CN102184964B - N-channel accumulative SiC IEMOSFET (Implantation and Epitaxial Metal-Oxide-Semiconductor Field Effect Transistor) device and manufacturing method thereof - Google Patents
N-channel accumulative SiC IEMOSFET (Implantation and Epitaxial Metal-Oxide-Semiconductor Field Effect Transistor) device and manufacturing method thereof Download PDFInfo
- Publication number
- CN102184964B CN102184964B CN 201110122219 CN201110122219A CN102184964B CN 102184964 B CN102184964 B CN 102184964B CN 201110122219 CN201110122219 CN 201110122219 CN 201110122219 A CN201110122219 A CN 201110122219A CN 102184964 B CN102184964 B CN 102184964B
- Authority
- CN
- China
- Prior art keywords
- implantation
- temperature
- epitaxial
- contact
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002513 implantation Methods 0.000 title claims abstract description 59
- 238000004519 manufacturing process Methods 0.000 title abstract description 7
- 239000004065 semiconductor Substances 0.000 title description 3
- 230000005669 field effect Effects 0.000 title 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 57
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 41
- 238000009825 accumulation Methods 0.000 claims abstract description 25
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 54
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 52
- -1 nitrogen ion Chemical class 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 25
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 17
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 16
- 239000012159 carrier gas Substances 0.000 claims description 16
- 229910000077 silane Inorganic materials 0.000 claims description 16
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 14
- 230000003647 oxidation Effects 0.000 claims description 14
- 238000007254 oxidation reaction Methods 0.000 claims description 14
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 14
- 229920005591 polysilicon Polymers 0.000 claims description 14
- 239000012535 impurity Substances 0.000 claims description 13
- 239000001257 hydrogen Substances 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 239000001294 propane Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 9
- 230000008021 deposition Effects 0.000 claims description 9
- 229910000838 Al alloy Inorganic materials 0.000 claims description 8
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 8
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 7
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 5
- 239000001307 helium Substances 0.000 claims description 4
- 229910052734 helium Inorganic materials 0.000 claims description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 4
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical group C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims 4
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical compound [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 claims 2
- 125000006850 spacer group Chemical group 0.000 claims 1
- 238000000407 epitaxy Methods 0.000 abstract description 15
- 238000002955 isolation Methods 0.000 abstract description 13
- 239000004020 conductor Substances 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 28
- 238000005468 ion implantation Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 21
- 229910052782 aluminium Inorganic materials 0.000 description 16
- 229910052681 coesite Inorganic materials 0.000 description 14
- 229910052906 cristobalite Inorganic materials 0.000 description 14
- 238000000151 deposition Methods 0.000 description 14
- 238000005530 etching Methods 0.000 description 14
- 239000000377 silicon dioxide Substances 0.000 description 14
- 235000012239 silicon dioxide Nutrition 0.000 description 14
- 229910052682 stishovite Inorganic materials 0.000 description 14
- 229910052905 tridymite Inorganic materials 0.000 description 14
- 238000000206 photolithography Methods 0.000 description 12
- 239000012495 reaction gas Substances 0.000 description 12
- 230000004913 activation Effects 0.000 description 10
- 238000005229 chemical vapour deposition Methods 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 230000004888 barrier function Effects 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 8
- 229910003465 moissanite Inorganic materials 0.000 description 7
- 239000012300 argon atmosphere Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000007943 implant Substances 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明公开了一种N沟道积累型SiC IEMOSFET器件及制作方法,主要解决现有技术中SiC IEMOSFET器件沟道电子迁移率低,导体电阻大的问题。其技术特点是:在已有的SiC IEMOSFET器件结构的基础上将注入形成的导电沟道层改为由外延形成的厚度为0.1μm~0.2μm,氮离子掺杂浓度为4×1016cm-3的N-外延积累层(6′),该外延积累层(6′)横向位于左源区N+接触(4a)与右源区N+接触(4b)之间,纵向位于隔离介质(2)和JFET区域(8)之间。本发明具有沟道电子迁移率高,导通电阻低,功耗低的优点,可应用于汽车电子、电脑和通讯等领域。
The invention discloses an N-channel accumulation type SiC IEMOSFET device and a manufacturing method, which mainly solve the problems of low channel electron mobility and large conductor resistance of the SiC IEMOSFET device in the prior art. Its technical features are: on the basis of the existing SiC IEMOSFET device structure, the conductive channel layer formed by implantation is replaced by epitaxy with a thickness of 0.1 μm to 0.2 μm, and the nitrogen ion doping concentration is 4×10 16 cm - 3 N- epitaxial accumulation layer (6'), the epitaxial accumulation layer (6') is laterally located between the left source region N + contact (4a) and the right source region N + contact (4b), and vertically located between the isolation medium (2 ) and the JFET region (8). The invention has the advantages of high channel electron mobility, low on-resistance and low power consumption, and can be applied to the fields of automotive electronics, computers and communications.
Description
技术领域 technical field
本发明属于微电子技术领域,涉及半导体器件,特别是一种N沟道积累型SiC IEMOSFET器件及制备方法。 The invention belongs to the technical field of microelectronics, and relates to a semiconductor device, in particular to an N-channel accumulation type SiC IEMOSFET device and a preparation method. the
背景技术 Background technique
SiC以其优良的物理化学特性和电学特性成为制造高温、大功率电子器件的一种最有优势的半导体材料,并且具有远大于Si材料的功率器件品质因子。SiC功率器件MOSFET的研发始于20世纪90年代,具有输入阻抗高、开关速度快、工作频率高、耐高温高压等一系列优点,已在开关稳压电源、高频加热、汽车电子以及功率放大器等方面取得了广泛的应用。 SiC has become one of the most advantageous semiconductor materials for manufacturing high-temperature, high-power electronic devices due to its excellent physical, chemical and electrical properties, and has a power device quality factor much greater than that of Si materials. The research and development of SiC power device MOSFET began in the 1990s. It has a series of advantages such as high input impedance, fast switching speed, high operating frequency, and high temperature and high pressure resistance. It has been used in switching regulated power supplies, high-frequency heating, automotive electronics and power amplifiers. and so on have been widely used. the
然而,目前SiC功率MOS器件SiC和SiO2的接触界面质量较差,高密度的界面态和界面粗糙导致器件沟道迁移率和导通电阻严重退化,甚至使基于SiC的器件的性能还达不到基于Si的器件的性能。因此,如何通过工艺和结构改进来降低SiC和SiO2的接触界面粗糙和界面态密度一直是比较活跃的课题。 However, the quality of the contact interface between SiC and SiO2 in current SiC power MOS devices is poor, and the high density of interface states and interface roughness lead to severe degradation of device channel mobility and on-resistance, and even make the performance of SiC-based devices not up to to the performance of Si-based devices. Therefore, how to reduce the contact interface roughness and interface state density of SiC and SiO2 through process and structure improvement has been a relatively active topic.
离子注入及高温退火工艺是造成SiC MOS器件界面粗糙的主要原因。研究表明1600度左右的高温退火后表面的粗糙度会增加10倍以上。而严重的界面粗糙度还会导致栅氧化层的可靠性降低。双外延MOSFET通过p+和p-两次外延形成p阱,避免了离子注入工艺导致的界面粗糙及高浓度p型杂质对器件沟道迁移率的影响。但是p+外延之后的沟槽刻蚀所形成的界面凹槽会导致器件的击穿特性明显退化。为解决这一问题,SHINSUKE HARAD等人于2008年提出一种IEMOSFET如图1所示, Ion implantation and high temperature annealing process are the main reasons for the rough interface of SiC MOS devices. Studies have shown that the roughness of the surface will increase by more than 10 times after high temperature annealing at about 1600 degrees. Severe interface roughness can also lead to reduced reliability of the gate oxide layer. The double epitaxial MOSFET forms a p-well through p+ and p- double epitaxy, which avoids the impact of the interface roughness caused by the ion implantation process and the high concentration of p-type impurities on the channel mobility of the device. However, the interface groove formed by the trench etching after the p+ epitaxy will cause the breakdown characteristics of the device to degrade significantly. In order to solve this problem, SHINSUKE HARAD and others proposed an IEMOSFET in 2008, as shown in Figure 1.
包括栅极1、SiO2隔离介质2、源极3、源区N+接触4、P+接触5、掩埋沟道区6、P-外延层7、JFET区域8、P阱9、N-漂移层10、N+衬底11和漏极12。这种IEMOSFET结构采用选择性离子注入形成p阱底部的p+层,然后外延形成p-层,避免了沟槽刻蚀的过程。并结合掩埋沟道结构,削弱了SiC和SiO2的接触界面对沟道迁移率的影响,大幅降低了器件的导通电阻,击穿电压1100V的器件导通电阻达到4.3mΩ·cm2。
Including
采用这种结构和工艺虽然在一定程度上改善了器件的界面特性,但是由于器件的掩埋沟道6仍由离子注入形成,所带来的SiC和SiO2的接触界面粗糙、高晶格损伤、低激活率等一系列问题,使得反型层电子迁移率大幅度降低、器件的导通电阻增大,严重的影响了器件的性能。
Although the adoption of this structure and process improves the interface characteristics of the device to a certain extent, because the buried
发明内容 Contents of the invention
本发明的目的在于保留上述IEMOSFET已有的优点,并对上述已有技术的缺点进行改进,提供一种高电子迁移率低导通电阻的SiC MOSFET结构和工艺方法,以抑制注入工艺所带来的SiC和SiO2的接触界面粗糙、高晶格损伤、低激活率等一系列问题对器件性能的影响,提高器件的性能。 The purpose of the present invention is to retain the existing advantages of the above-mentioned IEMOSFET, and improve the shortcomings of the above-mentioned prior art, and provide a SiC MOSFET structure and process method with high electron mobility and low on-resistance, so as to suppress the injection process. A series of problems such as the rough contact interface of SiC and SiO 2 , high lattice damage, and low activation rate affect the performance of the device, and improve the performance of the device.
本发明的目的是这样实现的: The purpose of the present invention is achieved like this:
本发明的器件结构是在日本产业技术综合研究所SHINSUKE HARADA等人提出的IEMOSFET结构上做出改进,将n型埋沟的形成工艺由离子注入改为第三次外延,以避免由注入工艺形成沟道所带来的界面粗糙、高晶格损伤、低激活率等一系列问题。 The device structure of the present invention is improved on the IEMOSFET structure proposed by SHINSUKE HARADA et al. of Japan Industrial Technology Research Institute, and the formation process of the n-type buried trench is changed from ion implantation to the third epitaxy, so as to avoid the formation of the n-type buried trench by the implantation process. A series of problems such as interface roughness, high lattice damage, and low activation rate brought about by the channel. the
一.本发明的器件自上而下包括:栅极、SiO2隔离介质、源极、源区N+接触、P+接触、P-外延层、JFET区域、P阱、N-漂移层、N+衬底和漏极,其中,在SiO2隔离介质与JFET区域之间设有N-外延积累层,以保证器件在工作状态下的导电沟道深度,减少表面散射对迁移率的影响。 1. The device of the present invention includes from top to bottom: gate, SiO2 isolation dielectric, source, source region N + contact, P + contact, P - epitaxial layer, JFET region, P well, N - drift layer, N + substrate and drain, wherein an N- epitaxial accumulation layer is provided between the SiO 2 isolation medium and the JFET region to ensure the depth of the conductive channel of the device in the working state and reduce the influence of surface scattering on the mobility.
所述的N-外延积累层,纵向位于SiO2隔离介质与JFET区域之间,横向位于两个源区N+接触之间。 The N- epitaxial accumulation layer is located vertically between the SiO 2 isolation dielectric and the JFET region, and laterally located between the N + contacts of the two source regions.
所述的N-外延积累层厚度为0.1μm~0.2μm。 The thickness of the N - epitaxial accumulation layer is 0.1 μm˜0.2 μm.
所述的栅电极采用磷离子掺杂的多晶硅,掺杂浓度为5×1019cm-3~1×1020cm-3。 The gate electrode is made of polysilicon doped with phosphorus ions, and the doping concentration is 5×10 19 cm -3 to 1×10 20 cm -3 .
所述的SiO2隔离介质的厚度范围为50nm~100nm。 The thickness of the SiO 2 isolation medium ranges from 50nm to 100nm.
所述的P-外延层采用硼离子掺杂,掺杂浓度为1×1015cm-3~1×1016cm-3。 The P - epitaxial layer is doped with boron ions, and the doping concentration is 1×10 15 cm -3 to 1×10 16 cm -3 .
二.本发明的器件的制作方法,包括如下顺序: Two. the manufacture method of device of the present invention, comprises following order:
(1)在N+碳化硅衬底片上生长8~9μm氮离子掺杂的N-漂移层,掺杂浓度为1×1015cm-3~2×1015cm-3,外延温度为1570℃,压力为100mbar,反应气体是硅烷和丙烷,载运气体为纯氢气,杂质源为液态氮气; (1) On the N + silicon carbide substrate, grow an N - drift layer doped with 8-9μm nitrogen ions, with a doping concentration of 1×10 15 cm -3 to 2×10 15 cm -3 , and an epitaxy temperature of 1570°C , the pressure is 100mbar, the reaction gas is silane and propane, the carrier gas is pure hydrogen, and the impurity source is liquid nitrogen;
(2)在氮离子掺杂的N-漂移层上进行多次铝离子选择性注入,形成深度为0.5μm,掺杂浓度为3×1018cm-3的P阱,注入温度为650℃; (2) Perform multiple selective implantation of aluminum ions on the N - drift layer doped with nitrogen ions to form a P well with a depth of 0.5 μm and a doping concentration of 3×10 18 cm -3 , and the implantation temperature is 650°C;
(3)在整个碳化硅片正面外延生长厚度为0.4μm的铝离子掺杂的P-外延层,掺杂浓度为1×1015cm-3~1×1016cm-3,外延温度为1570℃,压力为100mbar,反应气体是硅烷和丙烷,载运气体为纯氢气,杂质源为三甲基铝; (3) Epitaxially grow an aluminum ion-doped P - epitaxial layer with a thickness of 0.4 μm on the entire front surface of the silicon carbide wafer . °C, the pressure is 100mbar, the reaction gas is silane and propane, the carrier gas is pure hydrogen, and the impurity source is trimethylaluminum;
(4)在p阱中间区域进行多次氮离子选择性注入,形成深度为0.4μm,掺杂浓度为1×1017cm-3的JFET区,注入温度为500℃; (4) Selectively implant multiple nitrogen ions in the middle region of the p-well to form a JFET region with a depth of 0.4 μm and a doping concentration of 1×10 17 cm -3 , and the implantation temperature is 500°C;
(5)在整个碳化硅片正面外延生长0.1μm~0.2μm厚的氮离子掺杂的N-外延积累层,掺杂浓度为4×1016cm-3,外延温度为1570℃,压力为100mbar,反应气体是硅烷和丙烷,载运气体为纯氢气,杂质源为液态氮气; (5) Epitaxially grow a 0.1μm-0.2μm thick nitrogen ion-doped N - epitaxial accumulation layer on the entire front side of the silicon carbide wafer, the doping concentration is 4×10 16 cm -3 , the epitaxy temperature is 1570°C, and the pressure is 100mbar , the reaction gas is silane and propane, the carrier gas is pure hydrogen, and the impurity source is liquid nitrogen;
(6)在氮离子掺杂的N-外延积累层上先进行多次氮离子选择性注入,形成深度为0.25μm,掺杂浓度为1×1019cm-3的N+源区,注入温度为500℃;再在氮离子掺杂的N-外延积累层上进行多次铝离子选择性注入,形成深度为0.5μm,掺杂浓度为1×1019cm-3的P+接触,注入温度为650℃; (6) On the nitrogen ion-doped N - epitaxial accumulation layer, perform multiple selective nitrogen ion implantations to form an N + source region with a depth of 0.25 μm and a doping concentration of 1×10 19 cm -3 , and the implantation temperature 500°C; multiple times of selective implantation of aluminum ions on the N- epitaxial accumulation layer doped with nitrogen ions to form a P + contact with a depth of 0.5 μm and a doping concentration of 1×10 19 cm -3 , the implantation temperature is 650°C;
(7)对整个碳化硅正面依次进行干氧氧化和湿氧氧化,形成50nm~100nm的SiO2隔离介质,干氧氧化温度为1200℃,湿氧氧化温度为950℃; (7) Carry out dry oxygen oxidation and wet oxygen oxidation sequentially on the entire silicon carbide front to form a SiO 2 isolation medium of 50nm to 100nm, the dry oxygen oxidation temperature is 1200°C, and the wet oxygen oxidation temperature is 950°C;
(8)在SiO2隔离介质上淀积形成200nm的磷离子掺杂的多晶硅栅,掺杂浓度为5×1019cm-3~1×1020cm-3,淀积温度为600~650℃,淀积压强为60~80Pa,反应气体为硅烷和磷化氢,载运气体为氦气; (8) Deposit and form a 200nm phosphorous ion-doped polysilicon gate on the SiO 2 isolation dielectric, with a doping concentration of 5×10 19 cm -3 to 1×10 20 cm -3 , and a deposition temperature of 600 to 650°C , the deposition pressure is 60-80Pa, the reaction gas is silane and phosphine, and the carrier gas is helium;
(9)淀积300nm/100nm的Al/Ti合金,作为源极和漏极的接触金属层,并在1100±50℃温度下的氮气气氛中退火3分钟形成欧姆接触。 (9) Deposit 300nm/100nm Al/Ti alloy as the contact metal layer of the source and drain, and anneal for 3 minutes in a nitrogen atmosphere at a temperature of 1100±50° C. to form an ohmic contact. the
本发明与现有技术相比具有如下优点: Compared with the prior art, the present invention has the following advantages:
1)本发明由于采用外延形成导电沟道,而不是采用注入形成,从而抑制了注入工艺所带来的SiC和SiO2的接触界面粗糙、高晶格损伤、低激活率等一系列问题。 1) Since the present invention uses epitaxy to form the conductive channel instead of implantation, a series of problems such as rough contact interface between SiC and SiO 2 , high lattice damage, and low activation rate caused by the implantation process are suppressed.
2)本发明由于采用外延形成导电沟道,使得SiC和SiO2的界面粗糙度降低,从而降低表面散射对迁移率的影响,使得载流子迁移率大幅增大;同时也降低了器件的导通电阻,使得器件工作时的功耗降低,得到更好的器件性能。 2) The present invention reduces the interface roughness of SiC and SiO2 due to the use of epitaxy to form the conductive channel, thereby reducing the influence of surface scattering on the mobility, so that the carrier mobility is greatly increased; at the same time, the conductivity of the device is also reduced. The on-resistance reduces the power consumption of the device during operation and obtains better device performance.
3)本发明的N-外延积累层采用低掺杂外延,使得导电沟道具有一定的深度, 从而降低了表面散射对迁移率的影响。 3) The N - epitaxial accumulation layer of the present invention adopts low-doped epitaxy, so that the conductive channel has a certain depth, thereby reducing the influence of surface scattering on mobility.
4)本发明在制造上采用外延工艺替代注入工艺形成导电沟道,工艺简单,易于实现。 4) The present invention adopts the epitaxial process instead of the implantation process to form the conductive channel in manufacturing, and the process is simple and easy to realize. the
附图说明 Description of drawings
图1是SHINSUKE HARADA等提出的IEMOSFET器件结构示意图。 Figure 1 is a schematic diagram of the IEMOSFET device structure proposed by SHINSUKE HARADA et al. the
图2是本发明提供的N沟道积累型SiC IEMOSFET器件示意图。 Fig. 2 is a schematic diagram of an N-channel accumulation SiC IEMOSFET device provided by the present invention. the
图3是本发明的制作流程图。 Fig. 3 is a production flow chart of the present invention. the
具体实施方式 Detailed ways
参照图2,本发明的器件结构自上而下依次包括:多晶硅栅1、SiO2隔离介质2、源极金属3、源区N+接触4、P+接触5、N-外延积累层6′、P-外延层7、JFET区域8、P阱9、N-漂移层10、N+衬底11和漏极12。
Referring to Fig. 2, the device structure of the present invention includes from top to bottom:
其中,N+衬底11为高掺杂的碳化硅衬底;N+衬底11之上的凸形区是8~9μm氮离子掺杂的N-漂移层10,掺杂浓度为1×1015cm-3~2×1015cm-3;P阱9是多次铝离子选择性注入形成的深度为0.5μm,掺杂浓度为3×1018cm-3的区域,位于凸形N-漂移层10的左右上角;N-漂移层10的正上方是多次氮离子选择性注入,形成的深度为0.4μm,掺杂浓度为1×1017cm-3的JFET区域8;JFET区域8左右相接的区域是厚度为0.4μm的铝离子掺杂的P-外延层7,掺杂浓度为1×1015cm-3~1×1016cm-3;P阱9的左右上角是多次铝离子选择性注入形成的深度为0.5μm,掺杂浓度为1×1019cm-3的P+接触5;靠近P+接触5的是多次氮离子选择性注入形成的深度为0.25μm,掺杂浓度为1×1019cm-3的源区N+接触4;N-外延积累层6′为0.1μm~0.2μm厚的氮离子掺杂的N-外延积累层,掺杂浓度为4×1016cm-3,该N-外延积累层6′横向位于左源区4a的N+接触和右源区4b的N+接触之间,纵向位于JFET区域8之上;SiO2隔离介质2的厚度为50nm~100nm,位于N-外延积累层6′的上方;多晶硅栅1是由淀积形成的200nm磷离子掺杂的多晶硅,掺杂浓度为5×1019cm-3~1×1020cm-3,位于SiO2隔离介质2的正上方;源极金属3是通过淀积形成的300nm/100nm的Al/Ti合金,位于源区N+接触4和P+接触5的上方;漏极12是通过淀积形成的300nm/100nm的Al/Ti合金,位于碳化硅衬底11的背面。 Wherein, the N + substrate 11 is a highly doped silicon carbide substrate; the convex region on the N + substrate 11 is an N - drift layer 10 doped with 8-9 μm nitrogen ions, and the doping concentration is 1×10 15 cm -3 to 2×10 15 cm -3 ; P well 9 is a region formed by multiple selective implantation of aluminum ions with a depth of 0.5 μm and a doping concentration of 3×10 18 cm -3 , located in the convex N - The left and right upper corners of the drift layer 10; directly above the N - drift layer 10 are multiple nitrogen ion selective implants, forming a JFET region 8 with a depth of 0.4 μm and a doping concentration of 1×10 17 cm -3 ; the JFET region 8, the left and right adjacent areas are aluminum ion - doped P- epitaxial layer 7 with a thickness of 0.4 μm, and the doping concentration is 1×10 15 cm -3 to 1×10 16 cm -3 ; the left and right upper corners of P well 9 It is the P + contact 5 with a depth of 0.5 μm and a doping concentration of 1×10 19 cm -3 formed by multiple selective implantation of aluminum ions; near the P + contact 5 is the depth of multiple selective implantation of nitrogen ions . N + contact 4 in the source region with a doping concentration of 0.25 μm and a doping concentration of 1×10 19 cm -3 ; the N - epitaxial accumulation layer 6′ is a nitrogen ion-doped N - epitaxial accumulation layer with a thickness of 0.1 μm to 0.2 μm, doped The concentration is 4×10 16 cm -3 , the N - epitaxial accumulation layer 6' is laterally located between the N + contact of the left source region 4a and the N + contact of the right source region 4b, and vertically located above the JFET region 8; SiO 2 The isolation medium 2 has a thickness of 50nm-100nm and is located above the N - epitaxial accumulation layer 6′; the polysilicon gate 1 is formed by depositing 200nm phosphorous ion-doped polysilicon, and the doping concentration is 5×10 19 cm -3 ~ 1×10 20 cm -3 , located directly above the SiO 2 isolation dielectric 2; the source metal 3 is a 300nm/100nm Al/Ti alloy formed by deposition, located at the source region N + contact 4 and P + contact 5 Above; the drain electrode 12 is formed by deposition of 300nm/100nm Al/Ti alloy, located on the back side of the silicon carbide substrate 11 .
参照图3,本发明器件的制作方法通过下面实施例说明。 Referring to Fig. 3, the manufacturing method of the device of the present invention is illustrated by the following examples. the
实施例1 Example 1
步骤1.在N+碳化硅衬底片上外延生长N-漂移层。
对N+碳化硅衬底片11采用RCA清洗标准进行清洗,然后在衬底表面外延生长厚度为8μm,氮离子掺杂浓度为1×1015cm-3的N-漂移层10,如图3a,其工艺条件是:外延温度为1570℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,杂质源采用液态氮气。
Clean the N +
步骤2.多次铝离子选择性注入形成P阱。
(2.1)通过低压热壁化学气相淀积法在碳化硅片正面淀积一层厚度为0.2μm的SiO2层,然后再淀积厚度为1μm的Al来作为P阱9离子注入的阻挡层,通过光刻和刻蚀来形成P阱注入区; (2.1) Deposit a SiO2 layer with a thickness of 0.2 μm on the front side of the silicon carbide wafer by low-pressure hot-wall chemical vapor deposition, and then deposit Al with a thickness of 1 μm as a barrier layer for the ion implantation of the P well 9, Forming the P well implantation region by photolithography and etching;
(2.2)在650℃的环境温度下对P阱注入区进行四次Al离子注入,先后采用450keV、300keV、200keV和120keV的注入能量,将注入剂量为7.97×1013cm-2、4.69×1013cm-2、3.27×1013cm-2和2.97×1013cm-2的铝离子,注入到P阱注入区,形成深度为0.5μm,掺杂浓度为3×1018cm-3的P阱9,如图3b; (2.2) Perform Al ion implantation into the P well implantation region four times at an ambient temperature of 650°C, using implantation energies of 450keV, 300keV, 200keV and 120keV successively, and implanting doses of 7.97×10 13 cm -2 , 4.69×10 Aluminum ions of 13 cm -2 , 3.27×10 13 cm -2 and 2.97×10 13 cm -2 are implanted into the implantation region of the P well to form a P well with a depth of 0.5 μm and a doping concentration of 3×10 18 cm -3 Well 9, as shown in Figure 3b;
(2.3)采用RCA清洗标准对碳化硅表面进行清洗,烘干后制作C膜保护;然后在1700~1750℃氩气氛围中进行离子激活退火10min。 (2.3) Clean the silicon carbide surface with RCA cleaning standard, and make C film protection after drying; then perform ion activation annealing in an argon atmosphere at 1700-1750 °C for 10 minutes. the
步骤3.外延生长P-外延层。
在碳化硅片正面外延生长厚度为0.4μm,铝离子掺杂浓度为1×1015cm-3的P-外延层7,如图3c,其工艺条件是:外延温度为1570℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,杂质源采用三甲基铝。 Epitaxially grow a P - epitaxial layer 7 with a thickness of 0.4 μm and an aluminum ion doping concentration of 1×10 15 cm -3 on the front side of the silicon carbide wafer, as shown in Figure 3c. The process conditions are: the epitaxy temperature is 1570°C, and the pressure is 100mbar , the reaction gas uses silane and propane, the carrier gas uses pure hydrogen, and the impurity source uses trimethylaluminum.
步骤4.多次氮离子选择性注入形成JFET区。 Step 4. Selective implantation of nitrogen ions multiple times to form a JFET region. the
(4.1)通过低压热壁化学气相淀积法在碳化硅片正面淀积一层厚度为0.2μm的SiO2层,然后再淀积厚度为1μm的Al作为JFET区8离子注入的阻挡层,通过光刻和刻蚀形成JFET注入区;
(4.1) Deposit a SiO2 layer with a thickness of 0.2 μm on the front side of the silicon carbide wafer by low-pressure hot-wall chemical vapor deposition, and then deposit Al with a thickness of 1 μm as the barrier layer for ion implantation in the
(4.2)在500℃的环境温度下对JFET注入区进行四次氮离子注入,先后采用300keV、200keV、140keV和80keV的注入能量,将注入剂量分别为1.70×1012cm-2、1.29×1012cm-2、1.03×1012cm-2和1.13×1012cm-2的氮离子,注入到 JFET注入区,形成深度为0.4μm,掺杂浓度为1×1017cm-3的JFET区8,如图3d;
(4.2) Perform nitrogen ion implantation into the JFET implantation region four times at an ambient temperature of 500°C, using implantation energies of 300keV, 200keV, 140keV, and 80keV successively, and implanting doses of 1.70×10 12 cm -2 , 1.29×10 Nitrogen ions of 12 cm -2 , 1.03×10 12 cm -2 and 1.13×10 12 cm -2 are implanted into the JFET implantation region to form a JFET region with a depth of 0.4 μm and a doping concentration of 1×10 17
(4.3)采用RCA清洗标准对碳化硅表面进行清洗,烘干后制作C膜保护;然后在1700~1750℃氩气氛围中进行离子激活退火10min。 (4.3) Clean the silicon carbide surface with the RCA cleaning standard, and make a C film protection after drying; then perform ion activation annealing in an argon atmosphere at 1700-1750 °C for 10 minutes. the
步骤5.外延生长N-外延积累层。
在碳化硅片正面外延生长厚度为0.1μm,掺杂浓度为4×1016cm-3的N-外延积累层6′,如图3e,其工艺条件是:外延温度为1570℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,杂质源采用液态氮气。 Epitaxially grow an N - epitaxial accumulation layer 6' with a thickness of 0.1 μm and a doping concentration of 4×10 16 cm -3 on the front side of the silicon carbide wafer, as shown in Figure 3e. The process conditions are: the epitaxy temperature is 1570°C, and the pressure is 100mbar , the reaction gas uses silane and propane, the carrier gas uses pure hydrogen, and the impurity source uses liquid nitrogen.
步骤6.多次氮离子选择性注入形成源区N+接触,多次铝离子选择性注入形成P+接触。
(6.1)通过低压热壁化学气相淀积法在碳化硅片正面淀积一层厚度为0.2μm的SiO2层,然后再淀积厚度为1μm的Al来作为源区N+接触离子注入的阻挡层,通过光刻和刻蚀来形成源区N+接触注入区。 (6.1) Deposit a layer of SiO2 with a thickness of 0.2 μm on the front of the silicon carbide wafer by low-pressure hot-wall chemical vapor deposition, and then deposit Al with a thickness of 1 μm as a barrier for N + contact ion implantation in the source region layer, the source region N + contact implantation region is formed by photolithography and etching.
(6.2)在500℃的环境温度下对源区N+接触注入区进行四次氮离子注入,先后采用200keV、140keV、100keV和65keV的注入能量,将注入剂量为1.49×1014cm-2、7.99×1013cm-2、7.25×1013cm-2和7.02×1013cm-2的氮离子,注入到N+接触的注入区,形成深度为0.25μm,掺杂浓度为1×1019cm-3的源区N+接触4,如图3f; (6.2) Under the ambient temperature of 500°C, carry out nitrogen ion implantation to the N + contact implantation region of the source region four times, using the implantation energy of 200keV, 140keV, 100keV and 65keV successively, and the implantation dose is 1.49×10 14 cm -2 , Nitrogen ions of 7.99×10 13 cm -2 , 7.25×10 13 cm -2 and 7.02×10 13 cm -2 are implanted into the implanted region of the N + contact, with a depth of 0.25 μm and a doping concentration of 1×10 19 The source region N + contact 4 of cm -3 , as shown in Fig. 3f;
(6.3)通过低压热壁化学气相淀积法在碳化硅片正面淀积一层厚度为0.2μm的SiO2层,然后再淀积厚度为1μm的Al来作为P+接触离子注入的阻挡层,通过光刻和刻蚀来形成P+接触注入区; (6.3) Deposit a SiO2 layer with a thickness of 0.2 μm on the front side of the silicon carbide wafer by low-pressure hot-wall chemical vapor deposition, and then deposit Al with a thickness of 1 μm as a barrier layer for P + contact ion implantation, Forming the P + contact implant region by photolithography and etching;
(6.4)在650℃的环境温度下对P+接触注入区进行四次Al离子注入,先后采用450keV、300keV、200keV和120keV的注入能量,将注入剂量为2.63×1014cm-2、1.55×1014cm-2、1.08×1014cm-2和9.79×1013cm-2的铝离子,注入到P+接触注入区,形成深度为0.5μm,掺杂浓度为1×1019cm-3的P+接触5,如图3f; (6.4) Four times of Al ion implantation was carried out in the P + contact implantation region at an ambient temperature of 650°C. The implantation energies of 450keV, 300keV, 200keV and 120keV were used successively, and the implantation doses were 2.63×10 14 cm -2 , 1.55× Aluminum ions of 10 14 cm -2 , 1.08×10 14 cm -2 and 9.79×10 13 cm -2 are implanted into the P + contact implantation region with a depth of 0.5 μm and a doping concentration of 1×10 19 cm -3 The P + contacts 5, as shown in Figure 3f;
(6.5)采用RCA清洗标准对碳化硅表面进行清洗,烘干后制作C膜保护,然后在1700~1750℃氩气氛围中进行离子激活退火10min。 (6.5) Clean the silicon carbide surface with the RCA cleaning standard, make a C film protection after drying, and then perform ion activation annealing in an argon atmosphere at 1700-1750 ° C for 10 minutes. the
步骤7.氧化形成栅氧化膜。
(7.1)先在1200℃下干氧氧化一个小时之后,再在950℃下湿氧氧化一个小时,形成厚度为50nm的氧化膜; (7.1) Dry oxygen oxidation at 1200°C for one hour, and then wet oxygen oxidation at 950°C for one hour to form an oxide film with a thickness of 50nm;
(7.2)通过光刻、刻蚀形成SiO2隔离介质2,如图3g。 (7.2) Form the SiO 2 isolation medium 2 by photolithography and etching, as shown in Figure 3g.
步骤8.淀积形成掺杂浓度为5×1019cm-3,厚度为200nm的磷离子重掺杂的多晶硅栅。
用低压热壁化学气相淀积法在碳化硅正面淀积生长200nm的多晶硅,然后通过光刻、刻蚀保留住栅氧化膜上的多晶硅,形成磷离子掺杂浓度为5×1019cm-3,厚度为200nm的多晶硅栅1,如图3h,其工艺条件是:淀积温度为600~650℃,淀积压强为60~80Pa,反应气体采用硅烷和磷化氢,载运气体采用氦气。
Deposit and grow 200nm polysilicon on the front side of silicon carbide by low-pressure hot-wall chemical vapor deposition, and then retain the polysilicon on the gate oxide film by photolithography and etching to form a phosphorous ion doping concentration of 5×10 19 cm -3 , a
步骤9.淀积形成源接触金属层和漏接触金属层。
(9.1)对整个碳化硅片的正面进行涂胶、显影,形成N+以及P+欧姆接触区域,淀积300nm/100nm的Al/Ti合金,之后通过超声波剥离使正面形成源极金属3,如图3i;
(9.1) Coating and developing the front side of the entire silicon carbide wafer to form N + and P + ohmic contact areas, depositing 300nm/100nm Al/Ti alloy, and then ultrasonic stripping to form the
(9.2)在衬底背面淀积300nm/100nm的Al/Ti合金,作为漏极12,如图3i;
(9.2) Deposit 300nm/100nm Al/Ti alloy on the back of the substrate as the
(9.3)在1100±50℃的氮气气氛中,对整个碳化硅片退火3分钟,形成欧姆接触电极。 (9.3) In a nitrogen atmosphere at 1100±50°C, anneal the entire silicon carbide wafer for 3 minutes to form ohmic contact electrodes. the
实施例2 Example 2
第一步.在N+碳化硅衬底片上外延生长N-漂移层。
对N+碳化硅衬底片11采用RCA清洗标准进行清洗,然后在衬底表面外延生长厚度为8.5μm,氮离子掺杂浓度为1.5×1015cm-3的N-漂移层10,如图3a,其工艺条件是:外延温度为1570℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,杂质源采用液态氮气。
Clean the N +
第二步.多次铝离子选择性注入形成P阱。
(2.1)通过低压热壁化学气相淀积法在碳化硅片正面淀积一层厚度为0.2μm的SiO2层,然后再淀积厚度为1μm的Al来作为P阱9离子注入的阻挡层,通过光刻和刻蚀来形成P阱注入区; (2.1) Deposit a SiO2 layer with a thickness of 0.2 μm on the front side of the silicon carbide wafer by low-pressure hot-wall chemical vapor deposition, and then deposit Al with a thickness of 1 μm as a barrier layer for the ion implantation of the P well 9, Forming the P well implantation region by photolithography and etching;
(2.2)在650℃的环境温度下对P阱注入区进行四次Al离子注入,先后采用450keV、300keV、200keV和120keV的注入能量,将注入剂量为7.97×1013cm-2、4.69×1013cm-2、3.27×1013cm-2和2.97×1013cm-2的铝离子,注入到P阱注入区,形成深度为0.5μm,掺杂浓度为3×1018cm-3的P阱9,如图3b; (2.2) Perform Al ion implantation into the P well implantation region four times at an ambient temperature of 650°C, using implantation energies of 450keV, 300keV, 200keV and 120keV successively, and implanting doses of 7.97×10 13 cm -2 , 4.69×10 Aluminum ions of 13 cm -2 , 3.27×10 13 cm -2 and 2.97×10 13 cm -2 are implanted into the implantation region of the P well to form a P well with a depth of 0.5 μm and a doping concentration of 3×10 18 cm -3 Well 9, as shown in Figure 3b;
(2.3)采用RCA清洗标准对碳化硅表面进行清洗,烘干后制作C膜保护;然后在1700~1750℃氩气氛围中进行离子激活退火10min。 (2.3) Clean the silicon carbide surface with RCA cleaning standard, and make C film protection after drying; then perform ion activation annealing in an argon atmosphere at 1700-1750 °C for 10 minutes. the
第三步.外延生长P-外延层。
在碳化硅片正面外延生长厚度为0.4μm,铝离子掺杂浓度为5×1015cm-3的P-外延层7,如图3c,其工艺条件是:外延温度为1570℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,杂质源采用三甲基铝。 Epitaxially grow a P - epitaxial layer 7 with a thickness of 0.4 μm and an aluminum ion doping concentration of 5×10 15 cm -3 on the front side of the silicon carbide wafer, as shown in Figure 3c. The process conditions are: epitaxy temperature is 1570°C, pressure is 100mbar , the reaction gas uses silane and propane, the carrier gas uses pure hydrogen, and the impurity source uses trimethylaluminum.
第四步.多次氮离子选择性注入形成JFET区。 Step 4. Selective implantation of nitrogen ions multiple times to form the JFET region. the
(4.1)通过低压热壁化学气相淀积法在碳化硅片正面淀积一层厚度为0.2μm的SiO2层,然后再淀积厚度为1μm的Al作为JFET区8离子注入的阻挡层,通过光刻和刻蚀形成JFET注入区;
(4.1) Deposit a SiO2 layer with a thickness of 0.2 μm on the front side of the silicon carbide wafer by low-pressure hot-wall chemical vapor deposition, and then deposit Al with a thickness of 1 μm as the barrier layer for ion implantation in the
(4.2)在500℃的环境温度下对JFET注入区进行四次氮离子注入,先后采用300keV、200keV、140keV和80keV的注入能量,将注入剂量分别为1.70×1012cm-2、1.29×1012cm-2、1.03×1012cm-2和1.13×1012cm-2的氮离子,注入到JFET注入区,形成深度为0.4μm,掺杂浓度为1×1017cm-3的JFET区8,如图3d;
(4.2) Perform nitrogen ion implantation into the JFET implantation region four times at an ambient temperature of 500°C, using implantation energies of 300keV, 200keV, 140keV, and 80keV successively, and implanting doses of 1.70×10 12 cm -2 , 1.29×10 Nitrogen ions of 12 cm -2 , 1.03×10 12 cm -2 and 1.13×10 12 cm -2 are implanted into the JFET implantation region to form a JFET region with a depth of 0.4 μm and a doping concentration of 1×10 17
(4.3)采用RCA清洗标准对碳化硅表面进行清洗,烘干后制作C膜保护;然后在1700~1750℃氩气氛围中进行离子激活退火10min。 (4.3) Clean the silicon carbide surface with the RCA cleaning standard, and make a C film protection after drying; then perform ion activation annealing in an argon atmosphere at 1700-1750 °C for 10 minutes. the
第五步.外延生长N-外延积累层。
在碳化硅片正面外延生长厚度为0.15μm,掺杂浓度为4×1016cm-3的N-外延积累层6′,如图3e,其工艺条件是:外延温度为1570℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,杂质源采用液态氮气。 Epitaxially grow an N - epitaxial accumulation layer 6' with a thickness of 0.15 μm and a doping concentration of 4×10 16 cm -3 on the front side of the silicon carbide wafer, as shown in Figure 3e. The process conditions are: the epitaxy temperature is 1570°C, and the pressure is 100mbar , the reaction gas uses silane and propane, the carrier gas uses pure hydrogen, and the impurity source uses liquid nitrogen.
第六步.多次氮离子选择性注入形成源区N+接触,多次铝离子选择性注入形成P+接触。
(6.1)通过低压热壁化学气相淀积法在碳化硅片正面淀积一层厚度为0.2μm的SiO2层,然后再淀积厚度为1μm的Al来作为源区N+接触离子注入的阻挡层,通过光刻和刻蚀来形成源区N+接触注入区。 (6.1) Deposit a layer of SiO2 with a thickness of 0.2 μm on the front of the silicon carbide wafer by low-pressure hot-wall chemical vapor deposition, and then deposit Al with a thickness of 1 μm as a barrier for N + contact ion implantation in the source region layer, the source region N + contact implantation region is formed by photolithography and etching.
(6.2)在500℃的环境温度下对源区N+接触注入区进行四次氮离子注入,先后采用200keV、140keV、100keV和65keV的注入能量,将注入剂量为1.49×1014cm-2、7.99×1013cm-2、7.25×1013cm-2和7.02×1013cm-2的氮离子,注入到N+接触的注入区,形成深度为0.25μm,掺杂浓度为1×1019cm-3的源区N+接触4, 如图3f; (6.2) Under the ambient temperature of 500°C, carry out nitrogen ion implantation to the N + contact implantation region of the source region four times, using the implantation energy of 200keV, 140keV, 100keV and 65keV successively, and the implantation dose is 1.49×10 14 cm -2 , Nitrogen ions of 7.99×10 13 cm -2 , 7.25×10 13 cm -2 and 7.02×10 13 cm -2 are implanted into the implanted region of the N + contact, with a depth of 0.25 μm and a doping concentration of 1×10 19 The source region N + contact 4 of cm -3 , as shown in Fig. 3f;
(6.3)通过低压热壁化学气相淀积法在碳化硅片正面淀积一层厚度为0.2μm的SiO2层,然后再淀积厚度为1μm的Al来作为P+接触离子注入的阻挡层,通过光刻和刻蚀来形成P+接触注入区; (6.3) Deposit a SiO2 layer with a thickness of 0.2 μm on the front side of the silicon carbide wafer by low-pressure hot-wall chemical vapor deposition, and then deposit Al with a thickness of 1 μm as a barrier layer for P + contact ion implantation, Forming the P + contact implant region by photolithography and etching;
(6.4)在650℃的环境温度下对P+接触注入区进行四次Al离子注入,先后采用450keV、300keV、200keV和120keV的注入能量,将注入剂量为2.63×1014cm-2、1.55×1014cm-2、1.08×1014cm-2和9.79×1013cm-2的铝离子,注入到P+接触注入区,形成深度为0.5μm,掺杂浓度为1×1019cm-3的P+接触5,如图3f; (6.4) Four times of Al ion implantation was carried out in the P + contact implantation region at an ambient temperature of 650°C. The implantation energies of 450keV, 300keV, 200keV and 120keV were used successively, and the implantation doses were 2.63×10 14 cm -2 , 1.55× Aluminum ions of 10 14 cm -2 , 1.08×10 14 cm -2 and 9.79×10 13 cm -2 are implanted into the P + contact implantation region with a depth of 0.5 μm and a doping concentration of 1×10 19 cm -3 The P + contacts 5, as shown in Figure 3f;
(6.5)采用RCA清洗标准对碳化硅表面进行清洗,烘干后制作C膜保护,然后在1700~1750℃氩气氛围中进行离子激活退火10min。 (6.5) Clean the silicon carbide surface with the RCA cleaning standard, make a C film protection after drying, and then perform ion activation annealing in an argon atmosphere at 1700-1750 ° C for 10 minutes. the
第七步.氧化形成栅氧化膜。
(7.1)在1200℃下干氧氧化两个小时之后,再在950℃下湿氧氧化一个小时,形成厚度为70nm的氧化膜; (7.1) After dry oxygen oxidation at 1200°C for two hours, then wet oxygen oxidation at 950°C for one hour to form an oxide film with a thickness of 70nm;
(7.2)通过光刻、刻蚀形成SiO2隔离介质2,如图3g。 (7.2) Form the SiO 2 isolation medium 2 by photolithography and etching, as shown in Figure 3g.
第八步.淀积形成掺杂浓度为7×1019cm-3,厚度为200nm的磷离子重掺杂的多晶硅栅。
用低压热壁化学气相淀积法在碳化硅正面淀积生长200nm的多晶硅,然后通过光刻、刻蚀保留住栅氧化膜上的多晶硅,形成磷离子掺杂浓度为5×1019cm-3,厚度为200nm的多晶硅栅1,如图3h,其工艺条件是:淀积温度为600~650℃,淀积压强为60~80Pa,反应气体采用硅烷和磷化氢,载运气体采用氦气。
Deposit and grow 200nm polysilicon on the front side of silicon carbide by low-pressure hot-wall chemical vapor deposition, and then retain the polysilicon on the gate oxide film by photolithography and etching to form a phosphorous ion doping concentration of 5×10 19 cm -3 , a
第九步.淀积形成源接触金属层和漏接触金属层。
(9.1)对整个碳化硅片的正面进行涂胶、显影,形成N+以及P+欧姆接触区域,淀积300nm/100nm的Al/Ti合金,之后通过超声波剥离使正面形成源极金属3,如图3i;
(9.1) Coating and developing the front side of the entire silicon carbide wafer to form N + and P + ohmic contact areas, depositing 300nm/100nm Al/Ti alloy, and then ultrasonic stripping to form the
(9.2)在衬底背面淀积300nm/100nm的Al/Ti合金,作为漏极12,如图3i;
(9.2) Deposit 300nm/100nm Al/Ti alloy on the back of the substrate as the
(9.3)在1100±50℃的氮气气氛中,对整个碳化硅片退火3分钟,形成欧姆接触电极。 (9.3) In a nitrogen atmosphere at 1100±50°C, anneal the entire silicon carbide wafer for 3 minutes to form ohmic contact electrodes. the
实施例3 Example 3
步骤A.在N+碳化硅衬底片上外延生长N-漂移层。 Step A. Epitaxially grow an N − drift layer on the N + silicon carbide substrate.
对N+碳化硅衬底片11采用RCA清洗标准进行清洗,然后在衬底表面外延生长厚度为9μm,氮离子掺杂浓度为2×1015cm-3的N-漂移层10,如图3a,其工艺条件是:外延温度为1570℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,杂质源采用液态氮气。
Clean the N +
步骤B.多次铝离子选择性注入形成P阱。 Step B. multiple times of selective implantation of aluminum ions to form a P well. the
(B1)通过低压热壁化学气相淀积法在碳化硅片正面淀积一层厚度为0.2μm的SiO2层,然后再淀积厚度为1μm的Al来作为P阱9离子注入的阻挡层,通过光刻和刻蚀来形成P阱注入区; (B1) Deposit a SiO2 layer with a thickness of 0.2 μm on the front surface of the silicon carbide wafer by low-pressure hot-wall chemical vapor deposition, and then deposit Al with a thickness of 1 μm as a barrier layer for the ion implantation of the P well 9, Forming the P well implantation region by photolithography and etching;
(B2)在650℃的环境温度下对P阱注入区进行四次Al离子注入,先后采用450keV、300keV、200keV和120keV的注入能量,将注入剂量为7.97×1013cm-2、4.69×1013cm-2、3.27×1013cm-2和2.97×1013cm-2的铝离子,注入到P阱注入区,形成深度为0.5μm,掺杂浓度为3×1018cm-3的P阱9,如图3b; (B2) Perform Al ion implantation into the P well implantation region four times at an ambient temperature of 650°C, using implantation energies of 450keV, 300keV, 200keV and 120keV successively, and implanting doses of 7.97×10 13 cm -2 , 4.69×10 Aluminum ions of 13 cm -2 , 3.27×10 13 cm -2 and 2.97×10 13 cm -2 are implanted into the implantation region of the P well to form a P well with a depth of 0.5 μm and a doping concentration of 3×10 18 cm -3 Well 9, as shown in Figure 3b;
(B3)采用RCA清洗标准对碳化硅表面进行清洗,烘干后制作C膜保护;然后在1700~1750℃氩气氛围中进行离子激活退火10min。 (B3) Clean the silicon carbide surface with RCA cleaning standard, and make a C film protection after drying; then perform ion activation annealing in an argon atmosphere at 1700-1750 °C for 10 minutes. the
步骤C.外延生长P-外延层。 Step C. Epitaxially grow the P - epi layer.
在碳化硅片正面外延生长厚度为0.4μm,铝离子掺杂浓度为1×1016cm-3的P-外延层7,如图3c,其工艺条件是:外延温度为1570℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,杂质源采用三甲基铝。 Epitaxially grow a P - epitaxial layer 7 with a thickness of 0.4 μm and an aluminum ion doping concentration of 1×10 16 cm -3 on the front side of the silicon carbide wafer, as shown in Figure 3c. The process conditions are: the epitaxy temperature is 1570°C, and the pressure is 100mbar , the reaction gas uses silane and propane, the carrier gas uses pure hydrogen, and the impurity source uses trimethylaluminum.
步骤D.多次氮离子选择性注入形成JFET区。 Step D. Selective implantation of nitrogen ions multiple times to form a JFET region. the
(D1)通过低压热壁化学气相淀积法在碳化硅片正面淀积一层厚度为0.2μm的SiO2层,然后再淀积厚度为1μm的Al作为JFET区8离子注入的阻挡层,通过光刻和刻蚀形成JFET注入区;
(D1) Deposit a SiO2 layer with a thickness of 0.2 μm on the front side of the silicon carbide wafer by low-pressure hot-wall chemical vapor deposition, and then deposit Al with a thickness of 1 μm as the barrier layer for ion implantation in the
(D2)在500℃的环境温度下对JFET注入区进行四次氮离子注入,先后采用300keV、200keV、140keV和80keV的注入能量,将注入剂量分别为1.70×1012cm-2、1.29×1012cm-2、1.03×1012cm-2和1.13×1012cm-2的氮离子,注入到JFET注入区,形成深度为0.4μm,掺杂浓度为1×1017cm-3的JFET区8,如图3d;
(D2) Perform nitrogen ion implantation into the JFET implantation region four times at an ambient temperature of 500°C, using implantation energies of 300keV, 200keV, 140keV, and 80keV successively, and implanting doses of 1.70×10 12 cm -2 , 1.29×10 Nitrogen ions of 12 cm -2 , 1.03×10 12 cm -2 and 1.13×10 12 cm -2 are implanted into the JFET implantation region to form a JFET region with a depth of 0.4 μm and a doping concentration of 1×10 17
(D3)采用RCA清洗标准对碳化硅表面进行清洗,烘干后制作C膜保护; 然后在1700~1750℃氩气氛围中进行离子激活退火10min。 (D3) Clean the silicon carbide surface with the RCA cleaning standard, and make a C film protection after drying; then perform ion activation annealing in an argon atmosphere at 1700-1750 °C for 10 minutes. the
步骤E.外延生长N-外延积累层。 Step E. Epitaxially grow the N - epitaxial accumulation layer.
在碳化硅片正面外延生长厚度为0.2μm,掺杂浓度为4×1016cm-3的N-外延积累层6′,如图3e,其工艺条件是:外延温度为1570℃,压力为100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,杂质源采用液态氮气。 Epitaxially grow an N - epitaxial accumulation layer 6' with a thickness of 0.2 μm and a doping concentration of 4×10 16 cm -3 on the front side of the silicon carbide wafer, as shown in Figure 3e. The process conditions are: the epitaxy temperature is 1570°C, and the pressure is 100mbar , the reaction gas uses silane and propane, the carrier gas uses pure hydrogen, and the impurity source uses liquid nitrogen.
步骤F.多次氮离子选择性注入形成源区N+接触,多次铝离子选择性注入形成P+接触。 Step F: multiple nitrogen ions are selectively implanted to form N + contacts in the source region, and multiple aluminum ions are selectively implanted to form P + contacts.
(F1)通过低压热壁化学气相淀积法在碳化硅片正面淀积一层厚度为0.2μm的SiO2层,然后再淀积厚度为1μm的Al来作为源区N+接触离子注入的阻挡层,通过光刻和刻蚀来形成源区N+接触注入区。 (F1) Deposit a layer of SiO2 with a thickness of 0.2 μm on the front side of the silicon carbide wafer by low-pressure hot-wall chemical vapor deposition, and then deposit Al with a thickness of 1 μm as a barrier for N + contact ion implantation in the source region layer, the source region N + contact implantation region is formed by photolithography and etching.
(F2)在500℃的环境温度下对源区N+接触注入区进行四次氮离子注入,先后采用200keV、140keV、100keV和65keV的注入能量,将注入剂量为1.49×1014cm-2、7.99×1013cm-2、7.25×1013cm-2和7.02×1013cm-2的氮离子,注入到N+接触的注入区,形成深度为0.25μm,掺杂浓度为1×1019cm-3的源区N+接触4,如图3f; (F2) Under the ambient temperature of 500°C, nitrogen ion implantation was performed four times in the N + contact implantation region of the source region, and the implantation energies of 200keV, 140keV, 100keV and 65keV were successively adopted, and the implantation dose was 1.49×10 14 cm -2 , Nitrogen ions of 7.99×10 13 cm -2 , 7.25×10 13 cm -2 and 7.02×10 13 cm -2 are implanted into the implanted region of the N + contact, with a depth of 0.25 μm and a doping concentration of 1×10 19 The source region N + contact 4 of cm -3 , as shown in Fig. 3f;
(F3)通过低压热壁化学气相淀积法在碳化硅片正面淀积一层厚度为0.2μm的SiO2层,然后再淀积厚度为1μm的Al来作为P+接触离子注入的阻挡层,通过光刻和刻蚀来形成P+接触注入区; (F3) Deposit a layer of SiO2 with a thickness of 0.2 μm on the front side of the silicon carbide wafer by low-pressure hot-wall chemical vapor deposition, and then deposit Al with a thickness of 1 μm as a barrier layer for P + contact ion implantation, Forming the P + contact implant region by photolithography and etching;
(F4)在650℃的环境温度下对P+接触注入区进行四次Al离子注入,先后采用450keV、300keV、200keV和120keV的注入能量,将注入剂量为2.63×1014cm-2、1.55×1014cm-2、1.08×1014cm-2和9.79×1013cm-2的铝离子,注入到P+接触注入区,形成深度为0.5μm,掺杂浓度为1×1019cm-3的P+接触5,如图3f; (F4) Four times of Al ion implantation was performed on the P + contact implantation region at an ambient temperature of 650°C, using implantation energies of 450keV, 300keV, 200keV and 120keV successively, and the implantation doses were 2.63×10 14 cm -2 , 1.55× Aluminum ions of 10 14 cm -2 , 1.08×10 14 cm -2 and 9.79×10 13 cm -2 are implanted into the P + contact implantation region with a depth of 0.5 μm and a doping concentration of 1×10 19 cm -3 The P + contacts 5, as shown in Figure 3f;
(F5)采用RCA清洗标准对碳化硅表面进行清洗,烘干后制作C膜保护,然后在1700~1750℃氩气氛围中进行离子激活退火10min。 (F5) Clean the silicon carbide surface with the RCA cleaning standard, make a C film protection after drying, and then perform ion activation annealing in an argon atmosphere at 1700-1750°C for 10 minutes. the
步骤G.氧化形成栅氧化膜。 Step G. Oxidation to form a gate oxide film. the
(G1)在1200℃下干氧氧化三个半小时之后,再在950℃下湿氧氧化一个小时,形成厚度为100nm的氧化膜; (G1) After dry oxygen oxidation at 1200°C for three and a half hours, then wet oxygen oxidation at 950°C for one hour to form an oxide film with a thickness of 100nm;
(G2)通过光刻、刻蚀形成SiO2隔离介质2,如图3g。 (G2) Form the SiO 2 isolation medium 2 by photolithography and etching, as shown in Figure 3g.
步骤H.淀积形成掺杂浓度为1×1020cm-3,厚度为200nm的磷离子重掺杂的 多晶硅栅。 Step H. Deposit and form a polysilicon gate heavily doped with phosphorus ions with a doping concentration of 1×10 20 cm -3 and a thickness of 200 nm.
用低压热壁化学气相淀积法在碳化硅正面淀积生长200nm的多晶硅,然后通过光刻、刻蚀保留住栅氧化膜上的多晶硅,形成磷离子掺杂浓度为5×1019cm-3,厚度为200nm的多晶硅栅1,如图3h,其工艺条件是:淀积温度为600~650℃,淀积压强为60~80Pa,反应气体采用硅烷和磷化氢,载运气体采用氦气。
Deposit and grow 200nm polysilicon on the front side of silicon carbide by low-pressure hot-wall chemical vapor deposition, and then retain the polysilicon on the gate oxide film by photolithography and etching to form a phosphorous ion doping concentration of 5×10 19 cm -3 , a
步骤I.淀积形成源接触金属层和漏接触金属层。 Step I. Depositing and forming a source contact metal layer and a drain contact metal layer. the
(I1)对整个碳化硅片的正面进行涂胶、显影,形成N+以及P+欧姆接触区域,淀积300nm/100nm的Al/Ti合金,之后通过超声波剥离使正面形成源极金属3,如图3i;
(I1) Coating and developing the front side of the entire silicon carbide wafer to form N + and P + ohmic contact regions, depositing 300nm/100nm Al/Ti alloy, and then ultrasonic stripping to form the
(I2)在衬底背面淀积300nm/100nm的Al/Ti合金,作为漏极12,如图3i;
(I2) Deposit 300nm/100nm Al/Ti alloy on the back of the substrate as the
(I3)在1100±50℃的氮气气氛中,对整个碳化硅片退火3分钟,形成欧姆接触电极。 (I3) In a nitrogen atmosphere at 1100±50° C., anneal the entire silicon carbide wafer for 3 minutes to form ohmic contact electrodes. the
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110122219 CN102184964B (en) | 2011-05-12 | 2011-05-12 | N-channel accumulative SiC IEMOSFET (Implantation and Epitaxial Metal-Oxide-Semiconductor Field Effect Transistor) device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110122219 CN102184964B (en) | 2011-05-12 | 2011-05-12 | N-channel accumulative SiC IEMOSFET (Implantation and Epitaxial Metal-Oxide-Semiconductor Field Effect Transistor) device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102184964A CN102184964A (en) | 2011-09-14 |
CN102184964B true CN102184964B (en) | 2013-03-20 |
Family
ID=44571104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110122219 Active CN102184964B (en) | 2011-05-12 | 2011-05-12 | N-channel accumulative SiC IEMOSFET (Implantation and Epitaxial Metal-Oxide-Semiconductor Field Effect Transistor) device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102184964B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103400860B (en) * | 2013-08-21 | 2017-04-19 | 东南大学 | N type longitudinal silicon carbide MOS (metal oxide semiconductor) tube with high breakdown voltage |
CN103839784A (en) * | 2013-12-31 | 2014-06-04 | 北京市润大正兴电子技术有限公司 | Ion implantation mask method and silicon carbide Schottky diode manufacturing method |
CN103928344B (en) * | 2014-04-21 | 2017-04-05 | 西安电子科技大学 | One kind improves N-type DiMOSFET channel mobility method based on N-type nano thin-layer |
CN104233219A (en) * | 2014-07-22 | 2014-12-24 | 西安电子科技大学 | Method for preparing P-type heavily-doped silicon carbide thin film epitaxial layer by controlling doping source flow |
CN104233218A (en) * | 2014-07-22 | 2014-12-24 | 西安电子科技大学 | Epitaxy preparation method of N type low-doped silicon carbide thin film under controlled growth pressure |
CN107785416B (en) * | 2016-08-31 | 2020-07-10 | 无锡华润上华科技有限公司 | Junction field effect transistor and method of making the same |
CN113113464B (en) * | 2020-01-13 | 2023-03-10 | 清纯半导体(宁波)有限公司 | A kind of semiconductor device and its manufacturing method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7727904B2 (en) * | 2005-09-16 | 2010-06-01 | Cree, Inc. | Methods of forming SiC MOSFETs with high inversion layer mobility |
WO2009050871A1 (en) * | 2007-10-15 | 2009-04-23 | Panasonic Corporation | Semiconductor device and method for manufacturing the same |
CN101404292A (en) * | 2008-09-27 | 2009-04-08 | 电子科技大学 | VDMOS device |
-
2011
- 2011-05-12 CN CN 201110122219 patent/CN102184964B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN102184964A (en) | 2011-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102244099B (en) | SiC IEMOSFET (Implantation and Epitaxial Metal-Oxide -Semiconductor Field Effect Transistor) device with epitaxy channel and manufacturing method of SiC IEMOSFET device | |
CN103928344B (en) | One kind improves N-type DiMOSFET channel mobility method based on N-type nano thin-layer | |
CN102227000B (en) | Silicon carbide MOSFET device based on super junction and preparation method | |
CN102184964B (en) | N-channel accumulative SiC IEMOSFET (Implantation and Epitaxial Metal-Oxide-Semiconductor Field Effect Transistor) device and manufacturing method thereof | |
CN102194885B (en) | Silicon carbide DEMOSFET device with N-type buried channel and its preparation method | |
CN110518070B (en) | A silicon carbide LDMOS device suitable for monolithic integration and its manufacturing method | |
CN102832248A (en) | Silicon carbide MOSFET (metal-oxide-semiconductor field effect transistor) based on semi-super junction and manufacturing method | |
CN104241348B (en) | A kind of SiC IGBT of low on-resistance and preparation method thereof | |
CN101916784B (en) | SOI (Silicon on Insulator) variable buried oxide layer thickness device and preparation method thereof | |
CN106711207B (en) | SiC junction gate bipolar transistor with vertical channel and method for making the same | |
CN107731923B (en) | Silicon carbide super-junction MOSFET device with low on-resistance and small gate charge and preparation method | |
WO2010098076A1 (en) | Storage-, insulation gate-, and field effect-type transistor | |
CN106876256A (en) | SiC double flute UMOSFET devices and preparation method thereof | |
CN108831927A (en) | Super junction metal oxide semiconductor field effect transistor and manufacturing method thereof | |
CN107658215A (en) | Silicon carbide device and manufacturing method thereof | |
CN104282766A (en) | Novel silicon carbide MOSFET and manufacturing method thereof | |
CN103681256B (en) | A kind of silicon carbide MOSFET device and preparation method thereof | |
TW201403676A (en) | High-voltage semiconductor device and manufacturing method thereof | |
CN108257855B (en) | Preparation method of high-k gate dielectric layer and silicon carbide MOS power device | |
CN107871781A (en) | A kind of silicon carbide MOSFET and its manufacturing method | |
CN103000499B (en) | A kind of germanium silicon boron outer layer growth method | |
CN106783987A (en) | The SiC Schottky gates bipolar transistor and preparation method of a kind of longitudinal channel | |
CN105826195B (en) | A kind of super junction power device and preparation method thereof | |
CN116936620A (en) | Preparation method of silicon carbide trench gate MOSFET | |
TWI726004B (en) | Diamond electronic components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20181009 Address after: 710065 16, 5 20 zhang84 Road, hi tech Zone, Xi'an, Shaanxi. Patentee after: Shaanxi Semiconductor Pioneer Technology Center Co.,Ltd. Address before: No. 2 Taibai Road, Xi'an, Shaanxi Province, Shaanxi Patentee before: Shaanxi Xi'an electronic large Assets Management Co.,Ltd. Effective date of registration: 20181009 Address after: No. 2 Taibai Road, Xi'an, Shaanxi Province, Shaanxi Patentee after: Shaanxi Xi'an electronic large Assets Management Co.,Ltd. Address before: 710071 Taibai South Road, Xi'an, Xi'an, Shaanxi 2 Patentee before: Xidian University |
|
TR01 | Transfer of patent right |