CN102181285A - Silica nitride fluorescent powder and preparation method thereof - Google Patents
Silica nitride fluorescent powder and preparation method thereof Download PDFInfo
- Publication number
- CN102181285A CN102181285A CN2011100560141A CN201110056014A CN102181285A CN 102181285 A CN102181285 A CN 102181285A CN 2011100560141 A CN2011100560141 A CN 2011100560141A CN 201110056014 A CN201110056014 A CN 201110056014A CN 102181285 A CN102181285 A CN 102181285A
- Authority
- CN
- China
- Prior art keywords
- powder
- silicon oxynitride
- excitation
- preparation
- nitrides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 112
- 238000002360 preparation method Methods 0.000 title claims description 15
- -1 Silica nitride Chemical class 0.000 title claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title description 6
- 239000000377 silicon dioxide Substances 0.000 title description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 73
- 230000005284 excitation Effects 0.000 claims abstract description 59
- 239000000203 mixture Substances 0.000 claims abstract description 49
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 36
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 36
- 239000010703 silicon Substances 0.000 claims abstract description 35
- 239000000126 substance Substances 0.000 claims abstract description 24
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 16
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 15
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 14
- 229910052769 Ytterbium Inorganic materials 0.000 claims abstract description 14
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 14
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 13
- 229910052738 indium Inorganic materials 0.000 claims abstract description 13
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 13
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract description 12
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 12
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 12
- 229910052689 Holmium Inorganic materials 0.000 claims abstract description 12
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 12
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 12
- 229910052771 Terbium Inorganic materials 0.000 claims abstract description 12
- 229910052775 Thulium Inorganic materials 0.000 claims abstract description 12
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 12
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 12
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 12
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 11
- 229910052745 lead Inorganic materials 0.000 claims abstract description 11
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 5
- 239000002994 raw material Substances 0.000 claims description 36
- 238000010438 heat treatment Methods 0.000 claims description 32
- 238000000695 excitation spectrum Methods 0.000 claims description 25
- 150000004767 nitrides Chemical class 0.000 claims description 24
- 150000001875 compounds Chemical class 0.000 claims description 15
- 238000002156 mixing Methods 0.000 claims description 14
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 13
- 239000013078 crystal Substances 0.000 claims description 13
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 13
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 claims description 12
- 238000002189 fluorescence spectrum Methods 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 229910052796 boron Inorganic materials 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052788 barium Inorganic materials 0.000 claims description 6
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 claims description 6
- 239000006184 cosolvent Substances 0.000 claims description 6
- 229910016036 BaF 2 Inorganic materials 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 229910016066 BaSi Inorganic materials 0.000 claims description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 4
- 238000010304 firing Methods 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- GXUARMXARIJAFV-UHFFFAOYSA-L barium oxalate Chemical compound [Ba+2].[O-]C(=O)C([O-])=O GXUARMXARIJAFV-UHFFFAOYSA-L 0.000 claims description 3
- 229940094800 barium oxalate Drugs 0.000 claims description 3
- 230000005684 electric field Effects 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- GALOTNBSUVEISR-UHFFFAOYSA-N molybdenum;silicon Chemical compound [Mo]#[Si] GALOTNBSUVEISR-UHFFFAOYSA-N 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 229910052582 BN Inorganic materials 0.000 claims description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 230000009257 reactivity Effects 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 18
- 238000005245 sintering Methods 0.000 abstract description 5
- 230000007423 decrease Effects 0.000 abstract description 3
- 238000010924 continuous production Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 239000004570 mortar (masonry) Substances 0.000 description 25
- 238000000295 emission spectrum Methods 0.000 description 14
- 239000007789 gas Substances 0.000 description 14
- 238000001816 cooling Methods 0.000 description 13
- 239000011812 mixed powder Substances 0.000 description 13
- 229910052593 corundum Inorganic materials 0.000 description 12
- 239000010431 corundum Substances 0.000 description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 8
- 239000012071 phase Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910018509 Al—N Inorganic materials 0.000 description 2
- 229910018557 Si O Inorganic materials 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002284 excitation--emission spectrum Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910018516 Al—O Inorganic materials 0.000 description 1
- 229910015999 BaAl Inorganic materials 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910007991 Si-N Inorganic materials 0.000 description 1
- 229910006294 Si—N Inorganic materials 0.000 description 1
- 229910004122 SrSi Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Luminescent Compositions (AREA)
Abstract
本发明提供了一种硅氧氮化物荧光粉,通式为:BaeCfDgSi3+a(Al,Ga,In)3+bO4+cN5+d,其中-2<a<2,-2<b<2,-2<c<2,-2<d<2,0≤f≤0.30,0≤g≤0.5,2e+fvC+gvD=2,e>0,vC,vD代表C,D的价态;C为选自Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Mn、Cr、Bi、Pb、Fe中的一种或几种元素的发光中心,D为Ba以外的碱土金属以及Zn中一种或几种元素的混合物。该硅氧氮化物荧光粉长时间暴露于激发源时亮度降低小,对蓝光或近紫外光的转换效率优异且色纯度优异,热稳定性和化学稳定性高,晶粒尺寸小而均匀;烧结温度低,工艺简单,易于工业化连续生产,具有广阔的工业应用前景。
The invention provides a silicon oxynitride fluorescent powder, the general formula is: Ba e C f D g Si 3+a (Al, Ga, In) 3+b O 4+c N 5+d , wherein -2<a<2,-2<b<2,-2<c<2,-2<d<2, 0≤f≤0.30, 0≤g≤0.5, 2e+fv C +gv D =2, e>0 , v C , v D represent C, the valence state of D; C is selected from Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Mn, Cr, Bi, Pb, The luminescent center of one or several elements in Fe, D is a mixture of alkaline earth metals other than Ba and one or several elements in Zn. When the silicon oxynitride phosphor is exposed to the excitation source for a long time, the brightness decreases little, the conversion efficiency to blue light or near ultraviolet light is excellent, the color purity is excellent, the thermal stability and chemical stability are high, and the grain size is small and uniform; sintering The temperature is low, the process is simple, the industrial continuous production is easy, and the invention has broad industrial application prospects.
Description
技术领域technical field
本发明涉及无机发光材料领域,具体涉及一种硅氧氮化物荧光粉及其制备方法。The invention relates to the field of inorganic luminescent materials, in particular to a silicon oxynitride fluorescent powder and a preparation method thereof.
背景技术Background technique
与传统的照明技术相比,白光二极管(White Light Emitting Diodes,WLED)照明技术具有其显著的优势:发光二极管具有体积小、发热量低、耗电量低、寿命长、反应速度快、环保等优点,可平面封装和易于轻薄化等优点。其中,近紫外和蓝光激发(360nm-450nm)的白光LED在汽车照明,背光源以及在其他电子设备中得到广泛的应用。而新型的等离子平板显示器(Plasma Display Panel,PDP)具有体积小、重量更轻、无X射线辐射、亮度高、色彩还原性好、灰度丰富、对迅速变化的画面响应速度快等优点。更多的照明显示技术还包括三基色荧光灯、荧光显示管(VFD)、场致发射显示器(FED)、阴极射线管(CRT)等。Compared with traditional lighting technology, White Light Emitting Diodes (WLED) lighting technology has its significant advantages: light-emitting diodes have small size, low calorific value, low power consumption, long life, fast response, environmental protection, etc. Advantages, flat packaging and easy thinning and other advantages. Among them, white LEDs excited by near-ultraviolet and blue light (360nm-450nm) are widely used in automotive lighting, backlight and other electronic devices. The new Plasma Display Panel (PDP) has the advantages of small size, lighter weight, no X-ray radiation, high brightness, good color reproduction, rich grayscale, and fast response to rapidly changing pictures. More lighting display technologies include trichromatic fluorescent lamps, fluorescent display tubes (VFD), field emission displays (FED), cathode ray tubes (CRT) and so on.
以上照明显示器件的性能依赖于多种因素,其中用于光转换的荧光粉也扮演了一个重要的角色。对于其中的任意一种用途,为了使荧光粉发光,需要向荧光粉提供激发荧光粉的能量,包括电子射线、真空紫外线、紫外线以致于可见光,在提供这些能量的激发源的激发下,荧光粉发出可见光线。The performance of the above illuminated display devices depends on many factors, among which the phosphor powder used for light conversion also plays an important role. For any of these uses, in order to make the phosphor emit light, it is necessary to provide the phosphor with energy that excites the phosphor, including electron rays, vacuum ultraviolet rays, ultraviolet rays, and even visible light. Under the excitation of the excitation source that provides these energies, the phosphor powder emit visible light.
荧光粉种类较多,有硅酸盐荧光粉、磷酸盐荧光粉、铝酸盐荧光粉、硫化物荧光粉等,荧光粉在长时间暴露于激发源的情况下有亮度降低的问题,其应用受到限制,因此需要探索亮度降低小、性能稳定的新型荧光粉材料。There are many types of phosphors, including silicate phosphors, phosphate phosphors, aluminate phosphors, sulfide phosphors, etc. Phosphors have the problem of brightness reduction when exposed to excitation sources for a long time. Therefore, it is necessary to explore new phosphor materials with small brightness reduction and stable performance.
发明内容Contents of the invention
本发明解决的问题在于提供一种硅氧氮化物荧光粉,具有高的热稳定性和化学稳定性,光转换效率高。The problem to be solved by the present invention is to provide a silicon oxynitride fluorescent powder with high thermal and chemical stability and high light conversion efficiency.
为了解决上述技术问题,本发明的技术方案为:In order to solve the problems of the technologies described above, the technical solution of the present invention is:
一种硅氧氮化物荧光粉,通式为:BaeCfDgSi3+a(Al,Ga,In)3+bO4+cN5+d,其中-2<a<2,-2<b<2,-2<c<2,-2<d<2,0≤f≤0.30,0≤g≤0.5,2e+fvC+gvD=2,e>0,vC,vD代表C,D的价态;C为选自Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Mn、Cr、Bi、Pb、Fe中的一种或几种元素的发光中心,D为Ba以外的碱土金属以及Zn中一种或几种元素的混合物。A silicon oxynitride phosphor, the general formula is: Ba e C f D g Si 3+a (Al, Ga, In) 3+b O 4+c N 5+d , where -2<a<2, -2<b<2, -2<c<2, -2<d<2, 0≤f≤0.30, 0≤g≤0.5, 2e+fv C +gv D =2, e>0, v C , v D represents C, the valence state of D; C is one selected from Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Mn, Cr, Bi, Pb, Fe The luminescent center of one or several elements, D is the mixture of alkaline earth metals other than Ba and one or several elements in Zn.
作为优选,所述硅氧氮化物荧光粉的通式为:Ba1-f-gCfDgSi3(Al,Ga,In)3O4N5,0≤f≤0.30,0≤g≤0.5;C为选自Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Mn、Cr、Bi、Pb、Fe中的一种或几种元素的发光中心,D为Ba以外的碱土金属以及金属元素中一种或几种元素的混合物。Preferably, the general formula of the silicon oxynitride phosphor is: Ba 1-fg C f D g Si 3 (Al, Ga, In) 3 O 4 N 5 , 0≤f≤0.30, 0≤g≤0.5 C is the luminescence center of one or more elements selected from Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Mn, Cr, Bi, Pb, Fe, D is an alkaline earth metal other than Ba and a mixture of one or more elements among metal elements.
作为优选,其基本结构为由BaSi3Al3O4N5组成的单斜晶体结构,其结晶相在使用CuKα为X射线源的XRD衍射测试中,在下列三个2θ具有衍射峰:24.3°-26.3°,30.7°-32.7°,35.6°-37.6°。Preferably, its basic structure is a monoclinic crystal structure composed of BaSi 3 Al 3 O 4 N 5 , and its crystal phase has diffraction peaks at the following three 2θ in the XRD diffraction test using CuKα as the X-ray source: 24.3° -26.3°, 30.7°-32.7°, 35.6°-37.6°.
作为优选,所述Si可以被Ge或B部分取代。Preferably, said Si may be partially substituted by Ge or B.
作为优选,所述C为至少含有Ce、Sm、Eu或Yb中的一种元素的发光中心。Preferably, the C is a luminescence center containing at least one element among Ce, Sm, Eu or Yb.
作为优选,在荧光光谱中最大发光波长为460nm-500nm,在激发光谱中最大激发波长为240nm-420nm,在真空紫外激发中最大激发波长为140nm-155nm。Preferably, the maximum emission wavelength in the fluorescence spectrum is 460nm-500nm, the maximum excitation wavelength in the excitation spectrum is 240nm-420nm, and the maximum excitation wavelength in the vacuum ultraviolet excitation is 140nm-155nm.
作为优选,在荧光光谱中最大发光波长为400nm-440nm,在激发光谱中最大激发波长为250nm-370nm。Preferably, the maximum emission wavelength in the fluorescence spectrum is 400nm-440nm, and the maximum excitation wavelength in the excitation spectrum is 250nm-370nm.
作为优选,在荧光光谱中最大发光波长为300nm-550nm,在激发光谱中最大激发波长为650nm-740nm。Preferably, the maximum emission wavelength in the fluorescence spectrum is 300nm-550nm, and the maximum excitation wavelength in the excitation spectrum is 650nm-740nm.
一种硅氧氮化物荧光粉的制备方法,包括以下步骤:A preparation method of silicon oxynitride fluorescent powder, comprising the following steps:
1)根据化学表达式BaeCfDgSi3+a(Al,Ga,In)3+bO4+cN5+d,按照各元素比例计算各原料用量,式中-2<a<2,-2<b<2,-2<c<2,-2<d<2,0≤f≤0.30,0≤g≤0.5,2e+fvC+gvD=2,e>0,vC,vD代表C,D的价态;C为选自Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Mn、Cr、Bi、Pb、Fe中的一种或几种元素的发光中心,D为Ba以外的碱土金属以及Zn中一种或几种元素的混合物;1) According to the chemical expression Ba e C f D g Si 3+a (Al, Ga, In) 3+b O 4+c N 5+d , calculate the amount of each raw material according to the ratio of each element, where -2<a <2, -2<b<2, -2<c<2, -2<d<2, 0≤f≤0.30, 0≤g≤0.5, 2e+fv C +gv D =2, e>0, v C , v D represents C, the valence state of D; C is selected from Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Mn, Cr, Bi, Pb, Fe The luminescent center of one or more elements in D, D is a mixture of alkaline earth metals other than Ba and one or more elements in Zn;
各原料为:氧化钡或可以转化为氧化钡的碳酸钡或草酸钡中的一种或几种含钡化合物,含Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Mn、Cr、Bi、Pb、Fe中的一种或几种单质、氧化物、氮化物或能转化为氧化物或氮化物的化合物,含Ba以外的碱土金属以及Zn中一种或几种单质、氧化物、氮化物或能转化为氧化物或氮化物的化合物,含Si的氧化物、氮化物或能转化为氧化物或氮化物的化合物;Each raw material is: one or several barium-containing compounds in barium oxide or barium carbonate or barium oxalate that can be converted into barium oxide, including Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, One or several elements of Tm, Yb, Mn, Cr, Bi, Pb, Fe, oxides, nitrides or compounds that can be converted into oxides or nitrides, containing alkaline earth metals other than Ba and one of Zn Or several simple substances, oxides, nitrides or compounds that can be converted into oxides or nitrides, Si-containing oxides, nitrides or compounds that can be converted into oxides or nitrides;
2)将上述各种原料混合,在还原气氛下,将混合物加热至1400℃~1600℃进行焙烧,保温2h~40h,自然冷却至室温;2) Mix the above-mentioned various raw materials, and heat the mixture to 1400°C-1600°C in a reducing atmosphere for roasting, keep it warm for 2h-40h, and naturally cool to room temperature;
3)将焙烧后获得的粉末粉碎至粒径为10μm以下。3) Pulverize the powder obtained after firing to a particle size of 10 μm or less.
作为优选,所述2)中原料还包括含Ge或B的氧化物、氮化物或能转化为氧化物或氮化物的化合物。Preferably, the raw materials in 2) further include oxides, nitrides or compounds that can be converted into oxides or nitrides containing Ge or B.
作为优选,所述2)中将上述各种原料混合后,还加入助溶剂H3BO3或BaF2。As a preference, after mixing the above-mentioned various raw materials in the above 2), a co-solvent H 3 BO 3 or BaF 2 is also added.
作为优选,所述2)中将上述各种原料混合所用的混合装置为V型混合机、摇动式混合机、球磨机、振动式球磨机。As a preference, the mixing device used for mixing the above-mentioned various raw materials in 2) is a V-shaped mixer, a shaking mixer, a ball mill, or a vibrating ball mill.
作为优选,所述2)中将上述各种原料混合后,将混合物盛于与氮化硼、氮化硅、钨、钼或氧化铝具有低反应性的坩埚内。Preferably, after mixing the above various raw materials in 2), the mixture is placed in a crucible with low reactivity with boron nitride, silicon nitride, tungsten, molybdenum or aluminum oxide.
作为优选,所述2)中将上述各种原料混合后,堆积相对密度控制在20%-40%。As a preference, after the above-mentioned various raw materials are mixed in the above 2), the bulk relative density is controlled at 20%-40%.
作为优选,所述2)中还原气氛为氮气、氢气或氨气中的一种或几种混合气氛。Preferably, the reducing atmosphere in 2) is one or more mixed atmospheres of nitrogen, hydrogen or ammonia.
作为优选,所述还原气氛的压力为1atm以上。Preferably, the pressure of the reducing atmosphere is above 1 atm.
作为优选,所述2)中将混合物加热的速率为1℃/min-10℃/min。Preferably, the heating rate of the mixture in the above 2) is 1°C/min-10°C/min.
作为优选,所述2)中焙烧使用的炉子为金属电阻加热型、石墨电阻加热型或硅钼棒电阻加热型的连续炉或间歇炉。Preferably, the furnace used in the 2) calcination is a metal resistance heating type, a graphite resistance heating type or a silicon molybdenum rod resistance heating type continuous furnace or batch furnace.
一种荧光粉组合物,包括前面所述硅氧氮化物荧光粉,所述硅氧氮化物荧光粉占所述荧光粉组合物的重量百分数为25%以上。A fluorescent powder composition, comprising the aforementioned silicon oxynitride fluorescent powder, the silicon oxynitride fluorescent powder accounting for more than 25% by weight of the fluorescent powder composition.
一种照明器件,包括发光光源和所述硅氧氮化物荧光粉,所述照明器件为白光LED灯或三基色荧光灯。An illuminating device includes a luminescent light source and the silicon oxynitride fluorescent powder, and the illuminating device is a white LED lamp or a trichromatic fluorescent lamp.
作为优选,所述发光光源为发光波长为320nm-470nm的LED。Preferably, the luminous light source is an LED with a luminous wavelength of 320nm-470nm.
一种图像显示装置,包括激发源和所述硅氧氮化物荧光粉,所述图像显示装置为荧光显示管、场致发射显示器、等离子体显示器、阴极射线管、高分辨率电视中的一种。An image display device, comprising an excitation source and the silicon oxynitride phosphor powder, the image display device is one of a fluorescent display tube, a field emission display, a plasma display, a cathode ray tube, and a high-resolution television .
作为优选,所述激发源为电子射线、电场、真空紫外线或紫外线中的一种。Preferably, the excitation source is one of electron rays, electric field, vacuum ultraviolet rays or ultraviolet rays.
本发明提供的一种硅氧氮化物荧光粉,采用新的硅氮氧化物为基质材料,长时间暴露于激发源时亮度降低小,对蓝光或近紫外光的转换效率优异且色纯度优异,热稳定性和化学稳定性高,可抵挡高温和酸性环境的侵蚀,晶粒尺寸小而均匀,是高特性的荧光粉;并且与一般的硅基氧氮化物相比烧结温度低,工艺简单,易于工业化连续生产,具有广阔的工业应用前景。通过使用该硅氧氮化物荧光粉及含硅氧氮化物荧光粉的荧光粉组合物,可以得到高效率和高特性的发光装置,如照明器件和图像显示装置。A silicon oxynitride fluorescent powder provided by the present invention adopts a new silicon nitride oxide as a matrix material, and when exposed to an excitation source for a long time, the brightness decreases little, and the conversion efficiency to blue light or near-ultraviolet light is excellent and the color purity is excellent. High thermal stability and chemical stability, can resist high temperature and acid environment erosion, small and uniform grain size, is a high-performance phosphor; and compared with the general silicon-based oxynitride, the sintering temperature is lower, the process is simple, It is easy for industrialized continuous production and has broad industrial application prospects. By using the silicon oxynitride phosphor and the phosphor composition containing the silicon oxynitride phosphor, high-efficiency and high-characteristic light-emitting devices, such as lighting devices and image display devices, can be obtained.
附图说明Description of drawings
图1为本发明实施例1所得粉体的XRD谱图;Fig. 1 is the XRD spectrogram of the obtained powder of
图2为本发明实施例1所得粉体的激发和发射光谱图;Fig. 2 is the excitation and emission spectrogram of the powder obtained in Example 1 of the present invention;
图3为本发明实施例2所得粉体的激发和发射光谱图;Fig. 3 is the excitation and emission spectrogram of the powder obtained in Example 2 of the present invention;
图4为本发明实施例3所得粉体的激发和发射光谱图;Fig. 4 is the excitation and emission spectrogram of powder obtained in Example 3 of the present invention;
图5为本发明实施例4所得粉体的激发和发射光谱图;Fig. 5 is the excitation and emission spectrogram of powder obtained in Example 4 of the present invention;
图6为本发明实施例5所得粉体的激发和发射光谱图;Fig. 6 is the excitation and emission spectrogram of the powder obtained in Example 5 of the present invention;
图7为本发明实施例6所得粉体的激发和发射光谱图;Fig. 7 is the excitation and emission spectrogram of the powder obtained in Example 6 of the present invention;
图8为本发明实施例7所得粉体的激发和发射光谱图;Fig. 8 is the excitation and emission spectrogram of the powder obtained in Example 7 of the present invention;
图9为本发明实施例8所得粉体的激发和发射光谱图;Fig. 9 is the excitation and emission spectrogram of the powder obtained in Example 8 of the present invention;
图10为本发明实施例9所得粉体的激发和发射光谱图;Figure 10 is the excitation and emission spectrograms of the powder obtained in Example 9 of the present invention;
图11为本发明实施例10所得粉体的激发和发射光谱图;Fig. 11 is the excitation and emission spectrograms of the powder obtained in Example 10 of the present invention;
图12为本发明实施例11所得粉体的激发和发射光谱图;Fig. 12 is the excitation and emission spectrograms of the powder obtained in Example 11 of the present invention;
图13为本发明实施例12所得粉体的激发和发射光谱图;Fig. 13 is the excitation and emission spectrogram of the powder obtained in Example 12 of the present invention;
图14为本发明实施例13所得粉体的激发和发射光谱图。Fig. 14 is the excitation and emission spectra of the powder obtained in Example 13 of the present invention.
具体实施方式Detailed ways
为了进一步了解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。In order to further understand the present invention, the preferred embodiments of the present invention are described below in conjunction with the examples, but it should be understood that these descriptions are only to further illustrate the features and advantages of the present invention, rather than limiting the claims of the present invention.
本发明人对于稀土掺杂的含钡硅铝基氧氮化物以及稀土离子的发光特性进行了长期、深入而系统的研究,结合以往的α型塞隆和β型赛隆陶瓷粉体,发现一种迄今为止未知的全新的具有良好发光效率的荧光粉,其通式为:BaeCfDgSi3+a(Al,Ga,In)3+bO4+cN5+d,其中-2<a<2,-2<b<2,-2<c<2,-2<d<2,0≤f≤0.30,0≤g≤0.5,2e+fvC+gvD=2,e>0,vC,vD代表C,D的价态;C为选自Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Mn、Cr、Bi、Pb、Fe中的一种或几种元素的发光中心,D为Ba以外的碱土金属以及Zn中一种或几种元素的混合物。The present inventors have carried out long-term, in-depth and systematic research on the luminescence characteristics of rare earth-doped barium-containing silicon-aluminum oxynitrides and rare earth ions, combined with the previous α-sialon and β-sialon ceramic powders, and found a A brand-new phosphor with good luminous efficiency unknown so far, its general formula is: Ba e C f D g Si 3+a (Al, Ga, In) 3+b O 4+c N 5+d , where -2<a<2, -2<b<2, -2<c<2, -2<d<2, 0≤f≤0.30, 0≤g≤0.5, 2e+fv C +gv D =2, e>0, v C , v D represent the valence state of C and D; C is selected from Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Mn, Cr, Bi , Pb, the luminescent center of one or more elements in Fe, D is a mixture of alkaline earth metals other than Ba and one or more elements in Zn.
优选的通式为:Ba1-f-gCfDgSi3(Al,Ga,In)3O4N5,各字母代表的元素以及角标同上。The preferred general formula is: Ba 1-fg C f D g Si 3 (Al, Ga, In) 3 O 4 N 5 , and the elements and subscripts represented by each letter are the same as above.
通式为Ba1-f-gCfDgSi3(Al,Ga,In)3O4N5的荧光粉的基本结构为由BaE3Al3O4N5组成的单斜晶体结构,通过掺杂一定量的Eu2+以及其它发光离子,获得可被电子射线(FED、CRT用),真空紫外(PDP用),紫外(三基色荧光灯用),以及近紫外和蓝光激发(LED用)的新型高效荧光粉,与一般荧光粉相比,显示了高的发光效率、在激发源下长时间光衰也比较小。Al-O,Si-N,Al-N,Si-O四面体通过一定的空间组合成三维骨架构型,Ba原子分布在这些三维骨架构型中。其中的Al可部分被其他的三价元素取代,Ba也可部分被其他金属离子取代,同时部分Si-O键和Al-N键可进行一定程度的相互取代,因此实际构成的荧光粉的通式如前所示为:BaeCfDgSi3+a(Al,Ga,In)3+bO4+cN5+d。具有该基本结构的基底材料的结晶相在使用CuKα为X射线源的XRD衍射测试中,在下列三个2θ具有衍射峰:24.3°-26.3°,30.7°-32.7°,35.6°-37.6°。The basic structure of the phosphor powder with the general formula Ba 1-fg C f D g Si 3 (Al, Ga, In) 3 O 4 N 5 is a monoclinic crystal structure composed of BaE 3 Al 3 O 4 N 5 . Doped with a certain amount of Eu 2+ and other luminescent ions, it can be excited by electron rays (for FED, CRT), vacuum ultraviolet (for PDP), ultraviolet (for three-color fluorescent lamps), and near ultraviolet and blue light (for LEDs). Compared with ordinary phosphors, the new high-efficiency phosphors show high luminous efficiency, and the light decay is relatively small under the excitation source for a long time. Al-O, Si-N, Al-N, and Si-O tetrahedra are combined into a three-dimensional framework structure through a certain space, and Ba atoms are distributed in these three-dimensional framework structures. Among them, Al can be partially replaced by other trivalent elements, and Ba can also be partially replaced by other metal ions. At the same time, some Si-O bonds and Al-N bonds can be replaced to a certain extent. The formula is as shown above: Ba e C f D g Si 3+a (Al, Ga, In) 3+b O 4+c N 5+d . The crystal phase of the base material with this basic structure has diffraction peaks at the following three 2θ in the XRD diffraction test using CuKα as the X-ray source: 24.3°-26.3°, 30.7°-32.7°, 35.6°-37.6°.
发光离子(如Eu2+)的掺杂位置一般取代Ba2+的位置,掺杂量相对与Ba2+,摩尔分数可以在0%-30%之间变动,优选具有高亮度的掺杂范围在1%-20%之间,所选择的发光离子可以是稀土离子以及Mn2+,Cr3+,Bi3+等,也可以是上述发光离子的组合。本发明的荧光粉,随着构成荧光粉的组成不同,激发光谱和发射光谱也不同,通过适宜地对其进行合理组合选择,可以任意地设定成具有各种各样的发光光谱的荧光粉。The doping position of luminescent ions (such as Eu 2+ ) generally replaces the position of Ba 2+ , the doping amount is relative to Ba 2+ , the mole fraction can vary between 0% and 30%, and the doping range with high brightness is preferred Between 1% and 20%, the selected luminescent ions can be rare earth ions, Mn 2+ , Cr 3+ , Bi 3+ , etc., or a combination of the above luminescent ions. The phosphor powder of the present invention has different excitation spectra and emission spectra depending on the composition of the phosphor powder, and can be arbitrarily set as a phosphor powder with various luminescence spectra by properly combining and selecting it. .
其中Si可以被Ge或B部分取代,优选晶相是由BaSi3Al3O4N5单相固熔形成,不过在不降低性能的范围内也可以由与其它结晶相或非结晶相的混合物而构成。Where Si can be partially replaced by Ge or B, the preferred crystal phase is formed by solid solution of BaSi 3 Al 3 O 4 N 5 single phase, but it can also be mixed with other crystal phases or amorphous phases within the range of not reducing performance And constitute.
C优选为至少含有Ce的一种或几种元素的发光中心,也可为至少含有Sm的一种或几种元素的发光中心,也可为至少含有Eu的一种或几种元素的发光中心,还可为至少含有Yb的一种或几种元素的发光中心。C is preferably the luminescence center of one or several elements containing at least Ce, or it can be the luminescence center of one or several elements containing at least Sm, or it can be the luminescence center of one or several elements containing at least Eu , can also be a luminescent center containing at least one or several elements of Yb.
由于C的掺杂有很多不同的情况,因此制备出的荧光粉在荧光光谱、激发光谱及真空紫外激发中具有不同的波长范围,在荧光光谱中最大发光波长为460nm-500nm,在激发光谱中最大激发波长为240nm-420nm,在真空紫外激发中最大激发波长为140nm-155nm;或者在荧光光谱中最大发光波长为400nm-440nm,在激发光谱中最大激发波长为250nm-370nm;或者在荧光光谱中最大发光波长为300nm-550nm,在激发光谱中最大激发波长为650nm-740nm。Since there are many different cases of C doping, the prepared phosphors have different wavelength ranges in the fluorescence spectrum, excitation spectrum and vacuum ultraviolet excitation. In the fluorescence spectrum, the maximum luminous wavelength is 460nm-500nm. The maximum excitation wavelength is 240nm-420nm, and the maximum excitation wavelength is 140nm-155nm in vacuum ultraviolet excitation; or the maximum emission wavelength is 400nm-440nm in the fluorescence spectrum, and the maximum excitation wavelength is 250nm-370nm in the excitation spectrum; or in the fluorescence spectrum The maximum luminescent wavelength in the medium is 300nm-550nm, and the maximum excitation wavelength in the excitation spectrum is 650nm-740nm.
对于单掺Eu2+的荧光粉,可以得到最大发射波长为450nm-500nm的蓝色荧光粉,其激发光谱可以为大范围的真空紫外波段140nm-160nm和紫外-可见光波段220nm-420nm。For single-doped Eu 2+ phosphors, blue phosphors with a maximum emission wavelength of 450nm-500nm can be obtained, and its excitation spectrum can be a wide range of vacuum ultraviolet band 140nm-160nm and ultraviolet-visible light band 220nm-420nm.
本发明还提供了一种荧光粉的制备方法,包括以下步骤:The present invention also provides a preparation method of fluorescent powder, comprising the following steps:
1)根据化学表达式BaeCfDgE3+a(Al,Ga,In)3+bO4+cN5+d,按照各元素比例计算各原料用量,式中-2<a<2,-2<b<2,-2<c<2,-2<d<2,0≤f≤0.30,0≤g≤0.5,2e+fvC+gvD=2,e>0,vC,vD代表C,D的价态;C为选自Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Mn、Cr、Bi、Pb、Fe中的一种或几种元素的发光中心,D为Ba以外的碱土金属以及Zn中一种或几种元素的混合物。1) According to the chemical expression Ba e C f D g E 3+a (Al, Ga, In) 3+b O 4+c N 5+d , calculate the amount of each raw material according to the ratio of each element, where -2<a <2, -2<b<2, -2<c<2, -2<d<2, 0≤f≤0.30, 0≤g≤0.5, 2e+fv C +gv D =2, e>0, v C , v D represents C, the valence state of D; C is selected from Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Mn, Cr, Bi, Pb, Fe D is the luminescent center of one or more elements in D, and D is a mixture of alkaline earth metals other than Ba and one or more elements in Zn.
各原料为:氧化钡或可以转化为氧化钡的碳酸钡或草酸钡中的一种或几种含钡化合物,含Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Mn、Cr、Bi、Pb、Fe中的一种或几种单质、氧化物、氮化物或能转化为氧化物或氮化物的化合物,含Ba以外的碱土金属以及Zn中一种或几种单质、氧化物、氮化物或能转化为氧化物或氮化物的化合物,含Si的氧化物、氮化物或能转化为氧化物或氮化物的化合物如可选用氮化硅、二氧化硅或纯硅粉,还可以选用含Ge或B的氧化物、氮化物或能转化为氧化物或氮化物的化合物,使部分Si被Ge或B取代。Each raw material is: one or several barium-containing compounds in barium oxide or barium carbonate or barium oxalate that can be converted into barium oxide, including Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, One or several elements of Tm, Yb, Mn, Cr, Bi, Pb, Fe, oxides, nitrides or compounds that can be converted into oxides or nitrides, containing alkaline earth metals other than Ba and one of Zn Or several simple substances, oxides, nitrides or compounds that can be converted into oxides or nitrides, Si-containing oxides, nitrides or compounds that can be converted into oxides or nitrides, such as silicon nitride, dioxide For silicon or pure silicon powder, you can also choose Ge or B-containing oxides, nitrides or compounds that can be converted into oxides or nitrides, so that part of Si is replaced by Ge or B.
为了使各种原料在反应过程中充分分散接触,最终使反应物在高温下充分反应结晶,作为优选将上述各种原料混合后,还加入助溶剂H3BO3或BaF2。In order to fully disperse and contact various raw materials during the reaction process, and finally make the reactants fully react and crystallize at high temperature, it is preferable to add co-solvent H 3 BO 3 or BaF 2 after mixing the above-mentioned various raw materials.
2)将上述各种原料混合,可采用干式混合或在基本不与原料各成分反应的惰性溶剂中湿式混合后除去溶剂的方法。2) The above-mentioned various raw materials can be mixed by dry mixing or wet mixing in an inert solvent that does not substantially react with the ingredients of the raw materials and then removing the solvent.
混合时所用的混合装置可使用V型混合机、摇动式混合机、球磨机、振动式球磨机,混合后可将混合物盛于与氮化硼、氮化硅、钨、钼或氧化铝具有低反应性的坩埚内。堆积相对密度控制在20%-40%。堆积密度太小时,由于原料粉体间的接触面积太小导致固相扩散距离远,或没有合适的扩散途径而使固相反应难以完全进行,可能会留有大量对发光性能贡献很小的杂质相,另一方面,当堆积密度太大时,所得到的荧光粉容易形成硬团聚体,不仅需要长时间的粉碎步骤,而且容易降低荧光粉的发光效率和增加引入杂质的可能性。The mixing device used for mixing can use a V-type mixer, a shaking mixer, a ball mill, a vibrating ball mill, and after mixing, the mixture can be stored in a low reactive inside the crucible. The bulk relative density is controlled at 20%-40%. If the bulk density is too small, the solid-phase diffusion distance will be long due to the small contact area between the raw material powders, or there is no suitable diffusion path, so that the solid-phase reaction is difficult to complete, and a large number of impurities that contribute little to the luminescent performance may remain On the other hand, when the bulk density is too large, the resulting phosphors tend to form hard agglomerates, which not only require a long pulverization step, but also tend to reduce the luminous efficiency of the phosphors and increase the possibility of introducing impurities.
混合后在还原气氛下,将混合物加热至1400℃~1600℃进行焙烧,保温2h~40h,自然冷却至室温。After mixing, the mixture is heated to 1400°C-1600°C in reducing atmosphere for calcination, kept for 2h-40h, and naturally cooled to room temperature.
还原气氛为氮气、氢气或氨气中的一种或几种混合气氛,最好含有氮气,还原气氛的压力为1atm以上。The reducing atmosphere is one or more mixed atmospheres of nitrogen, hydrogen or ammonia, preferably containing nitrogen, and the pressure of the reducing atmosphere is above 1 atm.
优选以速率为1℃/min-10℃/min对混合物进行加热焙烧,可使用金属电阻加热型、石墨电阻加热型或硅钼棒电阻加热型的连续炉或间歇炉,优选将混合物加热至1450℃~1600℃进行焙烧。烧结温度太低,难以进行固相反应以及不能合成所需的荧光粉,就是合成的荧光粉也具有较差的结晶性能,从而影响发光强度;而烧结温度太高,所得到的荧光粉容易形成硬团聚体,甚至会挥发分解,也会影响到发光性能,合理的烧结温度可以在晶粒充分发育的前提下,抑制硬团聚体的生成。Preferably, the mixture is heated and roasted at a rate of 1°C/min-10°C/min, and a continuous or batch furnace of metal resistance heating type, graphite resistance heating type or silicon molybdenum rod resistance heating type can be used, and the mixture is preferably heated to 1450 ℃~1600℃ for firing. If the sintering temperature is too low, it is difficult to carry out the solid-state reaction and cannot synthesize the required phosphor, even the synthesized phosphor has poor crystallization properties, thereby affecting the luminous intensity; while the sintering temperature is too high, the obtained phosphor is easy to form Hard aggregates may even volatilize and decompose, which will also affect the luminescent performance. A reasonable sintering temperature can inhibit the formation of hard aggregates under the premise of fully developed grains.
3)将焙烧后获得的粉末粉碎至粒径为10μm以下。可通过工业上常用的粉碎机,如球磨机等,进行粉碎,优选粉碎至0.1-5μm,因为当粒度太大时,粉末的流动性和分散性变差以及形成发光装置时发光强度不均匀,当粒径变成0.1μm或更小时,表面上的缺陷比重增加,会导致发光强度降低。3) Pulverize the powder obtained after firing to a particle size of 10 μm or less. It can be pulverized by a pulverizer commonly used in the industry, such as a ball mill, etc., preferably pulverized to 0.1-5 μm, because when the particle size is too large, the fluidity and dispersibility of the powder will deteriorate and the luminous intensity will be uneven when forming a light-emitting device. When the particle size becomes 0.1 μm or less, the proportion of defects on the surface increases, resulting in a decrease in luminous intensity.
本发明还提供一种荧光粉组合物,包括本发明提供的硅氧氮化物荧光粉,硅氧氮化物荧光粉占该荧光粉组合物的重量百分数为25%以上。The present invention also provides a phosphor composition, including the silicon oxynitride phosphor powder provided by the present invention, wherein the silicon oxynitride phosphor accounts for more than 25% by weight of the phosphor composition.
本发明还提供一种照明器件,包括发光光源和硅氧氮化物荧光粉,照明器件为白光LED灯或三基色荧光灯。该发光光源为发光波长为320nm-470nm的LED。The present invention also provides an illuminating device, which includes a luminescent light source and silicon oxynitride fluorescent powder, and the illuminating device is a white LED lamp or a trichromatic fluorescent lamp. The luminous light source is an LED with a luminous wavelength of 320nm-470nm.
可使用发光光源和本发明提供的荧光粉组合物制备照明器件,除了单独选用本发明的荧光粉组合以外,还可以和具有其它发光特性的荧光粉并用,构成期望色彩的照明器件。例如,330-420nm的紫外LED发光器件和被该波长激发后会发出520-570nm波长的绿色荧光粉、会发出570-700nm光的红色荧光粉以及本发明的掺杂Eu2+的BaAl3Si3O4N5的组合,可获得高显色指数的白光LED,绿色荧光粉,可使用掺杂Eu或Mn的BaMgAl10O17,或掺杂Eu的SrSi2N2O2,红色荧光粉,可使用掺杂Eu的Y2O3或掺杂Eu的CaAlSiN3。The lighting device can be prepared by using the luminescent light source and the phosphor composition provided by the present invention. In addition to selecting the phosphor composition of the present invention alone, it can also be used in combination with phosphors with other luminescent properties to form a lighting device of desired color. For example, a 330-420nm ultraviolet LED light-emitting device and a green phosphor that emits a 520-570nm wavelength after being excited by this wavelength, a red phosphor that emits a 570-700nm light, and the BaAl 3 Si doped with Eu 2+ of the present invention Combination of 3 O 4 N 5 to obtain white LED with high color rendering index, green phosphor, BaMgAl 10 O 17 doped with Eu or Mn, or SrSi 2 N 2 O 2 doped with Eu, red phosphor , Eu-doped Y 2 O 3 or Eu-doped CaAlSiN 3 can be used.
本发明还提供一种图像显示装置,包括激发源和硅氧氮化物荧光粉,使用本发明提供的荧光粉组合物即可,图像显示装置为荧光显示管(VFD)、场致发射显示器(FED)、等离子体显示器(PDP)、阴极射线管(CRT)、高分辨率电视(HDTV)中的一种。该激发源为电子射线、电场、真空紫外线或紫外线中的一种。如可使用100~190nm的真空紫外线、220~420nm的紫外-可见光、电子射线对本发明的荧光粉组合物进行激发。The present invention also provides a kind of image display device, comprises excitation source and silicon oxynitride fluorescent powder, uses the fluorescent powder composition provided by the present invention to get final product, and image display device is fluorescent display tube (VFD), field emission display (FED) ), plasma display (PDP), cathode ray tube (CRT), and high-definition television (HDTV). The excitation source is one of electron ray, electric field, vacuum ultraviolet ray or ultraviolet ray. For example, vacuum ultraviolet rays of 100-190 nm, ultraviolet-visible light of 220-420 nm, and electron rays can be used to excite the phosphor composition of the present invention.
本发明提供的硅氧氮化物荧光粉的具体制备过程如下,下述实施例中所使用的实验方法如无特殊说明,均为常规方法,所用的材料、试剂、还原性气体等,如无特殊说明,均可从商业途径得到。The specific preparation process of the silicon oxynitride fluorescent powder provided by the present invention is as follows. The experimental methods used in the following examples are conventional methods unless otherwise specified. The materials, reagents, reducing gases, etc. Instructions are available commercially.
实施例1Example 1
按照化学式组成Ba0.85Eu0.15Si3Al3O4N5,称取2.6560gBaCO3,1.7536gSi3N4,0.3168gEu2O3,0.4968gAlN,1.2186gAl2O3起始粉末,并加入0.1288gH3BO3作为助熔剂,共同放入二氧化硅研钵中充分研磨20分钟,使各种原料充分混合。将混合后的粉体放入BN坩埚中,堆积相对密度大约30%,然后盖上非密封的顶盖,放入刚玉管式炉中,对高温炉进行抽真空操作,目的是为了减少氧气含量,然后通入混合还原气体即在纯度为99.999%的流动N2/NH3(其体积比为10∶1)环境气氛中,以10℃/min的升温速度升温到800℃,然后再以5℃/min的升温速率升温到1550℃,保温4小时,然后以10℃/min的冷却速度降温至800℃后自然冷却至室温,将得到的粉体取出后放在研钵中研碎成粉末即得到所需的荧光粉。粉末的荧光转化性能通过测定其激发发射光谱表征,并和商业BAM蓝粉比较。图1表示所得荧光粉的XRD图谱,其为一单相,在24.3-26.3°,30.7-32.7°,35.6-37.6°。具有三个强峰,对于不同的发光离子掺杂,以及其他离子的取代固熔,衍射峰的位置和强度会有一定程度的偏移。图2显示了(小图为样品在真空紫外下的荧光光谱),所得荧光粉可以被从真空紫外以及近紫外到蓝光的宽波段激发,发出明亮的蓝光,中心波长为474nm,在蓝光波段的激发和发射强度比商业BAM蓝粉高20%。According to the chemical formula Ba 0.85 Eu 0.15 Si 3 Al 3 O 4 N 5 , weigh 2.6560g BaCO 3 , 1.7536g Si 3 N 4 , 0.3168g Eu 2 O 3 , 0.4968g AlN, 1.2186g Al 2 O 3 starting powder, and add 0.1288gH 3 BO 3 is used as a flux, and they are put into a silica mortar and ground for 20 minutes to fully mix various raw materials. Put the mixed powder into a BN crucible with a bulk relative density of about 30%, then cover it with a non-sealed top cover, put it into a corundum tube furnace, and vacuumize the high-temperature furnace to reduce the oxygen content , and then feed the mixed reducing gas, that is, in the ambient atmosphere of flowing N 2 /NH 3 (the volume ratio of which is 10:1) with a purity of 99.999%, the temperature is raised to 800° C. at a heating rate of 10° C./min, and then the temperature is raised to 800° C. at a rate of 5 Raise the temperature to 1550°C at a heating rate of ℃/min, keep it warm for 4 hours, then cool down to 800°C at a cooling rate of 10°C/min, then cool naturally to room temperature, take out the obtained powder and grind it into a powder in a mortar. Get the desired phosphor. The fluorescence conversion performance of the powder is characterized by measuring its excitation emission spectrum and comparing with commercial BAM blue powder. Fig. 1 shows the XRD spectrum of the obtained phosphor, which is a single phase at 24.3-26.3°, 30.7-32.7°, 35.6-37.6°. With three strong peaks, the positions and intensities of the diffraction peaks will shift to a certain extent for different doping of luminescent ions, as well as solid solution of other ions. Figure 2 shows (the small picture is the fluorescence spectrum of the sample under vacuum ultraviolet), the obtained phosphor can be excited by a wide band from vacuum ultraviolet and near ultraviolet to blue light, and emits bright blue light with a center wavelength of 474nm. The excitation and emission intensity is 20% higher than commercial BAM blue powder.
实施例2Example 2
按照化学式组成Ba0.95Ce0.05Si3Al3O4N5,称取2.2345gBa(NO3)2,0.9139gAl2O3,0.3726gAlN,1.3151gSi3N4,0.0775gCeO2起始粉末,共同放入氮化硅研钵中充分研磨20分钟,使各种原料充分混合。将混合后的粉体放入BN坩埚中,堆积相对密度大约30%,然后盖上非密封的顶盖,将BN坩埚装入石墨坩埚中,最后将石墨坩埚放入真空碳管炉中,首先进行抽真空操作,然后通入纯度为99.999%的流动N2气,以4℃/min的升温速度升温到800℃,然后再以6℃/min的升温速率升温到1200℃,最后5℃/min的升温速率升温到1600℃保温8小时,然后以5℃/min的冷却速度降温至1200℃后自然冷却至室温,将得到的粉体取出后放在研钵中研碎成粉末即得到所需的荧光粉。粉末的荧光转化性能通过测定其激发发射光谱表征。如图3所示,所得荧光粉可以被从近紫外到蓝光的宽波段激发,发出明亮的蓝光,中心发射波长在437nm。通过Eu和Ce元素可以实现不同的蓝光发光,对于条件蓝光的色纯度具有重要的作用。According to the chemical formula Ba 0.95 Ce 0.05 Si 3 Al 3 O 4 N 5 , weigh 2.2345g Ba(NO 3 ) 2 , 0.9139g Al 2 O 3 , 0.3726g AlN, 1.3151g Si 3 N 4 , 0.0775g CeO 2 starting powder, put together Put it into a silicon nitride mortar and grind it for 20 minutes to fully mix various raw materials. Put the mixed powder into the BN crucible, the bulk relative density is about 30%, then cover the non-sealed top cover, put the BN crucible into the graphite crucible, and finally put the graphite crucible into the vacuum carbon tube furnace, first Carry out vacuuming operation, then feed flowing N2 gas with a purity of 99.999%, raise the temperature to 800°C at a heating rate of 4°C/min, and then raise the temperature to 1200°C at a heating rate of 6°C/min, and finally 5°C/min The heating rate of min was raised to 1600°C for 8 hours, and then the temperature was lowered to 1200°C at a cooling rate of 5°C/min, and then naturally cooled to room temperature. The obtained powder was taken out and ground into a powder in a mortar to obtain the desired of fluorescent powder. The fluorescence conversion performance of the powder is characterized by measuring its excitation and emission spectra. As shown in Figure 3, the obtained phosphor can be excited by a wide band from near-ultraviolet to blue light, and emit bright blue light with a central emission wavelength of 437nm. Different blue light emission can be achieved by Eu and Ce elements, which play an important role in the color purity of the conditional blue light.
实施例3Example 3
按照化学式组成Ba0.94Sm0.06Si3Al3O4N5,称取2.2109gBa(NO3)2,0.9139gAl2O3,0.3726gAlN,1.3151gSi3N4,0.0942gSm2O3,并加入0.0244gNH4Cl做助溶剂,共同放入氮化硅研钵中充分研磨20分钟,使各种原料充分混合。将混合后的粉体放入BN坩埚中,堆积相对密度大约30%,然后盖上非密封的顶盖,放入刚玉管式炉中,对高温炉进行抽真空操作,目的是为了减少氧气含量,然后通入混合还原气体即在纯度为99.999%的流动N2/H2(其体积比为95∶5)环境气氛中,以10℃/min的升温速度升温到1000℃,然后再以4℃/min的升温速率升温到1550℃,保温6小时,然后以4℃/min的冷却速度降温至800℃后自然冷却至室温,将得到的粉体取出后放在研钵中研碎成粉末即得到所需的荧光粉。粉末的荧光转化性能通过测定其激发发射光谱表征,如图4所示,所得荧光粉可以被从近紫外到蓝光直至到绿光波段都有很强的宽波段激发,发出明亮的红光,中心波长为699nm。特别值得注意的是粉体在蓝光波段有很强的激发,可以作为氮化镓LED的红色荧光粉来改善白光的色纯度。According to the chemical formula Ba 0.94 Sm 0.06 Si 3 Al 3 O 4 N 5 , weigh 2.2109g Ba(NO 3 ) 2 , 0.9139g Al 2 O 3 , 0.3726g AlN, 1.3151g Si 3 N 4 , 0.0942gSm 2 O 3 , and add 0.0244 gNH 4 Cl as a co-solvent, put them into a silicon nitride mortar and grind for 20 minutes to fully mix various raw materials. Put the mixed powder into a BN crucible with a bulk relative density of about 30%, then cover it with a non-sealed top cover, put it into a corundum tube furnace, and vacuumize the high-temperature furnace to reduce the oxygen content , and then feed mixed reducing gas, that is, in the ambient atmosphere of flowing N 2 /H 2 (its volume ratio is 95:5) with a purity of 99.999%, the temperature is raised to 1000° C. at a heating rate of 10° C./min, and then the temperature is raised to 4 Raise the temperature to 1550°C at a heating rate of ℃/min, keep it warm for 6 hours, then cool down to 800°C at a cooling rate of 4°C/min, then cool naturally to room temperature, take out the obtained powder and grind it into a powder in a mortar. Get the desired phosphor. The fluorescence conversion performance of the powder is characterized by measuring its excitation and emission spectrum, as shown in Figure 4, the obtained phosphor can be excited by a strong broadband from near ultraviolet to blue light to green light, and emit bright red light. The wavelength is 699nm. It is particularly worth noting that the powder has a strong excitation in the blue light band, and can be used as a red phosphor for GaN LEDs to improve the color purity of white light.
实施例4Example 4
按照化学式组成Ba0.95Yb0.05Si3Al3O4N5,称取2.2580gBa(NO3)2,0.9139gAl2O3,0.3726gAlN,1.3151gSi3N4,0.0709gYb2O3,并用5at%分数的BaF2作为Ba源取代Ba(NO3)2作为助溶剂,共同放入氮化硅研钵中充分研磨20分钟,使各种原料充分混合。将混合后的粉体放入BN坩埚中,堆积相对密度大约30%,然后盖上非密封的顶盖,放入刚玉管式炉中,对高温炉进行抽真空操作,目的是为了减少氧气含量,然后通入混合还原气体即在纯度为99.999%的流动N2/NH3(其体积比为20∶1)环境气氛中,以5℃/min的升温速度升温到1000℃,然后再以4℃/min的升温速率升温到1550℃,保温4小时,然后以4℃/min的冷却速度降温至800℃后自然冷却至室温,将得到的粉体取出后放在研钵中研碎成粉末即得到所需的荧光粉。粉末的荧光转化性能通过测定其激发发射光谱表征,如图5所示,所得荧光粉可以被从近紫外到蓝光的宽波段激发,发出明亮的绿光,中心波长为535nm。样品在蓝光波段的激发特别引人注意,鉴于样品优异的热稳定性,可以作为白光LED的绿色荧光粉使用。According to the chemical formula Ba 0.95 Yb 0.05 Si 3 Al 3 O 4 N 5 , weigh 2.2580g Ba(NO 3 ) 2 , 0.9139g Al 2 O 3 , 0.3726g AlN, 1.3151g Si 3 N 4 , 0.0709gYb 2 O 3 , and use 5at% Fractions of BaF 2 as Ba source instead of Ba(NO 3 ) 2 as co-solvent were put together into a silicon nitride mortar and ground for 20 minutes to fully mix various raw materials. Put the mixed powder into a BN crucible with a bulk relative density of about 30%, then cover it with a non-sealed top cover, put it into a corundum tube furnace, and vacuumize the high-temperature furnace to reduce the oxygen content , and then feed the mixed reducing gas, that is, in the ambient atmosphere of flowing N 2 /NH 3 (its volume ratio is 20:1) with a purity of 99.999%, the temperature is raised to 1000° C. at a heating rate of 5° C./min, and then the temperature is raised to 4 Raise the temperature to 1550°C at a heating rate of ℃/min, keep it warm for 4 hours, then cool down to 800°C at a cooling rate of 4°C/min, then cool naturally to room temperature, take out the obtained powder and grind it into a powder in a mortar. Get the desired phosphor. The fluorescence conversion performance of the powder is characterized by measuring its excitation and emission spectrum, as shown in Figure 5, the obtained phosphor can be excited by a wide band from near ultraviolet to blue light, and emit bright green light with a center wavelength of 535nm. The excitation of the sample in the blue light band is particularly attractive. In view of the excellent thermal stability of the sample, it can be used as a green phosphor for white LEDs.
实施例5Example 5
按照化学式组成Ba0.98Mn0.02Si3Al3O4N5,称取1.7405gBaCO3,0.0207gMnCO3,0.9139gAl2O3,1.3151gSi3N4,0.3726gAlN起始粉末,共同放入玛瑙研钵中充分研磨20分钟,使各种原料充分混合。将混合后的粉体放入BN坩埚中,堆积相对密度大约30%,然后盖上非密封的顶盖,放入刚玉管式炉中,对高温炉进行抽真空操作,然后通入混合还原气体即在纯度为99.999%的流动N2/NH3(其体积比为4∶1)环境气氛中,以5℃/min的升温速度升温到1000℃,然后再以4℃/min的升温速率升温到1600℃,保温6小时,然后以4℃/min的冷却速度降温至800℃后自然冷却至室温,将得到的粉体取出后放在研钵中研碎成粉末即得到所需的荧光粉。粉末的荧光转化性能通过测定其激发发射光谱表征,如图6所示,所得荧光粉可以被从近紫外到蓝光的宽波段激发,在370nm和440nm发出明亮的蓝光。According to the chemical formula Ba 0.98 Mn 0.02 Si 3 Al 3 O 4 N 5 , weigh 1.7405g BaCO 3 , 0.0207g MnCO 3 , 0.9139g Al 2 O 3 , 1.3151g Si 3 N 4 , 0.3726g AlN starting powder, and put them into the agate mortar together Fully grind in medium for 20 minutes, so that all kinds of raw materials are fully mixed. Put the mixed powder into the BN crucible, the bulk relative density is about 30%, then cover the non-sealed top cover, put it into the corundum tube furnace, vacuumize the high temperature furnace, and then pass the mixed reducing gas That is, in the ambient atmosphere of flowing N 2 /NH 3 (the volume ratio is 4:1) with a purity of 99.999%, the temperature is raised to 1000°C at a heating rate of 5°C/min, and then the temperature is raised at a heating rate of 4°C/min Keep the temperature at 1600°C for 6 hours, then cool down to 800°C at a cooling rate of 4°C/min, then cool naturally to room temperature, take out the obtained powder, put it in a mortar and grind it into powder to obtain the required phosphor. The fluorescence conversion performance of the powder is characterized by measuring its excitation and emission spectra, as shown in Figure 6, the obtained phosphor can be excited by a wide band from near ultraviolet to blue light, and emit bright blue light at 370nm and 440nm.
实施例6Example 6
按照化学式组成Ba0.8Eu0.15Sm0.05Si3Al3O4N5,称取2.5089gBa(NO3)2,0.3168g Eu2O3,0.0942gSm2O3,1.2186gAl2O3,1.7536gSi3N4,0.4968gAlN,并按照Ba占总的Ba源的2at%加入BaF2作为助溶剂作为起始粉末,共同放入玛瑙研钵中充分研磨20分钟,使各种原料充分混合。将混合后的粉体放入BN坩埚中,堆积相对密度大约30%,然后盖上非密封的顶盖,放入刚玉管式炉中,对高温炉进行抽真空操作,然后通入混合还原气体即在纯度为99.999%的流动N2/NH3(其体积比为5∶1)环境气氛中,以5℃/min的升温速度升温到1000℃,然后再以4℃/min的升温速率升温到1550℃,保温6小时,然后以4℃/min的冷却速度降温至800℃后自然冷却至室温,将得到的粉体取出后放在研钵中研碎成粉末即得到所需的荧光粉。粉末的荧光转化性能通过测定其激发发射光谱表征,如图7所示,所得荧光粉可以被从近紫外到蓝光的宽波段激发,发出明亮的蓝光和红光,中心波长分别为467nm和699nm。得到的荧光粉在相同的近紫外或者蓝光的激发下,会同时有蓝光和红光的发射峰,在加上具有类似激发谱的绿色荧光粉(如BaSi3Al3O4N5:Yb2+绿色荧光粉),可实现白光。According to the chemical formula Ba 0.8 Eu 0.15 Sm 0.05 Si 3 Al 3 O 4 N 5 , weigh 2.5089gBa(NO 3 ) 2 , 0.3168g Eu 2 O 3 , 0.0942gSm 2 O 3 , 1.2186gAl 2 O 3 , 1.7536gSi 3 N 4 , 0.4968g AlN, and BaF 2 was added as a cosolvent as the starting powder according to Ba accounting for 2at% of the total Ba source, and they were put into an agate mortar and ground for 20 minutes to fully mix various raw materials. Put the mixed powder into the BN crucible, the bulk relative density is about 30%, then cover the non-sealed top cover, put it into the corundum tube furnace, vacuumize the high temperature furnace, and then pass the mixed reducing gas That is, in the ambient atmosphere of flowing N 2 /NH 3 (the volume ratio is 5:1) with a purity of 99.999%, the temperature is raised to 1000°C at a heating rate of 5°C/min, and then the temperature is raised at a heating rate of 4°C/min Keep the temperature at 1550°C for 6 hours, then cool down to 800°C at a cooling rate of 4°C/min, then cool naturally to room temperature, take out the obtained powder, put it in a mortar and grind it into powder to obtain the required phosphor. The fluorescence conversion performance of the powder is characterized by measuring its excitation and emission spectra, as shown in Figure 7, the obtained phosphor can be excited by a wide band from near ultraviolet to blue light, and emit bright blue light and red light, with center wavelengths of 467nm and 699nm respectively. Under the excitation of the same near-ultraviolet or blue light, the obtained phosphor will have blue and red emission peaks at the same time, and the green phosphor with similar excitation spectrum (such as BaSi 3 Al 3 O 4 N 5 :Yb 2 + green phosphor) for white light.
实施例7Example 7
按照化学式组成Ba0.55Sr0.4Eu0.15Si3Al3O4N5,称取0.3168g Eu2O3,1.2186gAl2O3,1.7536gSi3N4,0.4968gAlN,1.0656gBaCO3和0.7086gSrCO3作为起始粉末,共同放入氮化硅研钵中充分研磨20分钟,使各种原料充分混合。将混合后的粉体放入BN坩埚中,堆积相对密度大约30%,然后盖上非密封的顶盖,放入刚玉管式炉中,对高温炉进行抽真空操作,然后通入混合还原气体即在纯度为99.999%的流动NH3环境气氛中,以5℃/min的升温速度升温到1000℃,然后再以4℃/min的升温速率升温到1550℃,保温6小时,然后以4℃/min的冷却速度降温至800℃后自然冷却至室温,将得到的粉体取出后放在研钵中研碎成粉末即得到所需的荧光粉。粉末的荧光转化性能通过测定其激发发射光谱表征(图8)。实验证明,通过调节碱土元素Ba和Sr的比例,可以使发射波长在470nm-475nm范围内波动,对于实现发射波长的调控具有积极的作用。According to the chemical formula Ba 0.55 Sr 0.4 Eu 0.15 Si 3 Al 3 O 4 N 5 , weigh 0.3168g Eu 2 O 3 , 1.2186g Al 2 O 3 , 1.7536g Si 3 N 4 , 0.4968g AlN, 1.0656g BaCO 3 and 0.7086g SrCO 3 as The starting powder is put into a silicon nitride mortar and ground for 20 minutes to fully mix various raw materials. Put the mixed powder into the BN crucible, the bulk relative density is about 30%, then cover the non-sealed top cover, put it into the corundum tube furnace, vacuumize the high temperature furnace, and then pass the mixed reducing gas That is, in the flowing NH 3 ambient atmosphere with a purity of 99.999%, the temperature was raised to 1000°C at a heating rate of 5°C/min, and then raised to 1550°C at a heating rate of 4°C/min, kept for 6 hours, and then heated at 4°C /min cooling rate to 800°C, then naturally cool to room temperature, take out the obtained powder, put it in a mortar and grind it into powder to obtain the required phosphor. The fluorescence conversion performance of the powder is characterized by measuring its excitation and emission spectra ( FIG. 8 ). Experiments have proved that by adjusting the ratio of alkaline earth elements Ba and Sr, the emission wavelength can fluctuate in the range of 470nm-475nm, which has a positive effect on the regulation of emission wavelength.
实施例8Example 8
按照化学式组成Ba0.55Ca0.4Eu0.15Si3Al3O4N5,称取0.3168g Eu2O3,1.2186gAl2O3,1.7536gSi3N4,0.4968gAlN,1.0656gBaCO3和0.4804gSrCO3作为起始粉末,共同放入氮化硅研钵中充分研磨20分钟,使各种原料充分混合。将混合后的粉体放入BN坩埚中,堆积相对密度大约30%,然后盖上非密封的顶盖,放入刚玉管式炉中,对高温炉进行抽真空操作,然后通入混合还原气体即在纯度为99.999%的流动NH3环境气氛中,以5℃/min的升温速度升温到1000℃,然后再以4℃/min的升温速率升温到1500℃,保温6小时,然后以4℃/min的冷却速度降温至800℃后自然冷却至室温,将得到的粉体取出后放在研钵中研碎成粉末即得到所需的荧光粉。粉末的荧光转化性能通过测定其激发发射光谱表征(图9)。实验证明,通过调节碱土元素Ba和Ca的比例,可以使发射波长在470nm-530nm范围内波动,同时可以适当地降低粉体合成的温度和实现发射波长的调控,对于工业生产具有积极的作用。According to the chemical formula Ba 0.55 Ca 0.4 Eu 0.15 Si 3 Al 3 O 4 N 5 , weigh 0.3168g Eu 2 O 3 , 1.2186g Al 2 O 3 , 1.7536g Si 3 N 4 , 0.4968g AlN, 1.0656g BaCO 3 and 0.4804g SrCO 3 as The starting powder is put into a silicon nitride mortar and ground for 20 minutes to fully mix various raw materials. Put the mixed powder into the BN crucible, the bulk relative density is about 30%, then cover the non-sealed top cover, put it into the corundum tube furnace, vacuumize the high temperature furnace, and then pass the mixed reducing gas That is, in the flowing NH 3 ambient atmosphere with a purity of 99.999%, the temperature was raised to 1000°C at a heating rate of 5°C/min, and then to 1500°C at a heating rate of 4°C/min, kept for 6 hours, and then heated at 4°C /min cooling rate to 800°C, then naturally cool to room temperature, take out the obtained powder, put it in a mortar and grind it into powder to obtain the required phosphor. The fluorescence conversion performance of the powder is characterized by measuring its excitation and emission spectra ( FIG. 9 ). Experiments have proved that by adjusting the ratio of alkaline earth elements Ba and Ca, the emission wavelength can fluctuate in the range of 470nm-530nm, and at the same time, the temperature of powder synthesis can be appropriately reduced and the emission wavelength can be adjusted, which has a positive effect on industrial production.
实施例9Example 9
按照化学式组成Ba0.55Zn0.2Eu0.15Si3Al3O4N5,称取0.3168g Eu2O3,1.2186gAl2O3,1.7536gSi3N4,0.4968gAlN,1.0656gBaCO3和0.1954gZnO作为起始粉末,共同放入氮化硅研钵中充分研磨20分钟,使各种原料充分混合。将混合后的粉体放入BN坩埚中,堆积相对密度大约30%,然后盖上非密封的顶盖,放入刚玉管式炉中,对高温炉进行抽真空操作,然后通入混合还原气体即在纯度为99.999%的流动NH3环境气氛中,以5℃/min的升温速度升温到1000℃,然后再以4℃/min的升温速率升温到1550℃,保温6小时,然后以4℃/min的冷却速度降温至800℃后自然冷却至室温,将得到的粉体取出后放在研钵中研碎成粉末即得到所需的荧光粉。粉末的荧光转化性能通过测定其激发发射光谱表征(图10)。实验证明,通过调节元素Zn在晶体中的比例,可以使发射波长和发光强度在一定范围内波动,可以起到调节荧光粉的色纯度的作用。According to the chemical formula Ba 0.55 Zn 0.2 Eu 0.15 Si 3 Al 3 O 4 N 5 , weigh 0.3168g Eu 2 O 3 , 1.2186g Al 2 O 3 , 1.7536g Si 3 N 4 , 0.4968g AlN, 1.0656g BaCO 3 and 0.1954g ZnO as starting Put the raw powder together into a silicon nitride mortar and grind for 20 minutes to fully mix various raw materials. Put the mixed powder into the BN crucible, the bulk relative density is about 30%, then cover the non-sealed top cover, put it into the corundum tube furnace, vacuumize the high temperature furnace, and then pass the mixed reducing gas That is, in the flowing NH 3 ambient atmosphere with a purity of 99.999%, the temperature was raised to 1000°C at a heating rate of 5°C/min, and then raised to 1550°C at a heating rate of 4°C/min, kept for 6 hours, and then heated at 4°C /min cooling rate to 800°C, then naturally cool to room temperature, take out the obtained powder, put it in a mortar and grind it into powder to obtain the required phosphor. The fluorescence conversion performance of the powder is characterized by measuring its excitation and emission spectra ( FIG. 10 ). Experiments have proved that by adjusting the ratio of the element Zn in the crystal, the emission wavelength and luminous intensity can fluctuate within a certain range, which can play a role in adjusting the color purity of the phosphor.
实施例10Example 10
按照化学式组成Ba0.85Eu0.15Si3Al2Ga1O4N5,称取0.1584g Eu2O3,0.3059gAl2O3,0.8714gSi3N4,0.2459gAlN,1.0064gBaCO3和0.5623gGa2O3作为起始粉末,共同放入玛瑙球磨罐中充分研磨20小时,使各种原料充分混合。将混合后的粉体烘干后放入BN坩埚中,堆积相对密度大约30%,然后盖上非密封的顶盖,放入刚玉管式炉中,对高温炉进行抽真空操作,然后通入混合还原气体即在纯度为99.999%的流动NH3环境气氛中,以5℃/min的升温速度升温到1000℃,然后再以4℃/min的升温速率升温到1500℃,保温4小时,然后以4℃/min的冷却速度降温至800℃后自然冷却至室温,将得到的粉体取出后放在研钵中研碎成粉末即得到所需的荧光粉。粉末的荧光转化性能通过测定其激发发射光谱表征(图11)。实验证明,通过调节元素Al和Ga在晶体中的比例,可以使发射波长的峰值在470nm-480nm内移动,实现在蓝光波段内的调整,对荧光粉的色纯度的调节起到积极的作用,另一方面,Ga的掺入可以使粉体的合成温度大大降低,对于降低粉体的合成成本也具有一定的作用。According to the chemical formula Ba 0.85 Eu 0.15 Si 3 Al 2 Ga 1 O 4 N 5 , weigh 0.1584g Eu 2 O 3 , 0.3059g Al 2 O 3 , 0.8714g Si 3 N 4 , 0.2459g AlN, 1.0064g BaCO 3 and 0.5623g Ga 2 O 3 As the starting powder, put them together into an agate ball mill jar and grind them for 20 hours to fully mix various raw materials. Dry the mixed powder and put it into a BN crucible, with a bulk density of about 30%, then cover it with a non-sealed top cover, put it into a corundum tube furnace, vacuumize the high temperature furnace, and then pass it into The mixed reducing gas is heated to 1000°C at a heating rate of 5°C/min in a flowing NH 3 ambient atmosphere with a purity of 99.999%, and then raised to 1500°C at a heating rate of 4°C/min, kept for 4 hours, and then Cool down to 800°C at a cooling rate of 4°C/min, then cool naturally to room temperature, take out the obtained powder, put it in a mortar and grind it into powder to obtain the desired phosphor. The fluorescence conversion performance of the powder is characterized by measuring its excitation and emission spectra ( FIG. 11 ). Experiments have proved that by adjusting the ratio of elements Al and Ga in the crystal, the peak of the emission wavelength can be moved within 470nm-480nm, and the adjustment in the blue light band can be realized, which plays a positive role in the adjustment of the color purity of the phosphor. On the other hand, the doping of Ga can greatly reduce the synthesis temperature of the powder, and also has a certain effect on reducing the synthesis cost of the powder.
实施例11Example 11
按照化学式组成Ba0.85Eu0.15Si3Al2InO4N5配制粉体,称取0.1584gEu2O3,0.3059gAl2O3,0.8714gSi3N4,0.2459gAlN,1.0064gBaCO3和0.8329gIn2O3作为起始粉末,共同放入氮化硅研钵中充分研磨40分钟,使各种原料充分混合。使各种原料充分混合。将混合后的粉体烘干后放入BN坩埚中,堆积相对密度大约30%,然后盖上非密封的顶盖,放入刚玉管式炉中,对高温炉进行抽真空操作,然后通入混合还原气体即在纯度为99.999%的流动NH3环境气氛中,以5℃/min的升温速度升温到1000℃,然后再以4℃/min的升温速率升温到1500℃,保温6小时,然后以4℃/min的冷却速度降温至800℃后自然冷却至室温,将得到的粉体取出后放在研钵中研碎成粉末即得到所需的荧光粉。粉末的荧光转化性能通过测定其激发发射光谱表征(图12)。实验证明,通过调节元素Al和In在晶体中的比例,可以使发射波长的峰值在470-480nm内移动,实现在蓝光波段内的调整,对荧光粉的色纯度的调节起到积极的作用;另一方面,In的掺入可以使粉体的合成温度大大降低,对于降低粉体的合成成本也具有一定的作用。Prepare powder according to the chemical formula Ba 0.85 Eu 0.15 Si 3 Al 2 InO 4 N 5 , weigh 0.1584gEu 2 O 3 , 0.3059gAl 2 O 3 , 0.8714gSi 3 N 4 , 0.2459gAlN, 1.0064gBaCO 3 and 0.8329gIn 2 O 3 As the starting powder, put it into a silicon nitride mortar and grind it for 40 minutes to fully mix various raw materials. Mix all ingredients thoroughly. Dry the mixed powder and put it into a BN crucible, with a bulk density of about 30%, then cover it with a non-sealed top cover, put it into a corundum tube furnace, vacuumize the high temperature furnace, and then pass it into The mixed reducing gas is heated to 1000°C at a rate of 5°C/min in a flowing NH 3 ambient atmosphere with a purity of 99.999%, and then raised to 1500°C at a rate of 4°C/min, kept for 6 hours, and then Cool down to 800°C at a cooling rate of 4°C/min, then cool naturally to room temperature, take out the obtained powder, put it in a mortar and grind it into powder to obtain the desired phosphor. The fluorescence conversion performance of the powder is characterized by measuring its excitation and emission spectra ( FIG. 12 ). Experiments have proved that by adjusting the ratio of elements Al and In in the crystal, the peak of the emission wavelength can be moved within 470-480nm, and the adjustment in the blue light band can be realized, which plays a positive role in the adjustment of the color purity of the phosphor; On the other hand, the incorporation of In can greatly reduce the synthesis temperature of the powder, and also has a certain effect on reducing the synthesis cost of the powder.
实施例12Example 12
按照化学式组成Ba0.85Eu0.15Si3-xGexO4N5,取x=0.5,按照化学式Ba0.85Eu0.15Si2.5Ge0.5O4N5配制粉体,称取0.1584g Eu2O3,0.4062gAl2O3,0.7014gSi3N4,0.4098gAlN,1.0064gBaCO3和0.3139gGeO2作为起始粉末,共同放入氮化硅研钵中充分研磨40分钟,使各种原料充分混合。使各种原料充分混合。将混合后的粉体烘干后放入BN坩埚中,堆积相对密度大约30%,然后盖上非密封的顶盖,放入刚玉管式炉中,对高温炉进行抽真空操作,然后通入混合还原气体即在纯度为99.999%的流动N2环境气氛中,以5℃/min的升温速度升温到1000℃,然后再以4℃/min的升温速率升温到1500℃,保温6小时,然后以4℃/min的冷却速度降温至800℃后自然冷却至室温,将得到的粉体取出后放在研钵中研碎成粉末即得到所需的荧光粉。粉末的荧光转化性能通过测定其激发发射光谱表征。Ge的掺入可以取代Si在晶格中的位置,同时在一定范围内调节Ge的含量可以改变基质的发射光谱的波长。实验证明,在紫外光的激发下,粉体在450-500nm的较宽的光谱范围内都有很强的发射。Composition according to the chemical formula Ba 0.85 Eu 0.15 Si 3-x Gex O 4 N 5 , take x = 0.5, prepare powder according to the chemical formula Ba 0.85 Eu 0.15 Si 2.5 Ge 0.5 O 4 N 5 , weigh 0.1584g Eu 2 O 3 , 0.4062g Al 2 O 3 , 0.7014g Si 3 N 4 , 0.4098g AlN, 1.0064g BaCO 3 and 0.3139g GeO 2 are used as starting powders, and they are put into a silicon nitride mortar and ground for 40 minutes to fully mix various raw materials. Mix all ingredients thoroughly. Dry the mixed powder and put it into a BN crucible, with a bulk density of about 30%, then cover it with a non-sealed top cover, put it into a corundum tube furnace, vacuumize the high temperature furnace, and then pass it into The mixed reducing gas is heated to 1000°C at a rate of 5°C/min in a flowing N2 ambient atmosphere with a purity of 99.999%, and then raised to 1500°C at a rate of 4°C/min, kept for 6 hours, and then Cool down to 800°C at a cooling rate of 4°C/min, then cool naturally to room temperature, take out the obtained powder, put it in a mortar and grind it into powder to obtain the desired phosphor. The fluorescence conversion performance of the powder is characterized by measuring its excitation and emission spectra. The incorporation of Ge can replace the position of Si in the crystal lattice, and at the same time, adjusting the content of Ge within a certain range can change the wavelength of the emission spectrum of the matrix. Experiments have proved that under the excitation of ultraviolet light, the powder has a strong emission in a wide spectral range of 450-500nm.
实施例13Example 13
按照化学式组成Ba0.85Eu0.15Si3-xBxAl3O4+3/2xN5-4/3x,取x=0.3,按照化学式Ba0.85Eu0.15Si2.6B0.4Al3O4.45N4.6配制粉体,称取0.1584g Eu2O3,0.6093gAl2O3,0.7295gSi3N4,0.2459gAlN,1.0064gBaCO3和0.1113gH3BO3作为起始粉末,共同放入氮化硅研钵中充分研磨40分钟,使各种原料充分混合。使各种原料充分混合。将混合后的粉体烘干后放入BN坩埚中,堆积相对密度大约30%,然后盖上非密封的顶盖,放入刚玉管式炉中,对高温炉进行抽真空操作,然后通入混合还原气体即在纯度为99.999%的流动NH3和N2(体积比1∶4)的混合气氛中,以5℃/min的升温速度升温到1000℃,然后再以4℃/min的升温速率升温到1500℃,保温6小时,然后以4℃/min的冷却速度降温至800℃后自然冷却至室温,将得到的粉体取出后放在研钵中研碎成粉末即得到所需的荧光粉。粉末的荧光转化性能通过测定其激发发射光谱表征。实验证明,由于Si和B之间的化合价不匹配而导致的电荷不平衡可以通过晶体结构中自身的O和N的比例进行调节。所得荧光粉可以被从真空紫外以及近紫外到蓝光的宽波段激发,发出明亮的蓝光,中心波长为472nm,在蓝光波段的激发和发射强度比商业BAM蓝粉高20%。According to the chemical formula Ba 0.85 Eu 0.15 Si 3-x B x Al 3 O 4+3/2x N 5-4/3x , take x=0.3, according to the chemical formula Ba 0.85 Eu 0.15 Si 2.6 B 0.4 Al 3 O 4.45 N 4.6 Powder, weigh 0.1584g Eu 2 O 3 , 0.6093g Al 2 O 3 , 0.7295g Si 3 N 4 , 0.2459g AlN, 1.0064g BaCO 3 and 0.1113g H 3 BO 3 as the starting powder, and put them together into a silicon nitride mortar Thoroughly grind for 40 minutes to fully mix the various raw materials. Mix all ingredients thoroughly. Dry the mixed powder and put it into a BN crucible, with a bulk density of about 30%, then cover it with a non-sealed top cover, put it into a corundum tube furnace, vacuumize the high temperature furnace, and then pass it into Mixed reducing gas means that in a mixed atmosphere of flowing NH 3 and N 2 (volume ratio 1:4) with a purity of 99.999%, the temperature is raised to 1000°C at a rate of 5°C/min, and then the temperature is raised at a rate of 4°C/min. Raise the temperature to 1500°C, keep it warm for 6 hours, then cool down to 800°C at a cooling rate of 4°C/min, then cool down to room temperature naturally, take out the obtained powder, put it in a mortar and grind it into powder to obtain the required fluorescence pink. The fluorescence conversion performance of the powder is characterized by measuring its excitation and emission spectra. Experiments demonstrate that the charge imbalance due to the valence mismatch between Si and B can be tuned by the ratio of O and N in the crystal structure itself. The obtained fluorescent powder can be excited by a wide band from vacuum ultraviolet and near ultraviolet to blue light, emits bright blue light with a center wavelength of 472nm, and the excitation and emission intensity in the blue light band is 20% higher than that of commercial BAM blue powder.
以上对本发明所提供的一种硅氧氮化物荧光粉及其制备方法进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。The silicon oxynitride phosphor powder provided by the present invention and its preparation method have been introduced in detail above. In this paper, specific examples are used to illustrate the principle and implementation of the present invention, and the descriptions of the above embodiments are only used to help understand the method and core idea of the present invention. It should be pointed out that for those skilled in the art, without departing from the principle of the present invention, some improvements and modifications can be made to the present invention, and these improvements and modifications also fall within the protection scope of the claims of the present invention.
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100560141A CN102181285B (en) | 2011-03-08 | 2011-03-08 | Silica nitride fluorescent powder and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100560141A CN102181285B (en) | 2011-03-08 | 2011-03-08 | Silica nitride fluorescent powder and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102181285A true CN102181285A (en) | 2011-09-14 |
CN102181285B CN102181285B (en) | 2013-12-11 |
Family
ID=44567576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100560141A Expired - Fee Related CN102181285B (en) | 2011-03-08 | 2011-03-08 | Silica nitride fluorescent powder and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102181285B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103881704A (en) * | 2014-03-13 | 2014-06-25 | 中国计量学院 | Orange yellow oxysulfide fluorescent powder for white light LED (Light Emitting Diode) and preparation method thereof |
CN104024377A (en) * | 2011-11-07 | 2014-09-03 | 独立行政法人物质·材料研究机构 | Phosphor and production method therefor, and light emission device and image display device using phosphor |
CN109575800A (en) * | 2019-01-23 | 2019-04-05 | 闽江学院 | A kind of organic silicon resin-based lasing safety coating and preparation method |
CN114058371A (en) * | 2021-12-10 | 2022-02-18 | 南昌工程学院 | Yellow light long afterglow luminescent material and preparation method and application thereof |
CN115572600A (en) * | 2022-10-25 | 2023-01-06 | 南昌工程学院 | A kind of Sm2+ activated broadband near-infrared luminescent material and its preparation method and application |
WO2024247685A1 (en) * | 2023-05-26 | 2024-12-05 | デンカ株式会社 | Phosphor and light-emitting device |
WO2024247687A1 (en) * | 2023-05-26 | 2024-12-05 | デンカ株式会社 | Phosphor and light emitting device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050236971A1 (en) * | 2004-04-21 | 2005-10-27 | Mueller-Mach Regina B | Phosphor for phosphor-converted semiconductor light emitting device |
JP2006316200A (en) * | 2005-05-13 | 2006-11-24 | Pioneer Electronic Corp | Phosphor and gas discharge-displaying device |
WO2007007240A1 (en) * | 2005-07-14 | 2007-01-18 | Philips Intellectual Property & Standards Gmbh | Electroluminescent light source |
JP2009057554A (en) * | 2007-08-08 | 2009-03-19 | Mitsubishi Chemicals Corp | Phosphor production method, phosphor obtained by the production method, and phosphor-containing composition, light-emitting device, illumination device, and image display device using the phosphor |
-
2011
- 2011-03-08 CN CN2011100560141A patent/CN102181285B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050236971A1 (en) * | 2004-04-21 | 2005-10-27 | Mueller-Mach Regina B | Phosphor for phosphor-converted semiconductor light emitting device |
JP2006316200A (en) * | 2005-05-13 | 2006-11-24 | Pioneer Electronic Corp | Phosphor and gas discharge-displaying device |
WO2007007240A1 (en) * | 2005-07-14 | 2007-01-18 | Philips Intellectual Property & Standards Gmbh | Electroluminescent light source |
JP2009057554A (en) * | 2007-08-08 | 2009-03-19 | Mitsubishi Chemicals Corp | Phosphor production method, phosphor obtained by the production method, and phosphor-containing composition, light-emitting device, illumination device, and image display device using the phosphor |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104024377A (en) * | 2011-11-07 | 2014-09-03 | 独立行政法人物质·材料研究机构 | Phosphor and production method therefor, and light emission device and image display device using phosphor |
CN104080884A (en) * | 2011-11-07 | 2014-10-01 | 独立行政法人物质·材料研究机构 | Phosphor, production method therefor, light emission device, and image display device |
CN104024377B (en) * | 2011-11-07 | 2017-05-17 | 国立研究开发法人物质·材料研究机构 | Phosphor and production method therefor, and light emission device and image display device using phosphor |
CN103881704A (en) * | 2014-03-13 | 2014-06-25 | 中国计量学院 | Orange yellow oxysulfide fluorescent powder for white light LED (Light Emitting Diode) and preparation method thereof |
CN109575800A (en) * | 2019-01-23 | 2019-04-05 | 闽江学院 | A kind of organic silicon resin-based lasing safety coating and preparation method |
CN114058371A (en) * | 2021-12-10 | 2022-02-18 | 南昌工程学院 | Yellow light long afterglow luminescent material and preparation method and application thereof |
CN115572600A (en) * | 2022-10-25 | 2023-01-06 | 南昌工程学院 | A kind of Sm2+ activated broadband near-infrared luminescent material and its preparation method and application |
CN115572600B (en) * | 2022-10-25 | 2023-08-15 | 南昌工程学院 | A kind of Sm2+ activated broadband near-infrared luminescent material and its preparation method and application |
WO2024247685A1 (en) * | 2023-05-26 | 2024-12-05 | デンカ株式会社 | Phosphor and light-emitting device |
WO2024247687A1 (en) * | 2023-05-26 | 2024-12-05 | デンカ株式会社 | Phosphor and light emitting device |
Also Published As
Publication number | Publication date |
---|---|
CN102181285B (en) | 2013-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11697765B2 (en) | Phosphor and light-emitting equipment using phosphor | |
JP4565141B2 (en) | Phosphors and light emitting devices | |
CN102348778B (en) | Phosphor, method for producing same, light-emitting device, and image display apparatus | |
US20130140490A1 (en) | Silicon Nitride Powder for Siliconnitride Phosphor, CaAlSiN3 Phosphor Using Same, Sr2Si5N8 Phosphor Using Same, (Sr, Ca)AlSiN3 Phosphor Using Same, La3Si6N11Phosphor Using Same, and Methods for Producing the Phosphors | |
US7618556B2 (en) | Phosphor for white light-emitting device and white light-emitting device including the same | |
CN101818063B (en) | Method for preparing silicon-based oxynitride fluorescent powder | |
WO2006016711A1 (en) | Phosphor, method for producing same and light-emitting device | |
CN102181285A (en) | Silica nitride fluorescent powder and preparation method thereof | |
CN110041921A (en) | A kind of manganese ion activated green emitting phosphor and preparation method thereof | |
CN104962286A (en) | Garnet-structure multiphase fluorescent material and preparation method thereof | |
CN101560392B (en) | Stable aluminate-based phosphor powder, preparing method and application thereof | |
CN105802617A (en) | A Method for Improving Luminescent Properties of SrAl2B2O7: Tb3+ Green Phosphor | |
Ma et al. | Luminescence properties of Eu2+ doped BaAl2Si2O8 phosphor for white LEDs | |
CN104629759A (en) | Method for enhancing emission intensity of strontium aluminate fluorescent powder | |
CN110373186B (en) | Red fluorescent powder without rare earth and preparation method thereof | |
Li et al. | Preparation and Properties of Sr3B2O6: Dy3+, Eu3+ White Phosphors Using the High-Temperature Solid-State Method | |
CN108148581B (en) | Silicate-based fluorescent powder | |
CN101717638A (en) | Fluorescent powder for field emission and method for preparing same | |
CN105238401B (en) | White emitting fluorescent powder based on ultraviolet light or near ultraviolet excitation and preparation method thereof | |
CN112852415B (en) | High-color-purity and high-stability light-emitting green fluorescent powder and preparation method thereof | |
CN107033902B (en) | Silicate fluorescent material with single-matrix three primary colors for L ED white light and preparation method thereof | |
CN103242845A (en) | Oxynitride fluorescent powder and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131211 Termination date: 20200308 |