CN102185242B - Totally positive dispersion cavity mode-locked all-fiber laser - Google Patents
Totally positive dispersion cavity mode-locked all-fiber laser Download PDFInfo
- Publication number
- CN102185242B CN102185242B CN201110088737XA CN201110088737A CN102185242B CN 102185242 B CN102185242 B CN 102185242B CN 201110088737X A CN201110088737X A CN 201110088737XA CN 201110088737 A CN201110088737 A CN 201110088737A CN 102185242 B CN102185242 B CN 102185242B
- Authority
- CN
- China
- Prior art keywords
- fiber
- laser
- polarization
- mode
- maintaining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 361
- 239000006185 dispersion Substances 0.000 title claims abstract description 64
- 230000010287 polarization Effects 0.000 claims abstract description 86
- 230000003287 optical effect Effects 0.000 claims abstract description 54
- 239000006096 absorbing agent Substances 0.000 claims abstract description 41
- 239000004065 semiconductor Substances 0.000 claims abstract description 38
- 230000006835 compression Effects 0.000 claims abstract description 30
- 238000007906 compression Methods 0.000 claims abstract description 30
- 239000013307 optical fiber Substances 0.000 claims abstract description 27
- 238000001228 spectrum Methods 0.000 claims abstract description 6
- 230000010355 oscillation Effects 0.000 claims description 19
- 239000003292 glue Substances 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 6
- 230000009022 nonlinear effect Effects 0.000 claims description 6
- 238000005086 pumping Methods 0.000 claims description 6
- 238000002955 isolation Methods 0.000 claims 1
- 238000001914 filtration Methods 0.000 abstract description 28
- 238000001514 detection method Methods 0.000 abstract description 7
- 238000002474 experimental method Methods 0.000 abstract description 4
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 230000005855 radiation Effects 0.000 abstract description 3
- 238000000386 microscopy Methods 0.000 abstract description 2
- 238000001069 Raman spectroscopy Methods 0.000 abstract 1
- 230000001427 coherent effect Effects 0.000 abstract 1
- 238000005459 micromachining Methods 0.000 abstract 1
- 230000009885 systemic effect Effects 0.000 abstract 1
- 230000003595 spectral effect Effects 0.000 description 31
- 230000008878 coupling Effects 0.000 description 16
- 238000010168 coupling process Methods 0.000 description 16
- 238000005859 coupling reaction Methods 0.000 description 16
- 229910052761 rare earth metal Inorganic materials 0.000 description 16
- 150000002910 rare earth metals Chemical class 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000002310 reflectometry Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 239000004038 photonic crystal Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 241000961787 Josa Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000013332 literature search Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Lasers (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种光纤激光器,特别涉及一种具有高脉冲重复率超短激光脉冲输出的被动锁模全光纤激光器,适用于产生稳定的超短激光脉冲输出用于多光子成像显微等生物医学应用等和采用直接差频法产生超短脉冲中红外激光辐射用于分子系统的泵浦-探测等科学实验,环境监测和微波光子学及生物物理学探测等,属光信息技术领域。The invention relates to a fiber laser, in particular to a passively mode-locked all-fiber laser with high pulse repetition rate ultrashort laser pulse output, which is suitable for generating stable ultrashort laser pulse output for biomedicine such as multiphoton imaging microscopy Applications, etc. and the use of direct difference frequency method to generate ultrashort pulse mid-infrared laser radiation for pumping and detection of molecular systems and other scientific experiments, environmental monitoring and microwave photonics and biophysical detection, etc., belong to the field of optical information technology.
背景技术 Background technique
现今分子系统的泵浦-探测等科学实验,环境监测和微波光子学及生物物理学探测等需要高平均功率超短脉冲的中红外光源。近年来固体激光介质如可调谐钛宝石激光器技术和谐波频率变换技术及光参量振荡与放大技术的发展,高重复率超短光脉冲覆盖从200nm的极紫外到4μm的中红外都已得到实现。而THz系统可提供的波长超过20μm。Today's scientific experiments such as pumping and detection of molecular systems, environmental monitoring, microwave photonics and biophysical detection require mid-infrared light sources with high average power ultrashort pulses. In recent years, with the development of solid-state laser media such as tunable Ti:sapphire laser technology, harmonic frequency conversion technology, and optical parametric oscillation and amplification technology, high repetition rate ultra-short optical pulses covering from the extreme ultraviolet of 200nm to the mid-infrared of 4μm have been realized. . The THz system can provide a wavelength of more than 20μm.
近年来,高功率光纤超短光脉冲激光技术的飞速发展为发展基于光纤激光技术的双波长混频产生高功率高重复率中红外辐射光源提供了新的机遇和可能性(H.M.Pask,R.J.Carman,D.C.Hanna,A.C.Tropper,C.J.Mackechnie,P.R.Barber,and J.M.Dawes,IEEE J.Sel.Top.QuantumElectron.1,2(1995).)(F.Roser,J.Rothhard,B.Ortac,A.Liem,O.Schmidt,T.Schreiber,J.Limpert,and A.Tunnermann,Opt.Lett.30,2754(2005).)。光纤激光器因其独特的波导结构具有简单、高效率、坚固、轻量、一体化、高可靠性、高稳定性。而最近具有宽带激光振荡的掺Nd3+、Pr3+,Yb3+、Er3+和Tm3+光纤激光器及放大器的进展提供了产生波长大于1μm的双波长超短脉冲激光的可能性。而掺Nd3+、Yb3+、Er3+和Tm3+光纤(Tm3+>200nm,Er3+>80nm)特别是掺Tm3+光纤因其具有很宽增益带宽因此也是产生双波长飞秒激光脉冲振荡潜在的有效的介质(H.M.Pask,R.J.Carman,D.C.Hanna,A.C.Tropper,C.J.Mackechnie,P.R.Barber,and J.M.Dawes,IEEE J.Sel.Top.Quantum Electron.1,2(1995).)。In recent years, the rapid development of high-power fiber ultrashort optical pulse laser technology has provided new opportunities and possibilities for the development of high-power and high repetition rate mid-infrared radiation sources based on dual-wavelength mixing based on fiber laser technology (HMPask, RJCarman, DC Hanna , ACTropper, CJMackechnie, PRBarber, and JMDawes, IEEE J.Sel.Top.QuantumElectron.1, 2(1995).) (F.Roser, J.Rothhard, B.Ortac, A.Liem, O.Schmidt, T. Schreiber, J. Limpert, and A. Tunnermann, Opt. Lett. 30, 2754 (2005).). Due to its unique waveguide structure, fiber lasers are simple, high-efficiency, strong, lightweight, integrated, high-reliability, and high-stability. The recent development of Nd 3+ , Pr 3+ , Yb 3+ , Er 3+ and Tm 3+ fiber lasers and amplifiers with broadband laser oscillation provides the possibility of generating dual-wavelength ultrashort pulse lasers with wavelengths greater than 1 μm. However, Nd 3+ , Yb 3+ , Er 3+ and Tm 3+ fibers (Tm 3+ >200nm, Er 3+ >80nm) especially Tm 3+ doped fibers also produce dual wavelengths due to their wide gain bandwidth. Potentially efficient medium for femtosecond laser pulse oscillations (HMPask, RJ Carman, DC Hanna, ACTropper, CJ Mackechnie, PR Barber, and JM Dawes, IEEE J. Sel. Top. Quantum Electron. 1, 2 (1995).).
利用半导体可饱和吸收体作为锁模元件在光纤激光器中实现被动锁模产生超短激光脉冲一直是一个受到高度重视的研究领域(A.Isomaki et al,Optics Express,Vol14,No.20,9238,2006)(A.Chong et al,Opt.Lett.,Vol.33,No.22,2638,2008),并已有大量的研究结果发表,也有一些商业产品。但已有的商业化锁模光纤激光器只输出单波长激光,尚无商品化双波长锁模光纤激光器。The use of semiconductor saturable absorbers as mode-locking elements to achieve passive mode-locking in fiber lasers to generate ultrashort laser pulses has always been a highly valued research field (A.Isomaki et al, Optics Express, Vol14, No.20, 9238, 2006) (A. Chong et al, Opt. Lett., Vol.33, No.22, 2638, 2008), and a large number of research results have been published, and there are also some commercial products. However, the existing commercial mode-locked fiber lasers only output single-wavelength laser light, and there is no commercial dual-wavelength mode-locked fiber laser.
最近的关于工作在全正色散区的掺Yb 3+光纤激光文献报道(FrankW.Wise et al,High energy femtosecond fiber lasers based on pulsepropagation at normal dispersion,Laser &Photonics.Rev.2,No.1-2,58-73,2008)使得输出大能量、结构稳定、实用化的超短脉冲光纤激光器技术又向前迈进了一大步。尽管由于全正色散腔体使得这种锁模光纤激光器输出带有大量正的线性啁湫的皮秒激光脉冲,但采用腔外色散压缩后可以得到变换极限的大能量飞秒激光脉冲,当然由于这种激光器采用光谱滤波光脉冲压缩的机理使得激光器输出的光谱带宽受到一定的限制.但由于这种激光器结构简化并可以实现全光纤化并输出皮秒级大能量锁模光脉冲,因此受到学术界的重视。Recent reports on the Y b 3+ fiber laser literature (FrankW.Wise et al, High energy femtosecond fiber lasers based on pulsepropagation at normal dispersion, Laser & Photonics.Rev.2, No.1-2) in the full positive dispersion region , 58-73, 2008) made a big step forward in the ultrashort pulse fiber laser technology with large output energy, stable structure and practical application. Although the mode-locked fiber laser outputs picosecond laser pulses with a large number of positive linear chirps due to the total positive dispersion cavity, femtosecond laser pulses with large energy transformation limit can be obtained after compression by extracavity dispersion. Of course, due to This kind of laser adopts the mechanism of spectral filtering and optical pulse compression, so that the spectral bandwidth of the laser output is limited to a certain extent. However, because the structure of this laser is simplified and can realize all-fiber and output picosecond-level high-energy mode-locked optical pulses, it is subject to academic research. world's attention.
在全正色散腔锁模掺Yb光纤激光器中,光谱滤波在锁模激光脉冲的形成和对锁模光纤激光器稳定性的影响已有一些文献报道(B.G.Bale et al,Spectral filtering for mode locking in the normal dispersive regime,OptLett.,Vol.33,No,9,2008,941;A.Chong et al,Properties of normal dispersionfemtosecond fiber lasers,J.O.S.A(B),Vol.25,No.2,2008,140).光谱滤波在全正色散锁模光纤激光腔中起着对自相位调制脉冲展宽的光脉冲产生压缩效应,同时对腔内自幅度调制产生作用,对锁模激光器的稳定性起着非常关键的作用,可以认为适当的光谱滤波是全正色散锁模光纤激光器自起振并稳定锁模工作的关键技术。已有公开文献报道的如2006年和2007年美国Cornell大学在环形腔非线性偏振旋转机理的掺Yb3+光纤激光中采用4到12nm带宽的干涉滤光片或不同厚度的双折射石英片构成的光谱滤波片实现了稳定的锁模震荡(A.Chong et al,All Normal dispersion femtosecond fiber laser,OpticsExpress,Vol.14,No.21,2006,10095;A.Chong et al.,All Normal dispersionfemtosecond fiber laser with pulses energy above 20nJ,Optics letters,Vol.32,No.16,2007,2408;K.Kieu et al.,Sub-100fs pulses at watt-level powersfrom a dissipative-soliton fiber laser,Opt Lett.,Vol.34,No.5,2009,539),2007-2008年美国海军实验室和德国汉洛威大学汉洛威激光也采用类似锁模机理的全正色散环形腔的掺Yb 3+光纤激光实现了锁模振荡(其中海军实验室采用全正色散环形腔内放置干涉滤光片,而德国激光汉洛威分别采用了特殊设计的光纤波分复用器(WDM)作为腔内光谱滤波器实现脉冲压缩和腔内半导体可饱和吸收体启动的原理(Janet W.Lou et al.,Experimental measurements ofsoliton pulse characteristics from an all normal dispersion Yb-doped fiberlaser,Optics Express,Vol.15,No.8,2007,4960;O.Prochnow et al.,All fibersimilariton laser at 1μm without dispersion compensation,Optics Express,Vol.15,No.11,2007,6889;Michael Schultz et al,All fiber Ytterbiumfemtosecond laser without dispersion compensation,Optics Express,Vol.16,No.24,2008,19562))。对环境稳定的全正色散采用全保偏掺Yb 3+光纤的锁模激光器,2008年美国Cornell大学利用半导体可饱和吸收体锁模机理在线性腔保偏掺Yb 3+光纤激光中采用12nm的双折射石英片构成的光谱滤波片实现了稳定的锁模振荡(A.Chong et al.,Environment stable all normal-dispersionfemtosecond fiber laser,Optics letters,Vol.33,No.10,2008,1071)。2006年日本大阪大学激光工程研究所采用全保偏光纤环形腔掺Yb光纤激光器无腔内色散补偿实现调谐的锁模激光输出(K.Sumimura et al,Environmentally-stablemode-locked Yb fiber laser composed of all polarization maintaining fiberwith a broad tuning range,OSA/CLEO 2006,CThJ4.pdf)。而近年来采用保偏掺Yb 3+光纤的锁模激光器如德国和丹麦等一般也采用腔内色散补偿如衍射光栅对或光子晶体光纤,或采用反射式啁湫光纤光栅(CFBG)作为输出耦合器和色散补偿器(T.Schreiber et al,Microj oule levelall-polarization-maintaining femtosecond fiber source,Optics letters,Vol.31,No.5,2006,574;C.K.Nielsen et al.,Self-starting self-similar allpolarization maintaining Yb-doped fiber laser,Optics Express,Vol.13,No.23,2005,9346;B.Ortac et al,Experimental and numerical study ofpulses dynamics in positive net cavity dispersion mode-locked Yb-dopedfiber lasers,Optics Express,Vol.15,No.23,2007,15595;Dmitry et al.,Monolithic all PM femtosecond Yb-fiber laser stabilized with a narrow-bandfiber Bragg grating and pulses-compressed in a hollow core photonic crystalfiber,Optics Express,Vol.16,No.18,2008,14004)。但在上述目前报道的全正色散区工作的锁模掺Yb光纤激光器中,腔内采用了非光纤化的干涉滤光片或反射型的啁湫光纤布拉格光栅(CFBG)作为腔面反射镜或输出镜,这些元件或影响腔体的全光纤化,或影响激光腔体的设计。In a fully positive dispersion cavity mode-locked Yb-doped fiber laser, there have been some reports in the literature on the influence of spectral filtering on the formation of mode-locked laser pulses and the stability of the mode-locked fiber laser (BGBale et al, Spectral filtering for mode locking in the normal dispersive regime, OptLett., Vol.33, No, 9, 2008, 941; A. Chong et al, Properties of normal dispersion femtosecond fiber lasers, JOSA(B), Vol.25, No.2, 2008, 140). In the fully positive dispersion mode-locked fiber laser cavity, filtering plays a compression effect on the self-phase-modulated pulse-broadened optical pulse, and at the same time exerts an effect on the self-amplitude modulation in the cavity, which plays a very critical role in the stability of the mode-locked laser. It can be considered that proper spectral filtering is the key technology for the self-oscillation and stable mode-locking of fully positive dispersion mode-locked fiber lasers. It has been reported in public literature, such as the spectrum formed by interference filters with a bandwidth of 4 to 12nm or birefringent quartz plates of different thicknesses in the Yb3+-doped fiber laser of the nonlinear polarization rotation mechanism of the ring cavity by Cornell University in the United States in 2006 and 2007. The filter has achieved stable mode-locked oscillation (A.Chong et al, All Normal dispersion femtosecond fiber laser, OpticsExpress, Vol.14, No.21, 2006, 10095; A.Chong et al., All Normal dispersion femtosecond fiber laser with pulses energy above 20nJ, Optics letters, Vol.32, No.16, 2007, 2408; K.Kieu et al., Sub-100fs pulses at watt-level powers from a dissipative-soliton fiber laser, Opt Lett., Vol.34 , No.5, 2009, 539), in 2007-2008, the US Naval Laboratory and the Hanloway laser of the University of Hanloway in Germany also used a Y b 3+ doped fiber laser with a fully positive dispersion ring cavity similar to the mode-locking mechanism to achieve Mode-locked oscillation (among them, the Naval Laboratory uses the full positive dispersion ring cavity to place the interference filter, while the German laser Hanloway uses a specially designed optical fiber wavelength division multiplexer (WDM) as the intracavity spectral filter to realize the pulse Principles of compression and initiation of intracavity semiconductor saturable absorbers (Janet W.Lou et al., Experimental measurements of soliton pulse characteristics from an all normal dispersion Yb-doped fiberlaser, Optics Express, Vol.15, No.8, 2007, 4960 ; O.Prochnow et al., All fibersimilariton laser at 1μm without dispersion compensation, Optics Express, Vol.15, No.11, 2007, 6889; Michael Schultz et al, All fiber Ytterbiumfemtosecond laser without dispersion compensation, Optics Express, Vo 16, No. 24, 2008, 19562)). The mode-locked laser with full polarization-maintaining doped Y b 3+ fiber is used for the environment-stable positive dispersion. In 2008, Cornell University in the United States used the mode-locking mechanism of semiconductor saturable absorbers to adopt it in the linear cavity polarization-maintaining Y b 3+ fiber laser. The spectral filter made of 12nm birefringent quartz plate realizes stable mode-locked oscillation (A. Chong et al., Environment stable all normal-dispersion femtosecond fiber laser, Optics letters, Vol.33, No.10, 2008, 1071) . In 2006, the Laser Engineering Institute of Osaka University in Japan adopted a fully polarization-maintaining fiber ring cavity Yb-doped fiber laser without intracavity dispersion compensation to achieve tuned mode-locked laser output (K.Sumimura et al, Environmentally-stablemode-locked Yb fiber laser composed of all polarization maintaining fiber with a broad tuning range, OSA/CLEO 2006, CThJ4.pdf). In recent years, mode-locked lasers using polarization-maintaining Yb3 +-doped fibers, such as Germany and Denmark, generally use intracavity dispersion compensation such as diffraction grating pairs or photonic crystal fibers, or use reflective chirped fiber gratings (CFBG) as output Couplers and dispersion compensators (T.Schreiber et al, Microj oule levelall-polarization-maintaining femtosecond fiber source, Optics letters, Vol.31, No.5, 2006, 574; CKNielsen et al., Self-starting self-similar allpolarization maintaining Yb-doped fiber laser, Optics Express, Vol.13, No.23, 2005, 9346; B.Ortac et al, Experimental and numerical study of pulses dynamics in positive net cavity dispersion mode-locked Yb-doped fiber lasers, Optics Express , Vol.15, No.23, 2007, 15595; Dmitry et al., Monolithic all PM femtosecond Yb-fiber laser stabilized with a narrow-bandfiber Bragg grating and pulses-compressed in a hollow core photonic crystalfiber, Optics Express, Vol. 16, No. 18, 2008, 14004). However, in the above-mentioned currently reported mode-locked Yb-doped fiber lasers working in the total positive dispersion region, non-fiberized interference filters or reflective chirped fiber Bragg gratings (CFBG) are used in the cavity as cavity surface mirrors or The output mirror, these components or affect the full fiber optic cavity, or affect the design of the laser cavity.
最近几年长周期带通型光纤光栅(Long Period Grating,LPG)滤波器研究的进展(Radan Slavík et al.,Long-Period Fiber-Grating-Based Filter forGeneration of Picosecond and Subpicosecond Transform-Limited Flat-TopPulses,IEEE PHOTONICS TECHNOLOGY LETTERS,VOL.20,NO.10,2008,806;D.Nodop et.al.,Long period gratings written in Large modephotonic crystal fiber,Appl.Physics.B,92,2008,509-512)使得采用长周期带通型光纤光栅滤波器作为锁模激光脉冲压缩和激光波长滤波调谐元件、工作在全正色散腔体的全光纤锁模激光器的设计成为可能,但据作者了解目前尚无公开文献报道。In recent years, the progress of long period bandpass fiber grating (Long Period Grating, LPG) filter research (Radan Slavík et al., Long-Period Fiber-Grating-Based Filter for Generation of Picosecond and Subpicosecond Transform-Limited Flat-TopPulses, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL.20, NO.10, 2008, 806; D.Nodop et.al., Long period gratings written in Large modephotonic crystal fiber, Appl.Physics.B, 92, 2008, 509-512) makes It is possible to design an all-fiber mode-locked laser working in a fully positive dispersion cavity using a long-period band-pass fiber grating filter as a mode-locked laser pulse compression and laser wavelength filter tuning element, but as far as the author knows, there is no public literature reports.
公开号为CN101202408A的中国发明专利“共保偏光纤光栅可调谐双波长光纤激光器”其采用了保偏光纤光栅的两个不同偏振态所具有的两个光谱反射峰通过改变压力或温度改变保偏光纤光栅的反射峰位置实现双波长线偏振调谐激光输出。其缺点是:1.这两个由于保偏光纤固有的大的双折射引起的不同反射峰(分别有不同的偏振态)的光谱间隔比较小而且调节的范围很小;2.由于采用窄带宽保偏光纤光栅作为激光腔体反射面,很难实现被动锁模产生超短激光脉冲;3.此腔体结构适合窄线宽调谐双波长光纤激光器。公开号为CN1194453C的中国发明专利“一种多波长输出光纤激光器”,采用AWG(阵列波导光栅)作为腔内光滤波器实现多波长激光输出。The Chinese invention patent with the publication number CN101202408A "Polarization-Maintaining Fiber Bragg Grating Tunable Dual-Wavelength Fiber Laser" uses two spectral reflection peaks of two different polarization states of the polarization-maintaining fiber Bragg grating to change the polarization maintaining by changing the pressure or temperature. The reflection peak position of the fiber grating realizes dual-wavelength linear polarization-tuned laser output. The disadvantages are: 1. The spectral interval of the two different reflection peaks (with different polarization states) caused by the inherent large birefringence of the polarization maintaining fiber is relatively small and the adjustment range is small; 2. Due to the narrow bandwidth Polarization-maintaining fiber gratings are used as the reflective surface of the laser cavity, so it is difficult to achieve passive mode-locking to generate ultrashort laser pulses; 3. This cavity structure is suitable for narrow-linewidth tunable dual-wavelength fiber lasers. The Chinese invention patent "a multi-wavelength output fiber laser" with the publication number CN1194453C uses AWG (arrayed waveguide grating) as an intracavity optical filter to realize multi-wavelength laser output.
公开号为CN101510663A的中国发明专利“偏振双波长光纤超短脉冲激光器”中,提出利用偏振分光的方式利用保偏光纤的两个光轴方向(快轴和慢轴)作为两个波长的激光的偏振方向。但是该技术由于光纤激光器两个波长锁模激光工作在零色散或接近零色散区域内,激光腔内采用了两个平行的衍射光栅对或反射式啁湫光纤光栅(CFBG)作为腔内两个波长的色散补偿器件,以输出飞秒脉宽的双波长锁模激光脉冲。In the Chinese invention patent "polarized dual-wavelength fiber ultrashort pulse laser" with the publication number CN101510663A, it is proposed to use the two optical axis directions (fast axis and slow axis) of the polarization-maintaining fiber as two wavelengths of laser light by means of polarization splitting. polarization direction. However, in this technology, two parallel diffraction grating pairs or reflective chirp fiber gratings (CFBG) are used in the laser cavity as two A wavelength dispersion compensation device to output dual-wavelength mode-locked laser pulses with a femtosecond pulse width.
经过文献检索,有如下技术涉及锁模光纤激光器,如Jian Liu,UltrshortStable Mode-locked Fiber Laser At One Micron By Using PolarizationMaintaining(PM)Fiber and Photonic Bandgap Fiber(PBF),US Patent,US2008/0151945 A1、Hong Lin ,Wavelength Tunable ,Polarization StableMode-locked Fiber Laser,World International Property Organization,PCT/US00/19170,2001和O.Okhotnikov et al,A Mode-Locked Fiber Laser,World International Property Organization,PCT/FI2006/050184,2006等。上述技术采用了工作在负色散区概念,腔内有固体衍射光栅对或光子带隙光纤光栅进行色散补偿等,这也影响了激光腔体的全光纤化从而影响了锁模光纤激光器的长期稳定性,或者激光器的造价很昂贵影响其使用范围。After literature search, the following technologies involve mode-locked fiber lasers, such as Jian Liu, UltrshortStable Mode-locked Fiber Laser At One Micron By Using PolarizationMaintaining(PM) Fiber and Photonic Bandgap Fiber(PBF), US Patent, US2008/0151945 A1, Hong Lin, Wavelength Tunable, Polarization Stable Mode-locked Fiber Laser, World International Property Organization, PCT/US00/19170, 2001 and O.Okhotnikov et al, A Mode-Locked Fiber Laser, World International Property Organization, PCT/FI2006/050184, 2006 wait. The above-mentioned technology adopts the concept of working in the negative dispersion region, and there are solid diffraction grating pairs or photonic bandgap fiber gratings in the cavity for dispersion compensation, etc., which also affects the full-fiber laser cavity and affects the long-term stability of the mode-locked fiber laser. Sex, or the cost of the laser is very expensive to affect its scope of use.
发明内容 Contents of the invention
为了克服现有技术存在的不足,本发明的目的是提供一种工作在全正色散区,无色散补偿元件,实现全光纤化、实用化,输出大能量激光脉冲的锁模全光纤激光器。In order to overcome the deficiencies in the prior art, the object of the present invention is to provide a mode-locked all-fiber laser that works in the full positive dispersion region, has no dispersion compensating elements, realizes all-fiber, is practical, and outputs high-energy laser pulses.
为达到上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种全正色散腔锁模全光纤激光器,它是工作在全正色散区的全光纤超短脉冲线性腔激光器,所述的线性腔激光器包括第一激光腔体端面兼锁模用的半导体可饱和吸收体、光纤激光增益介质、带通型长周期光纤光栅、输出耦合器和第二激光腔体端面;所述的带通型长周期光纤光栅,为一段中心波长1.0~1.1μm、带宽4~12nm的带通型长周期光纤光栅,或中心波长为1.0~1.1μm、带宽为4~12nm的两段带通型长周期光纤光栅,且各段带通型长周期光纤光栅的中心波长不同;所述的光纤激光增益介质为保偏掺稀土增益光纤。A fully positive dispersion cavity mode-locked all-fiber laser, which is an all-fiber ultrashort pulse linear cavity laser operating in a fully positive dispersion region, and the linear cavity laser includes a first laser cavity end face and a semiconductor that can be used for mode locking Saturable absorber, fiber laser gain medium, band-pass long-period fiber grating, output coupler and the end face of the second laser cavity; the band-pass long-period fiber grating has a central wavelength of 1.0-1.1 μm and a bandwidth of 4 ~12nm band-pass long-period fiber grating, or two band-pass long-period fiber gratings with a central wavelength of 1.0-1.1μm and a bandwidth of 4-12nm, and the central wavelengths of each band-pass long-period fiber grating are different ; The fiber laser gain medium is a polarization-maintaining rare-earth-doped gain fiber.
这种全正色散腔锁模全光纤线性腔激光器,具有以下三种具体的结构:This fully positive dispersion cavity mode-locked all-fiber linear cavity laser has the following three specific structures:
第一种线性腔激光器的结构为:The structure of the first linear cavity laser is:
一个半导体可饱和吸收体粘在波分复用器的一个光纤端面上产生锁模光脉冲;A semiconductor saturable absorber is attached to an optical fiber end face of a wavelength division multiplexer to generate mode-locked optical pulses;
一个泵浦源为波分复用器提供泵浦光,作为输入泵浦光;A pump source provides pump light for the wavelength division multiplexer as input pump light;
一个波分复用器与保偏掺稀土光纤连接用于将泵浦源的泵浦激光输入到保偏掺稀土光纤中产生激光增益;A wavelength division multiplexer is connected to the polarization-maintaining rare-earth fiber for inputting the pump laser of the pump source into the polarization-maintaining rare-earth fiber to generate laser gain;
一个带通型长周期保偏光纤光栅的一端与保偏增益光纤的另一端连接;One end of a band-pass long-period polarization-maintaining fiber grating is connected to the other end of the polarization-maintaining gain fiber;
一个只有单偏振轴震荡输出的光纤耦合器的一端与带通型长周期光纤光栅的另一端连接;One end of a fiber coupler with only a single polarization axis oscillating output is connected to the other end of a band-pass long-period fiber grating;
一个全反射腔镜与输出耦合器的另一端连接。A total reflection cavity mirror is connected to the other end of the output coupler.
第二种线性腔激光器的结构为:The structure of the second linear cavity laser is:
一个部分反射率的耦合镜与保偏980/1064波分复用器的信号输入光纤连接;A partial reflectivity coupling mirror is connected to the signal input fiber of the polarization maintaining 980/1064 wavelength division multiplexer;
976nm光纤耦合的泵浦激光与保偏980/1064波分复用器的泵浦激光输入光纤连接将泵浦激光输入到激光器腔内;The 976nm fiber-coupled pump laser is connected to the pump laser input fiber of the polarization-maintaining 980/1064 wavelength division multiplexer to input the pump laser into the laser cavity;
一段保偏的掺Yb 3+增益光纤的一端与保偏980/1064波分复用器的另一端连接,该连接端为信号激光和泵浦激光输入的共用端;One end of a polarization-maintaining Yb 3+ doped gain fiber is connected to the other end of the polarization-maintaining 980/1064 wavelength division multiplexer, which is the common end of the input of the signal laser and the pump laser;
保偏的掺Yb 3+增益光纤的另一端与偏振分束器合束一字端保偏光纤连接,偏振分束器将两个偏振方向不同波长的激光分开;The other end of the polarization-maintaining Yb3 + -doped gain fiber is connected to a polarizing beam splitter beam-combining one-end polarization-maintaining fiber, and the polarization beam splitter separates two lasers with different polarization directions and wavelengths;
两个保偏光纤耦合的衰减器的一端分别与偏振分束器的两个偏振方向耦合光纤连接,两个衰减器分别调节激光腔内两个波长激光的净增益平衡;One end of the two polarization-maintaining fiber-coupled attenuators is respectively connected to the two polarization direction coupling fibers of the polarization beam splitter, and the two attenuators respectively adjust the net gain balance of the two wavelength lasers in the laser cavity;
保偏光纤耦合的衰减器的另一端分别与两个不同中心波长、带宽为4到12nm的带通型长周期保偏光纤光栅的一端连接,带通型长周期保偏光纤光栅的功能是双波长激光中心波长的选择和两个波长锁模激光光谱滤波光脉冲压缩;The other end of the polarization-maintaining fiber-coupled attenuator is respectively connected to one end of two band-pass long-period polarization-maintaining fiber gratings with different central wavelengths and a bandwidth of 4 to 12nm. The function of the band-pass long-period polarization-maintaining fiber grating is dual The selection of the central wavelength of the wavelength laser and the compression of optical pulses by two wavelengths mode-locked laser spectrum filtering;
两个半导体可饱和吸收体分别与两个带通型长周期保偏光纤光栅的另一端光纤通过耦合光学系统或直接通过光学胶连接,半导体可饱和吸收体充当锁模元件和激光器的腔体反射元件。The two semiconductor saturable absorbers are respectively connected with the other ends of the two bandpass long-period polarization-maintaining fiber gratings through coupling optical systems or directly through optical glue. The semiconductor saturable absorbers act as mode-locking elements and laser cavity reflections element.
第三种线性腔激光器的结构为:The structure of the third linear cavity laser is:
一个部分反射率的耦合镜与偏振分束器合束一字端保偏光纤连接;A coupling mirror with partial reflectivity is connected with a polarizing beam splitter and a one-end polarization-maintaining fiber;
两个保偏光纤980/1064波分复用器的信号输入光纤分别与偏振分束器的两个偏振方向耦合光纤连接;The signal input fibers of the two polarization-maintaining fiber 980/1064 wavelength division multiplexers are respectively connected to the two polarization direction coupling fibers of the polarization beam splitter;
两个光纤耦合的976nm泵浦激光分别与两个保偏980/1064波分复用器的泵浦激光输入光纤连接,将泵浦激光输入到激光器腔内;Two fiber-coupled 976nm pump lasers are respectively connected to the pump laser input fibers of two polarization-maintaining 980/1064 wavelength division multiplexers, and the pump laser is input into the laser cavity;
两段不同长度的保偏掺Yb 3+增益光纤的一端分别与两个保偏980/1064波分复用器的另一端连接,该端为信号激光和泵浦激光公用端,保偏掺Yb 3+增益光纤在泵浦激光作用下产生激光增益;One end of two polarization-maintaining doped Yb 3+ gain fibers of different lengths is respectively connected to the other end of two polarization-maintaining 980/1064 wavelength division multiplexers. This end is the common end of the signal laser and the pump laser. Y b 3+ gain fiber produces laser gain under the action of pump laser;
两段不同长度的保偏掺Yb 3+增益光纤的另一端分别与两个不同中心波长、带宽为4到12nm的带通型长周期保偏光纤光栅的一端连接,带通型长周期保偏光纤光栅的作用是双波长激光中心波长的选择和两个波长锁模激光的光谱滤波光脉冲压缩;The other ends of two different lengths of polarization-maintaining Y b 3+ gain fibers are respectively connected to one end of two band-pass long-period polarization-maintaining fiber gratings with different center wavelengths and bandwidths from 4 to 12 nm. The role of the polarizing fiber grating is to select the central wavelength of the dual-wavelength laser and to compress the spectral filtering optical pulse of the two-wavelength mode-locked laser;
两个半导体可饱和吸收体分别与两段不同中心波长的带通型长周期保偏光纤光栅的另一端光纤通过耦合光学系统或直接通过光学胶连接,半导体可饱和吸收体充当锁模元件和一个激光腔体反射元件。The two semiconductor saturable absorbers are respectively connected with the other ends of the band-pass long-period polarization-maintaining fiber gratings with different central wavelengths through the coupling optical system or directly through optical glue. The semiconductor saturable absorbers act as mode-locking elements and a Laser cavity reflective element.
一种全正色散腔锁模全光纤激光器,它为工作在全正色散区的超短脉冲非保偏光纤环型腔激光器,所述的环型腔激光器包括一个光纤耦合的隔离器、光纤偏振控制器、带光纤耦合输出的976nm或915nm泵浦激光器、976/1060nm或915/1064nm波分复用器、普通单模掺Yb 3+光纤激光增益介质、一段单模光纤、一个单模带通型长周期光纤光栅和一个光纤耦合的偏振分束器;所述的单模带通型长周期光纤光栅,其中心波长为1.0~1.1μm、带宽为4~12nm;该激光器的结构为:A fully positive dispersion cavity mode-locked all-fiber laser, which is an ultrashort pulse non-polarization-maintaining fiber ring cavity laser operating in a total positive dispersion region, the ring cavity laser includes a fiber-coupled isolator, fiber polarization Controller, 976nm or 915nm pump laser with fiber-coupled output, 976/1060nm or 915/1064nm wavelength division multiplexer, ordinary single-mode Y b 3+ fiber laser gain medium, a section of single-mode fiber, a single-mode ribbon A pass-through long-period fiber grating and a fiber-coupled polarization beam splitter; the single-mode band-pass long-period fiber grating has a central wavelength of 1.0 to 1.1 μm and a bandwidth of 4 to 12 nm; the structure of the laser is:
一个光纤偏振控制器与光纤耦合的隔离器连接,隔离器保证光纤环形腔单向形成激光振荡,光纤偏振控制器调节和控制腔内激光偏振;A fiber polarization controller is connected with a fiber-coupled isolator, the isolator ensures that the fiber ring cavity forms laser oscillation in one direction, and the fiber polarization controller adjusts and controls the laser polarization in the cavity;
一个980/1060波分复用器的信号输入端与光纤偏振控制器连接;The signal input end of a 980/1060 wavelength division multiplexer is connected with the optical fiber polarization controller;
光纤耦合的泵浦激光与980/1060波分复用器的泵浦激光输入端连接将泵浦激光耦合进光纤环形激光腔内;The fiber-coupled pump laser is connected to the pump laser input end of the 980/1060 wavelength division multiplexer to couple the pump laser into the fiber ring laser cavity;
单模掺杂光纤增益介质的一端与980/1060波分复用器的信号激光/泵浦激光混合端连接,增益介质在泵浦激光下产生信号激光增益;One end of the single-mode doped fiber gain medium is connected to the signal laser/pump laser hybrid end of the 980/1060 wavelength division multiplexer, and the gain medium generates signal laser gain under the pump laser;
一段普通单模光纤的一端与掺杂光纤增益介质的另一端连接;One end of a common single-mode fiber is connected to the other end of the doped fiber gain medium;
单模带通型长周期光纤光栅的一端与一段普通单模光纤的另一端连接;One end of the single-mode bandpass long-period fiber grating is connected to the other end of a common single-mode fiber;
另一个光纤偏振控制器的一端与一个带通型长周期光纤光栅的另一端连接,光纤偏振控制器调节和控制腔内激光偏振;One end of another fiber polarization controller is connected to the other end of a bandpass long-period fiber grating, and the fiber polarization controller adjusts and controls the laser polarization in the cavity;
一个光纤耦合的偏振分束器的输入光纤端与光纤偏振控制器的另一端连接;The input fiber end of a fiber-coupled polarization beam splitter is connected to the other end of the fiber polarization controller;
光纤耦合的隔离器的输入端与光纤耦合偏振分束器的一个输出端光纤连接构成一个单向环形光纤激光器腔体,光纤耦合偏振分束器的另一个输出端光纤作为锁模环形腔激光器的输出端口。The input end of the fiber-coupled isolator is optically connected with an output end of the fiber-coupled polarization beam splitter to form a unidirectional ring fiber laser cavity, and the other output end fiber of the fiber-coupled polarization beam splitter is used as the mode-locked ring cavity laser output port.
一种全正色散腔锁模全光纤激光器,它为工作在全正色散区的超短脉冲全保偏光纤环型腔激光器,所述的环型腔激光器包括一个光纤端面粘贴有半导体可饱和吸收体的保偏光纤环路器、偏振光纤隔离器、保偏光纤激光增益介质、带通型长周期保偏光纤光栅滤波器和输出耦合器;所述的带通型长周期光纤光栅滤波器,其中心波长为1.0~1.1μm、带宽为4~12nm;所述的光纤激光增益介质,采用一段保偏掺稀土增益光纤作为增益介质;该激光器的结构为:A fully positive dispersion cavity mode-locked all-fiber laser, which is an ultrashort-pulse fully polarization-maintaining fiber ring cavity laser operating in the total positive dispersion region, and the ring cavity laser includes a fiber end surface pasted with a semiconductor saturable absorbing Polarization-maintaining fiber circulator, polarization-maintaining fiber isolator, polarization-maintaining fiber laser gain medium, band-pass type long-period polarization-maintaining fiber grating filter and output coupler; described band-pass type long-period fiber grating filter, The center wavelength is 1.0-1.1 μm, and the bandwidth is 4-12nm; the fiber laser gain medium uses a section of polarization-maintaining rare-earth-doped gain fiber as the gain medium; the structure of the laser is:
一个泵浦源为波分复用器提供泵浦光,作为输入泵浦光;A pump source provides pump light for the wavelength division multiplexer as input pump light;
一个波分复用器与保偏掺稀土光纤连接用于将泵浦源的泵浦激光输入保偏掺稀土光纤中产生激光增益;A wavelength division multiplexer is connected to the polarization-maintaining rare-earth fiber for inputting the pump laser of the pump source into the polarization-maintaining rare-earth fiber to generate laser gain;
一个带通型长周期保偏光纤光栅的一端与保偏增益光纤的另一端连接,带通型长周期保偏光纤光栅的功能是锁模激光脉冲中心波长的选择和锁模光谱脉冲压缩,实现锁模激光器的稳定工作;One end of a band-pass long-period polarization-maintaining fiber grating is connected to the other end of the polarization-maintaining gain fiber. The function of the band-pass long-period polarization-maintaining fiber grating is to select the central wavelength of the mode-locked laser pulse and to compress the mode-locked spectrum pulse to realize Stable operation of mode-locked lasers;
一个只有单偏振轴震荡输出的光纤耦合器的一端与带通型长周期光纤光栅的另一端连接,锁模激光脉冲从光纤耦合器输出;One end of a fiber coupler with only a single polarization axis oscillating output is connected to the other end of a band-pass long-period fiber grating, and the mode-locked laser pulse is output from the fiber coupler;
一个保偏光纤环路器的第一端光纤与光纤耦合器的另一端连接;The first end optical fiber of a polarization maintaining optical fiber circulator is connected with the other end of the optical fiber coupler;
一个保偏光纤环路器的第二端光纤与一个半导体可饱和吸收体通过光学镜头或直接用光学胶连接,半导体可饱和吸收体对激光的非线性作用在环形腔激光器中产生锁模效应形成超短激光脉冲;The second-end fiber of a polarization-maintaining fiber looper is connected to a semiconductor saturable absorber through an optical lens or directly with optical glue. The nonlinear effect of the semiconductor saturable absorber on the laser produces a mode-locking effect in the ring cavity laser. Ultrashort laser pulses;
一个保偏光纤环路器的第三端光纤与一个保偏光纤耦合的隔离器连接,隔离器使得光纤环形腔激光器单向产生激光震荡;The third-end optical fiber of a polarization-maintaining fiber circulator is connected to a polarization-maintaining fiber-coupled isolator, and the isolator makes the fiber ring cavity laser unidirectionally generate laser oscillation;
隔离器的输出端光纤与波分复用器的另一端光纤连接,构成一个完整的、单向震荡的环形激光腔。The optical fiber at the output end of the isolator is connected with the optical fiber at the other end of the wavelength division multiplexer to form a complete, unidirectional oscillating ring laser cavity.
本发明技术方案中所述的保偏掺稀土增益光纤为普通单模或单模保偏掺稀土光纤,或采用双复层泵浦的掺稀土的大芯径单模保偏光纤,或掺稀土的保偏大芯径单模光子晶体光纤;所述的掺稀土为掺Nd3+、Yb3+。The polarization-maintaining rare-earth-doped gain fiber described in the technical solution of the present invention is an ordinary single-mode or single-mode polarization-maintaining rare-earth fiber, or a rare-earth-doped large-core single-mode polarization-maintaining fiber with double-layer pumping, or a rare-earth-doped A polarization-maintaining large core-diameter single-mode photonic crystal fiber; the rare earth doped is Nd 3+ , Yb 3+ doped.
与现有技术相比,本发明具有一下几方面明显的优点:Compared with the prior art, the present invention has the following obvious advantages:
1.在环形腔锁模光纤激光器中采用单模带通型长周期光纤光栅,整个激光器工作在全正色散区,腔内无自由空间色散补偿器件或光子晶体色散补偿光纤,实现了全光纤一体化结构,这意味着激光腔体更为稳定、更为实用化,并可输出更大的激光脉冲能量。1. The single-mode bandpass long-period fiber grating is used in the ring cavity mode-locked fiber laser. The whole laser works in the total positive dispersion region. There is no free space dispersion compensation device or photonic crystal dispersion compensation fiber in the cavity, realizing the integration of all optical fibers The optimized structure means that the laser cavity is more stable and practical, and can output greater laser pulse energy.
2.线性腔锁模保偏光纤激光器中采用带通型长周期保偏光纤光栅,整个激光器工作在全正色散区,激光器设计更为简化,实现了全光纤一体化,这也意味着激光腔体更为稳定、更为实用化,真正环境稳定化,并可输出更大的激光脉冲能量。2. The band-pass long-period polarization-maintaining fiber grating is used in the linear cavity mode-locked polarization-maintaining fiber laser. The whole laser works in the total positive dispersion region. The laser design is simplified and all-fiber integration is realized, which also means that the laser cavity The body is more stable and practical, the environment is truly stabilized, and it can output greater laser pulse energy.
3.在线性腔锁模双波长光纤激光器中采用带通型长周期保偏光纤光栅,整个两个激光波长锁模激光器工作在全正色散区,激光器设计更为简化,实现了全光纤一体化,这也意味着激光腔体更为稳定、更为实用化,真正环境稳定化,并可输出更大的双波长激光脉冲能量。3. In the linear cavity mode-locked dual-wavelength fiber laser, a band-pass long-period polarization-maintaining fiber grating is used, and the entire two laser wavelength mode-locked lasers work in the full positive dispersion region. The laser design is more simplified and all-fiber integration is realized. , which also means that the laser cavity is more stable and practical, the environment is truly stabilized, and it can output greater dual-wavelength laser pulse energy.
附图说明 Description of drawings
图1是实施例1提供的全正色散腔锁模全光纤激光器的结构组成示意图;Fig. 1 is a schematic diagram of the structural composition of the all positive dispersion cavity mode-locked all-fiber laser provided in embodiment 1;
图2是实施例2提供的全正色散腔锁模全光纤激光器的结构组成示意图;2 is a schematic diagram of the structure and composition of the fully positive dispersion cavity mode-locked all-fiber laser provided in
图3是实施例3提供的全正色散腔锁模全光纤激光器的结构组成示意图;3 is a schematic diagram of the structure and composition of the all positive dispersion cavity mode-locked all-fiber laser provided in
图4是实施例4提供的全正色散腔锁模全光纤激光器的结构组成示意图;Fig. 4 is a schematic diagram of the structure and composition of the all positive dispersion cavity mode-locked all-fiber laser provided in
图5是实施例5提供的全正色散腔锁模全光纤激光器的结构组成示意图。Fig. 5 is a schematic diagram of the structure and composition of the all positive dispersion cavity mode-locked all-fiber laser provided in
图中:0(01,02)、锁模用的半导体可饱和吸收体元件;1(101,102)、带通型长周期保偏光纤光栅;10、普通单模带通型长周期光纤光栅;2、保偏光纤耦合偏振分束器;3(301,302)、保偏掺Yb 3+增益光纤;30、普通单模掺Yb 3+增益光纤;4(401,402)、保偏光纤976/1064波分复用器;40、单模光纤976/1064波分复用器;5(51,52)、976nm泵浦激光(源);6、部分反射输出镜;8(15)、单模光纤偏振控制器;9、光纤耦合的偏振分束器;12、全反射镜;13、一定输出比率单偏振保偏光纤输出耦合器;14、单模光纤耦合隔离器;17、保偏光纤环路器;18、保偏光纤耦合隔离器。In the figure: 0 (01, 02), semiconductor saturable absorber element for mode locking; 1 (101, 102), band-pass long-period polarization-maintaining fiber grating; 10, ordinary single-mode band-pass long-period fiber grating ; 2, polarization-maintaining fiber-coupled polarization beam splitter; 3 (301, 302), polarization-maintaining doped Y b 3+ gain fiber; 30, ordinary single-mode doped Y b 3+ gain fiber; 4 (401, 402), maintaining Polarized fiber 976/1064 wavelength division multiplexer; 40, single-mode fiber 976/1064 wavelength division multiplexer; 5 (51, 52), 976nm pump laser (source); 6, partial reflection output mirror; 8 (15 ), single-mode fiber polarization controller; 9, fiber-coupled polarization beam splitter; 12, total reflection mirror; 13, single-polarization polarization-maintaining fiber output coupler with a certain output ratio; 14, single-mode fiber-coupled isolator; 17, Polarization maintaining fiber looper; 18. Polarization maintaining fiber coupling isolator.
具体实施方式 Detailed ways
下面结合附图及实施例对本发明作进一步描述:The present invention will be further described below in conjunction with accompanying drawing and embodiment:
实施例1:Example 1:
本实施例提供一种工作在全正色散区、环境稳定的锁模全保偏掺Yb3+光纤线性腔激光器的结构,采用一段保偏掺稀土增益光纤作为增益介质,其腔内应用了适当中心波长和带宽的带通型保偏长周期光纤光栅滤波器作为锁模激光器中心波长选择和光谱滤波脉冲压缩的元件,实现全光纤超短脉冲激光器稳定锁模振荡。This embodiment provides a structure of a mode-locked fully polarization-maintaining Yb 3+ fiber-doped linear cavity laser working in the fully positive dispersion region and having a stable environment. A section of polarization-maintaining rare-earth-doped gain fiber is used as the gain medium. The band-pass polarization-maintaining long-period fiber grating filter with central wavelength and bandwidth is used as a component for central wavelength selection and spectral filtering pulse compression of mode-locked lasers, and realizes stable mode-locked oscillation of all-fiber ultrashort pulse lasers.
参见附图1,它是本实施例采用线性腔锁模全保偏光纤激光器的腔体结构的示意图;腔内利用了适当中心波长和带宽的带通型保偏长周期光纤光栅滤波器作为锁模激光器中心波长调谐和光谱滤波脉冲压缩的元件。泵浦激光通过波分复用器(WDM)耦合进保偏掺杂稀土光纤产生增益,激光器腔内采用了适当中心波长和带宽的带通型长周期光纤光栅滤波器作为激光器中心波长的选择和光谱滤波脉冲压缩的元件,保偏光纤输出耦合器输出部分锁模激光功率并确保只有一个光轴方向激光振荡,全反射镜作为激光腔的第一腔体端面,一个通过光学系统耦合或直接粘在光纤端面上的半导体可饱和吸收体作为激光器的第二反射腔面和锁模元器件,半导体可饱和吸收体对激光的非线性作用与增益光纤、适当中心波长(1.0~1.1μm)和带宽(4~12nm)的带通型保偏长周期光纤光栅光谱滤波光脉冲压缩、在整个正色散激光腔体产生稳定的锁模超短脉冲激光。由图1可以看到,其具体连接关系是:泵浦激光5通过波分复用器(WDM)4耦合进保偏掺杂稀土光纤3产生增益;激光器腔内采用了中心波长为1.1μm、带宽为6nm的带通型长周期光纤光栅滤波器1作为激光器中心波长的选择和光谱滤波光脉冲压缩的元件;一个保偏光纤输出耦合器13与适当带宽的带通型长周期光纤光栅滤波器1连接,保偏光纤输出耦合器13输出部分锁模激光功率并确保只有慢轴方向的激光振荡;全反射镜12作为激光腔的第一反射端面;一个通过光学系统耦合或直接粘在光纤端面上的半导体可饱和吸收体0作为光纤激光器的第二反射腔面和锁模元器件,半导体可饱和吸收体0对激光的非线性作用与增益光纤3、适当带宽的带通型保偏长周期光纤光栅滤波器光脉冲压缩1在整个正色散激光器腔体产生稳定的锁模超短脉冲激光,通过保偏光纤输出耦合器13输出。全光纤激光器腔内全部光纤器件为保偏器件,以确保腔内激光偏振稳定,环境稳定地锁模工作。Referring to accompanying drawing 1, it is the schematic diagram of the cavity structure that adopts linear cavity mode-locking full polarization maintaining fiber laser in this embodiment; Components for center wavelength tuning and spectral filtering of pulse compression in mode lasers. The pump laser is coupled into the polarization-maintaining doped rare-earth fiber through a wavelength division multiplexer (WDM) to generate gain, and a band-pass long-period fiber grating filter with an appropriate central wavelength and bandwidth is used in the laser cavity as the choice of the central wavelength of the laser and The component for spectral filtering and pulse compression, the polarization-maintaining fiber output coupler outputs part of the mode-locked laser power and ensures only one optical axis direction of laser oscillation, the total reflection mirror is used as the first cavity end face of the laser cavity, and one is coupled through the optical system or directly bonded The semiconductor saturable absorber on the end face of the fiber is used as the second reflective cavity surface of the laser and the mode-locking component, the nonlinear effect of the semiconductor saturable absorber on the laser and the gain fiber, the appropriate central wavelength (1.0-1.1μm) and bandwidth (4-12nm) band-pass polarization-maintaining long-period fiber grating spectral filtering optical pulse compression, and generates stable mode-locked ultrashort pulse laser in the entire positive dispersion laser cavity. As can be seen from Figure 1, the specific connection relationship is: the
实施例2:Example 2:
本实施例提供一种工作在全正色散区、环境稳定工作的锁模双波长全保偏掺Yb3+光纤线性腔激光器的结构。采用一段保偏掺稀土增益光纤作为增益介质,其腔内应用了两个适当中心波长(中心波长为1.0~1.1μm可调)、带宽为4~12nm的带通型保偏长周期光纤光栅滤波器作为双波长锁模光纤激光器中心波长选择调谐和光谱滤波光脉冲压缩的元件,利用半导体可饱和吸收体实现双波长全光纤超短脉冲激光器稳定的锁模振荡。This embodiment provides a structure of a mode-locked dual-wavelength fully polarization-maintaining Yb3+ fiber-doped linear cavity laser working in a fully positive dispersion region and operating in a stable environment. A section of polarization-maintaining rare-earth-doped gain fiber is used as the gain medium, and two band-pass polarization-maintaining long-period fiber grating filters with appropriate center wavelength (center wavelength 1.0-1.1μm adjustable) and bandwidth of 4-12nm are applied in the cavity The device is used as an element for selective tuning of the central wavelength of the dual-wavelength mode-locked fiber laser and spectral filtering optical pulse compression. The semiconductor saturable absorber is used to realize the stable mode-locked oscillation of the dual-wavelength all-fiber ultrashort pulse laser.
图2是本实施例的一种采用半导体可饱和吸收体锁模、工作在全正色散区的双波长全光纤线性腔激光器的腔体结构示意图;腔内利用了两个适当带宽和中心波长的带通型长周期光纤光栅滤波器作为锁模激光器中心波长选择和光谱滤波脉冲压缩的元件。泵浦激光通过波分复用器(WDM)耦合进保偏掺杂稀土光纤产生增益,偏振分束器作为双波长激光分光器件,两个中心波长不同的带通型长周期保偏光纤光栅作为激光腔内双波长激光选择元件和锁模光谱滤波光脉冲压缩的元件,半导体可饱和吸收体作为锁模元件的、工作在全正色散区的双波长超短脉冲光纤激光器。参见附图2,该光纤激光器结构的具体连接关系是:一个部分反射率的耦合镜6与保偏980/1064波分复用器4的激光信号输入光纤连接,耦合镜6的功能是输出锁模激光脉冲和整个激光器的第二个反射端面;一个保偏光纤波分复用器(WDM)4与泵浦激光5连接,泵浦激光5通过波分复用器(WDM)4耦合进光纤激光腔内;一段保偏的掺Yb 3+增益光纤3的一端与保偏980/1064波分复用器4的另一端(信号激光和泵浦激光公用端)连接以产生激光增益;保偏的掺Yb 3+增益光纤3的另一端与偏振分束器2合束一字端保偏光纤连接,偏振分束器2的功能是将两个波长的激光用偏振的方式从空间上分开;两个保偏光纤耦合的衰减器11,12的一端分别与偏振分束器2的两个偏振方向耦合光纤连接,衰减器11,12的功能是改变双波长光纤激光两个波长臂的损耗以平衡两个波长激光的净增益;保偏光纤耦合的衰减器11,12的另一端分别与两个不同中心波长(其中一个中心波长为1.02μm,另一个为1.09μm)、带宽为10nm的带通型长周期保偏光纤光栅101,102的一端连接,带通型长周期保偏光纤光栅101,102的作用是双波长激光中心波长的选择和两个波长锁模激光的光脉冲压缩;两个半导体可饱和吸收体01,02分别与两个带通型长周期保偏光纤光栅101,102的另一端光纤通过耦合光学系统或直接通过光学胶连接,半导体可饱和吸收体01,02充当锁模元件和激光腔的一个腔反射元件。偏振分束器2将两个波长的激光用偏振的方式从空间上分开从而分别操控(如锁模等),而两个波长激光锁模的实现是采用了两个半导体可饱和吸收体01,02,两个不同中心波长的带通型长周期保偏光纤光栅101,102选择两个不同的锁模中心波长并在全正色散激光腔体实现锁模光谱滤波光脉冲压缩,实现稳定的双波长锁模超短脉冲激光脉冲输出。Figure 2 is a schematic diagram of the cavity structure of a dual-wavelength all-fiber linear cavity laser that adopts semiconductor saturable absorber mode-locking and works in the total positive dispersion region of this embodiment; The band-pass long-period fiber grating filter is used as a component for central wavelength selection and spectral filtering pulse compression of mode-locked lasers. The pump laser is coupled into the polarization-maintaining rare-earth fiber through a wavelength division multiplexer (WDM) to generate gain, the polarization beam splitter is used as a dual-wavelength laser splitting device, and two bandpass long-period polarization-maintaining fiber gratings with different center wavelengths are used as A dual-wavelength ultra-short-pulse fiber laser operating in the positive dispersion region with a dual-wavelength laser selection element in the laser cavity and a mode-locked spectral filter optical pulse compression element, and a semiconductor saturable absorber as a mode-locked element. Referring to accompanying drawing 2, the specific connection relation of this fiber laser structure is: a
实施例3:Example 3:
本实施例提供一种工作在全正色散、环境稳定的锁模双波长全保偏掺Yb 3+线性腔光纤激光器的结构。采用两段不同长度的保偏掺稀土增益光纤作为增益介质,其腔内应用了两个适当中心波长(1.0~1.1μm)、带宽为4~12nm的带通型长周期保偏光纤光栅滤波器作为双波长锁模光纤激光器中心波长选择调谐和光谱滤波光脉冲压缩的元件,利用半导体可饱和吸收体实现双波长全正色散腔体全光纤超短脉冲激光器锁模振荡。This embodiment provides a structure of a mode-locked dual-wavelength fully polarization-maintaining Y b 3+ doped linear cavity fiber laser working in full positive dispersion and stable environment. Two polarization-maintaining rare-earth-doped gain fibers with different lengths are used as the gain medium, and two band-pass long-period polarization-maintaining fiber grating filters with an appropriate center wavelength (1.0-1.1μm) and a bandwidth of 4-12nm are applied in the cavity As an element for selective tuning of the central wavelength of a dual-wavelength mode-locked fiber laser and spectral filtering optical pulse compression, a semiconductor saturable absorber is used to realize the mode-locked oscillation of a dual-wavelength fully positive dispersion cavity all-fiber ultrashort pulse laser.
图3是本实施例中一种采用半导体可饱和吸收体实现锁模,工作在全正色散区双波长全光纤线性腔激光器的腔体结构示意图;腔内利用了两个适当中心波长(1.0~1.1μm)和带宽(4~12nm)的带通型长周期光纤光栅滤波器作为锁模激光器中心波长选择调谐和光谱滤波光脉冲压缩的元件。参见附图3,其具体结构为:一个部分反射率的耦合镜6与偏振分束器2合束一字端保偏光纤连接,耦合镜6的功能是锁模激光输出端口和第一个激光器腔体反射面;两个保偏光纤980/1064波分复用器401,402的信号激光输入光纤分别与偏振分束器2的两个偏振方向耦合光纤连接,偏振分束器2的功能是将两个波长的激光用偏振的方式从空间上分开;两个光纤耦合的976nm泵浦激光51,52通过波分复用器(WDM)401,402分别耦合进光纤激光腔内;两段不同长度的保偏掺Yb 3+增益光纤301,302的一端分别与两个保偏980/1064波分复用器4的另一端(信号激光和泵浦激光公用端)连接,泵浦激光在增益光纤中产生激光增益;两段保偏掺Yb 3+增益光纤301,302的另一端分别与两个不同中心波长(波长分别可选择为1.02和1.08μm)、带宽为12nm的带通型长周期保偏光纤光栅101,102的一端连接,带通型长周期保偏光纤光栅101,102的作用是双波长激光中心波长选择和两个波长锁模激光的光谱滤波光脉冲压缩;两个半导体可饱和吸收体01,02分别与两个带通型长周期保偏光纤光栅101,102的另一端光纤通过耦合光学系统或直接通过光学胶连接,半导体可饱和吸收体01,02充当激光锁模元件和激光腔的腔体反射元件。偏振分束器2将两个波长的激光用偏振的方式从空间上分开从而分别操控(如锁模等),而两个波长激光锁模的实现是采用了两个半导体可饱和吸收体01,02,两个不同中心波长、12nm带宽的带通型长周期保偏光纤光栅101,102选择两个不同的锁模中心波长并在全正色散激光腔体实现锁模光谱滤波脉冲压缩,形成稳定的双波长锁模超短脉冲输出。Figure 3 is a schematic diagram of the cavity structure of a dual-wavelength all-fiber linear cavity laser that uses a semiconductor saturable absorber to achieve mode locking and works in the total positive dispersion region in this embodiment; two appropriate center wavelengths (1.0~ 1.1μm) and bandwidth (4-12nm) band-pass long-period fiber grating filter is used as an element for selective tuning of the center wavelength of the mode-locked laser and optical pulse compression for spectral filtering. Referring to accompanying drawing 3, its concrete structure is: the coupling mirror 6 of a partial reflectivity is connected with polarization beam splitter 2 beam-combining one-word end polarization-maintaining optical fibers, and the function of coupling mirror 6 is the mode-locked laser output port and the first laser The reflective surface of the cavity; the signal laser input fibers of the two polarization-maintaining optical fibers 980/1064 wavelength division multiplexers 401, 402 are respectively connected to the two polarization direction coupling fibers of the polarization beam splitter 2, and the function of the polarization beam splitter 2 is The lasers of two wavelengths are separated spatially by polarization; two fiber-coupled 976nm pump lasers 51, 52 are respectively coupled into the fiber laser cavity through wavelength division multiplexers (WDM) 401, 402; the two sections are different One end of the polarization-maintaining doped Y b 3+ gain fiber 301 of length, 302 is respectively connected with the other end (signal laser and pump laser common end) of two polarization-maintaining 980/1064 wavelength division multiplexers 4, and the pump laser is in Laser gain is generated in the gain fiber; the other ends of the two polarization-maintaining Y b 3+ gain fibers 301 and 302 are respectively connected to two different center wavelengths (the wavelength can be selected as 1.02 and 1.08 μm) and the bandwidth is 12nm. One end of the long-period polarization-maintaining
实施例4:Example 4:
本实施例提供一种工作在全正色散环形腔的锁模掺Yb 3+光纤激光器的结构,采用一段单模掺稀土增益光纤作为增益介质,其腔内应用了适当中心波长(1.0~1.1μm)和带宽(4~12nm)的带通型长周期光纤光栅滤波器作为锁模激光器中心波长选择和光谱滤波光脉冲压缩的元件,实现全光纤超短脉冲激光器稳定锁模振荡。This embodiment provides a structure of a mode-locked Y b 3+ fiber laser working in a fully positive dispersion ring cavity. A section of single-mode rare earth-doped gain fiber is used as the gain medium, and an appropriate central wavelength (1.0-1.1 μm) and bandwidth (4-12nm) band-pass long-period fiber grating filter is used as a component for mode-locked laser center wavelength selection and spectral filtering optical pulse compression to realize stable mode-locked oscillation of all-fiber ultrashort pulse laser.
参见附图4,它是本实施例采用环形腔非线性偏振旋转锁模的全光纤激光器腔体结构示意图;腔内利用了适当中心波长和带宽的带通型长周期光纤光栅滤波器作为锁模激光器中心波长选择和光谱滤波光脉冲压缩的元件。泵浦激光通过波分复用器(WDM)耦合进单模掺杂稀土光纤产生增益,环形腔激光器腔内采用了适当带宽的带通型长周期带通性光纤光栅滤波器作为激光器中心波长的选择和光谱滤波光脉冲压缩的元件,一个光纤耦合的隔离器确保光纤激光器单向振荡,两个光纤偏振控制器调整光纤激光器腔内激光的偏振方向,一个偏振分束器作为锁模激光器的输出耦合器,增益光纤、带通型长周期光纤光栅滤波器、隔离器、两个光纤偏振控制器、偏振分束器组成的激光的非线性偏振旋转可饱和吸收体产生稳定的锁模脉冲。由图4可见其具体连接关系是:泵浦激光5通过波分复用器(WDM)40耦合进单模掺杂稀土光纤30产生增益,一个适当中心波长为1.02μm、带宽为12nm的带通型长周期光纤光栅滤波器10通过一段单模光纤16与单模掺杂稀土光纤30连接,带通型长周期光纤光栅滤波器10作为激光器中心波长的选择和光谱滤波光脉冲压缩的元件,一个光纤偏振控制器8与长周期带通性光纤光栅滤波器10连接,光纤偏振控制器8的作用是调整腔内激光偏振态并与其它器件产生可饱和吸收体产生锁模激光脉冲,一个光纤耦合的偏振分束器9与光纤偏振控制器8连接并构成输出比率可变的激光输出端口,一个光纤耦合的隔离器14与光纤耦合的偏振分束器9连接,隔离器14的作用是确保环形腔光纤激光器单向振荡,另一个光纤偏振控制器15与隔离器14连接,光纤偏振控制器15的作用是调整环形腔内激光的偏振态并与其它器件形成被动锁模产生超短激光脉冲的可饱和吸收体,光纤偏振控制器15、波分复用器(WDM)40、单模掺杂稀土光纤30、一段单模光纤16、适当中心波长和带宽的带通型长周期光纤光栅滤波器10、光纤偏振控制器8、光纤耦合的偏振分束器9、隔离器14构成一个利用非线性偏振旋转锁模环形腔的激光器,带通型长周期光纤光栅滤波器10产生腔内波长选择和光谱滤波光脉冲压缩作用,两个光纤偏振控制器8和15、增益光纤30、带通型长周期光纤光栅滤波器10、光纤耦合的偏振分束器9产生非线性偏振旋转可饱合吸收体锁模。Referring to accompanying drawing 4, it is the all-fiber laser cavity structure schematic diagram that this embodiment adopts ring cavity nonlinear polarization rotation mode-locking; Utilized the band-pass type long-period fiber grating filter of appropriate center wavelength and bandwidth in the cavity as mode-locking Components for laser center wavelength selection and spectral filtering for optical pulse compression. The pump laser is coupled into a single-mode rare earth doped fiber through a wavelength division multiplexer (WDM) to generate gain, and a band-pass type long-period band-pass fiber grating filter with an appropriate bandwidth is used in the cavity of the ring cavity laser as the center wavelength of the laser. Components for selection and spectral filtering of optical pulse compression, a fiber-coupled isolator to ensure unidirectional oscillation of the fiber laser, two fiber polarization controllers to adjust the polarization direction of the laser in the fiber laser cavity, and a polarization beam splitter as the output of the mode-locked laser Coupler, gain fiber, band-pass long-period fiber grating filter, isolator, two fiber polarization controllers, and polarization beam splitter. The nonlinear polarization rotation saturable absorber of the laser generates stable mode-locked pulses. It can be seen from Fig. 4 that the specific connection relationship is: the
实施例5:Example 5:
本实施例提供一种工作在全正色散区的锁模掺Yb 3+全保偏光纤环形腔激光器的结构,采用一段保偏掺稀土增益光纤作为增益介质,利用半导体可饱和吸收体实现锁模工作,其腔内应用了适当中心波长(1.0~1.1μm)和带宽(4~12nm)的带通型长周期保偏光纤光栅滤波器作为锁模激光器中心波长选择调谐和光谱滤波光脉冲压缩的元件,实现稳定的全光纤超短脉冲激光器锁模振荡。This embodiment provides a structure of a mode-locked Y b 3+ fully polarization-maintaining fiber ring cavity laser working in the fully positive dispersion region, using a section of polarization-maintaining rare-earth-doped gain fiber as the gain medium, and using a semiconductor saturable absorber to achieve locking In the cavity, a band-pass type long-period polarization-maintaining fiber grating filter with an appropriate central wavelength (1.0-1.1μm) and bandwidth (4-12nm) is used as a mode-locked laser for selective tuning of the central wavelength and spectral filtering for optical pulse compression. Components to achieve stable mode-locked oscillation of all-fiber ultrashort pulse lasers.
参见附图5,它是本实施例所述的一种采用半导体可饱和吸收体锁模的全保偏光纤激光器环形腔体结构示意图;腔内利用了适当带宽(4~12nm)和中心波长(1.0~1.1μm)的带通型长周期保偏光纤光栅滤波器作为锁模激光器中心波长选择调谐和光谱滤波光脉冲压缩的元件。泵浦激光通过波分复用器(WDM)耦合进掺杂保偏稀土光纤产生增益,环形腔激光器腔内采用了适当带宽的带通型长周期光纤光栅滤波器作为激光器中心波长的选择和光谱滤波光脉冲压缩的元件,一个保偏光纤耦合的隔离器确保光纤激光器单向环行振荡,一个保偏光纤耦合器为锁模激光输出耦合器,增益光纤、带通型长周期光纤光栅滤波器、隔离器、光纤耦合器和半导体可饱和吸收体组成的激光环行腔体产生稳定的锁模激光脉冲。其具体连接关系由图5可见:泵浦激光5通过波分复用器(WDM)4耦合进保偏掺杂稀土光纤3产生增益;一个中心波长为1.06μm、带宽为8nm的带通型长周期保偏光纤光栅滤波器1的一端与掺杂保偏稀土光纤3的另一端连接,带通型长周期光纤光栅滤波器1作为锁模光纤激光器中心波长的选择和光谱滤波光脉冲压缩的元件;一个偏振光纤耦合器13的一端光纤与带通型长周期保偏光纤光栅滤波器1的另一端光纤连接,偏振光纤耦合器13的作用是输出腔内锁模激光;一个保偏光纤环行器17的输入光纤端与偏振光纤耦合器13的另一端光纤连接,一个半导体可饱和吸收体0通过光学镜头耦合或直接用光学胶粘在保偏光纤环行器17的第二端光纤上,半导体可饱和吸收体0对激光的非线性作用形成稳定的锁模激光脉冲;保偏光纤环行器17的输出光纤端与保偏光纤隔离器18的输入端连接,保偏光纤隔离器18的作用是使光纤环形腔激光器单向工作;保偏光纤隔离器18的输出端光纤与波分复用器(WDM)4的信号输入端光纤连接,形成一个完整的环形激光腔;半导体可饱和吸收体0对激光的非线性作用与增益光纤3、适当带宽的带通型长周期保偏光纤光栅滤波器1光脉冲压缩,从而在整个正色散激光腔体产生稳定的锁模超短脉冲激光,通过保偏光纤输出耦合器13输出。Referring to accompanying drawing 5, it is a kind of full polarization-maintaining fiber laser annular cavity structure schematic diagram that adopts semiconductor saturable absorber mode-locking described in the present embodiment; Utilized appropriate bandwidth (4~12nm) and central wavelength ( 1.0-1.1μm) band-pass long-period polarization-maintaining fiber grating filter is used as a component for selective tuning of the center wavelength of the mode-locked laser and spectral filtering optical pulse compression. The pump laser is coupled into the doped rare-earth fiber through a wavelength division multiplexer (WDM) to generate gain, and a band-pass long-period fiber grating filter with an appropriate bandwidth is used in the cavity of the ring cavity laser as the choice of the center wavelength of the laser and the spectrum A component for filtering optical pulse compression, a polarization-maintaining fiber-coupled isolator to ensure unidirectional ring oscillation of the fiber laser, a polarization-maintaining fiber coupler as a mode-locked laser output coupler, gain fiber, band-pass long-period fiber grating filter, The laser ring cavity composed of isolator, fiber coupler and semiconductor saturable absorber generates stable mode-locked laser pulses. Its specific connection relationship can be seen from Figure 5: the pump laser 5 is coupled into the polarization-maintaining doped rare-earth fiber 3 through a wavelength division multiplexer (WDM) 4 to generate gain; One end of the periodic polarization-maintaining fiber grating filter 1 is connected to the other end of the doped polarization-maintaining rare earth fiber 3, and the band-pass long-period fiber grating filter 1 is used as a component for selecting the center wavelength of the mode-locked fiber laser and compressing the optical pulse of the spectral filter One end fiber of a polarization fiber coupler 13 is connected with the other end fiber of the bandpass type long-period polarization maintaining fiber grating filter 1, and the effect of the polarization fiber coupler 13 is to output intracavity mode-locked laser light; a polarization maintaining fiber circulator The input fiber end of 17 is connected with the other end optical fiber of polarization fiber coupler 13, and a semiconductor saturable absorber O is coupled through an optical lens or directly glued on the second end optical fiber of polarization-maintaining optical fiber circulator 17 with optical glue, and the semiconductor can Saturable absorber 0 forms stable mode-locked laser pulses to the nonlinear effect of laser; the output fiber end of polarization-maintaining fiber circulator 17 is connected with the input end of polarization-maintaining fiber-optic isolator 18, and the effect of polarization-maintaining fiber-optic isolator 18 is to make The fiber ring cavity laser works in one direction; the output fiber of the polarization-maintaining fiber isolator 18 is connected to the signal input fiber of the wavelength division multiplexer (WDM) 4 to form a complete ring laser cavity; the semiconductor saturable absorber 0 pair The nonlinear effect of the laser and the gain fiber 3. Band-pass long-period polarization-maintaining fiber grating filter with appropriate bandwidth 1. Optical pulse compression, so as to generate stable mode-locked ultrashort pulse laser in the entire positive dispersion laser cavity, through polarization-maintaining
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110088737XA CN102185242B (en) | 2009-12-11 | 2009-12-11 | Totally positive dispersion cavity mode-locked all-fiber laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110088737XA CN102185242B (en) | 2009-12-11 | 2009-12-11 | Totally positive dispersion cavity mode-locked all-fiber laser |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009102316811A Division CN101740995B (en) | 2009-12-11 | 2009-12-11 | Totally positive dispersion cavity mode-locked all-fiber laser |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102185242A CN102185242A (en) | 2011-09-14 |
CN102185242B true CN102185242B (en) | 2012-08-22 |
Family
ID=44571338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110088737XA Expired - Fee Related CN102185242B (en) | 2009-12-11 | 2009-12-11 | Totally positive dispersion cavity mode-locked all-fiber laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102185242B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108631144B (en) * | 2017-03-21 | 2019-09-13 | 中国移动通信有限公司研究院 | A device and method for generating ultrashort optical pulses |
CN108631143B (en) * | 2017-03-21 | 2019-10-08 | 中国移动通信有限公司研究院 | A kind of Semiconductor laser device and method |
CN109586148B (en) * | 2018-12-25 | 2024-04-30 | 武汉孚晟科技有限公司 | Pulse fiber laser based on main oscillation power amplifier structure |
CN115966990B (en) * | 2022-10-26 | 2024-06-25 | 湖南大科激光有限公司 | Single-mode fiber laser for inhibiting stimulated Raman scattering |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080151945A1 (en) * | 2006-06-27 | 2008-06-26 | Polaronyx, Inc. | Ultrashort stable mode locked fiber laser at one micron by using polarization maintaining (PM) fiber and photonic bandgap fiber (PBF) |
CN101510663A (en) * | 2009-03-06 | 2009-08-19 | 苏州大学 | Polarization dual wavelength fiber-optical ultrashort pulse laser |
-
2009
- 2009-12-11 CN CN201110088737XA patent/CN102185242B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080151945A1 (en) * | 2006-06-27 | 2008-06-26 | Polaronyx, Inc. | Ultrashort stable mode locked fiber laser at one micron by using polarization maintaining (PM) fiber and photonic bandgap fiber (PBF) |
CN101510663A (en) * | 2009-03-06 | 2009-08-19 | 苏州大学 | Polarization dual wavelength fiber-optical ultrashort pulse laser |
Non-Patent Citations (2)
Title |
---|
Brandon G. Bale,etc.Spectral filtering for mode locking in the normal dispersive regime.《OPTICS LETTERS》.2008,第33卷(第9期),941-943. * |
Michael Schultz, etc.All-fiber ytterbium femtosecond laser.《OPTICS EXPRESS》.2008,第16卷(第24期),19562-19567. * |
Also Published As
Publication number | Publication date |
---|---|
CN102185242A (en) | 2011-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101740995B (en) | Totally positive dispersion cavity mode-locked all-fiber laser | |
CN101510663B (en) | Polarization dual wavelength fiber-optical ultrashort pulse laser | |
US7813387B2 (en) | Optical system for providing short laser-pulses | |
US8787410B2 (en) | Compact, coherent, high brightness light sources for the mid and far IR | |
CN101854022B (en) | Passive mode-locking fiber laser with double-wavelength short pulse output | |
CN103414093B (en) | An all-fiber pulsed laser | |
Hartl et al. | Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers | |
US20050169324A1 (en) | Self-similar laser oscillator | |
CN102368584A (en) | Passive mode-locking ultrashort pulse all-fiber laser with waveband of 2.0 microns | |
CN102185241B (en) | Totally positive dispersion cavity mode-locked all-fiber laser | |
CN102185243B (en) | Mode-locked all-fiber laser with all-normal-dispersion cavity | |
JP2006332666A (en) | Short pulse amplification in 1 micron based on all fibers | |
CN101969174A (en) | Tunable all-fiber mode-locked laser | |
Li et al. | Subpicosecond SESAM and nonlinear polarization evolution hybrid mode-locking ytterbium-doped fiber oscillator | |
CN102185242B (en) | Totally positive dispersion cavity mode-locked all-fiber laser | |
CN102025096A (en) | Multi-wavelength mode-locked laser | |
CN110021871A (en) | A method of realizing Gao Zhongying Wavelength tunable all -fiber ultrafast pulsed laser device and system | |
Zhang et al. | 950 nm femtosecond laser by directly frequency-doubling of a thulium-doped fiber laser | |
CN106299984A (en) | A kind of integrated Q-switched laser and control method thereof | |
Shi et al. | All fiber-based single-frequency Q-switched laser pulses at 2 um for lidar and remote sensing applications | |
US20070047596A1 (en) | Photonic band-gap fiber based mode locked fiber laser at one micron | |
Dong et al. | Multi-wavelength Q-switched erbium doped fiber laser with a short carbon nanotube based saturable absorber | |
CN103944045A (en) | Tunable pohotonic crystal fiber SESAM mode-locked laser device with large mode field area | |
Koo et al. | Passive Q-switching of a fiber laser using a side-polished birefringent fiber with index matching gel spread on the flat side | |
WO2008074359A1 (en) | Optical fibre laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120822 Termination date: 20141211 |
|
EXPY | Termination of patent right or utility model |