CN102201815B - Binary operation decoding device with high operation frequency - Google Patents
Binary operation decoding device with high operation frequency Download PDFInfo
- Publication number
- CN102201815B CN102201815B CN201010147555.0A CN201010147555A CN102201815B CN 102201815 B CN102201815 B CN 102201815B CN 201010147555 A CN201010147555 A CN 201010147555A CN 102201815 B CN102201815 B CN 102201815B
- Authority
- CN
- China
- Prior art keywords
- multiplexer
- output
- look
- signal
- coupled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一多位全文自适应二进制算术编码的位解码器,特别是涉及一种具有缩短的关键路径的二决定位的全文自适应二进制算术编码解码器。The invention relates to a multi-bit full-text self-adaptive binary arithmetic coding decoder, in particular to a two-bit full-text self-adaptive binary arithmetic coding decoder with a shortened key path.
背景技术 Background technique
全文自适应二进制算术编码(Context-adaptive Binary ArithmeticCoding,CABAC)解码算法是利用基本的连续运算去计算用于情境变量的范围、偏移和查阅表。全文自适应二进制算术编码解码的数据相依特性,导致在实时处理高清晰度影像时,全文自适应二进制算术编码解码须做每秒30亿次的运算,因此使全文自适应二进制算术编码解码很难达到高速解码。基本上,全文自适应二进制算术编码的位解码器包含一决定位解码器和一旁路位解码器,通过实验,可知所有位中的80%-90%位被编码成决定位,而其余位被编码成旁路位。虽然Jahanghir等发明人的美国专利第7,262,722号已揭示使用利用平行架构改善全文自适应二进制算术编码的效能的方法,但全文自适应二进制算术编码解码算法不像其它H.264/AVC标准的视讯解码工具,要利用平行架构去改善全文自适应二进制算术编码的效能并不容易。因为全文自适应二进制算术编码解码是使用连续顺序的解码,然而连续顺序的解码会使得全文自适应二进制算术编码解码成为H.264/AVC标准主要的瓶颈。The Context-adaptive Binary Arithmetic Coding (CABAC) decoding algorithm uses basic sequential operations to calculate ranges, offsets, and look-up tables for context variables. The data-dependent nature of full-text adaptive binary arithmetic coding and decoding results in 3 billion operations per second when processing high-definition images in real time, making full-text adaptive binary arithmetic coding and decoding difficult To achieve high-speed decoding. Basically, the full-text adaptive binary arithmetic coding bit decoder includes a decision bit decoder and a bypass bit decoder. Through experiments, it can be known that 80%-90% of all bits are encoded as decision bits, while the rest are coded as decision bits. Coded as bypass bits. Although U.S. Patent No. 7,262,722 of Jahanghir et al. has disclosed a method for improving the performance of full-text adaptive binary arithmetic coding using a parallel architecture, the full-text adaptive binary arithmetic coding decoding algorithm is not like video decoding of other H.264/AVC standards tools, it is not easy to use a parallel architecture to improve the performance of full-text adaptive binary arithmetic coding. Because the decoding of the full-text adaptive binary arithmetic coding uses continuous sequential decoding, however, the continuous sequential decoding will make the full-text adaptive binary arithmetic coding decoding the main bottleneck of the H.264/AVC standard.
发明内容 Contents of the invention
本发明的一实施例揭示一种多位全文自适应二进制算术编码的位解码器,包含一第一查阅表,具有一输入端耦接于一第一寄存器的输出端,用以接收该第一寄存器输出的讯号;一第二查阅表,具有一输入端耦接于该第一寄存器的输出端,用以接收该第一寄存器输出的讯号;一第三查阅表,具有一输入端耦接于该第一查阅表的输出端,用以接收该第一查阅表输出的讯号;一第四查阅表,具有一输入端耦接于该第二查阅表的输出端,用以接收该第二查阅表输出的讯号;一第一多工器,具有一第一输入端耦接于该第三查阅表的输出端,用以接收该第三查阅表输出的讯号,一第二输入端耦接于该第四查阅表的输出端,用以接收该第四查阅表输出的讯号;及一第二多工器,具有一第一输入端耦接于该第一查阅表的输出端,用以接收该第三查阅表输出的讯号,一第二输入端耦接于该第二查阅表的输出端,用以接收该第二查阅表输出的讯号;其中该第一多工器和该第二多工器皆由一第一讯号控制。该位解码器还包含串联耦接的一第二寄存器、一第一加法器、一第二加法器和一第一比较模块,该第一比较模块用以输出该第一讯号。该位解码器还包含一第三多工器,具有一第一输入端通过一第三寄存器耦接于该第二多工器的输出端,用以接收该第二多工器输出的讯号;一第五查阅表,具有一输入端耦接于该第三多工器的输出端,用以接收该第三多工器输出的讯号;一第六查阅表,具有一输入端耦接于该第三多工器的输出端,用以接收该第三多工器输出的讯号;一第七查阅表,具有一输入端耦接于该第五查阅表的输出端,用以接收该第五查阅表输出的讯号;一第八查阅表,具有一输入端耦接于该第六查阅表的输出端,用以接收该第六查阅表输出的讯号;一第四多工器,具有一第一输入端耦接于该第七查阅表的输出端,用以接收该第七查阅表输出的讯号,一第二输入端耦接于该第八查阅表的输出端,用以接收该第八查阅表输出的讯号;及一第五多工器,具有一第一输入端耦接于该第五查阅表的输出端,用以接收该第五查阅表输出的讯号,一第二输入端耦接于该第六查阅表的输出端,用以接收该第六查阅表输出的讯号;其中该第四多工器和该第五多工器皆由一第二讯号控制;其中该第一寄存器的输入端耦接于该第五多工器的输出端,用以储存该第五多工器输出的讯号。该位解码器还包含串联耦接的一第三加法器、一第四加法器和一第二比较模块,该第二比较模块用以输出该第二讯号。An embodiment of the present invention discloses a bit decoder for multi-bit full-text adaptive binary arithmetic coding, including a first look-up table, with an input end coupled to an output end of a first register for receiving the first A signal output by the register; a second look-up table, having an input end coupled to the output end of the first register, for receiving the signal output by the first register; a third look-up table, having an input end coupled to the The output end of the first look-up table is used to receive the signal output by the first look-up table; a fourth look-up table has an input end coupled to the output end of the second look-up table for receiving the second look-up table The signal output by the table; a first multiplexer, with a first input end coupled to the output end of the third look-up table for receiving the signal output by the third look-up table, a second input end coupled to the The output end of the fourth look-up table is used to receive the output signal of the fourth look-up table; and a second multiplexer has a first input end coupled to the output end of the first look-up table for receiving For the signal output by the third look-up table, a second input end is coupled to the output end of the second look-up table for receiving the signal output by the second look-up table; wherein the first multiplexer and the second multiplexer All devices are controlled by a first signal. The bit decoder also includes a second register, a first adder, a second adder and a first comparison module connected in series, and the first comparison module is used for outputting the first signal. The bit decoder also includes a third multiplexer, with a first input end coupled to the output end of the second multiplexer through a third register, for receiving signals output by the second multiplexer; A fifth look-up table, having an input end coupled to the output end of the third multiplexer, for receiving the signal output by the third multiplexer; a sixth look-up table, having an input end coupled to the The output end of the third multiplexer is used to receive the signal output by the third multiplexer; a seventh look-up table has an input end coupled to the output end of the fifth look-up table for receiving the fifth The signal output by the look-up table; an eighth look-up table, having an input end coupled to the output end of the sixth look-up table, for receiving the signal output by the sixth look-up table; a fourth multiplexer, having a first An input end is coupled to the output end of the seventh look-up table for receiving the output signal of the seventh look-up table, and a second input end is coupled to the output end of the eighth look-up table for receiving the eighth look-up table The signal output by the look-up table; and a fifth multiplexer, which has a first input end coupled to the output end of the fifth look-up table for receiving the signal output by the fifth look-up table, and a second input end coupled Connected to the output terminal of the sixth look-up table to receive the output signal of the sixth look-up table; wherein both the fourth multiplexer and the fifth multiplexer are controlled by a second signal; wherein the first register The input end of the fifth multiplexer is coupled to the output end of the fifth multiplexer for storing the output signal of the fifth multiplexer. The bit decoder also includes a third adder, a fourth adder and a second comparison module connected in series, and the second comparison module is used for outputting the second signal.
附图说明 Description of drawings
图1是视讯处理系统的示意图。FIG. 1 is a schematic diagram of a video processing system.
图2是图1的视讯处理系统的决定位解码器的示意图。FIG. 2 is a schematic diagram of a decision bit decoder of the video processing system of FIG. 1 .
图3是说明图2的决定位解码器的关键路径。FIG. 3 illustrates the critical path of the decision bit decoder of FIG. 2 .
图4是本发明的一实施例所揭示的决定位解码器的示意图。FIG. 4 is a schematic diagram of a decision bit decoder disclosed by an embodiment of the present invention.
图5和图6是说明图4的决定位解码器的详细架构。5 and 6 illustrate the detailed architecture of the decision bit decoder in FIG. 4 .
图7和图8是说明图5和图6的决定位解码器的关键路径。7 and 8 illustrate critical paths of the decision bit decoders of FIGS. 5 and 6 .
附图符号说明Description of reference symbols
10 视讯处理系统10 Video processing system
11 视讯源11 Video source
12 视讯处理器12 Video Processor
13 视讯显示器13 Video Display
20 解码器20 Decoder
25、40、405 寄存器25, 40, 405 registers
35 决定位解码器35 Decision Bit Decoder
30 旁路位解码器30 bypass bit decoder
100、300、400 位解码器100, 300, 400 bit decoders
102、116、502 范围寄存器102, 116, 502 range registers
103、503、115、530 状态指数寄存器103, 503, 115, 530 Status index register
104、652 rLPS查阅表104, 652 rLPS lookup table
105、505、611 LPS查阅表105, 505, 611 LPS lookup table
106、506、612 MPS查阅表106, 506, 612 MPS lookup table
107、110、111、112、415、409、515、516、517、518、519、610、616、623、618、620、621、622 多工器107, 110, 111, 112, 415, 409, 515, 516, 517, 518, 519, 610, 616, 623, 618, 620, 621, 622 Multiplexer
108、109、508、509、641、643 加法器108, 109, 508, 509, 641, 643 adders
113、513、630 比较模块113, 513, 630 Comparison Module
114、514、635 重新规化模块114, 514, 635 Renormalization module
117、501、101 偏移寄存器117, 501, 101 Offset register
118、520 输入比特流118, 520 Input bit stream
119、120 更新值119, 120 Update value
407、500、700 第一决定位解码器407, 500, 700 The first decision bit decoder
420、600、800 第二决定位解码器420, 600, 800 Second decision bit decoder
552、614 第一rLPS查阅表552, 614 The first rLPS look-up table
555、613 第二rLPS查阅表555, 613 Second rLPS look-up table
550 rLPS寄存器550 rLPS register
具体实施方式 Detailed ways
图1是决定多位的位解码器(bin decoder)的视讯处理系统10的示意图。视讯处理系统10包含一视讯源11、一视讯处理器12和一视讯显示器13。视讯源11可以是已利用H.264/AVC标准进行压缩及/或编码的重制或传输的视讯讯号,其中H.264/AVC标准是采用全文自适应二进制算术编码(context-based adaptive binary arithmetic coding,CABAC)技术进行压缩及/或编码。视讯源11输出H.264/AVC讯号至视讯处理器12进行解码和重组成原始视讯讯号,完成后再藉由视讯处理器12输出至视讯显示器13以供使用者观看。FIG. 1 is a schematic diagram of a video processing system 10 for determining a multi-bit bin decoder. The video processing system 10 includes a video source 11 , a video processor 12 and a video display 13 . The video source 11 may be a reproduced or transmitted video signal that has been compressed and/or encoded using the H.264/AVC standard, wherein the H.264/AVC standard uses context-based adaptive binary arithmetic coding (Context-based adaptive binary arithmetic coding). coding, CABAC) technology for compression and/or encoding. The video source 11 outputs the H.264/AVC signal to the video processor 12 for decoding and reconstruction into an original video signal, and then the video processor 12 outputs the H.264/AVC signal to the video display 13 for users to watch.
视讯处理器12可包含一处理器、一解码器20和一存储器。该处理器用以控制视讯处理器12的操作;解码器20用以对传来的视讯讯号进行解码;存储器用以寄存视讯讯号、用以储存在解码过程中所使用的数据及/或查阅表,以及用以当作工作区,除此之外,存储器也用作汇流区和视讯处理器12中不同部分的联结。另外,解码器20可包含一或多个寄存器25、40,一决定位解码器(decision bin decoder)35,以及一旁路位解码器(bypass bin decoder)30。The video processor 12 may include a processor, a decoder 20 and a memory. The processor is used to control the operation of the video processor 12; the decoder 20 is used to decode the incoming video signal; the memory is used to store the video signal, store data and/or look-up tables used in the decoding process, And used as a working area, in addition, the memory is also used as a confluence area and the connection of different parts in the video processor 12 . In addition, the decoder 20 may include one or more registers 25, 40, a decision bin decoder 35, and a bypass bin decoder 30.
图2是视讯处理系统10的每时钟处理一个位(bin-per-cycle)的位解码器100。位解码器100可包含一偏移寄存器101,一范围寄存器102,一状态指数寄存器103,一参考最不可能状态(reference least probablestate,rLPS)查阅表104,一最不可能状态(least probable state,LPS)查阅表105,一最可能状态(most probable state,MPS)查阅表106,多个加法器108、109,多个多工器107、110、111、112,一比较模块113,一重新规化模块114,一状态指数寄存器115,一范围寄存器116,一偏移寄存器117,和一输入比特流118。储存于偏移寄存器101、范围寄存器102和状态指数寄存器103的信息可由图1的解码器20的寄存器25的输出端输入,或是在一些实施例中,偏移寄存器101、范围寄存器102和状态指数寄存器103是图1的寄存器35的部份成份。FIG. 2 is a bit decoder 100 that processes one bit per clock (bin-per-cycle) of the video processing system 10 . The bit decoder 100 may comprise an offset register 101, a range register 102, a state index register 103, a reference least probable state (reference least probablestate, rLPS) look-up table 104, a least probable state (least probable state, LPS) look-up table 105, a most probable state (most probable state, MPS) look-up table 106, a plurality of adders 108,109, a plurality of multiplexers 107,110,111,112, a comparison module 113, a re-regulation module 114, a state index register 115, a range register 116, an offset register 117, and an input bit stream 118. The information stored in offset register 101, range register 102, and state index register 103 may be input from the output of register 25 of decoder 20 of FIG. Index register 103 is part of register 35 of FIG. 1 .
rLPS查阅表104的输入端、MPS查阅表106的输入端及LPS查阅表105的输入端耦接于状态指数寄存器103的输出端,状态指数寄存器103的输出端输出目前的全文状态(context state),而目前的全文状态可用来从rLPS查阅表104、MPS查阅表106、LPS查阅表105撷取适当的值。MPS查阅表106的输出端耦接于多工器112的第一输入端,LPS查阅表105的输出端耦接于多工器112的第二输入端,而多工器112的第一输入端用以接收MPS查阅表106输出的最可能状态,多工器112的第二输入端用以接收LPS查阅表105输出的最不可能状态。多工器107的输入端耦接于rLPS查阅表104的输出端,多工器107的控制输入端耦接于范围寄存器102的输出端,多工器107的输入端用以接收rLPS查阅表104所输出的可能的参考状态,多工器107的控制输入端用以接收范围寄存器102输出的讯号,而范围寄存器102输出的讯号用以控制多工器107。多工器107的输出端耦接于加法器108的第一输入端和多工器110的第一输入端,加法器108的第二输入端耦接于范围寄存器102的输出端。在加法器108中,加法器108的第二输入端所接收的范围寄存器102输出的讯号将扣除来自加法器108的第一输入端所接收的多工器107的输出的讯号。加法器108的输出端耦接于多工器110的第二输入端及加法器109的第一输入端,加法器109的第二输入端耦接于偏移寄存器101的输出端。在加法器109中,加法器109的第二输入端所接收的偏移寄存器101输出的讯号将扣除来自加法器109的第一输入端所接收的加法器108的输出的讯号。多工器111的第一输入端耦接于偏移寄存器101的输出端,多工器111的第二输入端耦接于加法器109的输出端,多工器111的第一输入端用以接收偏移寄存器101输出的讯号,多工器111的第二输入端用以接收加法器109输出的差值。The input end of the rLPS look-up table 104, the input end of the MPS look-up table 106 and the input end of the LPS look-up table 105 are coupled to the output end of the state index register 103, and the output end of the state index register 103 outputs the current full-text state (context state) , and the current full-text status can be used to retrieve appropriate values from the rLPS look-up table 104 , the MPS look-up table 106 , and the LPS look-up table 105 . The output end of MPS look-up table 106 is coupled to the first input end of multiplexer 112, the output end of LPS look-up table 105 is coupled to the second input end of multiplexer 112, and the first input end of multiplexer 112 The second input terminal of the multiplexer 112 is used to receive the least probable state output from the LPS look-up table 105 . The input end of the multiplexer 107 is coupled to the output end of the rLPS look-up table 104, the control input end of the multiplexer 107 is coupled to the output end of the range register 102, and the input end of the multiplexer 107 is used to receive the rLPS look-up table 104 For the possible reference states output, the control input terminal of the multiplexer 107 is used to receive the signal output from the range register 102 , and the signal output from the range register 102 is used to control the multiplexer 107 . The output terminal of the multiplexer 107 is coupled to the first input terminal of the adder 108 and the first input terminal of the multiplexer 110 , and the second input terminal of the adder 108 is coupled to the output terminal of the range register 102 . In the adder 108 , the signal from the output of the multiplexer 107 received by the first input of the adder 108 is subtracted from the output signal of the range register 102 received by the second input terminal of the adder 108 . The output terminal of the adder 108 is coupled to the second input terminal of the multiplexer 110 and the first input terminal of the adder 109 , and the second input terminal of the adder 109 is coupled to the output terminal of the offset register 101 . In the adder 109 , the signal from the output of the adder 108 received by the first input terminal of the adder 109 is subtracted from the output signal of the offset register 101 received by the second input terminal of the adder 109 . The first input end of the multiplexer 111 is coupled to the output end of the offset register 101, the second input end of the multiplexer 111 is coupled to the output end of the adder 109, and the first input end of the multiplexer 111 is used for Receiving the signal output by the offset register 101 , the second input end of the multiplexer 111 is used to receive the difference output by the adder 109 .
另外,加法器109的输出端也耦接于比较模块113的输入端,而比较模块113的输出端耦接于多工器111、110和112的控制输入端。比较模块113用以接收加法器109输出的差值,并判断加法器109的差值输出是否小于零。而比较模块113输出的判断结果用以控制多工器111、110和112。此外,多工器112的输出端耦接于状态指数寄存器115的输入端,多工器112输出的讯号用以更新状态指数寄存器115。In addition, the output terminal of the adder 109 is also coupled to the input terminal of the comparison module 113 , and the output terminal of the comparison module 113 is coupled to the control input terminals of the multiplexers 111 , 110 and 112 . The comparison module 113 is used to receive the difference output from the adder 109 and determine whether the difference output from the adder 109 is less than zero. The judgment result output by the comparing module 113 is used to control the multiplexers 111 , 110 and 112 . In addition, the output terminal of the multiplexer 112 is coupled to the input terminal of the state index register 115 , and the signal output by the multiplexer 112 is used to update the state index register 115 .
重新规化模块114的第一输入端用以接收输入比特流118,重新规化模块114的第二输入端耦接于多工器111的输出端,用以接收多工器111输出的讯号,重新规化模块114的第三输入端耦接于多工器110的输出端,用以接收多工器110输出的讯号,重新规化模块114的第一输出端耦接于偏移寄存器117的输入端,重新规化模块114的第二输入端耦接于范围寄存器116的输入端,其中重新规化模块114输出的讯号用以轮流更新偏移寄存器117和范围寄存器116。偏移寄存器117输出更新值119和范围寄存器116输出更新值120。其中更新值119、更新值120将和更新的状态指数寄存器115同时使用在下一次解码循环中。The first input end of the re-normalization module 114 is used to receive the input bit stream 118, and the second input end of the re-normalization module 114 is coupled to the output end of the multiplexer 111 for receiving the output signal of the multiplexer 111, The third input terminal of the re-normalization module 114 is coupled to the output terminal of the multiplexer 110 for receiving the output signal of the multiplexer 110, and the first output terminal of the re-normalization module 114 is coupled to the offset register 117. The input terminal, the second input terminal of the renormalization module 114 is coupled to the input terminal of the range register 116 , wherein the output signal of the renormalization module 114 is used to update the offset register 117 and the range register 116 in turn. The offset register 117 outputs an update value 119 and the range register 116 outputs an update value 120 . The updated value 119 and the updated value 120 will be used together with the updated state index register 115 in the next decoding cycle.
图3的位解码器300为图2的位解码器100包含关键路径的示意图。在图3中,位解码器300说明每时钟处理一个位(bin-per-cycle)的位解码器的关键路径(critical path)如何成为一个设计议题。如图3所示,每时钟处理一个位(bin-per-cycle)的位解码器300的关键路径从状态指数寄存器103的输出端开始经rLPS查阅表104、多工器107、加法器108、加法器109、比较模块113、多工器111、重新规化模块114而至偏移寄存器117。多工器107的控制输入端所接收的范围寄存器102输出的讯号用以决定rLPS查阅表104的输出的多个讯号中哪一个讯号需经由多工器107传递至加法器108。在加法器108中,加法器108的第二输入端所接收的范围寄存器102输出的讯号将扣除来自加法器108的第一输入端所接收的多工器107所输出的讯号。在加法器109中,加法器109的第二输入端所接收的偏移寄存器101输出的讯号将扣除来自加法器109的第一输入端所接收的加法器108的输出的讯号。比较模块113的输入端用以接收加法器109输出的差值,而比较模块113的判断结果则用以控制多工器111。多工器111输出的讯号提供给重新规化模块114用以更新偏移寄存器117,由偏移寄存器117输出的更新值119将用在下一次解码循环中。因此,图3的位解码器300的关键路径结束于偏移寄存器117的输出端。然而,每时钟处理一个位(bin-per-cycle)的位解码器300的处理能力是不足以高到能用以实时解码H.264/AVC视讯,特别是在处理高分辨率影像时,位解码器300的处理能力更显不足。The bit decoder 300 in FIG. 3 is a schematic diagram of the bit decoder 100 in FIG. 2 including a critical path. In FIG. 3, a bit decoder 300 illustrates how the critical path of a bit decoder that processes one bit per clock (bin-per-cycle) becomes a design issue. As shown in Figure 3, the critical path of the bit decoder 300 that processes one bit (bin-per-cycle) per clock starts from the output end of the state index register 103 and passes through the rLPS look-up table 104, multiplexer 107, adder 108, Adder 109 , comparison module 113 , multiplexer 111 , renormalization module 114 to offset register 117 . The signal output from the range register 102 received by the control input of the multiplexer 107 is used to determine which signal among the multiple signals output from the rLPS look-up table 104 needs to be transmitted to the adder 108 via the multiplexer 107 . In the adder 108 , the signal output from the range register 102 received by the second input end of the adder 108 subtracts the output signal from the multiplexer 107 received by the first input end of the adder 108 . In the adder 109 , the signal from the output of the adder 108 received by the first input terminal of the adder 109 is subtracted from the output signal of the offset register 101 received by the second input terminal of the adder 109 . The input terminal of the comparison module 113 is used to receive the difference output from the adder 109 , and the judgment result of the comparison module 113 is used to control the multiplexer 111 . The signal output by the multiplexer 111 is provided to the renormalization module 114 for updating the offset register 117, and the update value 119 output by the offset register 117 will be used in the next decoding cycle. Thus, the critical path of the bit decoder 300 of FIG. 3 ends at the output of the offset register 117 . However, the processing capability of the bit decoder 300 that processes one bit per clock (bin-per-cycle) is not high enough to be used for real-time decoding of H.264/AVC video, especially when processing high-resolution images, the bit The processing capability of the decoder 300 is even more insufficient.
为了增加处理能力,如图4所示的每时钟处理二个位的位解码器400除了可被用来每时钟解码一个位,亦可每时钟解码二个位。图4是本发明的一实施例所揭示的每时钟处理二个位的位解码器400的示意图。位解码器400包含一寄存器405、一第一决定位解码器407、二多工器415、409及一第二决定位解码器420。寄存器405耦接于第一决定位解码器407和多工器409。第一决定位解码器407耦接于多工器415、多工器409及第二决定位解码器420。第一决定位解码器407的输出端输出Offset1、Range1和伴随更新状态的RLPS1讯号,其中Offset1和Range1由第二决定位解码器420接收,但RLPS讯号则伴随着外部的CTX2 RLPS/CTX2 State讯号输入至多工器415。多工器415受一Source select讯号所控制并输出选择结果至第二决定位解码器420。第二决定位解码器420的输出端输出讯号Offset2、Range2、RLPS2和NextST,其中第二决定位解码器420输出的讯号Offset2、Range2、RLPS2和NextST会与来自第一决定位解码器407的RLPS1讯号一并输入多工器409。多工器409输出的讯号则回传到寄存器405,因此可开始另一循环。In order to increase the processing capacity, the bit decoder 400 processing two bits per clock as shown in FIG. 4 can be used to decode two bits per clock instead of one bit per clock. FIG. 4 is a schematic diagram of a bit decoder 400 processing two bits per clock according to an embodiment of the present invention. The bit decoder 400 includes a register 405 , a first decision bit decoder 407 , two multiplexers 415 , 409 and a second decision bit decoder 420 . The register 405 is coupled to the first decision bit decoder 407 and the multiplexer 409 . The first decision bit decoder 407 is coupled to the multiplexer 415 , the multiplexer 409 and the second decision bit decoder 420 . The output of the first decision bit decoder 407 outputs Offset1, Range1 and the RLPS1 signal accompanying the updated state, wherein Offset1 and Range1 are received by the second decision bit decoder 420, but the RLPS signal is accompanied by the external CTX2 RLPS/CTX2 State signal Input to multiplexer 415. The multiplexer 415 is controlled by a Source select signal and outputs the selection result to the second decision bit decoder 420 . The output terminals of the second decision bit decoder 420 output signals Offset2, Range2, RLPS2 and NextST, wherein the signals Offset2, Range2, RLPS2 and NextST output by the second decision bit decoder 420 will be compared with the RLPS1 from the first decision bit decoder 407. The signals are input into the multiplexer 409 together. The output signal from the multiplexer 409 is passed back to the register 405 so that another cycle can begin.
虽然,对于H.264/AVC标准的高分辨率视讯,每时钟处理二个位的位解码器具有可以接受的处理能力,但是其关键路径依旧是设计的议题,但经过重新安排解码流程以及移动查阅表到前一级的方式可有效缩短每时钟处理二个位的位解码器的关键路径。根据图5的架构可实现每时钟处理二个位的位解码器。Although, for the high-resolution video of the H.264/AVC standard, a bit decoder processing two bits per clock has acceptable processing power, but its critical path is still a design issue, but after rearranging the decoding process and moving The look-up table to the previous stage can effectively shorten the critical path of the bit decoder which processes two bits per clock. A bit decoder that processes two bits per clock can be implemented according to the architecture of FIG. 5 .
请参照图5及图6。图5说明第一决定位解码器500,图6说明第二决定位解码器600,以及第一决定位解码器500和第二决定位解码器600之间的连结关系。在图5中,第一决定位解码器500包含一偏移寄存器501、一范围寄存器502、一rLPS寄存器550、一状态指数寄存器503、一MPS状态查阅表506、一LPS状态查阅表505、一第一rLPS查阅表552、一第二rLPS查阅表555、多工器515-519、加法器508-509、一状态指数寄存器530、一比较模块513及一重新规化模块514。在图6中,第二决定位解码器600包含多个多工器610、616、623、618、620、621、622,一重新规化模块635,多个加法器641、643,一rLPS查阅表652,一MPS状态查阅表612,一LPS状态查阅表611,一第一rLPS查阅表614,一第二rLPS查阅表613,及一比较模块630。MPS状态查阅表506的输入端和LPS状态查阅表505的输入端耦接于状态指数寄存器503的输出端,MPS状态查阅表506和LPS状态查阅表505用以接收状态指数寄存器503输出的目前状态。第一rLPS查阅表552的输入端和多工器515的第一输入端耦接于MPS状态查阅表506的输出端,用以接收MPS状态查阅表506所选择的最可能状态。多工器516的第一输入端耦接于第一rLPS查阅表552的输出端,用以接收第一rLPS查阅表552输出的一32位讯号。第二rLPS查阅表555的输入端和多工器515的第二输入端耦接于LPS状态查阅表505的输出端,用以接收LPS状态查阅表505所选择的最不可能状态,多工器516的第二输入端耦接于第二rLPS查阅表555的输出端,用以接收第二rLPS查阅表555输出的一32位讯号。Please refer to Figure 5 and Figure 6 . FIG. 5 illustrates the first decision bit decoder 500 , FIG. 6 illustrates the second decision bit decoder 600 , and the connection relationship between the first decision bit decoder 500 and the second decision bit decoder 600 . In Fig. 5, the first decision bit decoder 500 comprises an offset register 501, a range register 502, an rLPS register 550, a state index register 503, an MPS state look-up table 506, an LPS state look-up table 505, an A first rLPS lookup table 552 , a second rLPS lookup table 555 , multiplexers 515 - 519 , adders 508 - 509 , a state index register 530 , a comparison module 513 and a renormalization module 514 . In Fig. 6, the second decision bit decoder 600 includes a plurality of multiplexers 610, 616, 623, 618, 620, 621, 622, a renormalization module 635, a plurality of adders 641, 643, an rLPS look-up Table 652 , an MPS state lookup table 612 , an LPS state lookup table 611 , a first rLPS lookup table 614 , a second rLPS lookup table 613 , and a comparison module 630 . The input end of the MPS state look-up table 506 and the input end of the LPS state look-up table 505 are coupled to the output end of the state index register 503, and the MPS state look-up table 506 and the LPS state look-up table 505 are in order to receive the present state that the state index register 503 outputs . The input terminal of the first rLPS look-up table 552 and the first input terminal of the multiplexer 515 are coupled to the output terminal of the MPS state look-up table 506 for receiving the most probable state selected by the MPS state look-up table 506 . The first input terminal of the multiplexer 516 is coupled to the output terminal of the first rLPS look-up table 552 for receiving a 32-bit signal output from the first rLPS look-up table 552 . The input end of the second rLPS look-up table 555 and the second input end of the multiplexer 515 are coupled to the output end of the LPS state look-up table 505, in order to receive the least likely state selected by the LPS state look-up table 505, the multiplexer The second input terminal of 516 is coupled to the output terminal of the second rLPS look-up table 555 for receiving a 32-bit signal output by the second rLPS look-up table 555 .
加法器508的第一输入端和多工器517的第一输入端耦接于rLPS寄存器550的输出端,加法器508的第二输入端耦接于范围寄存器502的输出端,多工器517的第一输入端和加法器508的第一输入端用以接收rLPS寄存器550输出的讯号,加法器508的第二输入端用以接收范围寄存器502输出的讯号。在加法器508中,范围寄存器502输出的讯号将扣除来自rLPS寄存器550输出的讯号,加法器508的输出端耦接于多工器517的第二输入端和加法器509的第二输入端,加法器509的第二输入端及多工器517的第二输入端用以接收加法器508输出的讯号。偏移寄存器501的输出端耦接于加法器509的第一输入端和多工器518的第一输入端,而多工器518的第一输入端和加法器509的第一输入端用以接收偏移寄存器501输出的讯号。在加法器509中,偏移寄存器501输出的讯号将扣除来自加法器508输出的讯号。多工器518的第二输入端耦接于加法器509的输出端,用以接收加法器509输出的差值。加法器509的输出端也耦接于比较模块513的输入端,比较模块513的输入端用以接收加法器509输出的差值,而比较模块513判断加法器509的差值输出是否小于零。比较模块513的输出端耦接于多工器518、517、516和515的控制输入端,其中比较模块113的判断结果用以控制多工器518、517、516和515。The first input end of the adder 508 and the first input end of the multiplexer 517 are coupled to the output end of the rLPS register 550, the second input end of the adder 508 is coupled to the output end of the range register 502, and the multiplexer 517 The first input end of the adder 508 and the first input end of the adder 508 are used to receive the signal output from the rLPS register 550 , and the second input end of the adder 508 is used to receive the signal output from the range register 502 . In the adder 508, the signal output by the range register 502 will subtract the signal output from the rLPS register 550, and the output end of the adder 508 is coupled to the second input end of the multiplexer 517 and the second input end of the adder 509, The second input end of the adder 509 and the second input end of the multiplexer 517 are used to receive the output signal of the adder 508 . The output terminal of the offset register 501 is coupled to the first input terminal of the adder 509 and the first input terminal of the multiplexer 518, and the first input terminal of the multiplexer 518 and the first input terminal of the adder 509 are used for The signal output by the offset register 501 is received. In the adder 509 , the signal output from the offset register 501 is subtracted from the output signal from the adder 508 . The second input terminal of the multiplexer 518 is coupled to the output terminal of the adder 509 for receiving the difference outputted by the adder 509 . The output terminal of the adder 509 is also coupled to the input terminal of the comparison module 513, the input terminal of the comparison module 513 is used to receive the difference output of the adder 509, and the comparison module 513 determines whether the difference output of the adder 509 is less than zero. The output terminal of the comparison module 513 is coupled to the control input terminals of the multiplexers 518 , 517 , 516 and 515 , wherein the judgment result of the comparison module 113 is used to control the multiplexers 518 , 517 , 516 and 515 .
另外,多工器515的输出端耦接于状态指数寄存器530的输入端,多工器515输出的讯号用以更新状态指数寄存器530。状态指数寄存器530可轮流输出更新的状态至第二决定位解码器600的多工器610的第一输入端(如图6所示)。同样地,多工器519的第一输入端耦接于多工器516的输出端,多工器519的第二输入端耦接于另一rLPS查阅表,多工器519接收来自多工器516和另一rLPS查阅表输出的讯号后,将输出一32位讯号至第二决定位解码器600的多工器616的第一输入端。重新规化模块514的第一输入端用以接收输入比特流520,第二输入端用以接收多工器518输出的讯号,第三输入端用以接收多工器517输出的讯号,然后多工器623的第一输入端和加法器641的第一输入端接收重新规化模块514的第一输出端输出的偏移讯号,加法器643的第二输入端接收重新规化模块514的第二输出端输出的范围讯号,重新规化模块635接收重新规化模块514的第三输出端输出的移位比特流(shifted bitstream),以及多工器618的控制输入端接收重新规化模块514的第二输出端输出的范围讯号中的2最高有效位(Most Significant Bit,MSB)做为其控制讯号(如图6所示)。In addition, the output terminal of the multiplexer 515 is coupled to the input terminal of the state index register 530 , and the signal output by the multiplexer 515 is used to update the state index register 530 . The status index register 530 can output the updated status to the first input terminal of the multiplexer 610 of the second decision bit decoder 600 in turn (as shown in FIG. 6 ). Similarly, the first input end of the multiplexer 519 is coupled to the output end of the multiplexer 516, the second input end of the multiplexer 519 is coupled to another rLPS look-up table, and the multiplexer 519 receives 516 and another rLPS look-up table output signal, will output a 32-bit signal to the first input terminal of the multiplexer 616 of the second decision bit decoder 600 . The first input end of the re-normalization module 514 is used to receive the input bit stream 520, the second input end is used to receive the output signal of the multiplexer 518, the third input end is used to receive the output signal of the multiplexer 517, and then multiple The first input end of the multiplier 623 and the first input end of the adder 641 receive the offset signal output by the first output end of the renormalization module 514, and the second input end of the adder 643 receives the first output end of the renormalization module 514. The range signal output by the two output terminals, the normalization module 635 receives the shifted bit stream (shifted bitstream) output by the third output terminal of the normalization module 514 again, and the control input terminal of the multiplexer 618 receives the normalization module 514 again The 2 most significant bits (Most Significant Bit, MSB) in the range signal output by the second output end of the second output terminal are used as its control signal (as shown in FIG. 6 ).
多工器610的第二输入端和rLPS查阅表652的输入端接收一StateIndex2讯号。多工器616的第二输入端耦接于rLPS查阅表652的输出端,用以接收rLPS查阅表652输出的讯号(多工器616的第一输入端耦接于多工器519,用以接收来自多工器519输出的rLPS讯号)。多工器610和多工器616的控制输入端则接收一Stage2_Source_Se1讯号,而Stage2_Source_Se1讯号用来做为多工器610和多工器616的控制讯号。The second input terminal of the multiplexer 610 and the input terminal of the rLPS look-up table 652 receive a StateIndex2 signal. The second input end of the multiplexer 616 is coupled to the output end of the rLPS look-up table 652 for receiving the output signal of the rLPS look-up table 652 (the first input end of the multiplexer 616 is coupled to the multiplexer 519 for receive the rLPS signal output from the multiplexer 519). The control input terminals of the multiplexer 610 and the multiplexer 616 receive a Stage2_Source_Se1 signal, and the Stage2_Source_Se1 signal is used as a control signal of the multiplexer 610 and the multiplexer 616 .
MPS状态查阅表612的输入端和LPS状态查阅表611的输入端耦接于多工器610的输出端,用以接收多工器610输出的讯号。第一rLPS查阅表614的输入端和多工器620的第一输入端耦接于MPS状态查阅表612的输出端,用以接收MPS状态查阅表612所选择的最可能状态。多工器621的第一输入端耦接于第一rLPS查阅表614的输出端,用以接收第一rLPS查阅表614输出的一32位讯号。第二rLPS查阅表613的输入端和多工器620的第二输入端耦接于LPS状态查阅表611的输出端,用以接收LPS状态查阅表611所选择的最不可能状态。多工器621的第二输入端耦接于第二rLPS查阅表613的输出端,用以接收第二rLPS查阅表613输出的32位讯号。The input end of the MPS state look-up table 612 and the input end of the LPS state look-up table 611 are coupled to the output end of the multiplexer 610 for receiving signals output from the multiplexer 610 . The input terminal of the first rLPS look-up table 614 and the first input terminal of the multiplexer 620 are coupled to the output terminal of the MPS state look-up table 612 for receiving the most probable state selected by the MPS state look-up table 612 . The first input terminal of the multiplexer 621 is coupled to the output terminal of the first rLPS look-up table 614 for receiving a 32-bit signal output by the first rLPS look-up table 614 . The input end of the second rLPS look-up table 613 and the second input end of the multiplexer 620 are coupled to the output end of the LPS state look-up table 611 for receiving the least probable state selected by the LPS state look-up table 611 . The second input end of the multiplexer 621 is coupled to the output end of the second rLPS look-up table 613 for receiving the 32-bit signal output by the second rLPS look-up table 613 .
多工器618的输入端耦接于多工器616的输出端;根据Stage2_Source_Se1讯号的选择,多工器618会接收多工器616输出的1组8位讯号,而多工器618则受到来自重新规化模块514的2最高有效位讯号所控制,输出1组8位讯号至加法器643的第一输入端和多工器622的第一输入端。多工器622的第二输入端以及加法器641的第二输入端耦接于加法器643的输出端。在加法器643中,加法器643将来自重新规化模块514输出的范围讯号扣除来自多工器618输出的1组8位讯号后,输出差值至多工器622以及加法器641。在加法器641中,加法器641将来自重新规化模块514输出的偏移讯号扣除来自加法器643输出的差值讯号。多工器623的第二输入端耦接于加法器641的输出端,用以接收加法器641输出的差值。加法器641的输出端也耦接于比较模块630的输入端,比较模块630的输入端用以接收加法器641输出的差值,而比较模块630判断加法器641的差值输出是否小于零。比较模块630的输出端耦接于多工器623、622、621和620的控制输入端,其中比较模块630的判断结果用以控制多工器623、622、621和620。重新规化模块635的第一输入端用以接收来自第一决定位解码器500的重新规化模块514的移位比特流,第二输入端耦接于多工器623的输出端,用以接收多工器623输出的讯号,第三输入端耦接于多工器622的输出端,用以接收多工器622输出的讯号,第一输出端输出一偏移讯号至第一决定位解码器500的偏移寄存器501和第二输出端输出一范围讯号至第一决定位解码器500的范围寄存器502。而偏移寄存器501和范围寄存器502将在下一循环使用来自重新规化模块635的偏移讯号和范围讯号。同样地,多工器621输出的讯号送至rLPS寄存器550以及多工器620输出的讯号送至状态指数寄存器503,让第一决定位解码器500在下一循环使用。The input terminal of the multiplexer 618 is coupled to the output terminal of the multiplexer 616; according to the selection of the Stage2_Source_Se1 signal, the multiplexer 618 will receive a group of 8-bit signals output by the multiplexer 616, and the multiplexer 618 will receive the output from the multiplexer 616. Controlled by the 2 most significant bit signals of the renormalization module 514 , output a set of 8-bit signals to the first input end of the adder 643 and the first input end of the multiplexer 622 . The second input end of the multiplexer 622 and the second input end of the adder 641 are coupled to the output end of the adder 643 . In the adder 643 , the adder 643 subtracts a group of 8-bit signals output from the multiplexer 618 from the range signal output from the renormalization module 514 , and outputs the difference to the multiplexer 622 and the adder 641 . In the adder 641 , the adder 641 subtracts the difference signal output from the adder 643 from the offset signal output from the renormalization module 514 . The second input terminal of the multiplexer 623 is coupled to the output terminal of the adder 641 for receiving the difference outputted by the adder 641 . The output terminal of the adder 641 is also coupled to the input terminal of the comparison module 630 , the input terminal of the comparison module 630 is used to receive the difference output of the adder 641 , and the comparison module 630 determines whether the difference output of the adder 641 is less than zero. The output terminal of the comparison module 630 is coupled to the control input terminals of the multiplexers 623 , 622 , 621 and 620 , wherein the judgment result of the comparison module 630 is used to control the multiplexers 623 , 622 , 621 and 620 . The first input terminal of the renormalization module 635 is used to receive the shifted bit stream from the renormalization module 514 of the first decision bit decoder 500, and the second input terminal is coupled to the output terminal of the multiplexer 623 for Receiving the signal output by the multiplexer 623, the third input terminal is coupled to the output terminal of the multiplexer 622 to receive the signal output by the multiplexer 622, and the first output terminal outputs an offset signal to the first decision bit decoding The offset register 501 and the second output terminal of the device 500 output a range signal to the range register 502 of the first decision bit decoder 500 . And the offset register 501 and the range register 502 will use the offset signal and the range signal from the renormalization module 635 in the next cycle. Similarly, the signal output by the multiplexer 621 is sent to the rLPS register 550 and the signal output by the multiplexer 620 is sent to the state index register 503 for the first decision bit decoder 500 to use in the next cycle.
图7和图8是说明位解码器500和位解码器600之间的关键路径。如图7和图8所示,位解码器500和位解码器600之间有一关键路径开始从范围寄存器502的输出端经加法器508,再由加法器508的输出端延伸至加法器509,继续从加法器509的输出端延伸至比较模块513,其后经多工器517的输出端,再经由重新规化模块514的输出端至加法器643,从加法器643的输出端继续延伸至加法器641,再接着到比较模块630,最后,由比较模块630输出的讯号去控制多工器623经由重新规化模块635输出下一循环所须的偏移讯号。7 and 8 illustrate the critical path between bit decoder 500 and bit decoder 600 . As shown in Figures 7 and 8, a critical path between the bit decoder 500 and the bit decoder 600 starts from the output end of the range register 502 through the adder 508, and then extends from the output end of the adder 508 to the adder 509, Continue to extend from the output end of the adder 509 to the comparison module 513, then through the output end of the multiplexer 517, then through the output end of the normalization module 514 to the adder 643, continue to extend from the output end of the adder 643 to The adder 641 is connected to the comparison module 630 , and finally, the output signal of the comparison module 630 is used to control the multiplexer 623 to output the offset signal required for the next cycle through the renormalization module 635 .
总结来说,比起传统设计,每时钟处理二个位的位解码器的关键路径比每时钟处理一个位的位解码器来的长。但本发明提出的重新安排解码流程以及移动查阅表的方式降低了关键路径的长度。本发明的设计显示出在时间需求上降低33%。例如,未经本发明改善前,每时钟处理二个位的位解码器的频率为150MHz(Fujitsu 90nm工艺),但采用本发明所提出的重新安排解码流程后,每时钟处理二个位的位解码器的频率可提升至225MHz。In summary, compared to conventional designs, the critical path of a bit decoder processing two bits per clock is longer than that of a bit decoder processing one bit per clock. However, the method of rearranging the decoding process and moving the look-up table proposed by the present invention reduces the length of the critical path. The inventive design showed a 33% reduction in time requirements. For example, before the improvement of the present invention, the frequency of the bit decoder that processes two bits per clock is 150MHz (Fujitsu 90nm process), but after adopting the rearrangement decoding process proposed by the present invention, the bit decoder of two bits is processed per clock The frequency of the decoder can be increased to 225MHz.
以上所述仅为本发明的较佳实施例,凡依本发明的权利要求所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010147555.0A CN102201815B (en) | 2010-03-25 | 2010-03-25 | Binary operation decoding device with high operation frequency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010147555.0A CN102201815B (en) | 2010-03-25 | 2010-03-25 | Binary operation decoding device with high operation frequency |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102201815A CN102201815A (en) | 2011-09-28 |
CN102201815B true CN102201815B (en) | 2015-03-18 |
Family
ID=44662240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010147555.0A Expired - Fee Related CN102201815B (en) | 2010-03-25 | 2010-03-25 | Binary operation decoding device with high operation frequency |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102201815B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106817307B (en) * | 2015-11-27 | 2020-09-22 | 佛山市顺德区顺达电脑厂有限公司 | Method for establishing route for cluster type storage system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6574651B1 (en) * | 1999-10-01 | 2003-06-03 | Hitachi, Ltd. | Method and apparatus for arithmetic operation on vectored data |
CN1773868A (en) * | 2004-11-08 | 2006-05-17 | 联发科技股份有限公司 | Path Scale Algorithm and Related Devices for Fast Viterbi Detector |
CN101145790A (en) * | 2006-12-08 | 2008-03-19 | 威盛电子股份有限公司 | Decoder, add-compare-select unit and method thereof |
-
2010
- 2010-03-25 CN CN201010147555.0A patent/CN102201815B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6574651B1 (en) * | 1999-10-01 | 2003-06-03 | Hitachi, Ltd. | Method and apparatus for arithmetic operation on vectored data |
CN1773868A (en) * | 2004-11-08 | 2006-05-17 | 联发科技股份有限公司 | Path Scale Algorithm and Related Devices for Fast Viterbi Detector |
CN101145790A (en) * | 2006-12-08 | 2008-03-19 | 威盛电子股份有限公司 | Decoder, add-compare-select unit and method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102201815A (en) | 2011-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8306125B2 (en) | 2-bin parallel decoder for advanced video processing | |
EP1958450B1 (en) | Decoding data | |
JP5390004B2 (en) | Method for generating state machine for probability estimation, arithmetic encoder, arithmetic decoder, and decoding method | |
KR100748485B1 (en) | A variable length codeword decoder and a variable length codeword decoding method | |
JP2006054865A (en) | Binary arithmetic decoding apparatus and methods using pipelined structure | |
US7557740B1 (en) | Context-based adaptive binary arithmetic coding (CABAC) decoding apparatus and decoding method thereof | |
JP2009100474A (en) | Context-adaptive binary arithmetic encoding and decoding system and method | |
US20110310958A1 (en) | System for entropy decoding of h.264 video for real time hdtv applications | |
US10264264B2 (en) | Multi-bin decoding systems and methods | |
CN102186075B (en) | An Entropy Encoder and Its Implementation Method | |
CN104378634A (en) | Method for binarizing input symbols and method for generating index values from codewords | |
US7286066B1 (en) | Acceleration of bitstream decoding | |
CN102752590A (en) | Decoding-processing apparatus and method | |
CN100440979C (en) | Context-based adaptive two-dimensional variable-length decoding method and device | |
CN101277444A (en) | A device and method for decoding Columbus code | |
CN103248896A (en) | MQ arithmetic coder | |
CN102201815B (en) | Binary operation decoding device with high operation frequency | |
CN104980749B (en) | Decoding device and method for arithmetic coding | |
Ong et al. | A high throughput context-based adaptive arithmetic codec for JPEG2000 | |
CN102201816B (en) | Parallel five-bypass-bit full-text adaptive binary arithmetic codec | |
CN102388538B (en) | Method and device for encoding an input bit sequence and corresponding decoding method and device | |
JPH0738445A (en) | Variable-length sign decoder | |
CN101267559A (en) | General entropy decoding method and device for video decoder | |
TWI396450B (en) | Binary arithmetic decoding device with high operation frequency | |
CN104469366B (en) | A kind of 0 rank Exp- Golomb decoder and coding/decoding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150318 Termination date: 20190325 |