CN102173802B - In situ (TiB)2+SiC)/Ti3SiC2Complex phase ceramic material and preparation method thereof - Google Patents
In situ (TiB)2+SiC)/Ti3SiC2Complex phase ceramic material and preparation method thereof Download PDFInfo
- Publication number
- CN102173802B CN102173802B CN201110024117.XA CN201110024117A CN102173802B CN 102173802 B CN102173802 B CN 102173802B CN 201110024117 A CN201110024117 A CN 201110024117A CN 102173802 B CN102173802 B CN 102173802B
- Authority
- CN
- China
- Prior art keywords
- sic
- powder
- tib
- ceramic material
- tic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Ceramic Products (AREA)
Abstract
本发明涉及一种原位(TiB2+SiC)/Ti3SiC2复相陶瓷材料,其特征在于:由层状Ti3SiC2基体和柱状TiB2、颗粒状SiC两种增强相组成;其中TiB2占复相陶瓷材料总体积的13~15%,SiC占复相陶瓷材料总体积的5~15%。其制备步骤为:将原料TiH2粉、Si粉、TiC粉、B4C粉和Al粉按摩尔配比为(0.9~1.3)∶(1)∶(1.4~1.6)∶(0.15~2.1)∶(0.13~0.16)称量,原料混匀后装入石墨模具中冷压成型,在通有保护气氛的石墨电阻炉内热压烧结。本发明工艺简单,材料性能优异。
The invention relates to an in-situ (TiB 2 +SiC)/Ti 3 SiC 2 composite ceramic material, which is characterized in that it consists of a layered Ti 3 SiC 2 matrix and two reinforcing phases of columnar TiB 2 and granular SiC; wherein TiB2 accounts for 13-15% of the total volume of the composite ceramic material, and SiC accounts for 5-15% of the total volume of the composite ceramic material. The preparation steps are as follows: the raw materials TiH2 powder, Si powder, TiC powder, B4C powder and Al powder are prepared in a molar ratio of (0.9-1.3): (1): (1.4-1.6): (0.15-2.1) : (0.13~0.16) Weighing, mixing the raw materials and putting them into graphite molds for cold pressing, then hot pressing and sintering in a graphite resistance furnace with a protective atmosphere. The invention has simple process and excellent material performance.
Description
技术领域: Technical field:
本发明涉及一种陶瓷基复合材料及其制备方法,具体为原位热压烧结合成由柱状TiB2与颗粒状SiC多元增强的Ti3SiC2基复相陶瓷材料及其制备方法,即一种原位(TiB2+SiC)/Ti3SiC2复相陶瓷材料及其制备方法。The invention relates to a ceramic-based composite material and a preparation method thereof, specifically a Ti3SiC2 - based multi-phase ceramic material reinforced by columnar TiB2 and granular SiC by in-situ hot-pressing sintering and a preparation method thereof, namely a In-situ (TiB 2 +SiC)/Ti 3 SiC 2 composite ceramic material and its preparation method.
背景技术: Background technique:
Ti3SiC2是三元层状可加工陶瓷MAX的代表,集金属和陶瓷特性、结构和功能性质于一身,具有低密度、高模量、抗热震、良好的导电导热性等特点,同时还具有比传统润滑材料石墨和MoS2更低的摩擦系数和更好的自润滑性能,极有希望成为新一代的高温结构材料、熔融金属中的电极材料、可加工陶瓷材料、自润滑材料和电极电刷材料。Ti 3 SiC 2 is a representative of the ternary layered machinable ceramic MAX, which combines the characteristics, structure and functional properties of metal and ceramics, and has the characteristics of low density, high modulus, thermal shock resistance, good electrical and thermal conductivity, etc., and at the same time It also has a lower friction coefficient and better self-lubricating properties than traditional lubricating materials graphite and MoS2 , and is very promising to become a new generation of high-temperature structural materials, electrode materials in molten metals, machinable ceramic materials, self-lubricating materials and Electrode brush material.
但是,Ti3SiC2常温下的硬度和抗蠕变强度较低,耐磨性和抗氧化性较差,这严重限制了它的应用。复相化、自增韧结构是改善材料力学性能、实现补强增韧的有效途径。目前已有通过引入Al2O3、TiC、SiC、c-BN、TiB2、ZrO2等作为增强相来改善Ti3SiC2性能(Hu C F,Zhou Y C,Bao Y W,Wan D T.Al2O3增强Ti3SiC2复相材料的摩擦性能[J].美国陶瓷协会杂志,2006,89(11):3456-3461;Zhang J F,Wang L J,Jiang W,Chen L D.TiC含量对放电等离子发原位合成Ti3SiC2-TiC复相材料显微结构与性能的影响[J].材料科学与工程A,2008,487(1-2):137-143;Zhang J F,Wang L J,Jiang W,Chen L D.放电等离子法制备Ti3SiC2-SiC纳米复相材料[J].材料快报,2007,56(3):241-244;Benko E,Klimczyk P,Mackiewicz S,BarrT L,Piskorska E.cBN-Ti3SiC2复相材料[J].类金刚石膜的性质及应用,2004,13(3):521-525;Zhou W B,Mei B C,Zhu J Q.热压法原位合成Ti3SiC2/TiB2复相材料[J].武汉理工大学学报自然科学版,2008,23(6):863-865;Shi S L,Pan W.放电等离子法制备3Y-TZP增韧的Ti3SiC2[J].材料科学与工程,2007,447(1-2):303-306),但通常采用一种强韧相,补强增韧机构单一,补强增韧效果有限。Chen等(Chen J X,Li J L,Zhou Y C.在TiO2-Al-C体系中原位合成Ti3AlC2/TiC-Al2O3复相材料[J].材料科学与技术,2006,22(4):455-458)在利用3TiO2-5Al-2C体系的燃烧反应制备Ti3AlC2-Al2O3复合材料时,意外制得了Ti3AlC2/SiC-Al2O3复合材料,该材料表现出比纯Ti3AlC2陶瓷更高的硬度和强度,但断裂韧性略有下降。Zan等(Zan Q F,Dang L M,Wang C,Wang C A,Huang Y.通过向层状Al2O3引入SiC晶须增强Al2O3/Ti3SiC2复相陶瓷的机械性能[J].陶瓷国际,2007,33:385-388)向多层陶瓷Al2O3/Ti3SiC2的Al2O3层中引入SiC晶须,由于多层结构韧化和晶须增韧的协同作用,材料表现出优异的机械性能:弯曲强度688MPa,断裂功2583J·m-2,但采用机械混合法引入增强相,制备工艺也比较复杂。顾巍等(顾巍,杨建,丘泰,祝社民原位合成(TiB2+TiC)/Ti3SiC2复合材料及其性能研究[J].无机材料学报,2010,25(10):1-6)通过向Ti3SiC2基体中引入TiB2和TiC两相复合增强提高材料的综合性能:抗弯强度和断裂韧性均分别高于700MPa与9MPa·m1/2。原位合成的(TiB2+TiC)/Ti3SiC2复相材料显微结构均匀,晶粒细小,增强相颗粒界面无污染,但复相材料的显微硬度和抗氧化性能仍有待改善。However, Ti 3 SiC 2 has low hardness and creep strength at room temperature, poor wear resistance and oxidation resistance, which severely limit its application. Complex phase and self-toughening structure are effective ways to improve the mechanical properties of materials and realize reinforcement and toughening. At present, the properties of Ti 3 SiC 2 have been improved by introducing Al 2 O 3 , TiC, SiC, c-BN, TiB 2 , ZrO 2 etc. as reinforcing phases (Hu CF, Zhou Y C, Bao Y W, Wan D T.Al 2 O 3 enhances the tribological properties of Ti 3 SiC 2 composite materials[J]. Journal of American Ceramic Society, 2006, 89(11): 3456-3461; Zhang J F, Wang L J, Jiang W, Chen L D. Effect of TiC content on discharge Influence of plasma in situ synthesis on microstructure and properties of Ti 3 SiC 2 -TiC composite materials[J]. Materials Science and Engineering A, 2008, 487(1-2): 137-143; Zhang J F, Wang L J, Jiang W, Chen L D. Preparation of Ti 3 SiC 2 -SiC Nanocomposite Materials by Discharge Plasma [J]. Materials Letters, 2007, 56(3): 241-244; Benko E, Klimczyk P, Mackiewicz S, BarrT L , Piskorska E.cBN-Ti 3 SiC 2 composite materials[J]. Properties and applications of diamond-like films, 2004, 13(3): 521-525; Zhou W B, Mei B C, Zhu J Q. Principle of hot pressing method In-situ synthesis of Ti 3 SiC 2 /TiB 2 composite materials[J]. Journal of Wuhan University of Technology, Natural Science Edition, 2008, 23(6): 863-865; Shi S L, Pan W. Preparation of 3Y-TZP toughened by discharge plasma method Ti 3 SiC 2 [J].Materials Science and Engineering, 2007, 447(1-2): 303-306), but a strong and tough phase is usually used, the reinforcing and toughening mechanism is single, and the reinforcing and toughening effect is limited . Chen et al (Chen J X, Li J L, Zhou Y C. In situ synthesis of Ti 3 AlC 2 /TiC-Al 2 O 3 composite materials in TiO 2 -Al-C system[J]. Materials Science and Technology, 2006, 22 (4): 455-458) During the preparation of Ti 3 AlC 2 -Al 2 O 3 composites by combustion reaction of 3TiO 2 -5Al-2C system, Ti 3 AlC 2 /SiC-Al 2 O 3 composites were unexpectedly produced , the material exhibits higher hardness and strength than pure Ti3AlC2 ceramics, but a slight decrease in fracture toughness. Zan et al. (Zan Q F, Dang L M, Wang C, Wang C A, Huang Y. Enhancement of mechanical properties of Al2O3 / Ti3SiC2 composite ceramics by introducing SiC whiskers into layered Al2O3 [ J ]. Ceramics International, 2007, 33: 385-388) introduced SiC whiskers into the Al 2 O 3 layer of multilayer ceramics Al 2 O 3 /Ti 3 SiC 2 , due to the synergistic effect of multilayer structure toughening and whisker toughening , the material exhibits excellent mechanical properties: the bending strength is 688MPa, and the work of fracture is 2583J·m -2 , but the reinforcement phase is introduced by mechanical mixing, and the preparation process is relatively complicated. Gu Wei et al. (Gu Wei, Yang Jian, Qiu Tai, Zhu Shemin in situ synthesis of (TiB 2 +TiC)/Ti 3 SiC 2 composites and their properties research [J]. Journal of Inorganic Materials, 2010, 25(10): 1-6) The comprehensive performance of the material is improved by introducing TiB 2 and TiC two-phase composite reinforcement into the Ti 3 SiC 2 matrix: the flexural strength and fracture toughness are higher than 700MPa and 9MPa·m 1/2 respectively. The in-situ synthesized (TiB 2 +TiC)/Ti 3 SiC 2 composite material has a uniform microstructure, fine grains, and no pollution at the particle interface of the reinforcing phase, but the microhardness and oxidation resistance of the composite material still need to be improved.
发明内容: Invention content:
本发明提供一种成本低、力学性能好、工艺简单且条件容易控制的原位(TiB2+SiC)/Ti3SiC2复相陶瓷材料及其制备方法。柱状的TiB2、颗粒状的SiC两种增强相协同增强,材料的抗弯强度与断裂韧性显著提高,从而克服现有技术中存在的问题。The invention provides an in-situ (TiB 2 +SiC)/Ti 3 SiC 2 composite ceramic material with low cost, good mechanical properties, simple process and easy control of conditions and a preparation method thereof. The two strengthening phases of columnar TiB 2 and granular SiC are strengthened synergistically, and the bending strength and fracture toughness of the material are significantly improved, thereby overcoming the problems existing in the prior art.
本发明的技术方案为:利用原位合成的方法制备(TiB2+SiC)/Ti3SiC2复相陶瓷材料,其基本原理是以Al作为烧结助剂,TiH2在高温下分解产生了Ti,然后Ti与Si、TiC反应生成Ti3SiC2基体,同时Ti也与B4C、Si通过反应原位生成TiB2与SiC两种不同形貌不同增强机理的联合增强相,从而一步制备得(TiB2+SiC)/Ti3SiC2材料。The technical solution of the present invention is to prepare (TiB 2 +SiC)/Ti 3 SiC 2 multiphase ceramic material by in-situ synthesis method. The basic principle is to use Al as a sintering aid, and TiH 2 decomposes at high temperature to produce Ti , and then Ti reacts with Si and TiC to form a Ti 3 SiC 2 matrix. At the same time, Ti also reacts with B 4 C and Si to form a joint reinforcement phase of TiB 2 and SiC with different shapes and different reinforcement mechanisms in situ, thus preparing in one step (TiB 2 +SiC)/Ti 3 SiC 2 material.
本发明的具体技术方案为:一种原位(TiB2+SiC)/Ti3SiC2复相陶瓷材料,其特征在于:由层状Ti3SiC2基体和柱状TiB2、颗粒状SiC两种增强相组成,其中TiB2占复相陶瓷材料体积的13~15%,SiC占复相陶瓷材料体积的5~15%。The specific technical solution of the present invention is: an in-situ (TiB 2 +SiC)/Ti 3 SiC 2 composite ceramic material, which is characterized in that it consists of layered Ti 3 SiC 2 matrix and columnar TiB 2 and granular SiC. Reinforced phase composition, in which TiB 2 accounts for 13-15% of the volume of the composite ceramic material, and SiC accounts for 5-15% of the volume of the composite ceramic material.
本发明还提供了制备上述复合材料的方法,其具体步骤为:将原料TiH2粉、Si粉、TiC粉、B4C粉和Al粉按摩尔配比为(0.9~1.3)∶(1)∶(1.4~1.6)∶(0.15~2.1)∶(0.13~0.16)称量;原料经机械方法混匀后装于表面涂有保护涂层的石墨模具中冷压成型,在通有保护气氛的石墨电阻炉内热压烧结。The present invention also provides a method for preparing the above-mentioned composite material, the specific steps of which are: raw material TiH 2 powder, Si powder, TiC powder, B 4 C powder and Al powder in a molar ratio of (0.9-1.3): (1) : (1.4~1.6): (0.15~2.1): (0.13~0.16) Weighing; the raw materials are mechanically mixed and put into a graphite mold with a protective coating on the surface for cold pressing. Graphite resistance furnace hot pressing sintering.
优选所述的TiH2粉和Si粉粒度为300目;所述的B4C粉为粒度范围为3~10μm;所述的TiC粉为粒度范围为1~1.5μm;Al粉粒度为200目。Preferably, the particle size of the TiH 2 powder and Si powder is 300 mesh; the particle size of the B 4 C powder is 3-10 μm; the particle size of the TiC powder is 1-1.5 μm; the particle size of the Al powder is 200 mesh .
优选烧结过程中升温速率为10~50℃/min;烧结温度为1350~1500℃;烧结时间为1.5~2小时,烧结压强为22~25MPa。Preferably, the heating rate during the sintering process is 10-50° C./min; the sintering temperature is 1350-1500° C.; the sintering time is 1.5-2 hours; the sintering pressure is 22-25 MPa.
本发明优选在烧结过程中先升温至800~900℃时无压预保温50~60分钟。到达烧结温度后以每隔3~5分钟增压2~3MPa的速率加至保温压力。优选烧结过程中的保护气氛为惰性气体,更优选氩气。In the present invention, it is preferred that the temperature is first raised to 800-900°C during the sintering process, and the temperature is pre-heated for 50-60 minutes without pressure. After reaching the sintering temperature, pressurize to the holding pressure at a rate of 2-3 MPa every 3-5 minutes. Preferably the protective atmosphere during sintering is an inert gas, more preferably argon.
有益效果:Beneficial effect:
1.以TiH2作为提供Ti源的原料,其在加热过程中于900℃前完全分解产生纯净、细小、高活性的Ti粉,避免了传统的直接以Ti粉作为钛源时,Ti粉不可避免的氧化对材料组成、结构和性能的不利影响。同时,TiH2价格较Ti粉低且易于保存。1. Using TiH 2 as the raw material to provide the Ti source, it will be completely decomposed before 900°C during the heating process to produce pure, fine and highly active Ti powder, which avoids the traditional use of Ti powder as the titanium source, and the Ti powder cannot be used directly. Avoided Oxidation Detrimental Effects on Material Composition, Structure, and Properties. At the same time, the price of TiH 2 is lower than that of Ti powder and it is easy to store.
2.由于TiB2具有良好的导电性,制得的(TiB2+SiC)/Ti3SiC2复合材料仍然保持了良好的导电性,可作为电极或电刷材料。2. Due to the good electrical conductivity of TiB 2 , the prepared (TiB2+SiC)/Ti 3 SiC 2 composite material still maintains good electrical conductivity and can be used as an electrode or brush material.
3.以Al作为烧结助剂,由于Al熔点较低,在高温下所生成的液相加快Ti,Si原子的扩散,加速Ti3SiC2的反应合成并提高产物的纯度。3. Using Al as a sintering aid, due to the low melting point of Al, the liquid phase formed at high temperature accelerates the diffusion of Ti and Si atoms, accelerates the reaction synthesis of Ti 3 SiC 2 and improves the purity of the product.
4.制得(TiB2+SiC)/Ti3SiC2复相材料显微结构均匀,晶粒细小,由层状Ti3SiC2、柱状TiB2与颗粒状SiC构成,增强相颗粒界面无污染,柱状TiB2和颗粒状SiC两种强韧相之间交互作用,两种补强增韧机制相互协同耦合,使材料的抗弯强度与断裂韧性显著提高。4. The prepared (TiB 2 +SiC)/Ti 3 SiC 2 composite material has a uniform microstructure and fine grains. It is composed of layered Ti 3 SiC 2 , columnar TiB 2 and granular SiC, and the particle interface of the reinforcing phase is free of pollution , The interaction between the two strong and tough phases of columnar TiB 2 and granular SiC, and the two strengthening and toughening mechanisms are synergistically coupled to each other, so that the flexural strength and fracture toughness of the material are significantly improved.
5.由于TiB2和SiC高硬度的特点,制得的(TiB2+SiC)/Ti3SiC2复相材料具有的硬度高和耐磨性好的优良性能。5. Due to the high hardness of TiB 2 and SiC, the prepared (TiB 2 +SiC)/Ti 3 SiC 2 composite material has excellent properties of high hardness and good wear resistance.
6.利用材料中的Si、Al、B元素,制得的(TiB2+SiC)/Ti3SiC2复相材料在氧化时表面会生成致密硼硅(铝)酸盐钝化层,从而提高材料的抗氧化性。6. Utilizing the Si, Al, and B elements in the material, the (TiB 2 +SiC)/Ti 3 SiC 2 composite material will form a dense borosilicate (aluminum) passivation layer on the surface during oxidation, thereby improving Oxidation resistance of the material.
附图说明: Description of drawings:
图1是实施例1所得(TiB2+SiC)/Ti3SiC2复相材料的XRD图谱,其中★代表Ti3SiC2,●分代表TiB2,◆代表SiC;Figure 1 is the XRD spectrum of the (TiB 2 +SiC)/Ti 3 SiC 2 composite material obtained in Example 1, where ★ represents Ti 3 SiC 2 , ● points represent TiB 2 , and ◆ represents SiC;
图2是实施例1所得复相材料(TiB2+SiC)/Ti3SiC2复相材料的断口的扫描电镜照片。Fig. 2 is a scanning electron micrograph of the fracture of the composite (TiB 2 +SiC)/Ti 3 SiC 2 composite obtained in Example 1.
具体实施方式: Detailed ways:
实施例1:Example 1:
按摩尔比n(TiH2)∶n(Si)∶n(TiC)∶n(B4C)∶n(Al)=0.9194∶1∶1.5012∶0.1833∶0.1369称取原料TiH2粉(300目)、Si粉(300目)、TiC粉(1.5μm)、B4C粉(5μm)与Al粉(200目)后,于聚乙烯罐中干混24h后置于表面涂有BN的石墨模具中冷压成型,于氩气氛中热压烧结,以30℃/min的速率升至850℃无压预保温55分钟,然后以30℃/min的速率升温至1500℃,到达烧结温度后以每隔3分钟增压3MPa的速率升压至22MPa,保温时间为1.5h。获得块体材料的致密度达到99.7%,其中TiB2占复相陶瓷材料体积的15%,SiC占复相陶瓷材料体积的10%;在万能试验机上测试材料的三点抗弯强度大于780MPa,采用单边缺口梁法测得材料的断裂韧性大于8.4MPa·m1/2。对制得材料进行XRD分析,如图1所示材料由Ti3SiC2、TiB2与SiC组成。对材料断口进行SEM分析,如图2所示材料显微结构均匀,层状Ti3SiC2、柱状TiB2和颗粒状SiC晶粒清晰可见,且晶粒细小。Weigh the raw material TiH 2 powder (300 mesh) according to the molar ratio n(TiH 2 ):n(Si):n(TiC):n(B 4 C):n(Al)=0.9194:1:1.5012:0.1833:0.1369 , Si powder (300 mesh), TiC powder (1.5 μm), B 4 C powder (5 μm) and Al powder (200 mesh), dry mixed in a polyethylene tank for 24 hours, and then placed in a graphite mold coated with BN Cold press molding, hot pressing sintering in argon atmosphere, at a rate of 30 ° C / min to 850 ° C for 55 minutes without pressure pre-heating, then at a rate of 30 ° C / min to 1500 ° C, after reaching the sintering temperature, every The rate of pressurization of 3MPa is increased to 22MPa in 3 minutes, and the holding time is 1.5h. The density of the obtained bulk material reaches 99.7%, in which TiB2 accounts for 15% of the volume of the composite ceramic material, and SiC accounts for 10% of the volume of the composite ceramic material; the three-point bending strength of the material tested on the universal testing machine is greater than 780MPa, The fracture toughness of the material measured by the unilateral notched beam method is greater than 8.4MPa·m 1/2 . XRD analysis was performed on the prepared material, as shown in Figure 1, the material was composed of Ti 3 SiC 2 , TiB 2 and SiC. SEM analysis was performed on the fracture surface of the material. As shown in Figure 2, the microstructure of the material is uniform, and the layered Ti 3 SiC 2 , columnar TiB 2 and granular SiC grains are clearly visible, and the grains are fine.
实施例2:Example 2:
按摩尔比n(TiH2)∶n(Si)∶n(TiC)∶n(B4C)∶n(Al)=1.2003∶1∶1.5994∶0.2003∶0.15994称取原料TiH2粉(300目)、Si粉(300目)、TiC粉(1.5μm)、B4C粉(5μm)与Al粉(-200目),于聚乙烯罐中干混24h后置于表面涂有BN的石墨模具中冷压成型,于氩气氛中热压烧结,以50℃/min的速率升至900℃无压预保温50分钟,然后以20℃/min的速率升温至1450℃,到达烧结温度后以每隔5分钟增压2.5MPa的速率升压至24MPa,保温时间为1.8h。获得块体材料的致密度达到99.7%,其中TiB2占复相陶瓷材料体积的14.5%,SiC占复相陶瓷材料体积的5%;在万能试验机上测试材料的三点抗弯强度大于770MPa,采用单边缺口梁法测得材料的断裂韧性大于7.4MPa·m1/2。Weigh the raw material TiH 2 powder (300 mesh) according to the molar ratio n(TiH 2 ):n(Si):n(TiC):n(B 4 C):n(Al)=1.2003:1:1.5994:0.2003:0.15994 , Si powder (300 mesh), TiC powder (1.5 μm), B 4 C powder (5 μm) and Al powder (-200 mesh), dry mixed in a polyethylene tank for 24 hours and then placed in a graphite mold coated with BN Cold press forming, hot pressing sintering in argon atmosphere, at a rate of 50 °C/min to 900 °C for 50 minutes without pressure pre-heating, then at a rate of 20 °C/min to 1450 °C, after reaching the sintering temperature, every Boost the pressure to 24MPa at a rate of 2.5MPa in 5 minutes, and the holding time is 1.8h. The density of the obtained bulk material reaches 99.7%, in which TiB2 accounts for 14.5% of the volume of the composite ceramic material, and SiC accounts for 5% of the volume of the composite ceramic material; the three-point bending strength of the material tested on the universal testing machine is greater than 770MPa, The fracture toughness of the material measured by the unilateral notched beam method is greater than 7.4MPa·m 1/2 .
实施例3:Example 3:
按摩尔比n(TiH2)∶n(Si)∶n(TiC)∶n(B4C)∶n(Al)=1.1998∶1∶1.6011∶0.2005∶0.15994称取原料TiH2粉(300目)、Si粉(300目)、TiC粉(1μm)、B4C粉(10μm)与Al粉(200目),于聚乙烯罐中干混24h后置于表面涂有BN的石墨模具中冷压成型,于氩气氛中热压烧结,以30℃/min的速率升至900℃无压预保温60分钟,然后以50℃/min的速率升温至1400℃,到达烧结温度后以每隔4分钟增压3MPa的速率升压至25MPa,保温时间为2h。获得块体材料的致密度达到99.6%,其中TiB2占复相陶瓷材料体积的14.5%,SiC占复相陶瓷材料体积的5%;在万能试验机上测试材料的三点抗弯强度大于720MPa,采用单边缺口梁法测得材料的断裂韧性大于7.8MPa·m1/2。Weigh the raw material TiH 2 powder (300 mesh) according to the molar ratio n(TiH 2 ):n(Si):n(TiC):n(B 4 C):n(Al)=1.1998:1:1.6011:0.2005:0.15994 , Si powder (300 mesh), TiC powder (1 μm), B 4 C powder (10 μm) and Al powder (200 mesh), dry mixed in a polyethylene tank for 24 hours, then cold pressed in a graphite mold coated with BN Molding, hot-pressing and sintering in argon atmosphere, rising to 900°C at a rate of 30°C/min for 60 minutes without pressure, then raising the temperature to 1400°C at a rate of 50°C/min, after reaching the sintering temperature, every 4 minutes The rate of pressurization is 3MPa to increase to 25MPa, and the holding time is 2h. The density of the obtained bulk material reaches 99.6%, in which TiB2 accounts for 14.5% of the volume of the composite ceramic material, and SiC accounts for 5% of the volume of the composite ceramic material; the three-point bending strength of the material tested on the universal testing machine is greater than 720MPa, The fracture toughness of the material measured by the unilateral notched beam method is greater than 7.8MPa·m 1/2 .
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110024117.XA CN102173802B (en) | 2011-01-21 | 2011-01-21 | In situ (TiB)2+SiC)/Ti3SiC2Complex phase ceramic material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110024117.XA CN102173802B (en) | 2011-01-21 | 2011-01-21 | In situ (TiB)2+SiC)/Ti3SiC2Complex phase ceramic material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102173802A CN102173802A (en) | 2011-09-07 |
CN102173802B true CN102173802B (en) | 2013-02-06 |
Family
ID=44517101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110024117.XA Active CN102173802B (en) | 2011-01-21 | 2011-01-21 | In situ (TiB)2+SiC)/Ti3SiC2Complex phase ceramic material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102173802B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106518079A (en) * | 2016-10-24 | 2017-03-22 | 中国科学院福建物质结构研究所 | Silicon carbide matrix composite and preparation method thereof |
CN108794013B (en) * | 2018-07-26 | 2021-05-04 | 北京理工大学 | A kind of B4C ceramic block and rapid preparation method thereof |
CN108751997B (en) * | 2018-07-26 | 2021-04-27 | 北京理工大学 | B4C-TiB2-SiC composite ceramic block and rapid preparation method thereof |
CN110893460B (en) * | 2019-06-05 | 2020-10-02 | 南京工业大学 | Metallurgical microstructure control method for additive manufacturing based on the misfit degree of titanium alloy and boron carbide particles |
CN110655404A (en) * | 2019-10-30 | 2020-01-07 | 合肥工业大学 | A kind of titanium-silicon carbide-based composite ceramic material and preparation process thereof |
CN110885254B (en) * | 2019-12-02 | 2021-05-04 | 中南大学 | A kind of porous Ti3SiC2/SiC composite material and preparation method thereof |
CN111393168A (en) * | 2020-03-27 | 2020-07-10 | 燕山大学 | A kind of TiCx reinforced Ti3SiC2 composite material and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101555137A (en) * | 2009-05-20 | 2009-10-14 | 南京工业大学 | (TiB2+TiC)/Ti3SiC2Complex phase ceramic material and preparation method thereof |
-
2011
- 2011-01-21 CN CN201110024117.XA patent/CN102173802B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101555137A (en) * | 2009-05-20 | 2009-10-14 | 南京工业大学 | (TiB2+TiC)/Ti3SiC2Complex phase ceramic material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102173802A (en) | 2011-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101555137B (en) | (TiB2+TiC)/Ti3SiC2Complex phase ceramic material and preparation method thereof | |
CN102173802B (en) | In situ (TiB)2+SiC)/Ti3SiC2Complex phase ceramic material and preparation method thereof | |
Zhao et al. | Microstructure and mechanical properties of TiB2–SiC ceramic composites by reactive hot pressing | |
CN110747378B (en) | Ti3AlC2-Al3Ti dual-phase reinforced Al-based composite material and hot-pressing preparation method thereof | |
CN102167592A (en) | Preparation method of ZrB2-ZrC based ultra-high temperature resistant ceramics | |
CN104099488B (en) | The method that titanium aluminum carbon granule strengthens Zn Al Alloy Matrix Composites is prepared in a kind of pressureless sintering-pressurization densification | |
CN108504886A (en) | A kind of preparation method of TiC-C nickel-base alloys self-lubricating composite | |
CN108251705A (en) | A kind of TiCx-Ni3(Al, Ti)/Ni based composites and its hot pressing method for preparing | |
León-Patiño et al. | Dry sliding wear behavior of infiltrated particulate reinforced Ni/TiC composites | |
CN102676956B (en) | Method for preparing iron-based surface composite material by virtue of in-situ synthesis | |
CN102876951A (en) | Preparation method of pure cermet Cr7C3 block | |
CN101787476B (en) | A kind of (TiCxNy-TiB2)/Ni ceramic-metal composite material and preparation method thereof | |
CN101555136B (en) | Titanium silicon carbide/titanium diboride-titanium carbide composite material and preparation method thereof | |
CN104072139A (en) | Preparation method of metallic titanium carbide ceramic | |
CN104086178A (en) | Niobium-titanium-aluminum-carbon solid solution ceramic material and preparation method thereof | |
CN103468994B (en) | Method for preparing molybdenum nickel chromium boron multivariant boride metal ceramic | |
CN101824576A (en) | Zirconium-aluminum-silicon-carbon-silicon carbide composite material and preparation method thereof | |
CN102745993A (en) | Zirconium-aluminum-silicon-carbon-zirconium boride-silicon carbide composite material and preparation method thereof | |
CN102167591A (en) | Preparation method of ZrB2 matrix composite material | |
CN100554463C (en) | The preparation method of a kind of original position TiB2 and the compound reinforced aluminum matrix composites of aluminium sesquioxide | |
CN102021473A (en) | A kind of preparation method of Fe3Al-Al2O3 composite material | |
Yin et al. | Impacts of interface modification by Ni coating on the property of Cu matrix composites reinforced by β-Si3N4 whiskers | |
Zhong et al. | Bonding ZrB2-SiC-G ceramics using modified organic adhesive for engineering applications at ultra high temperatures in air | |
Rangaraj et al. | Reaction, densification, and mechanical properties of Ti2AlCx ceramics at low applied pressure and temperature | |
CN108149053A (en) | A kind of preparation method of titanium carbide-titanium carbide silicon-titanium boride particulate reinforcement titanium alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |