CN102176063A - Primary field self-counteracting device for time-domain airborne electromagnetic method - Google Patents
Primary field self-counteracting device for time-domain airborne electromagnetic method Download PDFInfo
- Publication number
- CN102176063A CN102176063A CN 201110041658 CN201110041658A CN102176063A CN 102176063 A CN102176063 A CN 102176063A CN 201110041658 CN201110041658 CN 201110041658 CN 201110041658 A CN201110041658 A CN 201110041658A CN 102176063 A CN102176063 A CN 102176063A
- Authority
- CN
- China
- Prior art keywords
- receiving coil
- coil
- component receiving
- component
- transmitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明涉及一种时间域航空电磁法一次场自抵消装置。飞机装有数据收录系统,通过吊挂绳索将支撑发射线圈、z分量接收线圈、x分量接收线圈、y分量接收线圈和校准线圈的十字形支架吊挂在飞机舱底,z分量接收线圈、x分量接收线圈和y分量接收线圈经导线连接到前置放大器上,再经信号线连接到数据收录系统上。与现有同类相比有效降低一次场对接收线圈的影响,接收线圈接收的二次场信号动态范围大大增加,提高了勘探精度和效率,接收线圈采用双减震结构,有效保护接收线圈,避免装置震动对接收信号的影响,提高二次场晚期信号的接收质量。校准线圈与三个接收线圈同时成45度角,便于工作人员随时检查系统性能,提高了系统检测效率。
The invention relates to a primary field self-cancellation device of the time-domain airborne electromagnetic method. The aircraft is equipped with a data recording system, and the cross-shaped bracket supporting the transmitting coil, z-component receiving coil, x-component receiving coil, y-component receiving coil and calibration coil is hung on the bottom of the aircraft cabin by hanging ropes, the z-component receiving coil, x-component receiving coil, x-component receiving coil The component receiving coil and the y component receiving coil are connected to the preamplifier through wires, and then connected to the data recording system through signal wires. Compared with the existing similar products, the influence of the primary field on the receiving coil is effectively reduced, and the dynamic range of the secondary field signal received by the receiving coil is greatly increased, which improves the accuracy and efficiency of exploration. The receiving coil adopts a double shock-absorbing structure, which effectively protects the receiving coil and avoids The impact of device vibration on the received signal improves the receiving quality of the signal in the late stage of the secondary field. The calibration coil and the three receiving coils form a 45-degree angle at the same time, which is convenient for the staff to check the system performance at any time and improves the system detection efficiency.
Description
技术领域:Technical field:
本发明涉及一种航空地球物理勘探接收装置,尤其是吊舱式直升机时间域航空电磁勘探装置。The invention relates to an aerial geophysical survey receiving device, in particular to a pod-type helicopter time-domain aerial electromagnetic survey device.
背景技术:Background technique:
吊舱式直升机航空时间域电磁法勘探系统采用直升机飞机作为飞行载体,通过发射大功率的磁场信号对地下介质激励,在磁场信号的发射间隙,利用接收装置接收地下介质因涡流效应产生的二次场,从而对地下电阻率结构进行解释。吊舱式直升机航空时间域电磁勘探接收装置是航空时间域电磁法勘探系统的一部分,包括感应线圈或磁感应传感器、信号调理模块、数据采集处理系统及用于检验是否工作正常的校准线圈。接收装置的核心在于感应线圈或磁感应传感器,其安装方式直接决定着信号的接收质量。目前接收装置的安装方式主要包括与发射装置一体的直升机吊舱式以及固定翼单独吊挂式两种,接收分量有单分量(z分量)、双分量(x、z分量)及三分量(x、y、z)三种,双分量和三分量接收装置的位置各有不同。The pod-type helicopter aerial time-domain electromagnetic exploration system uses a helicopter as a flight carrier to excite the underground medium by transmitting a high-power magnetic field signal. During the transmission gap of the magnetic field signal, the receiving device is used to receive the secondary energy produced by the underground medium due to the eddy current effect. field to explain the subsurface resistivity structure. The pod-type helicopter aeronautical time-domain electromagnetic survey receiving device is a part of the aeronautical time-domain electromagnetic survey system, including induction coils or magnetic induction sensors, signal conditioning modules, data acquisition and processing systems, and calibration coils for checking whether they are working normally. The core of the receiving device is the induction coil or the magnetic induction sensor, and its installation method directly determines the receiving quality of the signal. At present, the installation methods of the receiving device mainly include the helicopter pod type integrated with the transmitting device and the fixed-wing independent hanging type. The receiving components include single-component (z component), double-component (x, z-component) and three-component (x , y, z) three types, the positions of the two-component and three-component receiving devices are different.
国际上现有的著名吊舱式直升机航空电磁法系统研发单位主要有Geotech公司、Fugro公司及Aeroquest公司等,为避免一次场幅度过大导致接收线圈接收二次场动态范围过小,采用了多种方式,如Geotech公司及Aeroquest公司采用的“buckingcoil”反馈线圈设计以及Fugro公司采用的将接收线圈置于发射线圈与直升机中间的位置等。The existing well-known research and development units of the pod-type helicopter aviation electromagnetic system in the world mainly include Geotech Company, Fugro Company and Aeroquest Company. Some methods, such as the "buckingcoil" feedback coil design adopted by Geotech Company and Aeroquest Company, and the position adopted by Fugro Company to place the receiving coil between the transmitting coil and the helicopter, etc.
国内目前除一些研究吊舱式时间域电磁法理论的文章有发表外,尚未见成熟的吊舱式直升机航空电磁法系统出现。At present, except some articles on podded time-domain electromagnetic theory have been published in China, there is no mature podded helicopter airborne electromagnetic system.
利用“buckingcoil”反馈线圈设计的方式减小一次场的影响除因使用了“buckingcoil”线圈导致装置总重量增加外,还会导致发射线圈的总磁矩减小,降低装置的勘探深度影响勘探效果。将接收线圈置于发射线圈与直升机中间的位置的方式虽不会增加装置的自身重量,但接收线圈与目标体的距离增加,降低二次场信号强度,同样会影响到勘探效果。目前国内外尚未见报道采用一次场自抵消方式进行三分量测量的装置,也未见采用一个校准线圈对三个分量接收线圈同时进行校准的报道。Using the "buckingcoil" feedback coil design to reduce the influence of the primary field will not only increase the total weight of the device due to the use of the "buckingcoil" coil, but also reduce the total magnetic moment of the transmitting coil, reducing the exploration depth of the device and affecting the exploration effect . The method of placing the receiving coil between the transmitting coil and the helicopter will not increase the weight of the device itself, but the distance between the receiving coil and the target will increase, reducing the signal strength of the secondary field, which will also affect the exploration effect. At present, there is no report of a device that uses the primary field self-cancellation method for three-component measurement at home and abroad, and there is no report that uses a calibration coil to simultaneously calibrate three component receiving coils.
发明内容:Invention content:
本发明的目的在于针对一次场幅度过大导致二次场信号动态范围过小的不足,提供一种适用于时间域航空电磁法一次场自抵消装置。The object of the present invention is to provide a primary field self-cancellation device suitable for the time-domain airborne electromagnetic method to solve the problem that the dynamic range of the secondary field signal is too small due to the large amplitude of the primary field.
本发明的目的是通过以下方式实现的:The purpose of the present invention is achieved in the following manner:
直升飞机13装有数据收录系统7,由直升飞机13提供直流电源,十字形支架9支撑发射线圈10、x分量接收线圈2、y分量接收线圈3和校准线圈14,校准线圈14通过导线与数据收录系统7连接,吊挂绳索12上端系在直升飞机13舱底,吊挂绳索12下端系在十字形支架9的中心,吊挂辐条11上端系在吊挂绳索12的中部,吊挂辐条11下端等角度系在发射线圈10上,吊挂辐条11为前后不等长,其长短取决于直升飞机13的飞行速度,z分量接收线圈1经减震垫8装在发射线圈10上,z分量接收线圈1的有效面积被发射线圈10分为两部分,发射线圈10产生的激励磁场在z分量接收线圈1被分成两部分,且总磁通量大小相等方向相反,x分量接收线圈2位于发射线圈10的中心,既垂直于z分量接收线圈1,也垂直于直升飞机13的飞行方向,y分量接收线圈3既垂直于z分量接收线圈1也垂直于x分量接收线圈2,且与x分量接收线圈2正交,z分量接收线圈1、x分量接收线圈2和y分量接收线圈3经导线4连接到前置放大器5上,再经信号线6连接到数据收录系统7上,校准线圈14位于z分量接收线圈1与x分量接收线圈2及y分量接收线圈3的中间位置,在接收线圈正常工作时校准线圈14处于开路状态,校准线圈14闭合时用来作为标准异常验证接收线圈是否工作正常。Helicopter 13 is equipped with
发射线圈10和十字形支架9外部包有玻璃钢管,发射线圈10的形状为圆形或任意正多边形。z分量接收线圈1、x分量接收线圈2和y分量接收线圈3均为空心结构,为圆形或正多边形。z分量接收线圈1、x分量接收线圈2和y分量接收线圈3均采用铜带缠绕并以接地的方式进行干扰屏蔽。The outside of the transmitting
z分量接收线圈1、x分量接收线圈2和y分量接收线圈3全部采用双层减震结构,z分量接收线圈1、x分量接收线圈2和y分量接收线圈3均由带屏蔽的线圈15大于三组十字正交形线圈与内壳连接的弹性橡胶条16与线圈内壳17弹性连接,线圈内壳17由大于三组的十字正交形内壳与外壳连接的弹性橡胶条20与线圈外壳19弹性连接,连接处分别采用弹性橡胶条固定座18固定构成。Z-component receiving coil 1, x-component receiving coil 2 and y-component receiving coil 3 all adopt double-layer damping structure, z-component receiving coil 1, x-component receiving coil 2 and y-component receiving coil 3 are all made of shielded coil 15 larger than Elastic rubber strips 16 connecting three groups of cross-orthogonal coils to the inner casing are elastically connected to the coil inner casing 17, and the coil inner casing 17 is connected to the coil outer casing by elastic rubber strips 20 connected to the outer casing and the cross-orthogonal inner casing of more than three groups 19 are elastically connected, and the joints are respectively fixed with elastic rubber strip holders 18 to form.
校准线圈14同时与z分量接收线圈1、x分量接收线圈2和y分量接收线圈3成45度夹角。The
有益效果:吊舱式直升机航空时间域电磁法一次场自抵消装置在不增加总体重量的前提下,利用发射线圈产生磁场的磁通量的空间分布规律,有效降低一次场对接收线圈的影响,将使其对接收线圈接收的二次场信号动态范围大大增加,从而使系统勘探效果更为理想,与国外其他同类系统相比优越性明显。接收线圈采用基于弹性橡胶的双减震结构,除能够有效保护接收线圈外,还可以避免飞行过程中装置震动对接收信号的影响,提高二次场晚期信号的接收质量。另外,与三个接收线圈同时成45度角的校准线圈的使用,方便装置在飞行过程中工作人员随时检查系统的工作性能,提高了系统检测效率。Beneficial effects: The pod-type helicopter aviation time-domain electromagnetic method primary field self-cancellation device can effectively reduce the influence of the primary field on the receiving coil by using the spatial distribution of the magnetic flux generated by the transmitting coil without increasing the overall weight. The dynamic range of the secondary field signal received by the receiving coil is greatly increased, so that the system exploration effect is more ideal, and its superiority is obvious compared with other similar foreign systems. The receiving coil adopts a double shock-absorbing structure based on elastic rubber. In addition to effectively protecting the receiving coil, it can also avoid the impact of device vibration on the received signal during flight and improve the receiving quality of the late signal of the secondary field. In addition, the use of the calibration coil which forms an angle of 45 degrees with the three receiving coils at the same time facilitates the staff to check the working performance of the system at any time during the flight of the device and improves the detection efficiency of the system.
附图说明:Description of drawings:
图1是时间域航空电磁法一次场自抵消装置结构图Figure 1 is a structural diagram of the primary field self-cancellation device for the time-domain airborne electromagnetic method
图2是图1接收线圈1、2、3的截面图Fig. 2 is a sectional view of receiving coils 1, 2, 3 in Fig. 1
1z分量接收线圈,2x分量接收线圈,3y分量接收线圈,4导线,5前置放大器,6信号线,7数据收录系统,8减震垫,9十字形支架,10发射线圈,11装置吊挂辐条,12吊挂绳索,13直升飞机,14校准线圈,15带屏蔽的线圈,16线圈与内壳连接的弹性橡胶条,17线圈内壳,18弹性橡胶条固定座,19线圈外壳,20内壳与外壳连接的弹性橡胶条。1z component receiving coil, 2x component receiving coil, 3y component receiving coil, 4 wires, 5 preamplifiers, 6 signal lines, 7 data recording system, 8 shock pads, 9 cross-shaped brackets, 10 transmitting coils, 11 device hanging Spokes, 12 hanging ropes, 13 helicopters, 14 calibration coils, 15 shielded coils, 16 elastic rubber strips connecting the coils to the inner shell, 17 coil inner shells, 18 elastic rubber strip fixing seats, 19 coil shells, 20 Elastic rubber strip connecting the inner shell to the outer shell.
具体实施方式:Detailed ways:
下面结合附图和实施例作进一步详细说明:Below in conjunction with accompanying drawing and embodiment describe in further detail:
直升飞机13装有数据收录系统7,由直升飞机13提供直流电源,十字形支架9支撑发射线圈10、x分量接收线圈2、y分量接收线圈3和校准线圈14,校准线圈14通过导线与数据收录系统7连接,吊挂绳索12上端系在直升飞机13舱底,吊挂绳索12下端系在十字形支架9的中心,吊挂辐条11上端系在吊挂绳索12的中部,四个以上吊挂辐条11下端等角度系在发射线圈10上,吊挂辐条11为前后不等长,其长短取决于直升飞机13的飞行速度,z分量接收线圈1经减震垫8装在发射线圈10上,z分量接收线圈1的有效面积被发射线圈10分为两部分,发射线圈10产生的激励磁场在z分量接收线圈1被分成两部分,且总磁通量大小相等方向相反,x分量接收线圈2位于发射线圈10的中心,既垂直于z分量接收线圈1,也垂直于直升飞机13的飞行方向,y分量接收线圈3既垂直于z分量接收线圈1也垂直于x分量接收线圈2,且与x分量接收线圈2正交,z分量接收线圈1、x分量接收线圈2和y分量接收线圈3经导线4连接到前置放大器5上,再经信号线6连接到数据收录系统7上,校准线圈14位于z分量接收线圈1与x分量接收线圈2及y分量接收线圈3的中间位置,在接收线圈正常工作时校准线圈14处于开路状态,校准线圈14闭合时用来作为标准异常验证接收线圈是否工作正常。发射线圈10和十字形支架9外部包有玻璃钢管,发射线圈10的形状为圆形或任意正多边形。z分量接收线圈1、x分量接收线圈2和y分量接收线圈3均为空心结构,为圆形或正多边形。z分量接收线圈1、x分量接收线圈2和y分量接收线圈3均采用铜带缠绕并以接地的方式进行干扰屏蔽。z分量接收线圈1、x分量接收线圈2和y分量接收线圈3全部采用双层减震结构,z分量接收线圈1、x分量接收线圈2和y分量接收线圈3均由带屏蔽的线圈15经大于三组十字正交形线圈与内壳连接的弹性橡胶条16与线圈内壳17弹性连接,线圈内壳17由大于三组的十字正交形内壳与外壳连接的弹性橡胶条20与线圈外壳19弹性连接,连接处分别采用弹性橡胶条固定座18固定构成。校准线圈14同时与z分量接收线圈1、x分量接收线圈2和y分量接收线圈3成45度夹角。Helicopter 13 is equipped with
实施例1Example 1
发射线圈10外部采用玻璃钢管封装,封装后利用十字型支架9紧固,通过装置吊挂辐条11与吊挂绳索12吊挂在直升机13下部。z分量接收线圈1经减震垫8减震后置于发射线圈10上部并被发射线圈10分为两部分,发射线圈10产生的磁通量在z分量接收线圈1的两部分空间内总量大小相等方向相反。x分量接收线圈2与z分量接收线圈1垂直且与直升机13飞行方向垂直,x分量接收线圈2的圆心在发射线圈10的直径上。y分量接收线圈3与z分量接收线圈1垂直且与x分量接收线圈2垂直,y分量接收线圈3的圆心在发射线圈10的直径上。三个分量接收线圈1、2、3的输出端经接收线圈到前置放大器的导线4延长2米以上的距离后与前置放大器5连接,信号经前置放大器5放大并经由前置放大器到数据收录系统的信号线6送到数据收录系统7内,由数据收录系统7进行数据采集与存储。校准线圈14位于z分量接收线圈1与x分量接收线圈2及y分量接收线圈3的中间位置,在接收线圈正常工作时处于开路状态,校准线圈14闭合时用来作为标准异常验证接收线圈是否工作正常。The outside of the transmitting
发射线圈10及三个分量接收线圈1、2、3的形状为圆形。三个分量接收线圈1、2、3均采用双层减震结构,由漆包线绕制的线圈经铜带缠绕并接地进行干扰屏蔽后,带屏蔽的线圈15由大于三组的十字正交形线圈与内壳连接的弹性橡胶条16与线圈内壳17弹性连接,线圈内壳17由大于三组的十字正交形内壳与外壳连接的弹性橡胶条20与线圈外壳19弹性连接,连接处分别采用弹性橡胶条固定座18进行固定。线圈内壳17采用硬质PVC塑料制成,线圈外壳19采用玻璃钢管制成。校准线圈14可以是圆形或多边形,可以采用一根钢管弯成也可以采用多匝漆包线绕制而成,该校准线圈同时与接收线圈1、2、3成45度夹角。校准线圈14的断开与闭合由直升飞机13上的系统操作员决定。The shape of the transmitting
接收线圈1、2、3对磁场感应输出信号的一般表达式可用下式表示:The general expression of the magnetic field induction output signal of the receiving coil 1, 2, 3 can be expressed by the following formula:
对于吊舱式直升机航空时间域电磁法装置的一般结构而言,作用在接收线圈1、2、3上的磁场包括两部分:发射线圈自身产生的磁场(一次场,以B1表示)以及地下介质由于涡流效应而产生的磁场(二次场,以B2表示),因此对于接收线圈1、2、3而言,其输出信号的表达式在发射线圈10中存在发射电流时表达式如下:For the general structure of the pod-type helicopter aeronautical time-domain electromagnetic method device, the magnetic field acting on the receiving coils 1, 2, and 3 includes two parts: the magnetic field generated by the transmitting coil itself (primary field, represented by B 1 ) and the underground The magnetic field (secondary field, represented by B2 ) produced by the medium due to the eddy current effect, so for the receiving coils 1, 2, 3, the expression of the output signal is as follows when there is a transmitting current in the transmitting coil 10:
而发射线圈10中不存在发射电流时其表达式则为:And when there is no transmitting current in the transmitting
由于发射线圈中的电流超过200安培以上,使得B1>>B2,造成ε1>>ε2,如不对一次场进行处理,为防止接收线圈1、2、3感应电压信号过大造成输出饱和从而影响其正常工作,则对接收线圈1、2、3的输出信号只能采用低倍数放大或者不放大甚至是衰减,从而造成本就幅度较小的二次场信号输出幅度不理想,而在实际勘探工作中,接收线圈1、2、3的一次场信号是无用的,将其幅度抑制或抵消掉有利于对二次场信号的放大以便于获得较理想的二次场信号。Since the current in the transmitting coil exceeds 200 amperes, B 1 >> B 2 , resulting in ε 1 >> ε 2 , if the primary field is not processed, in order to prevent the receiving coil 1, 2, 3 from causing the output voltage to be too large Saturation affects its normal operation, then the output signals of receiving coils 1, 2, and 3 can only be amplified by low multiples or not amplified or even attenuated, resulting in an unsatisfactory output amplitude of the secondary field signal with a small amplitude. In actual exploration work, the primary field signals of the receiving coils 1, 2, and 3 are useless, and suppressing or canceling their amplitudes is beneficial to the amplification of the secondary field signals in order to obtain an ideal secondary field signal.
发射线圈10在产生一次场时,其任意一段圆弧的内外两侧均会产生大小相等方向相反的磁场分别表示为B1内和B1外,置于其上的z分量接收线圈1被分为两个面积分别表示为S1内和S1外,当S1内=S1外时,则一次场产生的总信号幅度为:When the transmitting
从而使z分量接收线圈1的输出信号不受一次场影响,只有二次场的感应输出。发射线圈10在产生一次场时,其总场沿自身平面对称,对任意垂直发射平面且基于发射平面对称的接收线圈而言,一次场的影响同样会得到与z分量接收线圈1相同的效果,即被自身结构抵消。故x分量接收线圈2与y分量接收线圈3上也不会受一次场的影响。Therefore, the output signal of the z-component receiving coil 1 is not affected by the primary field, and only has the induction output of the secondary field. When the transmitting
在一般飞行工作过程中,校准线圈14一般处于断开状态,即发射线圈10在校准线圈上产生的涡流基本为零,不会对实际勘探结果产生影响。一旦在工作人员需要检测整个装置是否工作正常时,不需要降落地面,只需要利用直升机13将装置拉高到300米以上,此时将校准线圈14接通,发射线圈10发射激励电流,则在校准线圈14上产生涡流效应,在发射线圈10将电流关断后,该涡流效应产生的磁场被接收线圈1、2、3接收,并可以在数据收录系统7中查看校准线圈的涡流衰减曲线。由于校准线圈14的参数已知,即形成的涡流衰减曲线也是已知的,则通过数据收录系统7获得的涡流衰减曲线与已知的涡流衰减曲线对比即可验证装置是否工作正常。During general flight work, the
实施例2Example 2
直升飞机13装有数据收录系统7,由直升飞机13提供直流电源,十字形支架9支撑发射线圈10、x分量接收线圈2、y分量接收线圈3和校准线圈14,校准线圈14通过导线与数据收录系统7连接,吊挂绳索12上端系在直升飞机13舱底,吊挂绳索12下端系在十字形支架9的中心,吊挂辐条11上端系在吊挂绳索12的中部,四个以上吊挂辐条11下端等角度系在发射线圈10上,吊挂辐条11为前后不等长,其长短取决于直升飞机13的飞行速度,z分量接收线圈1经减震垫8装在发射线圈10上,z分量接收线圈1的有效面积被发射线圈10分为两部分,发射线圈10产生的激励磁场在z分量接收线圈1被分成的两部分,且总磁通量大小相等方向相反,x分量接收线圈2位于发射线圈10的中心,既垂直于z分量接收线圈1,也垂直于直升飞机13的飞行方向,y分量接收线圈3既垂直于z分量接收线圈1也垂直于x分量接收线圈2,且与x分量接收线圈2正交,z分量接收线圈1、x分量接收线圈2和y分量接收线圈3经导线4连接到前置放大器5上,再经信号线6连接到数据收录系统7上,校准线圈14位于z分量接收线圈1与x分量接收线圈2及y分量接收线圈3的中间位置,在接收线圈正常工作时校准线圈14处于开路状态,校准线圈14闭合时用来作为标准异常验证接收线圈是否工作正常。发射线圈10和十字形支架9外部包有玻璃钢管,发射线圈10的形状为任意正多边形。z分量接收线圈1、x分量接收线圈2和y分量接收线圈3均为空心结构,为圆形或正多边形。z分量接收线圈1、x分量接收线圈2和y分量接收线圈3均采用铜带缠绕并以接地的方式进行干扰屏蔽。z分量接收线圈1、x分量接收线圈2和y分量接收线圈3全部采用双层减震结构,z分量接收线圈1、x分量接收线圈2和y分量接收线圈3均由带屏蔽的线圈15大于三组十字正交形线圈与内壳连接的弹性橡胶条16与线圈内壳17弹性连接,线圈内壳17由大于三组的十字正交形内壳与外壳连接的弹性橡胶条20与线圈外壳19弹性连接,连接处分别采用弹性橡胶条固定座18固定构成。校准线圈14同时与z分量接收线圈1、x分量接收线圈2和y分量接收线圈3成45度夹角。校准线圈14的断开与闭合由直升飞机13上的系统操作员决定。
接收线圈1、2、3对磁场感应输出信号的一般表达式可用下式表示:The general expression of the magnetic field induction output signal of the receiving coil 1, 2, 3 can be expressed by the following formula:
对于吊舱式直升机航空时间域电磁法装置的一般结构而言,作用在接收线圈1、2、3上的磁场包括两部分:发射线圈自身产生的磁场(一次场,以B1表示)以及地下介质由于涡流效应而产生的磁场(二次场,以B2表示),因此对于接收线圈1、2、3而言,其输出信号的表达式在发射线圈10中存在发射电流时表达式如下:For the general structure of the pod-type helicopter aeronautical time-domain electromagnetic method device, the magnetic field acting on the receiving coils 1, 2, and 3 includes two parts: the magnetic field generated by the transmitting coil itself (primary field, represented by B 1 ) and the underground The magnetic field (secondary field, represented by B2 ) produced by the medium due to the eddy current effect, so for the receiving coils 1, 2, 3, the expression of the output signal is as follows when there is a transmitting current in the transmitting coil 10:
而发射线圈10中不存在发射电流时其表达式则为:And when there is no transmitting current in the transmitting
由于发射线圈中的电流超过200安培以上,使得B1>>B2,造成ε1>>ε2,如不对一次场进行处理,为防止接收线圈1、2、3感应电压信号过大造成输出饱和从而影响其正常工作,则对接收线圈1、2、3的输出信号只能采用低倍数放大或者不放大甚至是衰减,从而造成本就幅度较小的二次场信号输出幅度不理想,而在实际勘探工作中,接收线圈1、2、3的一次场信号是无用的,将其幅度抑制或抵消掉有利于对二次场信号的放大以便于获得较理想的二次场信号。Since the current in the transmitting coil exceeds 200 amperes, B 1 >> B 2 , resulting in ε 1 >> ε 2 , if the primary field is not processed, in order to prevent the receiving coil 1, 2, 3 from causing the output voltage to be too large Saturation affects its normal operation, then the output signals of receiving coils 1, 2, and 3 can only be amplified by low multiples or not amplified or even attenuated, resulting in an unsatisfactory output amplitude of the secondary field signal with a small amplitude. In actual exploration work, the primary field signals of the receiving coils 1, 2, and 3 are useless, and suppressing or canceling their amplitudes is beneficial to the amplification of the secondary field signals in order to obtain an ideal secondary field signal.
发射线圈10在产生一次场时,其任意一段圆弧的内外两侧均会产生大小相等方向相反的磁场分别表示为B1内和B1外,置于其上的z分量接收线圈1被分为两个面积分别表示为S1内和S1外,当S1内=S1外时,则一次场产生的总信号幅度为:When the transmitting
从而使z分量接收线圈1的输出信号不受一次场影响,只有二次场的感应输出。发射线圈10在产生一次场时,其总场沿自身平面对称,对任意垂直发射平面且基于发射平面对称的接收线圈而言,一次场的影响同样会得到与z分量接收线圈1相同的效果,即被自身结构抵消。故x分量接收线圈2与y分量接收线圈3上也不会受一次场的影响。Therefore, the output signal of the z-component receiving coil 1 is not affected by the primary field, and only has the induction output of the secondary field. When the transmitting
在一般飞行工作过程中,校准线圈14一般处于断开状态,即发射线圈10在校准线圈上产生的涡流基本为零,不会对实际勘探结果产生影响。一旦在工作人员需要检测整个装置是否工作正常时,不需要降落地面,只需要利用直升机13将装置拉高到300米以上,此时将校准线圈14接通,发射线圈10发射激励电流,则在校准线圈14上产生涡流效应,在发射线圈10将电流关断后,该涡流效应产生的磁场被接收线圈1、2、3接收,并可以在数据收录系统7中查看校准线圈的涡流衰减曲线。由于校准线圈14的参数已知,即形成的涡流衰减曲线也是已知的,则通过数据收录系统7获得的涡流衰减曲线与已知的涡流衰减曲线对比即可验证装置是否工作正常。During general flight work, the
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110041658 CN102176063B (en) | 2011-02-21 | 2011-02-21 | Primary field self-counteracting device for time-domain airborne electromagnetic method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110041658 CN102176063B (en) | 2011-02-21 | 2011-02-21 | Primary field self-counteracting device for time-domain airborne electromagnetic method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102176063A true CN102176063A (en) | 2011-09-07 |
CN102176063B CN102176063B (en) | 2013-07-17 |
Family
ID=44519265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110041658 Expired - Fee Related CN102176063B (en) | 2011-02-21 | 2011-02-21 | Primary field self-counteracting device for time-domain airborne electromagnetic method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102176063B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102417039A (en) * | 2011-11-04 | 2012-04-18 | 哈尔滨飞机工业集团有限责任公司 | Receiving nacelle for time domain aircraft |
CN104019812A (en) * | 2014-06-18 | 2014-09-03 | 吉林大学 | Multi-sensor data fused aviation coil inertial navigation device |
CN104020497A (en) * | 2014-06-24 | 2014-09-03 | 吉林大学 | Z component receiving device for airborne Z-axis tipper electromagnetic survey system |
CN104535943A (en) * | 2014-12-30 | 2015-04-22 | 吉林大学 | Device and method for measuring magnetic induction intensity B through time domain electromagnetic method |
CN104865608A (en) * | 2015-05-22 | 2015-08-26 | 吉林大学 | Time-domain airborne electromagnetic method motion noise detection apparatus and inhibition method |
CN105807325A (en) * | 2014-12-31 | 2016-07-27 | 中国船舶重工集团公司第七研究院 | Frequency domain aviation extremely low frequency electromagnetic method |
CN105824049A (en) * | 2016-03-21 | 2016-08-03 | 哈尔滨飞机工业集团有限责任公司 | Hanging-type helicopter time domain aeromagnetic detection pod |
CN107167846A (en) * | 2017-05-19 | 2017-09-15 | 吉林大学 | The air-ground quick Geomagnetism Information measurement apparatus of combination multifunction high-precision and measuring method |
CN110261921A (en) * | 2019-07-25 | 2019-09-20 | 南风(上海)精密物理仪器有限公司 | A kind of erecting by overhang for unmanned helicopter aeroelectromagnetic method emitting and receiving equipment |
CN110361785A (en) * | 2019-06-21 | 2019-10-22 | 中国科学院地质与地球物理研究所 | A kind of aviation transient electromagnetic method reception compensation device |
US20220035062A1 (en) * | 2020-07-30 | 2022-02-03 | Chengdu University Of Technology | Semi-airborne Time Domain Electromagnetic Exploration System for Unmanned Aerial Vehicle |
CN114527512A (en) * | 2022-02-28 | 2022-05-24 | 中国地质调查局地球物理调查中心 | Multi-frequency electromagnetic detection horizontal gradient acquisition system for frequency domain unmanned aerial vehicle |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106741999B (en) * | 2017-02-06 | 2019-04-09 | 中国航天空气动力技术研究院 | A Receiver Pod Applied to UAV Time Domain Aviation Electromagnetic System |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1285046A (en) * | 1997-12-19 | 2001-02-21 | 南非美国安格罗有限公司 | Airborne electromagnetic system |
WO2005106536A1 (en) * | 2004-04-28 | 2005-11-10 | Anglo Operations Limited | Helicopter electromagnetic prospecting system |
-
2011
- 2011-02-21 CN CN 201110041658 patent/CN102176063B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1285046A (en) * | 1997-12-19 | 2001-02-21 | 南非美国安格罗有限公司 | Airborne electromagnetic system |
WO2005106536A1 (en) * | 2004-04-28 | 2005-11-10 | Anglo Operations Limited | Helicopter electromagnetic prospecting system |
Non-Patent Citations (1)
Title |
---|
《电波科学学报》 20100430 许洋铖等 航空时间域电磁法回线源有限差分初始场计算 第259-263页 1-6 第25卷, 第2期 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102417039A (en) * | 2011-11-04 | 2012-04-18 | 哈尔滨飞机工业集团有限责任公司 | Receiving nacelle for time domain aircraft |
CN104019812A (en) * | 2014-06-18 | 2014-09-03 | 吉林大学 | Multi-sensor data fused aviation coil inertial navigation device |
CN104020497A (en) * | 2014-06-24 | 2014-09-03 | 吉林大学 | Z component receiving device for airborne Z-axis tipper electromagnetic survey system |
CN104020497B (en) * | 2014-06-24 | 2017-02-01 | 吉林大学 | Z component receiving device for airborne Z-axis tipper electromagnetic survey system |
CN104535943A (en) * | 2014-12-30 | 2015-04-22 | 吉林大学 | Device and method for measuring magnetic induction intensity B through time domain electromagnetic method |
CN105807325A (en) * | 2014-12-31 | 2016-07-27 | 中国船舶重工集团公司第七研究院 | Frequency domain aviation extremely low frequency electromagnetic method |
CN104865608B (en) * | 2015-05-22 | 2017-07-14 | 吉林大学 | Time-domain AEM motion artifacts detection means and suppressing method |
CN104865608A (en) * | 2015-05-22 | 2015-08-26 | 吉林大学 | Time-domain airborne electromagnetic method motion noise detection apparatus and inhibition method |
CN105824049A (en) * | 2016-03-21 | 2016-08-03 | 哈尔滨飞机工业集团有限责任公司 | Hanging-type helicopter time domain aeromagnetic detection pod |
CN107167846A (en) * | 2017-05-19 | 2017-09-15 | 吉林大学 | The air-ground quick Geomagnetism Information measurement apparatus of combination multifunction high-precision and measuring method |
CN107167846B (en) * | 2017-05-19 | 2018-04-06 | 吉林大学 | The quick Geomagnetism Information measurement apparatus of air-ground combination multifunction high-precision and measuring method |
CN110361785A (en) * | 2019-06-21 | 2019-10-22 | 中国科学院地质与地球物理研究所 | A kind of aviation transient electromagnetic method reception compensation device |
CN110261921A (en) * | 2019-07-25 | 2019-09-20 | 南风(上海)精密物理仪器有限公司 | A kind of erecting by overhang for unmanned helicopter aeroelectromagnetic method emitting and receiving equipment |
US20220035062A1 (en) * | 2020-07-30 | 2022-02-03 | Chengdu University Of Technology | Semi-airborne Time Domain Electromagnetic Exploration System for Unmanned Aerial Vehicle |
CN114527512A (en) * | 2022-02-28 | 2022-05-24 | 中国地质调查局地球物理调查中心 | Multi-frequency electromagnetic detection horizontal gradient acquisition system for frequency domain unmanned aerial vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN102176063B (en) | 2013-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102176063B (en) | Primary field self-counteracting device for time-domain airborne electromagnetic method | |
CN104865608B (en) | Time-domain AEM motion artifacts detection means and suppressing method | |
AU2009243872B2 (en) | Double-suspension receiver coil system and apparatus | |
RU2454684C2 (en) | System for time domain airborne electromagnetic survey, comprising towed airborne electromagnetic survey apparatus | |
AU2009329786B2 (en) | Multiple receiver coil system for geophysical prospecting | |
CN109471180A (en) | A kind of transient electromagnetic apparatus and backoff algorithm | |
CN209102918U (en) | A kind of transient electromagnetic apparatus | |
CN108562942B (en) | Time domain aeroelectromagnetic method receiving coil attitude change suppression device and manufacturing method | |
CN104020497A (en) | Z component receiving device for airborne Z-axis tipper electromagnetic survey system | |
US20030169045A1 (en) | Method and apparatus for a rigidly joined together and floating bucking and receiver coil assembly for use in airborne electromagnetic survey systems | |
CA2584037A1 (en) | Airborne electromagnetic (em) survey system | |
EP2850464A1 (en) | Receiver coil assembly with air and ferromagnetic cored sensors for geophysical surveying | |
AU2014361712A1 (en) | Electromagnetic surveying at low frequencies using an airborne transmitter with receivers on the ground | |
US9933540B2 (en) | Multiple receivers for airborne electromagnetic surveying | |
KR101748109B1 (en) | Apparatus for airborne electromagnetic survey and method of survey using the same | |
CN207208487U (en) | A kind of aircraft tail pipe of integrated three-component magnetic probe | |
CN105824049A (en) | Hanging-type helicopter time domain aeromagnetic detection pod | |
RU2557354C1 (en) | Apparatus and method for aerophysical survey | |
CN219770175U (en) | Magnetic sensor hanging device carried on flying platform | |
AU2007202492A1 (en) | Airborne Electromagnetic Time Domain System, Computer Product and Method | |
AU2012200671A1 (en) | Airborne Electromagnetic Time Domain System, Computer Product and Method | |
CN116299723A (en) | Intelligent inspection robot based on electromagnetic wave detection of tunnel water inrush disaster structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130717 Termination date: 20140221 |