual, and further improve the overall MB encoding compression performance.
图12为本发明解码处理方法实施例一的流程图,如图12所示,本实施例的方法可以包括:FIG. 12 is a flowchart of Embodiment 1 of the decoding processing method of the present invention. As shown in FIG. 12, the method of this embodiment may include:
步骤104、对与复数个块分别对应的预测残差系数中至少一个块对应的预测残差系数进行基于预测模式的方向性反变换,获取预测残差。Step 104: Perform directional inverse transformation based on the prediction mode on the prediction residual coefficient corresponding to at least one block among the prediction residual coefficients corresponding to the plurality of blocks respectively, to obtain the prediction residual.
步骤105、对所述预测残差进行空域预测帧内解码处理,获取所述复数个块,其中所述空域预测帧内解码处理至少包括采用所述预测模式进行块间预测帧内解码。Step 105: Perform spatial prediction intra-frame decoding processing on the prediction residual to obtain the plurality of blocks, wherein the spatial prediction intra-frame decoding processing at least includes performing inter-block prediction intra-frame decoding using the prediction mode.
步骤106、对所述复数个块进行上采样合成,获取解码后的宏块。Step 106: Perform upsampling and synthesis on the plurality of blocks to obtain decoded macroblocks.
本实施例的方法是与图1所示图像编码处理方法实施例一相对应的解码处理过程,其只是在执行过程上采用与编码处理过程相反的过程进行解码处理,其实现原理与图1所示实施例的实现原理和所达到的效果类似,此处不再赘述。The method of this embodiment is a decoding processing process corresponding to Embodiment 1 of the image encoding processing method shown in FIG. The implementation principles and achieved effects of the illustrated embodiments are similar, and will not be repeated here.
图13为本发明解码处理方法实施例二的流程图,如图13所示,本实施例的方法可以包括:FIG. 13 is a flowchart of Embodiment 2 of the decoding processing method of the present invention. As shown in FIG. 13, the method of this embodiment may include:
步骤204、对与所述复数个块中第一块对应的第一预测残差系数进行基于预测模式的方向性反变换,获取第一预测残差,对与所述复数个块中其余块对应的第二预测残差系数进行与方向性无关的反变换,获取第二预测残差。Step 204: Perform directional inverse transformation based on the prediction mode on the first prediction residual coefficient corresponding to the first block in the plurality of blocks to obtain the first prediction residual, which corresponds to the remaining blocks in the plurality of blocks The second prediction residual coefficient is subjected to inverse transformation independent of directionality to obtain the second prediction residual.
步骤205、采用所述预测模式对所述第一预测残差进行块间预测帧内解码处理,获取所述第一块的块间预测帧内解码处理结果,并应用所述第一块的块间预测帧内解码处理结果对所述第二预测残差进行像素间预测帧内解码处理,获取所述复数个块中其余块的像素间预测帧内解码处理结果。Step 205: Perform inter-block prediction intra-frame decoding processing on the first prediction residual by using the prediction mode, obtain the inter-block prediction intra-frame decoding processing result of the first block, and apply the block of the first block The inter-prediction intra-frame decoding processing result performs inter-pixel prediction intra-frame decoding processing on the second prediction residual, and obtains the inter-pixel prediction intra-frame decoding processing results of the remaining blocks in the plurality of blocks.
步骤206、对所述块间预测帧内解码处理结果和所述像素间预测帧内解码处理结果进行上采样合成,获取解码后的宏块。Step 206: Perform upsampling and synthesis on the inter-block prediction intra-frame decoding processing result and the inter-pixel prediction intra-frame decoding processing result to obtain a decoded macroblock.
本实施例的方法是与图2所示图像编码处理方法实施例二相对应的解码处理过程,其只是在执行过程上采用与编码处理过程相反的过程进行解码处理,其实现原理与图2所示实施例的实现原理和所达到的效果类似,此处不再赘述。The method of this embodiment is a decoding processing process corresponding to Embodiment 2 of the image encoding processing method shown in FIG. The implementation principles and achieved effects of the illustrated embodiments are similar, and will not be repeated here.
图14为本发明解码处理方法实施例三的流程图,如图14所示,本实施例的方法可以包括:FIG. 14 is a flowchart of Embodiment 3 of the decoding processing method of the present invention. As shown in FIG. 14, the method of this embodiment may include:
步骤304、对与所述复数个块中第一块对应的第一预测残差系数以及与所述复数个块中其余块对应的第二预测残差系数进行基于相同预测模式的方向性反变换,分别获取第一预测残差和第二预测残差。Step 304: Perform directional inverse transformation based on the same prediction mode on the first prediction residual coefficient corresponding to the first block in the plurality of blocks and the second prediction residual coefficient corresponding to the remaining blocks in the plurality of blocks , to obtain the first prediction residual and the second prediction residual respectively.
步骤305、采用所述预测模式对所述第一预测残差进行块间预测帧内解码处理,获取所述第一块的块间预测帧内解码处理结果,并应用所述第一块的块间预测帧内解码处理结果对所述第二预测残差进行像素间预测帧内解码处理,获取所述复数个块中其余块的像素间预测帧内解码处理结果。Step 305: Perform inter-block prediction intra-frame decoding processing on the first prediction residual by using the prediction mode, obtain the inter-block prediction intra-frame decoding processing result of the first block, and apply the block of the first block The inter-prediction intra-frame decoding processing result performs inter-pixel prediction intra-frame decoding processing on the second prediction residual, and obtains the inter-pixel prediction intra-frame decoding processing results of the remaining blocks in the plurality of blocks.
步骤306、对所述块间预测帧内解码处理结果和所述像素间预测帧内解码处理结果进行上采样合成,获取解码后的宏块。Step 306: Perform upsampling and synthesis on the inter-block prediction intra-frame decoding processing result and the inter-pixel prediction intra-frame decoding processing result to obtain a decoded macroblock.
本实施例的方法是与图5所示图像编码处理方法实施例三相对应的解码处理过程,其只是在执行过程上采用与编码处理过程相反的过程进行解码处理,其实现原理与图5所示实施例的实现原理和所达到的效果类似,此处不再赘述。The method of this embodiment is a decoding processing process corresponding to Embodiment 3 of the image encoding processing method shown in FIG. The implementation principles and achieved effects of the illustrated embodiments are similar, and will not be repeated here.
图15为本发明解码处理方法实施例四的流程图,如图15所示,本实施例的方法可以包括:FIG. 15 is a flow chart of Embodiment 4 of the decoding processing method of the present invention. As shown in FIG. 15, the method of this embodiment may include:
步骤404、对与所述复数个块中第一子块对应的第一预测残差系数进行基于预测模式的方向性反变换,获取第一预测残差,并对与所述复数个块中复数个第二块和复数个第二子块分别对应的第二预测残差系数进行与方向性无关的反变换,获取第二预测残差。Step 404: Perform directional inverse transformation based on the prediction mode on the first prediction residual coefficient corresponding to the first sub-block in the plurality of blocks, obtain the first prediction residual, and compare the coefficients corresponding to the first sub-block in the plurality of blocks The second prediction residual coefficients respectively corresponding to the second block and the plurality of second sub-blocks are subjected to directionality-independent inverse transformation to obtain the second prediction residual.
步骤405、采用所述预测模式对所述第一预测残差进行块间预测帧内解码处理,获取所述第一子块的块间预测帧内解码处理结果,并应用所述第一子块的块间预测帧内解码处理结果对所述第二预测残差进行像素间预测帧内解码处理,获取所述复数个块中复数个第二块和复数个第二子块的像素间预测帧内解码处理结果。Step 405: Perform inter-block prediction intra-frame decoding processing on the first prediction residual by using the prediction mode, obtain the inter-block prediction intra-frame decoding processing result of the first sub-block, and apply the first sub-block Perform inter-pixel prediction intra-frame decoding processing on the second prediction residual, and obtain the inter-pixel prediction frames of the plurality of second blocks and the plurality of second sub-blocks in the plurality of blocks Inner decoding processing result.
步骤406、对所述第一子块的块间预测帧内解码处理结果以及所述复数个第二子块的像素间预测帧内解码处理结果进行第二上采样合成获取所述第一块,并对所述第一块以及所述复数个第二块的像素间预测帧内解码处理结果进行第一上采样合成,获取解码后的宏块。Step 406: Perform second upsampling synthesis on the inter-block prediction intra-frame decoding processing results of the first sub-block and the inter-pixel prediction intra-frame decoding processing results of the plurality of second sub-blocks to obtain the first block, And performing first upsampling synthesis on the inter-pixel prediction intra-frame decoding processing results of the first block and the plurality of second blocks to obtain decoded macroblocks.
本实施例的方法是与图6所示图像编码处理方法实施例四相对应的解码处理过程,其只是在执行过程上采用与编码处理过程相反的过程进行解码处理,其实现原理与图6所示实施例的实现原理和所达到的效果类似,此处不再赘述。The method of this embodiment is a decoding processing process corresponding to Embodiment 4 of the image encoding processing method shown in FIG. The implementation principles and achieved effects of the illustrated embodiments are similar, and will not be repeated here.
图16为本发明解码处理方法实施例五的流程图,如图16所示,本实施例的方法可以包括:FIG. 16 is a flowchart of Embodiment 5 of the decoding processing method of the present invention. As shown in FIG. 16, the method of this embodiment may include:
步骤504、对与所述复数个块中第一子块对应的第一预测残差系数以及与所述复数个块中复数个第二块和复数个第二子块对应的第二预测残差系数进行基于相同预测模式的方向性反变换,分别获取第一预测残差和第二预测残差。Step 504, for the first prediction residual coefficient corresponding to the first sub-block in the plurality of blocks and the second prediction residual corresponding to the plurality of second blocks and the plurality of second sub-blocks in the plurality of blocks The coefficients are subjected to directional inverse transformation based on the same prediction mode to obtain the first prediction residual and the second prediction residual respectively.
步骤505、采用所述预测模式对所述第一预测残差进行块间预测帧内解码处理,获取所述第一子块的块间预测帧内解码处理结果,并应用所述第一子块的块间预测帧内解码处理结果对所述第二预测残差进行像素间预测帧内解码处理,获取所述复数个块中复数个第二块和复数个第二子块的像素间预测帧内解码处理结果。Step 505: Perform inter-block prediction intra-frame decoding processing on the first prediction residual by using the prediction mode, obtain the inter-block prediction intra-frame decoding processing result of the first sub-block, and apply the first sub-block Perform inter-pixel prediction intra-frame decoding processing on the second prediction residual, and obtain the inter-pixel prediction frames of the plurality of second blocks and the plurality of second sub-blocks in the plurality of blocks Inner decoding processing result.
步骤506、对所述第一子块的块间预测帧内解码处理结果以及所述复数个第二子块的像素间预测帧内解码处理结果进行第二上采样合成获取所述第一块,并对所述第一块以及所述复数个第二块的像素间预测帧内解码处理结果进行第一上采样合成,获取解码后的宏块。Step 506: Perform second upsampling synthesis on the inter-block prediction intra-frame decoding processing results of the first sub-block and the inter-pixel prediction intra-frame decoding processing results of the plurality of second sub-blocks to obtain the first block, And performing first upsampling synthesis on the inter-pixel prediction intra-frame decoding processing results of the first block and the plurality of second blocks to obtain decoded macroblocks.
本实施例的方法是与图8所示图像编码处理方法实施例五相对应的解码处理过程,其只是在执行过程上采用与编码处理过程相反的过程进行解码处理,其实现原理与图8所示实施例的实现原理和所达到的效果类似,此处不再赘述。The method of this embodiment is a decoding processing process corresponding to Embodiment 5 of the image encoding processing method shown in FIG. The implementation principles and achieved effects of the illustrated embodiments are similar, and will not be repeated here.
图17为本发明解码处理方法实施例六的流程图,如图17所示,本实施例的方法可以包括:Fig. 17 is a flow chart of Embodiment 6 of the decoding processing method of the present invention. As shown in Fig. 17, the method of this embodiment may include:
步骤604、对与所述复数个块中复数个第一子块对应的第一预测残差系数分别进行基于预测模式的方向性反变换,获取第一预测残差,并对与所述复数个块中复数个第二块对应的第二预测残差系数进行与方向性无关的反变换,获取第二预测残差。Step 604: Perform directional inverse transformation based on the prediction mode on the first prediction residual coefficients corresponding to the plurality of first sub-blocks in the plurality of blocks, obtain the first prediction residual, and compare the coefficients corresponding to the plurality of first sub-blocks The second prediction residual coefficients corresponding to the plurality of second blocks in the block are subjected to directionality-independent inverse transformation to obtain the second prediction residual.
步骤605、采用所述预测模式对所述第一预测残差进行块间预测帧内解码处理,获取所述复数个第一子块的块间预测帧内解码处理结果,并应用所述复数个第一子块的块间预测帧内解码处理结果对所述第二预测残差进行像素间预测帧内解码处理,获取所述复数个块中复数个第二块的像素间预测帧内解码处理结果。Step 605: Use the prediction mode to perform inter-block prediction intra-frame decoding processing on the first prediction residual, obtain the inter-block prediction intra-frame decoding processing results of the plurality of first sub-blocks, and apply the plurality of Inter-prediction intra-frame decoding processing results of the first sub-block Perform inter-pixel prediction intra-frame decoding processing on the second prediction residual, and obtain inter-pixel prediction intra-frame decoding processing of a plurality of second blocks among the plurality of blocks result.
步骤606、对所述复数个第一子块的块间预测帧内解码处理结果进行空域合成处理,获取所述第一块,并对所述第一块以及所述复数个第二块的像素间预测帧内解码处理结果进行上采样合成,获取解码后的宏块。Step 606: Perform spatial synthesis processing on the inter-predicted intra-frame decoding processing results of the plurality of first sub-blocks, acquire the first block, and perform pixel synthesis on the first block and the plurality of second blocks Inter-prediction and intra-frame decoding processing results are up-sampled and synthesized to obtain decoded macroblocks.
本实施例的方法是与图9所示图像编码处理方法实施例六相对应的解码处理过程,其只是在执行过程上采用与编码处理过程相反的过程进行解码处理,其实现原理与图9所示实施例的实现原理和所达到的效果类似,此处不再赘述。The method of this embodiment is a decoding processing process corresponding to Embodiment 6 of the image encoding processing method shown in FIG. The implementation principles and achieved effects of the illustrated embodiments are similar, and will not be repeated here.
图18为本发明解码处理方法实施例七的流程图,如图18所示,本实施例的方法可以包括:FIG. 18 is a flowchart of Embodiment 7 of the decoding processing method of the present invention. As shown in FIG. 18, the method of this embodiment may include:
步骤704、对与所述复数个块中复数个第一子块对应的第一预测残差系数和与所述复数个块中复数个第二块对应的第二预测残差系数进行基于相同预测模式的方向性反变换,分别获取第一预测残差和第二预测残差。Step 704: Perform same-based prediction on the first prediction residual coefficients corresponding to the plurality of first sub-blocks in the plurality of blocks and the second prediction residual coefficients corresponding to the plurality of second blocks in the plurality of blocks The directionality inverse transformation of the mode is used to obtain the first prediction residual and the second prediction residual respectively.
步骤705、采用所述预测模式对所述第一预测残差进行块间预测帧内解码处理,获取所述复数个第一子块的块间预测帧内解码处理结果,并应用所述复数第一子块的块间预测帧内解码处理结果对所述第二预测残差进行像素间预测帧内解码处理,获取所述复数个块中复数个第二块的像素间预测帧内解码处理结果。Step 705: Perform inter-block prediction intra-frame decoding processing on the first prediction residual by using the prediction mode, obtain the inter-block prediction intra-frame decoding processing results of the plurality of first sub-blocks, and apply the complex number of first sub-blocks Inter-prediction intra-frame decoding processing results of a sub-block are performed on the second prediction residual to perform inter-pixel prediction intra-frame decoding processing, and obtain inter-pixel prediction intra-frame decoding processing results of a plurality of second blocks among the plurality of blocks .
步骤706、对所述复数个第一子块的块间预测帧内解码处理结果进行空域合成处理,获取所述第一块,并对所述第一块以及所述复数个第二块的像素间预测帧内解码处理结果进行上采样合成,获取解码后的宏块。Step 706: Perform spatial synthesis processing on the inter-predicted intra-frame decoding processing results of the plurality of first sub-blocks, acquire the first block, and perform pixel synthesis on the first block and the plurality of second blocks Inter-prediction and intra-frame decoding processing results are up-sampled and synthesized to obtain decoded macroblocks.
本实施例的方法是与图11所示图像编码处理方法实施例七相对应的解码处理过程,其只是在执行过程上采用与编码处理过程相反的过程进行解码处理,其实现原理与图11所示实施例的实现原理和所达到的效果类似,此处不再赘述。The method of this embodiment is a decoding processing process corresponding to Embodiment 7 of the image encoding processing method shown in FIG. The implementation principles and achieved effects of the illustrated embodiments are similar, and will not be repeated here.
图19为本发明图像编码处理装置实施例一的结构示意图,如图19所示,本实施例的装置可以包括:编码划分模块11、编码预测模块12以及编码变换模块13,其中,编码划分模块11用于对所需编码的宏块进行下采样划分,获取复数个块;编码预测模块12用于对所述复数个块进行空域预测帧内编码,获取与所述复数个块分别对应的预测残差,其中所述空域预测帧内编码至少包括采用预测模式进行块间预测帧内编码;编码变换模块13用于对所述预测残差中至少一个预测残差进行基于所述预测模式的方向性变换。Fig. 19 is a schematic structural diagram of Embodiment 1 of the image coding processing device of the present invention. As shown in Fig. 19 , the device of this embodiment may include: a coding division module 11, a coding prediction module 12, and a coding transformation module 13, wherein the coding division module 11 is used to perform down-sampling division on the macroblocks to be coded to obtain a plurality of blocks; the coding prediction module 12 is used to perform spatial prediction intra-frame coding on the plurality of blocks, and obtain predictions corresponding to the plurality of blocks respectively Residuals, wherein the spatial domain prediction intra-frame encoding at least includes performing inter-block prediction intra-frame encoding using a prediction mode; the coding transformation module 13 is used to perform a direction based on the prediction mode on at least one of the prediction residuals gender transformation.
本实施例的装置可以用于执行图1所示的方法实施例一的技术方案,其实现原理和所达到的技术效果类似,此处不再赘述。The device of this embodiment can be used to execute the technical solution of the method embodiment 1 shown in FIG. 1 , and its implementation principle is similar to the achieved technical effect, and will not be repeated here.
图20为本发明图像编码处理装置实施例二的结构示意图,如图20所示,本实施例在图19所示的图像编码处理装置实施例一的基础上,进一步地,编码预测模块12包括:第一编码预测单元121和第二编码预测单元122,其中,第一编码预测单元121用于采用预测模式对所述复数个块中的第一块进行块间预测帧内编码处理,获取与所述第一块对应的第一预测残差;第二编码预测单元122用于应用所述第一块的块间预测帧内编码处理结果对所述复数个块中的其余块进行像素间预测帧内编码处理,获取与所述复数个块中的其余块分别对应的第二预测残差;编码变换模块13包括:第一编码变换单元131和第二编码变换单元132,其中,第一编码变换单元131用于对所述第一预测残差进行基于所述预测模式的方向性变换;第二编码变换单元132用于对所述第二预测残差进行与方向性无关的变换。Fig. 20 is a schematic structural diagram of Embodiment 2 of the image coding processing device of the present invention. As shown in Fig. 20 , this embodiment is based on the first embodiment of the image coding processing device shown in Fig. 19 , further, the coding prediction module 12 includes : the first coding prediction unit 121 and the second coding prediction unit 122, wherein the first coding prediction unit 121 is used to perform inter-block prediction and intra-frame coding processing on the first block in the plurality of blocks in a prediction mode, and obtain the same The first prediction residual corresponding to the first block; the second coding prediction unit 122 is used to apply the inter-block prediction intra-frame coding processing result of the first block to perform inter-pixel prediction on the remaining blocks in the plurality of blocks Intra-frame coding processing, obtaining second prediction residuals respectively corresponding to the remaining blocks in the plurality of blocks; the coding transformation module 13 includes: a first coding transformation unit 131 and a second coding transformation unit 132, wherein the first coding The transformation unit 131 is configured to perform directional transformation based on the prediction mode on the first prediction residual; the second coding transformation unit 132 is configured to perform directionality-independent transformation on the second prediction residual.
本实施例的装置可以用于执行图2所示的方法实施例二的技术方案,其实现原理和所达到的技术效果类似,此处不再赘述。The device of this embodiment can be used to implement the technical solution of the second method embodiment shown in FIG. 2 , and its implementation principle is similar to the achieved technical effect, so it will not be repeated here.
图21为本发明图像编码处理装置实施例三的结构示意图,如图21所示,本实施例在图19所示的图像编码处理装置实施例一的基础上,进一步地,编码预测模块12包括:第三编码预测单元123和第四编码预测单元124,其中,第三编码预测单元123用于采用预测模式对所述复数个块中的第一块进行块间预测帧内编码处理,获取与所述第一块对应的第一预测残差;第四编码预测单元124用于应用所述第一块的块间预测帧内编码处理结果对所述复数个块中的其余块进行像素间预测帧内编码处理,获取与所述复数个块中的其余块分别对应的第二预测残差;编码变换模块13具体用于对所述第一预测残差和第二预测残差进行基于所述预测模式的方向性变换。Fig. 21 is a schematic structural diagram of the third embodiment of the image coding processing device of the present invention. As shown in Fig. 21, this embodiment is based on the first embodiment of the image coding processing device shown in Fig. 19, further, the coding prediction module 12 includes : the third coding prediction unit 123 and the fourth coding prediction unit 124, wherein the third coding prediction unit 123 is configured to perform inter-block prediction and intra-frame coding processing on the first block in the plurality of blocks in a prediction mode, and obtain the same The first prediction residual corresponding to the first block; the fourth coding prediction unit 124 is used to apply the inter-block prediction intra-frame coding processing result of the first block to perform inter-pixel prediction on the remaining blocks in the plurality of blocks Intra-frame encoding processing, obtaining second prediction residuals respectively corresponding to the remaining blocks in the plurality of blocks; the encoding transformation module 13 is specifically configured to perform the first prediction residual and the second prediction residual based on the Directional transformation of the prediction mode.
本实施例的装置可以用于执行图5所示的方法实施例三的技术方案,其实现原理和所达到的技术效果类似,此处不再赘述。The device of this embodiment can be used to implement the technical solution of the third embodiment of the method shown in FIG. 5 , and its implementation principle is similar to the achieved technical effect, and will not be repeated here.
图22为本发明图像编码处理装置实施例四的结构示意图,如图22所示,本实施例在图19所示的图像编码处理装置实施例一的基础上,进一步地,编码划分模块11包括:第一编码采样单元111和第二编码采样单元112,其中,第一编码采样单元111用于对所述宏块进行第一下采样划分,获取第一块和复数个第二块;第二编码采样单元112用于对所述第一块进行第二下采样划分,获取第一子块和复数个第二子块;编码预测模块12包括:第五编码预测单元125和第六编码预测单元126,其中第五编码预测单元125用于采用预测模式对所述第一子块进行块间预测帧内编码处理,获取与所述第一子块对应的第一预测残差;第六编码预测单元126用于并应用所述第一子块的块间预测帧内编码处理结果对所述复数个第二块和所述复数个第二子块进行像素间预测帧内编码处理,获取与所述复数个第二块和所述复数个第二子块分别对应的第二预测残差;编码变换模块13包括:第三编码变换单元133和第四编码变换单元134,其中,第三编码变换单元133用于对所述第一预测残差进行基于所述预测模式的方向性变换;或者对所述第一预测残差和所述第二预测残差进行基于所述预测模式的方向性变换;第四编码变换单元134用于对所述第二预测残差进行与方向性无关的变换。FIG. 22 is a schematic structural diagram of Embodiment 4 of the image encoding processing device of the present invention. As shown in FIG. 22 , this embodiment is based on Embodiment 1 of the image encoding processing device shown in FIG. 19 , further, the encoding division module 11 includes : a first coding sampling unit 111 and a second coding sampling unit 112, wherein the first coding sampling unit 111 is used for performing first down-sampling division on the macroblock to obtain the first block and a plurality of second blocks; the second The encoding sampling unit 112 is used to perform second down-sampling division on the first block to obtain the first sub-block and a plurality of second sub-blocks; the encoding prediction module 12 includes: a fifth encoding prediction unit 125 and a sixth encoding prediction unit 126, wherein the fifth coding prediction unit 125 is configured to perform inter-block prediction and intra-frame coding processing on the first sub-block in a prediction mode, and obtain a first prediction residual corresponding to the first sub-block; the sixth coding prediction The unit 126 is configured to apply the inter-block prediction intra-frame coding processing result of the first sub-block to perform inter-pixel prediction intra-frame coding processing on the plurality of second blocks and the plurality of second sub-blocks, and obtain the same The second prediction residuals respectively corresponding to the plurality of second blocks and the plurality of second sub-blocks; the coding transformation module 13 includes: a third coding transformation unit 133 and a fourth coding transformation unit 134, wherein the third coding transformation The unit 133 is configured to perform directional transformation based on the prediction mode on the first prediction residual; or perform directional transformation based on the prediction mode on the first prediction residual and the second prediction residual ; The fourth coding transformation unit 134 is configured to perform directionality-independent transformation on the second prediction residual.
本实施例的装置可以用于执行图6所示的方法实施例四或者图8所示的方法实施例五的技术方案,其实现原理和所达到的技术效果类似,此处不再赘述。The device of this embodiment can be used to implement the technical solution of the fourth method embodiment shown in FIG. 6 or the fifth method embodiment shown in FIG. 8 , and its implementation principle is similar to the achieved technical effect, so it will not be repeated here.
图23为本发明图像编码处理装置实施例五的结构示意图,如图23所示,本实施例在图19所示的图像编码处理装置实施例一的基础上,进一步地,编码划分模块11包括:第三编码采样单元113和第四编码采样单元114,其中,第三编码采样单元113用于对所述宏块进行下采样划分,获取第一块和复数个第二块;第四编码采样单元114用于对所述第一块进行空域划分处理,获取复数个第一子块;编码预测模块12包括:第七编码预测单元127和第八编码预测单元128,其中,第七编码预测单元127用于采用预测模式对所述复数个第一子块分别进行块间预测帧内编码处理,获取与所述复数个第一子块分别对应的第一预测残差;第八编码预测单元128用于应用所述复数个第一子块的块间预测帧内编码处理结果对所述复数个第二块进行像素间预测帧内编码处理,获取与所述复数个第二块分别对应的第二预测残差;编码变换模块13具体用于对所述第一预测残差进行基于所述预测模式的方向性变换,对所述第二预测残差进行与方向性无关的变换;或者对所述第一预测残差和所述第二预测残差进行基于所述预测模式的方向性变换。Fig. 23 is a schematic structural diagram of Embodiment 5 of the image coding processing device of the present invention. As shown in Fig. 23 , this embodiment is based on Embodiment 1 of the image coding processing device shown in Fig. 19 , further, the coding division module 11 includes : the third coding sampling unit 113 and the fourth coding sampling unit 114, wherein the third coding sampling unit 113 is used to perform down-sampling division on the macroblock to obtain the first block and a plurality of second blocks; the fourth coding sampling The unit 114 is used to perform spatial division processing on the first block to obtain a plurality of first sub-blocks; the coding prediction module 12 includes: a seventh coding prediction unit 127 and an eighth coding prediction unit 128, wherein the seventh coding prediction unit 127 is configured to perform inter-block prediction and intra-frame coding processing on the plurality of first sub-blocks respectively in a prediction mode, and obtain first prediction residuals respectively corresponding to the plurality of first sub-blocks; the eighth coding prediction unit 128 Applying the inter-block prediction intra-frame coding processing results of the plurality of first sub-blocks to perform inter-pixel prediction intra-frame coding processing on the plurality of second blocks, and obtaining the first sub-blocks respectively corresponding to the plurality of second blocks Two prediction residuals; the encoding transformation module 13 is specifically configured to perform directional transformation based on the prediction mode on the first prediction residual, and perform directionality-independent transformation on the second prediction residual; or performing directional transformation based on the prediction mode on the first prediction residual and the second prediction residual.
本实施例的装置可以用于执行图9所示的方法实施例六或者图11所示的方法实施例七的技术方案,其实现原理和所达到的技术效果类似,此处不再赘述。The device of this embodiment can be used to implement the technical solution of the method embodiment 6 shown in FIG. 9 or the method embodiment 7 shown in FIG. 11 .
图24为本发明图像解码处理装置实施例一的结构示意图,如图24所示,本实施例的图像解码处理装置,可以包括:解码变换模块21、解码预测模块22和解码合成模块23,其中,解码变换模块21用于对与复数个块分别对应的预测残差系数中至少一个块对应的预测残差系数进行基于预测模式的方向性反变换,获取预测残差;解码预测模块22用于对所述预测残差进行空域预测帧内解码处理,获取所述复数个块,其中所述空域预测帧内解码处理至少包括采用所述预测模式进行块间预测帧内解码;解码合成模块23用于对所述复数个块进行上采样合成,获取解码后的宏块。Fig. 24 is a schematic structural diagram of Embodiment 1 of the image decoding processing device of the present invention. As shown in Fig. 24, the image decoding processing device of this embodiment may include: a decoding transformation module 21, a decoding prediction module 22 and a decoding synthesis module 23, wherein , the decoding transformation module 21 is used to perform a directional inverse transformation based on the prediction mode on the prediction residual coefficient corresponding to at least one of the prediction residual coefficients corresponding to the plurality of blocks respectively, to obtain the prediction residual; the decoding prediction module 22 is used to Perform spatial prediction intra-frame decoding processing on the prediction residual to obtain the plurality of blocks, wherein the spatial domain prediction intra-frame decoding processing at least includes using the prediction mode to perform inter-block prediction intra-frame decoding; the decoding synthesis module 23 uses and performing up-sampling synthesis on the plurality of blocks to obtain decoded macroblocks.
本实施例的装置可以用于执行图12所示的方法实施例一的技术方案,其实现原理与图12所示实施例的实现原理和所达到的效果类似,此处不再赘述。The device of this embodiment can be used to execute the technical solution of the first method embodiment shown in FIG. 12 , and its implementation principle is similar to that of the embodiment shown in FIG. 12 and the effect achieved, so details will not be repeated here.
图25为本发明图像解码处理装置实施例二的结构示意图,如图25所示,本实施例的图像解码处理装置在图24所示的图像解码处理装置实施例一的基础上,进一步地,解码变换模块21包括:第一解码变换单元211和第二解码变换单元212,其中,第一解码变换单元211用于对与所述复数个块中第一块对应的第一预测残差系数进行基于预测模式的方向性反变换,获取第一预测残差;第二解码变换单元212用于对与所述复数个块中其余块对应的第二预测残差系数进行与方向性无关的反变换,获取第二预测残差;解码预测模块22包括:第一解码预测单元221和第二解码预测单元222,其中,第一解码预测单元221用于采用所述预测模式对所述第一预测残差进行块间预测帧内解码处理,获取所述第一块的块间预测帧内解码处理结果;第二解码预测单元222用于应用所述第一块的块间预测帧内解码处理结果对所述第二预测残差进行像素间预测帧内解码处理,获取所述复数个块中其余块的像素间预测帧内解码处理结果;解码合成模块23具体用于对所述块间预测帧内解码处理结果和所述像素间预测帧内解码处理结果进行上采样合成,获取解码后的宏块。FIG. 25 is a schematic structural diagram of Embodiment 2 of an image decoding processing device according to the present invention. As shown in FIG. 25 , the image decoding processing device of this embodiment is based on Embodiment 1 of the image decoding processing device shown in FIG. 24 , further, The decoding and transformation module 21 includes: a first decoding and transformation unit 211 and a second decoding and transformation unit 212, wherein the first decoding and transformation unit 211 is configured to perform a first prediction residual coefficient corresponding to the first block in the plurality of blocks Based on the directional inverse transformation of the prediction mode, the first prediction residual is obtained; the second decoding and transformation unit 212 is used to perform directionality-independent inverse transformation on the second prediction residual coefficients corresponding to the remaining blocks in the plurality of blocks , to obtain the second prediction residual; the decoding prediction module 22 includes: a first decoding prediction unit 221 and a second decoding prediction unit 222, wherein the first decoding prediction unit 221 is used to use the prediction mode to perform the first prediction residual Perform inter-block prediction intra-frame decoding processing to obtain the inter-block prediction intra-frame decoding processing result of the first block; the second decoding prediction unit 222 is used to apply the inter-block prediction intra-frame decoding processing result of the first block to The second prediction residual is subjected to inter-pixel prediction intra-frame decoding processing, and the inter-pixel prediction intra-frame decoding processing results of the remaining blocks in the plurality of blocks are obtained; the decoding synthesis module 23 is specifically used to perform inter-block prediction intra-frame decoding processing. The decoding processing result and the inter-pixel prediction intra-frame decoding processing result are combined by upsampling to obtain a decoded macroblock.
本实施例的装置可以用于执行图13所示的方法实施例二的技术方案,其实现原理与图13所示实施例的实现原理和所达到的效果类似,此处不再赘述。The device of this embodiment can be used to implement the technical solution of the second method embodiment shown in FIG. 13 , and its implementation principle is similar to that of the embodiment shown in FIG. 13 and the effect achieved, and will not be repeated here.
图26为本发明图像解码处理装置实施例三的结构示意图,如图26所示,本实施例的图像解码处理装置在图24所示的图像解码处理装置实施例一的基础上,进一步地,解码变换模块21具体用于对与所述复数个块中第一块对应的第一预测残差系数以及与所述复数个块中其余块对应的第二预测残差系数进行基于相同预测模式的方向性反变换,分别获取第一预测残差和第二预测残差;解码预测模块22包括:第三解码预测单元223和第四解码预测单元224,其中,第三解码预测单元223用于采用所述预测模式对所述第一预测残差进行块间预测帧内解码处理,获取所述第一块的块间预测帧内解码处理结果;第四解码预测单元224用于应用所述第一块的块间预测帧内解码处理结果对所述第二预测残差进行像素间预测帧内解码处理,获取所述复数个块中其余块的像素间预测帧内解码处理结果;解码合成模块23具体用于对所述块间预测帧内解码处理结果和所述像素间预测帧内解码处理结果进行上采样合成,获取解码后的宏块。Fig. 26 is a schematic structural diagram of Embodiment 3 of the image decoding processing device of the present invention. As shown in Fig. 26, the image decoding processing device of this embodiment is based on the first embodiment of the image decoding processing device shown in Fig. 24, and further, The decoding and transformation module 21 is specifically configured to perform the same prediction mode on the first prediction residual coefficient corresponding to the first block in the plurality of blocks and the second prediction residual coefficient corresponding to the remaining blocks in the plurality of blocks. Directional inverse transformation, respectively obtaining the first prediction residual and the second prediction residual; the decoding prediction module 22 includes: a third decoding prediction unit 223 and a fourth decoding prediction unit 224, wherein the third decoding prediction unit 223 is used to adopt The prediction mode performs inter-block prediction intra-frame decoding processing on the first prediction residual, and obtains the inter-block prediction intra-frame decoding processing result of the first block; the fourth decoding prediction unit 224 is used to apply the first The inter-block prediction intra-frame decoding processing result of the block performs inter-pixel prediction intra-frame decoding processing on the second prediction residual, and obtains the inter-pixel prediction intra-frame decoding processing results of the remaining blocks in the plurality of blocks; the decoding synthesis module 23 Specifically, it is used to perform upsampling synthesis on the inter-block prediction intra-frame decoding processing result and the inter-pixel prediction intra-frame decoding processing result to obtain a decoded macroblock.
本实施例的装置可以用于执行图14所示的方法实施例三的技术方案,其实现原理与图14所示实施例的实现原理和所达到的效果类似,此处不再赘述。The device of this embodiment can be used to implement the technical solution of the third method embodiment shown in FIG. 14 , and its implementation principle is similar to that of the embodiment shown in FIG. 14 and the effect achieved, and will not be repeated here.
图27为本发明图像解码处理装置实施例四的结构示意图,如图27所示,本实施例的图像解码处理装置在图24所示的图像解码处理装置实施例一的基础上,进一步地,解码变换模块21包括:第三解码变换单元213和第四解码变换单元214,其中,第三解码变换单元213用于对与所述复数个块中第一子块对应的第一预测残差系数进行基于预测模式的方向性反变换,获取第一预测残差;第四解码变换单元214用于对与所述复数个块中复数个第二块和复数个第二子块分别对应的第二预测残差系数进行与方向性无关的反变换,获取第二预测残差;解码预测模块22包括:第五解码预测单元225和第六解码预测单元226,其中,第五解码预测单元225用于采用所述预测模式对所述第一预测残差进行块间预测帧内解码处理,获取所述第一子块的块间预测帧内解码处理结果;第六解码预测单元226用于应用所述第一子块的块间预测帧内解码处理结果对所述第二预测残差进行像素间预测帧内解码处理,获取所述复数个块中复数个第二块和复数个第二子块的像素间预测帧内解码处理结果;解码合成模块23包括:第一解码采样单元231和第二解码采样单元232,其中,第一解码采样单元231用于对所述第一子块的块间预测帧内解码处理结果以及所述复数个第二子块的像素间预测帧内解码处理结果进行第二上采样合成获取所述第一块;第二解码采样单元232用于对所述第一块以及所述复数个第二块的像素间预测帧内解码处理结果进行第一上采样合成,获取解码后的宏块。Fig. 27 is a schematic structural diagram of Embodiment 4 of an image decoding and processing device according to the present invention. As shown in Fig. 27 , the image decoding and processing device of this embodiment is based on Embodiment 1 of the image decoding and processing device shown in Fig. 24 , further, The decoding and transforming module 21 includes: a third decoding and transforming unit 213 and a fourth decoding and transforming unit 214, wherein the third decoding and transforming unit 213 is used to convert the first prediction residual coefficient corresponding to the first sub-block in the plurality of blocks Perform directional inverse transformation based on the prediction mode to obtain the first prediction residual; the fourth decoding transformation unit 214 is used to respectively correspond to the plurality of second blocks and the plurality of second sub-blocks in the plurality of blocks. The prediction residual coefficient is inversely transformed regardless of directionality to obtain the second prediction residual; the decoding prediction module 22 includes: a fifth decoding prediction unit 225 and a sixth decoding prediction unit 226, wherein the fifth decoding prediction unit 225 is used for Use the prediction mode to perform inter-block prediction intra-frame decoding processing on the first prediction residual, and obtain the inter-block prediction intra-frame decoding processing result of the first sub-block; the sixth decoding prediction unit 226 is used to apply the Inter-prediction intra-frame decoding processing results of the first sub-block Perform inter-pixel prediction intra-frame decoding processing on the second prediction residual, and obtain the plurality of second blocks and the plurality of second sub-blocks in the plurality of blocks Inter-pixel prediction intra-frame decoding processing results; the decoding and synthesis module 23 includes: a first decoding sampling unit 231 and a second decoding sampling unit 232, wherein the first decoding sampling unit 231 is used for inter-block prediction of the first sub-block The intra-frame decoding processing result and the inter-pixel prediction intra-frame decoding processing result of the plurality of second sub-blocks are subjected to second upsampling synthesis to obtain the first block; the second decoding sampling unit 232 is used to perform a second upsampling synthesis on the first block And performing first upsampling synthesis on the inter-pixel prediction intra-frame decoding processing results of the plurality of second blocks to obtain decoded macroblocks.
本实施例的装置可以用于执行图15所示的方法实施例四的技术方案,其实现原理与图15所示实施例的实现原理和所达到的效果类似,此处不再赘述。The device of this embodiment can be used to implement the technical solution of the fourth embodiment of the method shown in FIG. 15 , and its implementation principle is similar to that of the embodiment shown in FIG. 15 and the effect achieved, and will not be repeated here.
图28为本发明图像解码处理装置实施例五的结构示意图,如图28所示,本实施例的图像解码处理装置在图24所示的图像解码处理装置实施例一的基础上,进一步地,解码变换模块21具体用于对与所述复数个块中第一子块对应的第一预测残差系数以及与所述复数个块中复数个第二块和复数个第二子块对应的第二预测残差系数进行基于相同预测模式的方向性反变换,分别获取第一预测残差和第二预测残差;解码预测模块22包括:第七解码预测单元227和第八解码预测单元228,其中,第七解码预测单元227用于采用所述预测模式对所述第一预测残差进行块间预测帧内解码处理,获取所述第一子块的块间预测帧内解码处理结果;第八解码预测单元228用于应用所述第一子块的块间预测帧内解码处理结果对所述第二预测残差进行像素间预测帧内解码处理,获取所述复数个块中复数个第二块和复数个第二子块的像素间预测帧内解码处理结果;解码合成模块23包括:第三解码采样单元233和第四解码采样单元234,其中,第三解码采样单元233用于对所述第一子块的块间预测帧内解码处理结果以及所述复数个第二子块的像素间预测帧内解码处理结果进行第二上采样合成获取所述第一块;第四解码采样单元234用于对所述第一块以及所述复数个第二块的像素间预测帧内解码处理结果进行第一上采样合成,获取解码后的宏块。Fig. 28 is a schematic structural diagram of Embodiment 5 of the image decoding processing device of the present invention. As shown in Fig. 28 , the image decoding processing device of this embodiment is based on Embodiment 1 of the image decoding processing device shown in Fig. 24 , further, The decoding and transformation module 21 is specifically configured to perform the first prediction residual coefficient corresponding to the first sub-block in the plurality of blocks and the first prediction residual coefficient corresponding to the plurality of second blocks and the plurality of second sub-blocks in the plurality of blocks. The two prediction residual coefficients are subjected to directional inverse transformation based on the same prediction mode, and the first prediction residual and the second prediction residual are obtained respectively; the decoding prediction module 22 includes: a seventh decoding prediction unit 227 and an eighth decoding prediction unit 228, Wherein, the seventh decoding prediction unit 227 is configured to use the prediction mode to perform inter-block prediction intra-frame decoding processing on the first prediction residual, and obtain the inter-block prediction intra-frame decoding processing result of the first sub-block; The eight-decoding prediction unit 228 is configured to apply the inter-block prediction intra-frame decoding processing result of the first sub-block to perform inter-pixel prediction intra-frame decoding processing on the second prediction residual, and obtain the plurality of first sub-blocks in the plurality of blocks Inter-pixel prediction intra-frame decoding processing results of two blocks and a plurality of second sub-blocks; the decoding and synthesis module 23 includes: a third decoding sampling unit 233 and a fourth decoding sampling unit 234, wherein the third decoding sampling unit 233 is used for The inter-block prediction intra-frame decoding processing result of the first sub-block and the inter-pixel prediction intra-frame decoding processing result of the plurality of second sub-blocks are combined by second upsampling to obtain the first block; the fourth decoding sampling The unit 234 is configured to perform first upsampling synthesis on the first block and the inter-pixel prediction intra-frame decoding processing results of the plurality of second blocks, and obtain a decoded macroblock.
本实施例的装置可以用于执行图16所示的方法实施例五的技术方案,其实现原理与图16所示实施例的实现原理和所达到的效果类似,此处不再赘述。The device of this embodiment can be used to implement the technical solution of the fifth embodiment of the method shown in FIG. 16 , and its implementation principle is similar to that of the embodiment shown in FIG. 16 and the effect achieved, so details are not repeated here.
图29为本发明图像解码处理装置实施例六的结构示意图,如图29所示,本实施例的图像解码处理装置在图24所示的图像解码处理装置实施例一的基础上,进一步地,解码变换模块21包括:第五解码变换单元215和第六解码变换单元216,其中,第五解码变换单元215用于对与所述复数个块中复数个第一子块对应的第一预测残差系数分别进行基于预测模式的方向性反变换,获取第一预测残差;第六解码变换单元216用于对与所述复数个块中复数个第二块对应的第二预测残差系数进行与方向性无关的反变换,获取第二预测残差;解码预测模块22包括:第九解码预测单元229和第十解码预测单元230,其中,第九解码预测单元229用于采用所述预测模式对所述第一预测残差进行块间预测帧内解码处理,获取所述复数个第一子块的块间预测帧内解码处理结果;第十解码预测单元230用于应用所述复数个第一子块的块间预测帧内解码处理结果对所述第二预测残差进行像素间预测帧内解码处理,获取所述复数个块中复数个第二块的像素间预测帧内解码处理结果;解码合成模块23包括:第六解码采样单元236和第七解码采样单元237,其中,第六解码采样单元236用于对所述复数个第一子块的块间预测帧内解码处理结果进行空域合成处理,获取所述第一块;第七解码采样单元237用于对所述第一块以及所述复数个第二块的像素间预测帧内解码处理结果进行上采样合成,获取解码后的宏块。FIG. 29 is a schematic structural diagram of Embodiment 6 of an image decoding processing device according to the present invention. As shown in FIG. 29 , the image decoding processing device of this embodiment is based on Embodiment 1 of the image decoding processing device shown in FIG. 24 , and further, The decoding and transforming module 21 includes: a fifth decoding and transforming unit 215 and a sixth decoding and transforming unit 216, wherein the fifth decoding and transforming unit 215 is used to perform the first prediction residual corresponding to the plurality of first sub-blocks in the plurality of blocks The difference coefficients are respectively subjected to directional inverse transformation based on the prediction mode to obtain the first prediction residual; the sixth decoding transformation unit 216 is used to perform the second prediction residual coefficient corresponding to the plurality of second blocks in the plurality of blocks Direction-independent inverse transformation to obtain the second prediction residual; the decoding prediction module 22 includes: a ninth decoding prediction unit 229 and a tenth decoding prediction unit 230, wherein the ninth decoding prediction unit 229 is used to adopt the prediction mode Perform inter-block prediction intra-frame decoding processing on the first prediction residual, and obtain the inter-block prediction intra-frame decoding processing results of the plurality of first sub-blocks; the tenth decoding prediction unit 230 is used to apply the plurality of first sub-blocks Inter-prediction intra-frame decoding processing results of a sub-block are performed on the second prediction residual to perform inter-pixel prediction intra-frame decoding processing, and obtain inter-pixel prediction intra-frame decoding processing results of a plurality of second blocks among the plurality of blocks The decoding and synthesis module 23 includes: a sixth decoding sampling unit 236 and a seventh decoding sampling unit 237, wherein the sixth decoding sampling unit 236 is used to perform inter-prediction and intra-frame decoding processing results of the plurality of first sub-blocks Spatial synthesis processing, obtaining the first block; the seventh decoding sampling unit 237 is used to perform upsampling synthesis on the first block and the inter-pixel prediction intra-frame decoding processing results of the plurality of second blocks, and obtain the decoded of macroblocks.
本实施例的装置可以用于执行图17所示的方法实施例六的技术方案,其实现原理与图17所示实施例的实现原理和所达到的效果类似,此处不再赘述。The device of this embodiment can be used to implement the technical solution of the sixth embodiment of the method shown in FIG. 17 , and its implementation principle is similar to that of the embodiment shown in FIG. 17 and the effect achieved, so it will not be repeated here.
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。Those of ordinary skill in the art can understand that all or part of the steps for realizing the above-mentioned method embodiments can be completed by hardware related to program instructions, and the aforementioned program can be stored in a computer-readable storage medium. When the program is executed, the It includes the steps of the above method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention.
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010147587.0A CN102215390B (en) | 2010-04-09 | 2010-04-09 | Processing method and device for image coding and decoding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010147587.0A CN102215390B (en) | 2010-04-09 | 2010-04-09 | Processing method and device for image coding and decoding |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102215390A CN102215390A (en) | 2011-10-12 |
CN102215390B true CN102215390B (en) | 2014-07-09 |
Family
ID=44746487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010147587.0A Active CN102215390B (en) | 2010-04-09 | 2010-04-09 | Processing method and device for image coding and decoding |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102215390B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103227917B (en) * | 2012-01-31 | 2016-12-14 | 华为技术有限公司 | Coding/decoding method and device |
CN104935928B (en) * | 2015-06-01 | 2017-10-17 | 电子科技大学 | A kind of efficient image compression method based on spatial domain down-sampling pattern |
CN109803147B (en) * | 2019-01-04 | 2021-02-23 | 中国联合网络通信集团有限公司 | Transform processing method and device based on video texture feature |
CN110234008B (en) * | 2019-03-11 | 2020-06-16 | 杭州海康威视数字技术股份有限公司 | Encoding method, decoding method and device |
WO2023197180A1 (en) * | 2022-04-12 | 2023-10-19 | Oppo广东移动通信有限公司 | Decoding methods, encoding methods, decoders and encoders |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101222641A (en) * | 2007-01-11 | 2008-07-16 | 华为技术有限公司 | Infra-frame prediction encoding and decoding method and device |
CN101415121A (en) * | 2007-10-15 | 2009-04-22 | 华为技术有限公司 | Self-adapting method and apparatus for forecasting frame |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8619853B2 (en) * | 2007-06-15 | 2013-12-31 | Qualcomm Incorporated | Separable directional transforms |
CN101252686B (en) * | 2008-03-20 | 2010-04-14 | 上海交通大学 | Method and system for lossless encoding and decoding in video frames based on interleaved prediction |
-
2010
- 2010-04-09 CN CN201010147587.0A patent/CN102215390B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101222641A (en) * | 2007-01-11 | 2008-07-16 | 华为技术有限公司 | Infra-frame prediction encoding and decoding method and device |
CN101415121A (en) * | 2007-10-15 | 2009-04-22 | 华为技术有限公司 | Self-adapting method and apparatus for forecasting frame |
Also Published As
Publication number | Publication date |
---|---|
CN102215390A (en) | 2011-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102447472B1 (en) | Video encoding apparatus for performing intra-prediction based on directionality of neighboring block, video decoding apparatus and video decoding method for performing the same | |
KR102658215B1 (en) | Cclm-based intra-prediction method and apparatus | |
KR101619975B1 (en) | Apparatus and method for image coding and decoding using skip coding | |
AU2015261728B2 (en) | Method and apparatus for intra prediction within display screen | |
KR101292091B1 (en) | Method for encoding/decoding with adaptive intra prediction | |
JP6157614B2 (en) | Encoder, decoder, method, and program | |
CN101682752B (en) | Method and apparatus for encoding and decoding image using modification of residual block | |
US20130294508A1 (en) | Method and device for encoding and decoding by using parallel intraprediction by a coding unit | |
KR20210037725A (en) | Intra prediction method based on CCLM and apparatus therefor | |
KR20070074453A (en) | Method for encoding and decoding video signal | |
CN113491115B (en) | CCLM prediction-based image decoding method and device | |
CN102215390B (en) | Processing method and device for image coding and decoding | |
JP2021519018A (en) | Image processing devices and methods for performing efficient deblocking | |
JP2024024091A (en) | Video coding method and device based on conversion | |
KR20240013896A (en) | Method for encoding and decoding images, encoding and decoding device, and corresponding computer programs | |
TWI507020B (en) | Depth-based three-dimensional image processing method | |
RU2820843C1 (en) | Bdpcm-based image encoding method and device for this | |
RU2815810C2 (en) | Encoding information on set of transformation kernels | |
KR20180128876A (en) | A method and an apparatus for decoding a video signal | |
RU2806813C2 (en) | Method and device for image coding based on bdpcm | |
KR20120008321A (en) | Adaptive scanning and extended template matching method and apparatus using subsampling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |