CN102195485B - DC to DC Converter - Google Patents
DC to DC Converter Download PDFInfo
- Publication number
- CN102195485B CN102195485B CN201010138181.6A CN201010138181A CN102195485B CN 102195485 B CN102195485 B CN 102195485B CN 201010138181 A CN201010138181 A CN 201010138181A CN 102195485 B CN102195485 B CN 102195485B
- Authority
- CN
- China
- Prior art keywords
- output
- circuit
- voltage
- power supply
- down circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000002955 isolation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种电源供应装置,且特别涉及一种具有升降压功能及高效率的直流转直流转换器。The invention relates to a power supply device, and in particular to a high-efficiency DC-to-DC converter with buck-boost function.
背景技术 Background technique
传统上,为了要稳定地/精准地提供负载(例如电子装置)所需的电源电压,大多会将直流转直流转换器设计具有升降压功能。图1为传统具有升降压功能的直流转直流转换器100的电路示意图。请参照图1,直流转直流转换器100包括具有隔离作用的变压器TX、开关SW、电容C、二极管D,以及电压反馈控制器VF。Traditionally, in order to stably/accurately provide the power supply voltage required by loads (such as electronic devices), most DC-to-DC converters are designed with a buck-boost function. FIG. 1 is a schematic circuit diagram of a conventional DC-to-DC converter 100 with a buck-boost function. Referring to FIG. 1 , the DC-to-DC converter 100 includes an isolation transformer TX, a switch SW, a capacitor C, a diode D, and a voltage feedback controller VF.
一般而言,电压反馈控制器VF会持续侦测负载LD所接收的电源电压Vpwr,并据以产生可变工作周期(duty cycle)的控制信号CS,而对直流输入电压Vin进行升压(boost)或降压(buck)。如此一来,直流转直流转换器100即可稳定地/精准地提供负载LD所需的电源电压Vpwr。Generally speaking, the voltage feedback controller VF will continuously detect the power supply voltage Vpwr received by the load LD, and accordingly generate a control signal CS with a variable duty cycle to boost the DC input voltage Vin. ) or buck (buck). In this way, the DC-to-DC converter 100 can stably/precisely provide the power supply voltage Vpwr required by the load LD.
然而,由于直流转直流转换器100主要是通过具有隔离作用的变压器TX来同时实现升降压功能,故而变压器TX必需负担所有的输出功率(outputpower),以至于变压器TX的体积会很大,且其效率也不高。也亦因如此,直流转直流转换器100很难实现在现今微型化的电子装置的设计的范畴中。However, since the DC-to-DC converter 100 realizes the buck-boost function at the same time mainly through the transformer TX with isolation function, the transformer TX must bear all the output power (output power), so that the volume of the transformer TX will be large, and Its efficiency is not high either. Also because of this, the DC-to-DC converter 100 is difficult to implement in the design category of today's miniaturized electronic devices.
发明内容 Contents of the invention
有鉴于此,本发明提供一种具有升降压功能、体积小且效率高的直流转直流转换器。In view of this, the present invention provides a DC-to-DC converter with a buck-boost function, small size and high efficiency.
本发明的其他目的和优点可以从本发明所揭示的技术特征中得到进一步的了解。Other purposes and advantages of the present invention can be further understood from the technical features disclosed in the present invention.
为达上述的一或部份或全部目的或是其他目的,本发明所提供的直流转直流转换器适于产生负载所需的电源电压,且其包括降压电路与升压电路。降压电路用以接收直流输入电压,并依据第一控制信号以对直流输入电压进行降压处理后而输出电源电压,或者直接输出直流输入电压。升压电路耦接负载与降压电路,用以接收降压电路所输出的电源电压或直流输入电压,并依据第二控制信号以对降压电路所输出的直流输入电压进行升压处理后而输出电源电压给负载,或者直接输出降压电路所输出的电源电压给负载。To achieve one or part or all of the above objectives or other objectives, the DC-to-DC converter provided by the present invention is suitable for generating the power supply voltage required by the load, and it includes a step-down circuit and a step-up circuit. The step-down circuit is used for receiving the DC input voltage, and outputting the power supply voltage after stepping down the DC input voltage according to the first control signal, or directly outputting the DC input voltage. The step-up circuit is coupled to the load and the step-down circuit to receive the power supply voltage or the DC input voltage output by the step-down circuit, and to boost the DC input voltage output by the step-down circuit according to the second control signal. Output the power supply voltage to the load, or directly output the power supply voltage output by the step-down circuit to the load.
在本发明的一实施例中,直流转直流转换器还包括控制单元。控制单元耦接降压电路与升压电路,用以侦测降压电路与升压电路的输出的电压,并据以产生第一与第二控制信号来控制降压电路与升压电路。In an embodiment of the present invention, the DC-to-DC converter further includes a control unit. The control unit is coupled to the step-down circuit and the step-up circuit, and is used for detecting output voltages of the step-down circuit and the step-up circuit, and generates first and second control signals to control the step-down circuit and the step-up circuit accordingly.
在本发明的一实施例中,当直流输入电压高于电源电压时,控制单元控制降压电路对直流输入电压进行降压处理后而输出电源电压,并且控制升压电路直接输出降压电路所输出的电源电压给负载。In an embodiment of the present invention, when the DC input voltage is higher than the power supply voltage, the control unit controls the step-down circuit to output the power supply voltage after stepping down the DC input voltage, and controls the boost circuit to directly output the voltage obtained by the step-down circuit. output power supply voltage to the load.
在本发明的一实施例中,当直流输入电压低于电源电压时,控制单元控制降压电路直接输出直流输入电压,并且控制升压电路对降压电路所输出的直流输入电压进行升压处理后而输出电源电压给负载。In an embodiment of the present invention, when the DC input voltage is lower than the power supply voltage, the control unit controls the step-down circuit to directly output the DC input voltage, and controls the step-up circuit to boost the DC input voltage output by the step-down circuit Then output the power supply voltage to the load.
在本发明的一实施例中,升压电路的输出功率可以小于、大于或等于降压电路的输出功率。In an embodiment of the present invention, the output power of the boost circuit may be less than, greater than or equal to the output power of the step-down circuit.
基于上述可知,本发明所提出的直流转直流转换器是通过将降压电路与升压电路分开独立设计后再搭配一起使用,藉以来达到具有升降压功能、体积小以及效率高等多项目标。更清楚来说,在直流输入电压高于负载所需的电源电压的条件下,由于只有降压电路会进行降压运作以产生负载所需的电源电压,而升压电路仅会传导降压电路所产生的电源电压给负载,以至于在此条件下,直流转直流转换器可以达到降压功能与提高降压效率的目标。Based on the above, it can be seen that the DC-to-DC converter proposed in the present invention is designed separately from the step-down circuit and the boost circuit and then used together to achieve multiple goals such as having a step-up and step-down function, small size and high efficiency. . To be more clear, when the DC input voltage is higher than the power supply voltage required by the load, since only the step-down circuit will perform step-down operation to generate the power supply voltage required by the load, and the boost circuit will only conduct the step-down circuit The generated power supply voltage is supplied to the load, so that under this condition, the DC-to-DC converter can achieve the goal of step-down function and improve step-down efficiency.
另一方面,在直流输入电压低于负载所需的电源电压的条件下,由于降压电路仅会传导所接收的直流输入电压,而只有升压电路会进行升压运作以产生负载所需的电源电压,以至于在此条件下,直流转直流转换器可以达到升压功能与提高升压效率的目标。此外,若将本发明的升压电路的输出功率设计的远小于降压电路的输出功率的话,则应用在升压电路中的变压器的体积就得以被缩减相当的多,藉以致使直流转直流转换器可以达到体积小的目标。On the other hand, when the DC input voltage is lower than the power supply voltage required by the load, since the step-down circuit will only conduct the received DC input voltage, only the boost circuit will perform a step-up operation to generate the load required by the load. Power supply voltage, so that under this condition, the DC-to-DC converter can achieve the goal of boosting function and improving boosting efficiency. In addition, if the output power of the step-up circuit of the present invention is designed to be much smaller than the output power of the step-down circuit, the volume of the transformer used in the step-up circuit can be reduced quite a lot, so that DC-to-DC conversion The device can achieve the goal of small size.
为让本发明的上述特征和优点能更明显易懂,下文特举多个实施例,并配合附图,作详细说明如下,但是上述一般描述及以下实施方式仅为例示性及阐释性的,其并不能限制本发明所欲主张的范围。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, a number of embodiments are given below, together with the accompanying drawings, for detailed description as follows, but the above-mentioned general description and the following implementation methods are only illustrative and explanatory. It is not intended to limit the scope of the present invention as claimed.
附图说明 Description of drawings
图1为传统具有升降压功能的直流转直流转换器的电路示意图。FIG. 1 is a schematic circuit diagram of a conventional DC-to-DC converter with a buck-boost function.
图2为本发明一实施例的直流转直流转换器的方块示意图。FIG. 2 is a schematic block diagram of a DC-to-DC converter according to an embodiment of the present invention.
图3为本发明一实施例的直流转直流转换器的电路示意图。FIG. 3 is a schematic circuit diagram of a DC-to-DC converter according to an embodiment of the present invention.
主要元件符号说明:Description of main component symbols:
100、200:直流转直流转换器 201:降压电路100, 200: DC to DC converter 201: Step-down circuit
203:升压电路 205:控制单元203: Boost circuit 205: Control unit
TX、TX’:变压器 207:第一端TX, TX’: transformer 207: first end
209:第二端 211:打点端209: Second end 211: RBI end
SW、SW1、SW2:开关 C、C1、C2:电容SW, SW1, SW2: Switches C, C1, C2: Capacitors
L:电感 D、D1~D3:二极管L: Inductance D, D1~D3: Diodes
VF:电压反馈控制器 LD:负载VF: Voltage Feedback Controller LD: Load
VF1:第一电压反馈控制器 VF2:第二电压反馈控制器VF1: the first voltage feedback controller VF2: the second voltage feedback controller
Vin:直流输入电压 Vpwr:电源电压Vin: DC input voltage Vpwr: Power supply voltage
CS:控制信号 GND:接地电位CS: Control signal GND: Ground potential
CS1:第一控制信号 CS2:第二控制信号CS1: The first control signal CS2: The second control signal
具体实施方式 Detailed ways
有关本发明的前述及其他技术内容、特点与功效,在以下配合附图的多个实施例的详细说明中,将可清楚地呈现。另外,现将详细参考本发明的实施例,并在附图中说明所述实施例的实例。另外,凡可能之处,在附图及实施方式中使用相同标号的元件/构件代表相同或类似部分。The aforementioned and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of multiple embodiments with accompanying drawings. Additionally, reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings. In addition, wherever possible, elements/components using the same reference numerals in the drawings and embodiments represent the same or similar parts.
图2为本发明一实施例的直流转直流转换器(DC-to-DC converter)200的方块示意图。请参照图2,直流转直流转换器200适于产生负载LD(例如为电子装置,但并不限制于此)所需的电源电压(power voltage)Vpwr,且其包括降压电路(buck circuit)201、升压电路(boost circuit)203以及控制单元(control unit)205。在本实施例中,升压电路203的输出功率(output power)可以小于、大于或等于降压电路201的输出功率,一切根据实际设计需求来决定。FIG. 2 is a schematic block diagram of a DC-to-DC converter (DC-to-DC converter) 200 according to an embodiment of the present invention. Please refer to FIG. 2, the DC-to-DC converter 200 is suitable for generating a power supply voltage (power voltage) Vpwr required by a load LD (such as an electronic device, but not limited thereto), and it includes a step-down circuit (buck circuit) 201, a boost circuit (boost circuit) 203 and a control unit (control unit) 205. In this embodiment, the output power of the boost circuit 203 may be less than, greater than or equal to the output power of the step-down circuit 201, all determined according to actual design requirements.
降压电路201用以接收直流输入电压Vin,并依据第一控制信号CS1以对直流输入电压Vin进行降压处理后而输出电源电压Vpwr,或者直接输出直流输入电压Vin。升压电路203耦接负载LD与降压电路201,用以接收降压电路201所输出的电源电压Vpwr或直流输入电压Vin,并依据第二控制信号CS2以对降压电路201所输出的直流输入电压Vin进行升压处理后而输出电源电压Vpwr给负载LD,或者直接输出降压电路201所输出的电源电压Vpwr给负载LD。The step-down circuit 201 is used to receive the DC input voltage Vin, and output the power supply voltage Vpwr after stepping down the DC input voltage Vin according to the first control signal CS1, or output the DC input voltage Vin directly. The step-up circuit 203 is coupled to the load LD and the step-down circuit 201 for receiving the power supply voltage Vpwr or the DC input voltage Vin output by the step-down circuit 201, and according to the second control signal CS2 to output the DC output of the step-down circuit 201. The input voltage Vin is boosted to output the power supply voltage Vpwr to the load LD, or the power supply voltage Vpwr output by the step-down circuit 201 is directly output to the load LD.
控制单元205耦接降压电路201与升压电路203,用以侦测降压电路201与升压电路203的输出的电压,并据以产生第一控制信号CS1与第二控制信号CS2来控制降压电路201与升压电路203。在本实施例中,当直流输入电压Vin高于电源电压Vpwr时,控制单元205控制降压电路201对直流输入电压Vin进行降压处理后而输出电源电压Vpwr,并且控制升压电路203直接输出降压电路201所输出的电源电压Vpwr给负载LD。另一方面,当直流输入电压Vin低于电源电压Vpwr时,控制单元205控制降压电路201直接输出直流输入电压Vin,并且控制升压电路203对降压电路201所输出的直流输入电压Vin进行升压处理后而输出电源电压Vpwr给负载LD。The control unit 205 is coupled to the step-down circuit 201 and the step-up circuit 203, and is used to detect the output voltages of the step-down circuit 201 and the step-up circuit 203, and generate a first control signal CS1 and a second control signal CS2 accordingly to control Buck circuit 201 and boost circuit 203 . In this embodiment, when the DC input voltage Vin is higher than the power supply voltage Vpwr, the control unit 205 controls the step-down circuit 201 to output the power supply voltage Vpwr after stepping down the DC input voltage Vin, and controls the boost circuit 203 to directly output The power supply voltage Vpwr output by the step-down circuit 201 is supplied to the load LD. On the other hand, when the DC input voltage Vin is lower than the power supply voltage Vpwr, the control unit 205 controls the step-down circuit 201 to directly output the DC input voltage Vin, and controls the step-up circuit 203 to output the DC input voltage Vin output by the step-down circuit 201. After boosting, the power supply voltage Vpwr is output to the load LD.
更清楚来说,图3为本发明一实施例的直流转直流转换器200的电路示意图。请合并参照图2与图3,降压电路201例如可以为降压型转换器(buckconverter,但并不限制于此),且其包括开关SW1、二极管D1、电感L以及电容C1。开关SW1得以利用MOS晶体管实现,且其第一端用以接收直流输入电压Vin,而其控制端则用以接收第一控制信号CS1。二极管D1的阳极耦接至接地电位GND,而二极管D1的阴极则耦接开关SW1的第二端。电感L的第一端耦接开关SW1的第二端,而电感L的第二端则用以输出电源电压Vpwr或直流输入电压Vin。电容C1的第一端耦接电感L的第二端,而电容C1的第二端则耦接至接地电位GND。To be more clear, FIG. 3 is a schematic circuit diagram of a DC-to-DC converter 200 according to an embodiment of the present invention. Please refer to FIG. 2 and FIG. 3 together. The buck circuit 201 may be, for example, a buck converter (but not limited thereto), and includes a switch SW1, a diode D1, an inductor L, and a capacitor C1. The switch SW1 is realized by using a MOS transistor, and its first terminal is used to receive the DC input voltage Vin, and its control terminal is used to receive the first control signal CS1. The anode of the diode D1 is coupled to the ground potential GND, and the cathode of the diode D1 is coupled to the second terminal of the switch SW1. The first end of the inductor L is coupled to the second end of the switch SW1, and the second end of the inductor L is used to output the power supply voltage Vpwr or the DC input voltage Vin. The first end of the capacitor C1 is coupled to the second end of the inductor L, and the second end of the capacitor C1 is coupled to the ground potential GND.
另外,升压电路203例如可以为返驰式升压型转换器(flyback-boostconverter,但并不限制于此),且其包括变压器TX’、二极管D2与D3、开关SW2以及电容C2。变压器TX’具有第一端207、第二端209以及打点端211。其中,变压器TX’的打点端211耦接电感L的第二端。二极管D2的阳极(anode)耦接变压器TX’的第一端207,而二极管D2的阴极(cathode)则用以输出电源电压Vpwr。二极管D3的阳极耦接电感L的第二端,而二极管D3的阴极则耦接二极管D2的阴极。开关SW2得以利用MOS晶体管实现,且其控制端用以接收第二控制信号CS2、其第一端耦接变压器TX’的第二端209,而其第二端则耦接接地电位GND。In addition, the boost circuit 203 can be, for example, a flyback-boost converter (but not limited thereto), and it includes a transformer TX', diodes D2 and D3, a switch SW2, and a capacitor C2. The transformer TX' has a first terminal 207, a second terminal 209 and a dotted terminal 211. Wherein, the dotted terminal 211 of the transformer TX' is coupled to the second terminal of the inductor L. The anode of the diode D2 is coupled to the first terminal 207 of the transformer TX', and the cathode of the diode D2 is used to output the power voltage Vpwr. The anode of the diode D3 is coupled to the second end of the inductor L, and the cathode of the diode D3 is coupled to the cathode of the diode D2. The switch SW2 is implemented by using a MOS transistor, and its control terminal is used to receive the second control signal CS2, its first terminal is coupled to the second terminal 209 of the transformer TX', and its second terminal is coupled to the ground potential GND.
再者,控制单元205包括第一电压反馈控制器(voltage feedback controller)VF1与第二电压反馈控制器VF2。第一电压反馈控制器VF1用以侦测降压电路201的输出的电压,并据以产生第一控制信号CS1。第二电压反馈控制器VF2用以侦测升压电路203的输出的电压,并据以产生第二控制信号CS2。Furthermore, the control unit 205 includes a first voltage feedback controller (voltage feedback controller) VF1 and a second voltage feedback controller VF2. The first voltage feedback controller VF1 is used to detect the output voltage of the step-down circuit 201 and generate the first control signal CS1 accordingly. The second voltage feedback controller VF2 is used to detect the output voltage of the boost circuit 203 and generate a second control signal CS2 accordingly.
基于上述,假设负载LD所需的电源电压Vpwr为12V,且此时直流输入电压Vin为12.5V的话,则由于直流输入电压Vin高于电源电压Vpwr,以至于第一电压反馈控制器VF1产生第一控制信号CS1以多次开启与关闭开关SW1,从而致使降压电路201对直流输入电压Vin(即12.5V)进行降压处理后而输出电源电压Vpwr(即12V)。此时,由于第二电压反馈控制器VF2会侦测到升压电路203的输出的电压已为负载LD所需的电源电压Vpwr(即12V),以至于第二电压反馈控制器VF2会产生第二控制信号CS2以持续关闭开关SW2,从而使得降压电路201所输出的电源电压Vpwr(即12V)会直接经由二极管D3的路径而提供至负载LD,亦即升压电路203会直接输出降压电路201所输出的电源电压Vpwr给负载LD。Based on the above, assuming that the power supply voltage Vpwr required by the load LD is 12V, and the DC input voltage Vin is 12.5V at this time, since the DC input voltage Vin is higher than the power supply voltage Vpwr, the first voltage feedback controller VF1 generates the first A control signal CS1 turns on and off the switch SW1 multiple times, so that the step-down circuit 201 steps down the DC input voltage Vin (ie, 12.5V) to output the power supply voltage Vpwr (ie, 12V). At this time, because the second voltage feedback controller VF2 will detect that the output voltage of the boost circuit 203 has already reached the power supply voltage Vpwr (i.e. 12V) required by the load LD, so that the second voltage feedback controller VF2 will generate the first The second control signal CS2 is used to continuously close the switch SW2, so that the power supply voltage Vpwr (i.e. 12V) output by the step-down circuit 201 will be directly provided to the load LD through the path of the diode D3, that is, the step-up circuit 203 will directly output a step-down voltage The power supply voltage Vpwr output by the circuit 201 is given to the load LD.
由此可知,在直流输入电压Vin高于负载LD所需的电源电压Vpwr的条件下,只有降压电路201会进行降压运作/处理以产生负载LD所需的电源电压Vpwr,而升压电路203仅会传导降压电路201所产生的电源电压Vpwr给负载LD,以至于在此条件下,直流转直流转换器200可以达到降压功能与提高降压效率的目标。It can be seen that, under the condition that the DC input voltage Vin is higher than the power supply voltage Vpwr required by the load LD, only the step-down circuit 201 will perform step-down operation/processing to generate the power supply voltage Vpwr required by the load LD, while the boost circuit 203 only conducts the power supply voltage Vpwr generated by the step-down circuit 201 to the load LD, so that under this condition, the DC-to-DC converter 200 can achieve the step-down function and improve the step-down efficiency.
另一方面,假设负载LD所需的电源电压Vpwr为12V,且此时直流输入电压Vin为11.5V的话,则由于直流输入电压Vin低于电源电压Vpwr,以至于第一电压反馈控制器VF1产生第一控制信号CS1以持续开启开关SW1,从而致使降压电路201直接输出直流输入电压Vin(即11.5V)。此时,由于第二电压反馈控制器VF2会侦测到升压电路203的输出的电压非为负载LD所需的电源电压Vpwr(即12V),以至于第二电压反馈控制器VF2会产生第二控制信号CS2以多次开启与关闭开关SW2。而且,由于变压器TX’的一次侧与二次侧的一端迭置在一起(亦即打点端211),故而变压器TX’并不具有隔离的作用,以至于变压器TX’所需提供的输出功率不需很大,从而使得降压电路201所输出的直流输入电压Vin(即11.5V)仅需经由升压电路203的小功率升压处理后,而通过二极管D2的路径输出电源电压Vpwr(即12V)给负载LD。换言之,此时的升压电路203只要些微补足降压电路201所输出不足的功率即可。On the other hand, assuming that the power supply voltage Vpwr required by the load LD is 12V and the DC input voltage Vin is 11.5V at this time, since the DC input voltage Vin is lower than the power supply voltage Vpwr, the first voltage feedback controller VF1 generates The first control signal CS1 continuously turns on the switch SW1 , so that the step-down circuit 201 directly outputs the DC input voltage Vin (ie, 11.5V). At this time, since the second voltage feedback controller VF2 will detect that the output voltage of the boost circuit 203 is not the power supply voltage Vpwr (i.e. 12V) required by the load LD, the second voltage feedback controller VF2 will generate the first The second control signal CS2 turns on and off the switch SW2 multiple times. Moreover, since the primary side and one end of the secondary side of the transformer TX' are stacked together (that is, the dotted end 211), the transformer TX' does not have the function of isolation, so that the output power required to be provided by the transformer TX' is not sufficient. It needs to be very large, so that the DC input voltage Vin (i.e. 11.5V) output by the step-down circuit 201 only needs to be boosted by a small power of the boost circuit 203, and the power supply voltage Vpwr (i.e. 12V) is output through the path of the diode D2. ) to the load LD. In other words, at this time, the boost circuit 203 only needs to slightly supplement the insufficient output power of the step-down circuit 201 .
由此可知,在直流输入电压Vin低于负载LD所需之电源电压Vpwr的条件下,降压电路201仅会传导所接收的直流输入电压Vin,而只有升压电路203会进行升压运作/处理以产生负载LD所需的电源电压Vpwr,以至于在此条件下,直流转直流转换器200可以达到升压功能与提高升压效率的目标。此外,在本实施例中,若将升压电路203的输出功率设计的远小于降压电路201的输出功率的话(例如升压电路203的输出功率仅需为降压电路201的输出功率的10%左右,但并不限制于此),则应用在升压电路203中的变压器TX’的体积就得以被缩减相当的多(相对于先前技术的直流转直流转换器100的变压器TX而言),藉以致使直流转直流转换器200可以达到体积小的目标,从而得以轻易地实现在现今微型化的电子装置的设计的范畴中。另一方面,在本发明的其他实施例中,亦可将升压电路203的输出功率设计的大于或等于降压电路201的输出功率,藉以符合某些设计应用上的需求。It can be seen that, under the condition that the DC input voltage Vin is lower than the power supply voltage Vpwr required by the load LD, the step-down circuit 201 will only conduct the received DC input voltage Vin, and only the step-up circuit 203 will perform boosting operation/ Processing is performed to generate the power supply voltage Vpwr required by the load LD, so that under this condition, the DC-to-DC converter 200 can achieve the boost function and improve the boost efficiency. In addition, in this embodiment, if the output power of the boost circuit 203 is designed to be much smaller than the output power of the step-down circuit 201 (for example, the output power of the boost circuit 203 only needs to be 10% of the output power of the step-down circuit 201 %, but not limited thereto), the volume of the transformer TX' applied in the booster circuit 203 can be reduced considerably (compared to the transformer TX of the DC-to-DC converter 100 in the prior art) , so that the DC-to-DC converter 200 can achieve the goal of small size, so that it can be easily implemented in the scope of today's miniaturized electronic device design. On the other hand, in other embodiments of the present invention, the output power of the boost circuit 203 can also be designed to be greater than or equal to the output power of the step-down circuit 201, so as to meet certain design and application requirements.
综上所述,本发明所提出的直流转直流转换器是通过将降压电路与升压电路分开独立设计后再搭配一起使用,藉以来达到具有升降压功能、体积小以及效率高等多项目标。更清楚来说,在直流输入电压高于负载所需的电源电压的条件下,由于只有降压电路会进行降压运作以产生负载所需的电源电压,而升压电路仅会传导降压电路所产生的电源电压给负载,以至于在此条件下,直流转直流转换器可以达到降压功能与提高降压效率的目标。To sum up, the DC-to-DC converter proposed by the present invention is designed separately and independently from the step-down circuit and the step-up circuit and then used together, so as to achieve multiple functions such as step-down and step-down functions, small size and high efficiency. Target. To be more clear, when the DC input voltage is higher than the power supply voltage required by the load, since only the step-down circuit will perform step-down operation to generate the power supply voltage required by the load, and the boost circuit will only conduct the step-down circuit The generated power supply voltage is supplied to the load, so that under this condition, the DC-to-DC converter can achieve the goal of step-down function and improve step-down efficiency.
另一方面,在直流输入电压低于负载所需的电源电压的条件下,由于降压电路仅会传导所接收的直流输入电压,而只有升压电路会进行升压运作以产生负载所需的电源电压,以至于在此条件下,直流转直流转换器可以达到升压功能与提高升压效率的目标。此外,若将本发明的升压电路的输出功率设计的远小于降压电路之输出功率的话,则应用在升压电路中的变压器的体积就得以被缩减相当的多,藉以致使直流转直流转换器可以达到体积小的目标。On the other hand, when the DC input voltage is lower than the power supply voltage required by the load, since the step-down circuit will only conduct the received DC input voltage, only the boost circuit will perform a step-up operation to generate the load required by the load. Power supply voltage, so that under this condition, the DC-to-DC converter can achieve the goal of boosting function and improving boosting efficiency. In addition, if the output power of the step-up circuit of the present invention is designed to be much smaller than the output power of the step-down circuit, the volume of the transformer used in the step-up circuit can be reduced quite a lot, so that DC-to-DC conversion The device can achieve the goal of small size.
但以上所述的内容,仅为本发明的较佳实施例而已,不能以此限定本发明实施的范围,即只要依据本发明申请专利范围及发明说明内容所作的简单的等效变化与修饰,皆仍属本发明专利涵盖的范围内。另外,本发明的任一实施例或申请专利范围不须达成本发明所揭示的全部目的或优点或特点。此外,摘要部分和标题仅是用来辅助专利文件搜寻之用,并非用来限制本发明的权利要求。However, the above-mentioned content is only a preferred embodiment of the present invention, and cannot limit the scope of the present invention. That is, as long as simple equivalent changes and modifications are made according to the patent scope of the present invention and the description of the invention, All still belong to the scope that the patent of the present invention covers. In addition, any embodiment or scope of claims of the present invention does not necessarily achieve all the objects or advantages or features disclosed in the present invention. In addition, the abstract and titles are only used to assist patent document search, and are not used to limit the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010138181.6A CN102195485B (en) | 2010-03-18 | 2010-03-18 | DC to DC Converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010138181.6A CN102195485B (en) | 2010-03-18 | 2010-03-18 | DC to DC Converter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102195485A CN102195485A (en) | 2011-09-21 |
CN102195485B true CN102195485B (en) | 2015-04-22 |
Family
ID=44603021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010138181.6A Active CN102195485B (en) | 2010-03-18 | 2010-03-18 | DC to DC Converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102195485B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201342782A (en) * | 2012-04-09 | 2013-10-16 | Sinpro Electronics Co Ltd | Power converting device with control switch |
CN104598428B (en) * | 2015-01-14 | 2017-10-24 | 深圳光启梦想科技有限公司 | Data handling system |
CN107241019A (en) * | 2017-06-19 | 2017-10-10 | 山东超越数控电子有限公司 | A kind of wide input isolation DC/DC converter design methods |
CN112994214A (en) * | 2019-12-18 | 2021-06-18 | 上海辛格林纳新时达电机有限公司 | Power supply switching board card and power supply switching method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1781237A (en) * | 2003-04-28 | 2006-05-31 | 株式会社理光 | Step-up/down DC-DC converter |
CN101170277A (en) * | 2006-10-25 | 2008-04-30 | 日立空调·家用电器株式会社 | DC-DC converter and its control method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06284709A (en) * | 1993-03-26 | 1994-10-07 | Matsushita Electric Works Ltd | Power supply |
-
2010
- 2010-03-18 CN CN201010138181.6A patent/CN102195485B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1781237A (en) * | 2003-04-28 | 2006-05-31 | 株式会社理光 | Step-up/down DC-DC converter |
CN101170277A (en) * | 2006-10-25 | 2008-04-30 | 日立空调·家用电器株式会社 | DC-DC converter and its control method |
Also Published As
Publication number | Publication date |
---|---|
CN102195485A (en) | 2011-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9438108B2 (en) | Bias voltage generating circuit and switching power supply thereof | |
US8289007B2 (en) | Power converters and methods for converting an input signal to an output voltage | |
US9385603B2 (en) | Control method and control circuit for switching power supply | |
US20110001460A1 (en) | Lower power controller for dc to dc converters | |
US20120306466A1 (en) | Step-up dc-dc converter | |
US20140327421A1 (en) | Switching regulator and method for controlling the switching regulator | |
JP4806455B2 (en) | Switching power supply and switching method | |
US20060098461A1 (en) | DC-AC converter | |
US20150303813A1 (en) | Ac-to-dc power converting device | |
US20200212801A1 (en) | Single Inductor Multiple Output Regulator with Hybrid Negative and Positive Rail Generation | |
TW201505340A (en) | Voltage conversion circuit and electronic system using the same | |
CN102195485B (en) | DC to DC Converter | |
JP2010088152A (en) | Switching power supply | |
JP2009254110A (en) | Step-up dc-dc converter and semiconductor integrated circuit for driving power supply | |
US11245338B2 (en) | Alternating current-direct current conversion circuit, alternating current-direct current conversion method and charger | |
CN104578772A (en) | Boosting circuit | |
CN115313876A (en) | Transformer | |
TWI413352B (en) | Dc-to-dc converter | |
US20220263406A1 (en) | Converter and method for starting a switching power supply | |
JP2012029361A (en) | Power supply circuit | |
JP2012029362A (en) | Power supply circuit | |
US20140268910A1 (en) | Coupled inductor dc step down converter | |
CN104767404B (en) | Ultra-high voltage regulator | |
US7772820B2 (en) | Feedback and comparison apparatus and DC-DC voltage converter | |
TW201524098A (en) | Single inductor bipolar output voltage converter and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |