CN102175268A - Quasi-distributed sensor network based on time division multiplex and matched optical fiber grating technology - Google Patents
Quasi-distributed sensor network based on time division multiplex and matched optical fiber grating technology Download PDFInfo
- Publication number
- CN102175268A CN102175268A CN2011100315084A CN201110031508A CN102175268A CN 102175268 A CN102175268 A CN 102175268A CN 2011100315084 A CN2011100315084 A CN 2011100315084A CN 201110031508 A CN201110031508 A CN 201110031508A CN 102175268 A CN102175268 A CN 102175268A
- Authority
- CN
- China
- Prior art keywords
- fiber grating
- fbg
- sequence
- grating
- matched
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Transform (AREA)
Abstract
本发明公开了一种基于时分复用和匹配光纤光栅技术的准分布式光纤光栅传感网络系统,可以在一个光栅传感网络中容纳多组中心反射波长匹配的光纤光栅对。利用窄脉冲信号序列对宽带光源进行直接高速调制,宽带光源发出的光脉冲经过隔离器和环行器进入到传感光纤光栅和匹配光纤光栅序列中,光脉冲在传播过程中随光纤光栅位置的不同而反射回不同时延的光脉冲序列,经过光电探测器进行光电转换,形成电脉冲信号序列。脉冲序列在时域上的排列位置与形成反射的光纤光栅在传感网络中的空间位置相关,这样基于高速电路对信号进行处理,根据脉冲信号的时间位置关系区分出不同的光栅,并根据脉冲信号的峰值强度分别得到各个传感光栅的波长变化情况。
The invention discloses a quasi-distributed optical fiber grating sensing network system based on time division multiplexing and matching optical fiber grating technology, which can accommodate multiple sets of optical fiber grating pairs with center reflection wavelength matching in one optical grating sensing network. A narrow pulse signal sequence is used to directly modulate the broadband light source at high speed. The optical pulse emitted by the broadband light source enters the sensing fiber grating and matching fiber grating sequence through the isolator and circulator. The optical pulse varies with the position of the fiber grating during propagation. The light pulse sequences reflected back with different time delays are photoelectrically converted by photodetectors to form electrical pulse signal sequences. The arrangement position of the pulse sequence in the time domain is related to the spatial position of the reflected fiber grating in the sensor network, so that the signal is processed based on the high-speed circuit, and different gratings are distinguished according to the time position relationship of the pulse signal, and according to the pulse The peak intensity of the signal obtains the wavelength variation of each sensing grating respectively.
Description
技术领域technical field
本发明涉及在光纤光栅测量或传感领域利用时分复用和匹配光栅实现对压力、应变或者温度等环境参数进行测量的方法技术领域。The invention relates to the technical field of a method for measuring environmental parameters such as pressure, strain or temperature by using time division multiplexing and matching grating in the field of fiber grating measurement or sensing.
背景技术Background technique
光纤光栅(或称光纤布喇格光栅,Fiber Bragg Grating - FBG)是目前光纤传感领域研究和应用的一大热点。光纤光栅传感器具有抗电磁干扰,精度高,有效使用寿命长,波长编码复用能力强等优点,近年来在传感领域获得广泛的应用。Fiber Bragg Grating (or Fiber Bragg Grating, Fiber Bragg Grating - FBG) is currently a hot spot in the research and application of fiber optic sensing. Fiber Bragg Grating sensors have the advantages of anti-electromagnetic interference, high precision, long effective service life, strong wavelength coding multiplexing ability, etc., and have been widely used in the field of sensing in recent years.
光纤光栅传感器的突出优点之一是可以实现准分布式的传感,即在一根或多根光纤上刻入多个光纤光栅,并利用复用技术实现对各种传感量的准分布式测量。在此基础上研究的重点集中到了光纤布拉格光栅传感网络的设计与开发上。目前研究及应用较多的复用技术是波分复用技术(如图1所示,各个光纤光栅的中心波长不同)。在使用波分复用技术的光纤光栅传感系统中,对光纤光栅的解调速度和系统寿命受制于关键的F-P机械扫描光学滤波器。使用边沿滤波器对光纤光栅的中心反射波长变化量进行强度解调可以避免机械器件的限制,但是通常在同一根光纤中只能容纳一个光纤光栅,无法利用一根光纤串联多个光栅进行准分布式测量。另一方面,有的技术也基于时分复用技术,但只能利用对窄带光源进行调制后的脉冲序列进入传感光栅序列,而所有传感光纤光栅由于光源带宽所限,只能采用同一中心波长但不同的反射率(一般靠近光源的反射率较低,逐个增大)进行时域分析(如图2所示,光栅的中心波长一致,但反射率不同)。这样的解决方案主要存在不同反射点之间的串扰大和传感精度不够的问题。One of the outstanding advantages of fiber grating sensors is that it can realize quasi-distributed sensing, that is, engrave multiple fiber gratings on one or more optical fibers, and use multiplexing technology to realize quasi-distributed sensing of various sensing quantities. Measurement. On this basis, the research focuses on the design and development of fiber Bragg grating sensor network. The multiplexing technology that is currently researched and applied more is the wavelength division multiplexing technology (as shown in Figure 1, the center wavelength of each fiber grating is different). In the FBG sensing system using WDM technology, the FBG demodulation speed and system lifetime are limited by the key F-P mechanical scanning optical filter. Using edge filters to demodulate the intensity of the central reflection wavelength variation of fiber gratings can avoid the limitation of mechanical devices, but usually only one fiber grating can be accommodated in the same fiber, and it is impossible to use one fiber to connect multiple gratings in series for quasi-distribution formula measurement. On the other hand, some technologies are also based on time-division multiplexing technology, but they can only use the modulated pulse sequence of a narrow-band light source to enter the sensing grating sequence, and all sensing fiber gratings can only use the same center due to the limited bandwidth of the light source. Wavelength but different reflectivity (generally, the reflectivity near the light source is lower and increases one by one) for time-domain analysis (as shown in Figure 2, the central wavelength of the grating is the same, but the reflectivity is different). Such a solution mainly has the problems of large crosstalk between different reflection points and insufficient sensing accuracy.
发明内容Contents of the invention
鉴于现有技术的缺点,本发明的目的在于提供一种解调速率较快而且容量较大的光纤光栅传感网络技术,使之可以在一个光栅传感网络中容纳多组中心反射波长匹配的光纤光栅对。In view of the shortcomings of the prior art, the purpose of the present invention is to provide a fiber grating sensor network technology with a faster demodulation rate and a larger capacity, so that it can accommodate multiple groups of center reflection wavelength matching in a grating sensor network fiber grating pair.
本发明的目的是通过如下手段实现的:The purpose of the present invention is achieved by the following means:
基于时分复用和匹配光纤光栅技术的准分布式传感网络,宽带光源由高频窄脉冲序列信号直接进行调制,然后经光环形器后进入传感光纤光栅序列和具有边沿滤波功能的匹配光纤光栅序列,最后经光电探测器接收后由高速电路基于光时域反射原理对光纤光栅传感信号进行检测与分析。A quasi-distributed sensing network based on time-division multiplexing and matched fiber grating technology. The broadband light source is directly modulated by a high-frequency narrow pulse sequence signal, and then enters the sensing fiber grating sequence and matching fiber with edge filtering function after an optical circulator. After the grating sequence is finally received by the photodetector, the high-speed circuit detects and analyzes the sensing signal of the fiber grating based on the principle of optical time domain reflection.
本发明利用窄脉冲信号序列对宽带光源进行直接高速调制,宽带光源发出的光脉冲经过隔离器和环行器进入到传感光纤光栅和匹配光纤光栅序列中,光脉冲在传播过程中随光纤光栅位置的不同而反射回不同时延的光脉冲序列,经过光电探测器进行光电转换,形成电脉冲信号序列。脉冲序列在时域上的排列位置与形成反射的光纤光栅在传感网络中的空间位置相关,这样基于高速电路对信号进行处理,根据脉冲信号的时间位置关系区分出不同的光栅,并根据脉冲信号的峰值强度分别得到各个传感光栅的波长变化情况。可以在一个光栅传感网络中容纳多组中心反射波长匹配的光纤光栅对。The invention utilizes a narrow pulse signal sequence to directly modulate the broadband light source at high speed. The optical pulse emitted by the broadband light source enters the sensing fiber grating and matching fiber grating sequence through the isolator and the circulator. The light pulse sequences reflected back with different time delays are converted by photodetectors to form electrical pulse signal sequences. The arrangement position of the pulse sequence in the time domain is related to the spatial position of the reflected fiber grating in the sensor network, so that the signal is processed based on the high-speed circuit, and different gratings are distinguished according to the time position relationship of the pulse signal, and according to the pulse The peak intensity of the signal obtains the wavelength variation of each sensing grating respectively. Multiple sets of center-reflected wavelength-matched FBG pairs can be accommodated in a grating sensing network.
本发明利用时分复用组网的优势和匹配光栅高速的优势,有效地解决了传统方案中针对同一个串联网络,不同位置处光纤光栅反射回来的连续光信号在光电探测器出叠加无法有效分辨的问题,使得光纤光栅传感网络能以较快的解调速率进行准分布式测量,具有重要的使用价值。The present invention utilizes the advantages of time-division multiplexing networking and the high-speed matching grating to effectively solve the problem that in the traditional solution, for the same series network, the continuous optical signals reflected by the fiber grating at different positions cannot be effectively distinguished when superimposed on the photodetector. The problem makes the fiber grating sensor network can perform quasi-distributed measurement with a faster demodulation rate, which has important use value.
附图说明如下:The accompanying drawings are as follows:
图1为典型的波分复用光纤光栅传感网络结构示意图。Figure 1 is a schematic diagram of a typical wavelength division multiplexing fiber grating sensor network.
图2为典型的时分复用光纤光栅传感网络结构示意图。Fig. 2 is a schematic diagram of a typical time-division multiplexing FBG sensor network.
图3为本发明提出的光纤光栅传感网络结构示意图。Fig. 3 is a schematic diagram of the structure of the fiber grating sensing network proposed by the present invention.
图4为匹配光纤光栅传感原理图。Figure 4 is a schematic diagram of matching fiber grating sensing.
图5为本发明提出的光纤光栅传感网络另一种结构示意图。FIG. 5 is a schematic diagram of another structure of the fiber grating sensing network proposed by the present invention.
图6为光电探测器接收到的脉冲序列与光纤光栅排列位置的关系示意图。Fig. 6 is a schematic diagram of the relationship between the pulse sequence received by the photodetector and the arrangement position of the fiber grating.
图7为本发明典型实施系统结构图。Fig. 7 is a structural diagram of a typical implementation system of the present invention.
图8为本发明的应用举例。Fig. 8 is an application example of the present invention.
图9为基于本发明组成更大的传感网络结构示意图。FIG. 9 is a schematic diagram of a larger sensor network based on the present invention.
具体实施方式:Detailed ways:
下面结合附图对本发明作进一步的描述。The present invention will be further described below in conjunction with the accompanying drawings.
如图3所示,宽带光源100由窄脉冲序列信号101直接进行调制,然后经光环形器102(光源100和光环形器102之间也可以增加隔离器进一步提高对光源的保护)后进入传感光纤光栅序列103,传感光纤光栅序列中各个光栅的中心反射波长不同,这样宽带光脉冲就会被各个光纤光栅分别反射回一部分;反射回的光再次通过光环形器102后进入具有边沿滤波功能的匹配光纤光栅序列104,对反射光分别进行边沿滤波;边沿滤波后的光脉冲达到光电探测器105进行光电转换生成电脉冲序列信号,电脉冲序列信号在时间上的位置顺序与进行准分布式测量的光纤光栅在光纤链路中的排列位置相关;使用高速电路106将获取的电脉冲序列信号进行处理和分析,根据在时间上的先后顺序判处出不同位置处的光纤光栅的反射信号,并根据脉冲信号的峰值高度变化(依据后面所述的匹配光纤光栅原理)计算得到传感光纤光栅中心反射波长的变化量。As shown in Figure 3, the
更仔细一些来说,传感光纤光栅序列103由一系列具有不同中心波长的光纤光栅组成(1031, 1032, …103N),而匹配光纤光栅序列104也由一系列具有不同中心波长的光纤光栅组成(1041, 1042, …104N),但是,对于这两个序列中同一位置的光纤光栅则具有完全一致的特性(如中心波长),实现匹配功能。利用匹配光栅进行传感的原理如图4所示,在最初状态下,两个光栅(FBG1和FBG2)特性一致,在光谱上完全重合,当其中一个光栅受外界影响波长发生漂移后(通常另外一个光栅不受外界影响,作为参考光栅),两个光栅之间的重合情况(图4中的阴影部分)也将发生改变,因此,只需要通过检测两个光栅重合部分对应的功率改变就可以实现对外界情况的传感,而且由于两个光纤光栅对温度的反映完全一致,可以消除温度对传感结果的影响。匹配光纤光栅序列与传感光纤光栅序列置于同一外界环境下消除温度影响或经过初始温度差标定,实现温度不敏感的应变或压力传感。因此,这种方法具有结构简单、温度不敏感和可以实现高速传感(只需功率检测)的优点。More carefully, the
类似的原理还可以采用图5所示的方式进行,宽带光源200经201进行高速驱动调制后,经环行器202进入到光纤光栅序列,与图3不同的是,将两个光纤光栅序列(传感光纤光栅序列和匹配光纤光栅序列)分布在同一链路上,其中传感光纤光栅序列为2031,2032…203N,而匹配光纤光栅序列为2031’,2032’,…203N’。排列方式按照2031、2031’、2032、2032’…203N、203N’的次序。如图3类似,不同序号的光栅其中心反射波长不同,而两个序列中同一序号的光纤光栅(FBGi 和FBGi¢,如2031 和2031’)作为匹配光栅对,具有一样的性质(原始中心波长),其中传感光栅用于测量外界参数的变化,而匹配光栅起参考作用,原理在图4中已作过说明。值得注意的是,作为匹配光栅对(FBGi 和FBGi¢),这两个光栅之间的距离应该小于系统探测的空间分辨率(由高速电路和光源性质决定)。整个传感网络反射回的光信号经环行器202后进入光电探测器204接收后由高速电路205进行分析处理。A similar principle can also be carried out in the manner shown in Figure 5. After the broadband light source 200 is driven and modulated at high speed by 201, it enters the fiber grating sequence through the circulator 202. The difference from Figure 3 is that the two fiber grating sequences (transmission Sensing FBG sequence and matching FBG sequence) are distributed on the same link, wherein the sensing FBG sequence is 203 1 , 203 2 ... 203 N , while the matching FBG sequence is 203 1 ', 203 2 ',...203 N '. The arrangement is in the order of 203 1 , 203 1 ′, 203 2 , 203 2 ′…203 N , 203 N ′. Similar to Figure 3, gratings with different serial numbers have different central reflection wavelengths, and fiber gratings with the same serial number (FBG i and FBG i ¢, such as 203 1 and 203 1 ') in the two sequences have the same properties as a pair of matched gratings (original central wavelength), where the sensing grating is used to measure changes in external parameters, while the matching grating serves as a reference. The principle has been illustrated in Figure 4. It is worth noting that as a pair of matched gratings (FBG i and FBG i ¢), the distance between these two gratings should be smaller than the spatial resolution of the system detection (determined by the high-speed circuit and the nature of the light source). The optical signal reflected by the entire sensor network passes through the circulator 202 and enters the photodetector 204 for reception, and then is analyzed and processed by the high-speed circuit 205 .
另外,基于时分复用的测量原理与光时域反射测量原理有些类似。宽带光源在窄脉冲信号序列的直接调制下发出光脉冲信号序列,该脉冲信号的时域宽度取决于进行准分布式测量的光纤光栅阵列中光纤光栅间的光纤连接线的最小长度,一般可由以下公式计算得到In addition, the measurement principle based on time-division multiplexing is somewhat similar to that of optical time-domain reflectometry. The broadband light source emits an optical pulse signal sequence under the direct modulation of a narrow pulse signal sequence. The time domain width of the pulse signal depends on the minimum length of the optical fiber connection line between the fiber gratings in the fiber grating array for quasi-distributed measurement. Generally, it can be determined by the following Calculated by the formula
其中t为窄脉冲信号的时域宽度,△L为进行准分布式测量的光纤光栅阵列中光纤光栅间的光纤连接线的最小长度,n为光纤的有效折射率,c为光在真空中的传播速度。相邻窄脉冲间的发射时间间隔T取决于进行准分布式测量的光纤光栅阵列中光纤连接线的总长度,一般可由以下公式计算得到Where t is the time domain width of the narrow pulse signal, △L is the minimum length of the fiber connecting line between the fiber gratings in the fiber grating array for quasi-distributed measurement, n is the effective refractive index of the fiber, c is the light in vacuum transmission speed. The emission time interval T between adjacent narrow pulses depends on the total length of the fiber connection line in the fiber grating array for quasi-distributed measurement, and can generally be calculated by the following formula
其中L为进行准分布式测量的光纤光栅阵列中光纤连接线的总长度,n为光纤的有效折射率,c为光在真空中的传播速度。光脉冲序列在光电探测器检测后,序列中各个光脉冲的到达时间随由于传感光纤光栅序列中反射位置不同而存在差异,其情形如图6中所示。Among them, L is the total length of the optical fiber connection line in the fiber grating array for quasi-distributed measurement, n is the effective refractive index of the optical fiber, and c is the propagation speed of light in vacuum. After the light pulse sequence is detected by the photodetector, the arrival time of each light pulse in the sequence varies with the reflection position in the sensing fiber grating sequence, as shown in FIG. 6 .
另外,由于两个光纤光栅序列原始性能一样,如果将两个序列置于同一外界环境(主要指温度)下,由于匹配光纤光栅的温度不敏感性,可以实现对应变或压力等参数的准确感知。In addition, since the original performance of the two fiber grating sequences is the same, if the two sequences are placed in the same external environment (mainly referring to temperature), due to the temperature insensitivity of the matching fiber grating, accurate perception of parameters such as strain or pressure can be achieved .
图7描述了我们的具体实施例子,整体实验装置基于图3所示的原理,其中宽带光源采用的是超辐射发光二极管(SLED),其调制带宽可以达到100MHz以上。实验中我们采用了四组不同波长的匹配光栅作为传感网络节点,其中四个作为传感序列,另外四个作为边缘滤波匹配序列。光电探测器采用的是集成化的PIN-FET,其带宽为50MHz,光电转换效率大于100mV/mW。Figure 7 describes our specific implementation example. The overall experimental setup is based on the principle shown in Figure 3. The broadband light source uses a superluminescent light-emitting diode (SLED), and its modulation bandwidth can reach more than 100MHz. In the experiment, we used four groups of matching gratings with different wavelengths as the sensor network nodes, four of which were used as sensing sequences, and the other four were used as edge filter matching sequences. The photodetector uses an integrated PIN-FET with a bandwidth of 50MHz and a photoelectric conversion efficiency greater than 100mV/mW.
为了防止由于端面反射等原因形成的反射光损坏宽带光源,光脉冲首先经过一个隔离器,然后进入环行器的一个端口1后从端口2出来而耦合到进行准分布式传感的光纤光栅序列(含4个不同中心波长的光纤光栅)中,光脉冲在传播过程中与不同位置处不同中心反射波长的光纤光栅相遇而反射去一部分形成一个强度较小的光脉冲,其在光谱上的形状与位置取决于形成反射的光纤光栅。为了不至于发生“串话”现象,光纤光栅中心反射波长之间需要一定的间隔,一般以2nm为宜(实验中相隔5nm)。各个光纤光栅反射回来的光脉冲由于时间差异形成一个光脉冲序列,进入环行器的端口2后从端口3出去耦合到进行边沿滤波的匹配光纤光栅序列中。为了有效地对进行准分布式传感的光纤光栅序列中的光纤光栅中心反射波长的变化进行解调,在匹配光纤光栅序列中需要设置与传感光纤光栅序列中的光纤光栅中心反射波长分别相匹配的若干个光纤光栅(实验中为4个),对其空间排列位置和连接光纤长度并无特殊要求。光脉冲序列在匹配光纤光栅序列中由于相对应的匹配光栅的边沿滤波作用,光脉冲的强度会随着匹配光纤光栅对中心反射波长差值在一定范围内的变化而作近似线性的改变。最后光脉冲序列达到PIN-FET探测器,序列中各个光脉冲的到达时间随传感光纤光栅序列中反射位置不同而存在差异(如图6中所示)。PIN-FET将光脉冲序列转化为时间先后关系相同的电脉冲序列,经高速电路进行分析处理。实验中SLED的驱动电路与分析电路集成到同一模块。In order to prevent the reflected light caused by end face reflection from damaging the broadband light source, the light pulse first passes through an isolator, then enters a port 1 of the circulator, and then comes out from port 2 to be coupled to a fiber grating sequence for quasi-distributed sensing ( Fiber Bragg Gratings with 4 different center wavelengths), the light pulse encounters the Fiber Bragg Gratings with different center reflection wavelengths at different positions during the propagation process, and part of it is reflected to form a light pulse with less intensity, and its shape in the spectrum is the same as The position depends on the fiber grating forming the reflection. In order not to cause "crosstalk" phenomenon, a certain interval is required between the reflected wavelengths of the fiber grating center, generally 2nm is appropriate (5nm in the experiment). The optical pulses reflected by each fiber grating form an optical pulse sequence due to the time difference, enter the port 2 of the circulator, and then couple out from
通过本实施例可由看出,由于不同光纤光栅的反射光达到光电探测器的时间不同,可由很容易将光纤光栅的反射光区分开来,从而使用在一个串联传感网络(光纤)使用多个匹配光栅对进行准分布式测量。传感光纤光栅序列中某一节点(光纤光栅)中心反射波长的变化导致与匹配光纤光栅序列对应节点(光纤光栅)中心波长的失调,从而造成光电探测器检测到的相应时间段内脉冲信号峰值强度的变化。It can be seen from this embodiment that since the reflected light of different fiber gratings reaches the photodetector at different times, it is easy to distinguish the reflected light of fiber gratings, thereby using multiple sensors in a series sensor network (optical fiber) Matched grating pairs for quasi-distributed measurements. The change of the central reflection wavelength of a node (fiber grating) in the sensing fiber grating sequence leads to the misalignment of the central wavelength of the corresponding node (fiber grating) of the matching fiber grating sequence, resulting in the peak value of the pulse signal detected by the photodetector within the corresponding time period Changes in intensity.
光电探测器根据不同时间内反射功率的变化分析出传感光纤光栅序列中各个独立光纤光栅受外界影响导致的中心波长变化情况。The photodetector analyzes the change of the central wavelength of each independent fiber grating in the sensing fiber grating sequence caused by the external influence according to the change of the reflected power at different times.
本可以广泛应用于分布式应变/压力监测场合,而且不希望与温度相关,例如高速铁路轨道应变状态、风机叶片状态、桥梁结构安全、输油(气)管道裂缝监测等等,如图8所示。对某些不同的应用场合,可以采用不同的网络结构方式(图3或图5),例如,在风机叶片监测中,图3的结构比较适合,而在高速铁路轨道应变状态监测中,图5的结构则比较方便(将其中的匹配光栅置于无外界应变状态)。It can be widely used in distributed strain/pressure monitoring occasions, and it is not expected to be related to temperature, such as the strain state of high-speed railway tracks, the state of fan blades, the safety of bridge structures, the crack monitoring of oil (gas) pipelines, etc., as shown in Figure 8 Show. For some different applications, different network structures can be used (Figure 3 or Figure 5). For example, in the monitoring of fan blades, the structure in Figure 3 is more suitable, while in the monitoring of strain status of high-speed railway tracks, the structure in Figure 5 The structure is more convenient (put the matching grating in a state of no external strain).
另外,本发明可以与空分或波分等复用方式进一步组合,形成更大的传感网络,如图9所示的例子,将调制的宽带光源分束后,可以由用于不同空间位置(结构)的多个传感网络共享,实现更大范围的监测。In addition, the present invention can be further combined with multiplexing methods such as space division or wavelength division to form a larger sensor network. As shown in the example in Figure 9, after splitting the modulated broadband light source, it can be used in different spatial locations (Structure) shared by multiple sensor networks to achieve a wider range of monitoring.
综上,本发明具有无移动部件、高速、串扰低等优点,应用广泛,因此,具有较大的应用前景。To sum up, the present invention has the advantages of no moving parts, high speed, low crosstalk, etc., and is widely used, therefore, has great application prospects.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100315084A CN102175268A (en) | 2011-01-29 | 2011-01-29 | Quasi-distributed sensor network based on time division multiplex and matched optical fiber grating technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100315084A CN102175268A (en) | 2011-01-29 | 2011-01-29 | Quasi-distributed sensor network based on time division multiplex and matched optical fiber grating technology |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102175268A true CN102175268A (en) | 2011-09-07 |
Family
ID=44518478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100315084A Pending CN102175268A (en) | 2011-01-29 | 2011-01-29 | Quasi-distributed sensor network based on time division multiplex and matched optical fiber grating technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102175268A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102664604A (en) * | 2012-04-20 | 2012-09-12 | 西南交通大学 | Combined filtering algorithm for improving denoising performances of fiber grating sensor network demodulating systems |
CN102914321A (en) * | 2012-10-15 | 2013-02-06 | 武汉理工大学 | Ultra-low fiber bragg grating sensing system and query method thereof |
CN103630276A (en) * | 2013-12-18 | 2014-03-12 | 哈尔滨理工大学 | Stress sensing system based on wide-sideband and narrowband fiber grating matching demodulation |
CN106802398A (en) * | 2016-11-02 | 2017-06-06 | 北京信息科技大学 | A kind of detecting apparatus for rotor position based on fiber grating |
CN107246847A (en) * | 2017-05-23 | 2017-10-13 | 北京大学 | Strain sensing system based on flight time detection and sensing method thereof |
CN109507453A (en) * | 2018-12-06 | 2019-03-22 | 广州广电计量检测股份有限公司 | A kind of revolving speed calibration system and calibration method based on fiber grating |
CN110017890A (en) * | 2019-05-14 | 2019-07-16 | 广西师范大学 | A method of improving edge filter demodulation method linear demodulation region |
CN111707302A (en) * | 2015-03-06 | 2020-09-25 | 希里克萨有限公司 | Optical fiber distributed sensor system |
CN113310508A (en) * | 2021-05-27 | 2021-08-27 | 欧梯恩智能科技(苏州)有限公司 | Distributed measurement system and method based on light rays with different wavelengths |
CN113315570A (en) * | 2021-05-27 | 2021-08-27 | 欧梯恩智能科技(苏州)有限公司 | Distributed measurement method and system based on time division multiplexing and wavelength division multiplexing |
CN113310506A (en) * | 2021-05-27 | 2021-08-27 | 欧梯恩智能科技(苏州)有限公司 | Distributed measurement time division multiplexing system and method |
CN113395616A (en) * | 2021-06-11 | 2021-09-14 | 欧梯恩智能科技(苏州)有限公司 | Large-scale networking multiplexing measurement system and sensing measurement method |
CN113517943A (en) * | 2021-05-27 | 2021-10-19 | 欧梯恩智能科技(苏州)有限公司 | Distributed measurement system and method based on space division wavelength division multiplexing |
CN116105777A (en) * | 2023-04-11 | 2023-05-12 | 广东海洋大学 | Quasi-distributed Fabry-Perot interference optical fiber sensor and signal demodulation method thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1584725A (en) * | 2004-06-12 | 2005-02-23 | 大连理工大学 | Optical fibre grating wavelength demodulating method |
CN2715111Y (en) * | 2004-04-07 | 2005-08-03 | 天津大学 | Multi-channel optical fiber grating sensor |
US7268884B2 (en) * | 2003-12-23 | 2007-09-11 | Optoplan As | Wavelength reference system for optical measurements |
CN200959040Y (en) * | 2006-06-19 | 2007-10-10 | 中国科学院上海光学精密机械研究所 | Tunable double parallel matching fiber grating demodulation device |
CN101126711A (en) * | 2006-07-27 | 2008-02-20 | 山东省科学院激光研究所 | High performance fiber optic gas sensor |
CN101476900A (en) * | 2009-01-19 | 2009-07-08 | 冷劲松 | Time division multiplexing optical fiber sensing method and apparatus |
CN201302457Y (en) * | 2008-07-15 | 2009-09-02 | 浙江大学 | Frequency domain fiber grating sensing network demodulation device |
CN101712328A (en) * | 2009-12-01 | 2010-05-26 | 西南交通大学 | Matched fiber grating based axle-counting device of high-speed railway |
CN101788310A (en) * | 2010-02-11 | 2010-07-28 | 西南交通大学 | Fiber bragg grating track sensing system based on optical code division multiple access technique |
CN101943600A (en) * | 2009-07-10 | 2011-01-12 | 上海华魏光纤传感技术有限公司 | Backscatter-based distributed fiber-optic vibration system |
-
2011
- 2011-01-29 CN CN2011100315084A patent/CN102175268A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7268884B2 (en) * | 2003-12-23 | 2007-09-11 | Optoplan As | Wavelength reference system for optical measurements |
CN2715111Y (en) * | 2004-04-07 | 2005-08-03 | 天津大学 | Multi-channel optical fiber grating sensor |
CN1584725A (en) * | 2004-06-12 | 2005-02-23 | 大连理工大学 | Optical fibre grating wavelength demodulating method |
CN200959040Y (en) * | 2006-06-19 | 2007-10-10 | 中国科学院上海光学精密机械研究所 | Tunable double parallel matching fiber grating demodulation device |
CN101126711A (en) * | 2006-07-27 | 2008-02-20 | 山东省科学院激光研究所 | High performance fiber optic gas sensor |
CN201302457Y (en) * | 2008-07-15 | 2009-09-02 | 浙江大学 | Frequency domain fiber grating sensing network demodulation device |
CN101476900A (en) * | 2009-01-19 | 2009-07-08 | 冷劲松 | Time division multiplexing optical fiber sensing method and apparatus |
CN101943600A (en) * | 2009-07-10 | 2011-01-12 | 上海华魏光纤传感技术有限公司 | Backscatter-based distributed fiber-optic vibration system |
CN101712328A (en) * | 2009-12-01 | 2010-05-26 | 西南交通大学 | Matched fiber grating based axle-counting device of high-speed railway |
CN101788310A (en) * | 2010-02-11 | 2010-07-28 | 西南交通大学 | Fiber bragg grating track sensing system based on optical code division multiple access technique |
Non-Patent Citations (1)
Title |
---|
《传感技术学报》 20060430 杨振坤等 匹配型光纤布拉格光栅波长移动解调方案设计与分析 407-410 1-5 第19卷, 第2期 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102664604A (en) * | 2012-04-20 | 2012-09-12 | 西南交通大学 | Combined filtering algorithm for improving denoising performances of fiber grating sensor network demodulating systems |
CN102914321A (en) * | 2012-10-15 | 2013-02-06 | 武汉理工大学 | Ultra-low fiber bragg grating sensing system and query method thereof |
CN102914321B (en) * | 2012-10-15 | 2015-02-04 | 武汉理工大学 | Ultra-low fiber bragg grating sensing system and query method thereof |
CN103630276A (en) * | 2013-12-18 | 2014-03-12 | 哈尔滨理工大学 | Stress sensing system based on wide-sideband and narrowband fiber grating matching demodulation |
US11719560B2 (en) | 2015-03-06 | 2023-08-08 | Silixa Ltd. | Method and apparatus for optical sensing |
CN111707302A (en) * | 2015-03-06 | 2020-09-25 | 希里克萨有限公司 | Optical fiber distributed sensor system |
CN111707302B (en) * | 2015-03-06 | 2024-03-08 | 希里克萨有限公司 | Optical fiber distributed sensor system |
CN106802398A (en) * | 2016-11-02 | 2017-06-06 | 北京信息科技大学 | A kind of detecting apparatus for rotor position based on fiber grating |
CN107246847A (en) * | 2017-05-23 | 2017-10-13 | 北京大学 | Strain sensing system based on flight time detection and sensing method thereof |
CN107246847B (en) * | 2017-05-23 | 2019-04-23 | 北京大学 | A strain sensing system and sensing method based on time-of-flight detection |
CN109507453A (en) * | 2018-12-06 | 2019-03-22 | 广州广电计量检测股份有限公司 | A kind of revolving speed calibration system and calibration method based on fiber grating |
CN110017890A (en) * | 2019-05-14 | 2019-07-16 | 广西师范大学 | A method of improving edge filter demodulation method linear demodulation region |
CN113310506A (en) * | 2021-05-27 | 2021-08-27 | 欧梯恩智能科技(苏州)有限公司 | Distributed measurement time division multiplexing system and method |
CN113517943A (en) * | 2021-05-27 | 2021-10-19 | 欧梯恩智能科技(苏州)有限公司 | Distributed measurement system and method based on space division wavelength division multiplexing |
CN113310506B (en) * | 2021-05-27 | 2023-04-25 | 欧梯恩智能科技(苏州)有限公司 | Distributed measurement time division multiplexing system and method |
CN113315570A (en) * | 2021-05-27 | 2021-08-27 | 欧梯恩智能科技(苏州)有限公司 | Distributed measurement method and system based on time division multiplexing and wavelength division multiplexing |
CN113310508A (en) * | 2021-05-27 | 2021-08-27 | 欧梯恩智能科技(苏州)有限公司 | Distributed measurement system and method based on light rays with different wavelengths |
CN113395616A (en) * | 2021-06-11 | 2021-09-14 | 欧梯恩智能科技(苏州)有限公司 | Large-scale networking multiplexing measurement system and sensing measurement method |
CN116105777A (en) * | 2023-04-11 | 2023-05-12 | 广东海洋大学 | Quasi-distributed Fabry-Perot interference optical fiber sensor and signal demodulation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102175268A (en) | Quasi-distributed sensor network based on time division multiplex and matched optical fiber grating technology | |
CN102494801B (en) | A Distributed Optical Delay Fiber Optic Temperature Sensor | |
CN101586986B (en) | High precision optical fiber grating wave length demodulation system | |
CN100507455C (en) | A Multiplexing Method for Intensity Modulated Fiber Optic Sensors | |
CN103439766B (en) | A kind of space division multiplexing method of multi-core fiber | |
CN103471812B (en) | Weak-grating detection device and detection method thereof | |
CN103152097A (en) | Long-distance polarization and phase-sensitive optical time domain reflectometer amplified by random laser | |
CN105698831B (en) | Twin-core fiber grating array sensing network and distributed sensing information acquisition method | |
CN103063242A (en) | Real-time monitoring system and method based on optical time domain reflection and fiber grating distributed type | |
CN102102998A (en) | Distributed sensing system based on weak Bragg reflection structure | |
CN104833381B (en) | Large-capacity weak reflection raster sensing apparatus and method based on single photon technology | |
CN101319919B (en) | A method and device for demodulating a frequency-domain fiber grating sensor network | |
CN105783951A (en) | Multichannel fiber bragg grating demodulation instrument | |
CN207036297U (en) | A kind of optical fiber grating temperature-measuring system | |
CN113670353B (en) | Brillouin optical time domain analyzer based on few-mode optical fiber mode multiplexing | |
CN114777950A (en) | Temperature strain dual-parameter sensing system and method based on dual-wavelength pulse | |
CN106225816A (en) | A kind of grating sensing apparatus and method based on Brillouin's wave filter | |
CN101271242A (en) | A method and device for demodulating a fiber grating sensor network | |
CN201302458Y (en) | Fiber grating sensing network demodulating equipment | |
CN102494799B (en) | A Dual-Wavelength Optical Delay Fiber Optic Temperature Sensor | |
CN207215172U (en) | For detecting the temperature of fully distributed fiber and the sensor of vibration position | |
CN106225949A (en) | Wavelength-division multiplex dual-wavelength optical-fiber delay temperature sensor | |
CN204388875U (en) | Multi-channel fiber Bragg grating (FBG) demodulator | |
CN200955961Y (en) | Coherent Multiplexing Device for Fiber Bragg Grating Sensors | |
CN103292831B (en) | The single-ended Brillouin optical time domain analysis sensor of fiber grating reflection filter structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110907 |