CN102170307A - Dynamic Frequency Offset Correction Method and Coherent Optical Time Domain Reflectometer System - Google Patents
Dynamic Frequency Offset Correction Method and Coherent Optical Time Domain Reflectometer System Download PDFInfo
- Publication number
- CN102170307A CN102170307A CN2010106019658A CN201010601965A CN102170307A CN 102170307 A CN102170307 A CN 102170307A CN 2010106019658 A CN2010106019658 A CN 2010106019658A CN 201010601965 A CN201010601965 A CN 201010601965A CN 102170307 A CN102170307 A CN 102170307A
- Authority
- CN
- China
- Prior art keywords
- light
- signal
- laser
- control
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/071—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/31—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
- G01M11/3109—Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
技术领域technical field
本发明涉及光纤通信技术领域,尤其涉及一种动态频偏矫正的方法及相干光时域反射仪系统。The invention relates to the technical field of optical fiber communication, in particular to a dynamic frequency offset correction method and a coherent optical time domain reflectometer system.
背景技术Background technique
随着光纤通信技术的发展,网络的光纤化一直是网络发展的主要趋势之一。而海底光缆又是网络光纤化很重要的环节,对长距离海海底光缆的实时监测也成为网络维护的重要内容。With the development of optical fiber communication technology, the optical fiberization of the network has always been one of the main trends in network development. The submarine optical cable is a very important part of the network optical fiber, and the real-time monitoring of the long-distance submarine optical cable has also become an important content of network maintenance.
在对海底光缆进行检测时,采用相干光时域反射仪(coherence optical time-domain reflectometer,以下简称COTDR)进行测试,在COTDR系统中,由于需要对超长距离的激光反射信号进行探测,激光器在测量期间的频率漂移将影响到接收机接收频率。为了不丢失信号,需要扩大接收机的接收通带,由此将导致噪声功率的涌入,从而造成接收系统信噪比下降。因此,COTDR的探测性能将受制于光源的频率稳定性。在传统方案中,往往要使用频率稳定性极高的激光器作为光源,这会极大地增加带有COTDR的通信系统的成本。When testing submarine optical cables, a coherence optical time-domain reflectometer (hereinafter referred to as COTDR) is used for testing. In the COTDR system, due to the need to detect ultra-long-distance laser reflection signals, the laser is in the Frequency drift during the measurement will affect the receiver receiving frequency. In order not to lose the signal, it is necessary to expand the receiving passband of the receiver, which will lead to the influx of noise power, resulting in a decrease in the signal-to-noise ratio of the receiving system. Therefore, the detection performance of COTDR will be limited by the frequency stability of the light source. In traditional solutions, lasers with high frequency stability are often used as light sources, which will greatly increase the cost of communication systems with COTDR.
现有技术的方案中,在测量激光器的频率是否偏离中心频率进行监测,如果发生偏离,则对光源进行调整。但是现有技术存在如下的缺点:由于COTDR中对光源线宽要求很高,对光源频率的调整会影响到光源线宽,因此,会影响到检测效果。In the solution of the prior art, it is monitored whether the frequency of the measuring laser deviates from the center frequency, and if there is a deviation, the light source is adjusted. However, the prior art has the following disadvantages: since the COTDR has high requirements on the line width of the light source, the adjustment of the frequency of the light source will affect the line width of the light source, thus affecting the detection effect.
发明内容Contents of the invention
本发明提供一种动态频偏矫正的方法及相干光时域反射仪系统,用以提高相干光探测性能,减少对光源线宽的要求,提高频率偏移的矫正的效果。The invention provides a dynamic frequency offset correction method and a coherent optical time domain reflectometer system, which are used to improve the detection performance of coherent light, reduce the requirement on the line width of a light source, and improve the effect of frequency offset correction.
本发明实施例提供一种动态频偏矫正的方法,应用在相干光时域反射仪系统中消除激光器的频率漂移所带来的影响,包括:An embodiment of the present invention provides a dynamic frequency offset correction method, which is applied in a coherent optical time domain reflectometer system to eliminate the influence of laser frequency drift, including:
对所述激光器输出的激光进行分光处理,生成探测光和控制光;performing spectroscopic processing on the laser output from the laser to generate probe light and control light;
将所述控制光输入到马赫-泽德干涉仪MZI中进行干涉,得到干涉后的控制光;Input the control light into the Mach-Zehnder interferometer MZI for interference to obtain the control light after interference;
对所述干涉后的控制光进行光电转换,得到第一电信号;performing photoelectric conversion on the interfering control light to obtain a first electrical signal;
根据所述第一电信号控制在所述MZI的两臂上传输的光信号的光程差,使得所述光程差为所述激光的波长的四分之一;controlling the optical path difference of the optical signals transmitted on the two arms of the MZI according to the first electrical signal, so that the optical path difference is a quarter of the wavelength of the laser light;
根据所述第一电信号,计算得到所述激光的实际中心频率相对于所述激光的中心频率的标准值的偏差度;calculating a degree of deviation of the actual center frequency of the laser relative to a standard value of the center frequency of the laser according to the first electrical signal;
根据所述偏差度进行相应的补偿,使得从下行链路传输回来的光信号经接收后得到的基带信号的实际中心频率收敛于所述基带信号的中心频率的标准值。Corresponding compensation is performed according to the degree of deviation, so that the actual center frequency of the baseband signal obtained after receiving the optical signal transmitted back from the downlink converges to the standard value of the center frequency of the baseband signal.
本发明实施例还提供了一种相干光时域反射仪系统,包括:激光器、第一分光器、马赫泽德干涉仪MZI、光电探测器、第一控制器、第二控制器,调制器和调制源;An embodiment of the present invention also provides a coherent optical time domain reflectometer system, including: a laser, a first beam splitter, a Mach-Zehnder interferometer MZI, a photodetector, a first controller, a second controller, a modulator and modulation source;
所述激光器,用于产生激光;The laser is used to generate laser light;
所述第一分光器,用于对所述激光进行分光,得到探测光和控制光;The first beam splitter is used to split the laser light to obtain detection light and control light;
所述MZI,用于对输入的所述控制光进行干涉,得到干涉后的控制光;The MZI is configured to interfere with the input control light to obtain the control light after interference;
所述光电探测器,用于将所述干涉后的控制光进行光电转换得到第一电信号;The photodetector is used to photoelectrically convert the interfering control light to obtain a first electrical signal;
所述第一控制器,用于根据所述第一电信号产生控制信号,以对所述MZI进行控制,使得所述MZI的两臂上传输的光信号的光程差为所述激光的波长的四分之一;The first controller is configured to generate a control signal according to the first electrical signal to control the MZI so that the optical path difference of the optical signals transmitted on the two arms of the MZI is the wavelength of the laser a quarter of
所述调制器,用于对所述探测光进行调制,生成探测光脉冲;The modulator is configured to modulate the probe light to generate a probe light pulse;
所述调制源,用于产生调制控制信号控制所述调制器对所述探测光进行调制;The modulation source is used to generate a modulation control signal to control the modulator to modulate the detection light;
所述第二控制器,用于根据所述第一电信号,计算得到所述激光的实际中心频率相对于所述激光的中心频率的标准值的偏差度,并基于所述偏差度,产生控制信号以控制所述调制源输出所述调制控制信号的输出频率,使得所述调制器调制生成的所述探测光脉冲的实际中心频率收敛于所述激光的中心频率的标准值。The second controller is configured to calculate the degree of deviation of the actual center frequency of the laser relative to the standard value of the center frequency of the laser according to the first electrical signal, and generate a control based on the degree of deviation signal to control the modulation source to output the output frequency of the modulation control signal, so that the actual center frequency of the detection light pulse generated by the modulation of the modulator converges to the standard value of the center frequency of the laser.
本发明实施例还提供了一种相干光时域反射仪系统,所述系统包括:激光器、第一分光器、马赫泽德干涉仪MZI、光电探测器、第一控制器、第二控制器,调制器、调制源、相干接收机、混频器和振荡器;An embodiment of the present invention also provides a coherent optical time domain reflectometer system, the system includes: a laser, a first beam splitter, a Mach-Zehnder interferometer MZI, a photodetector, a first controller, and a second controller, Modulators, modulation sources, coherent receivers, mixers and oscillators;
所述激光器,用于产生激光;The laser is used to generate laser light;
所述第一分光器,用于对所述激光进行分光,得到探测光和控制光;The first beam splitter is used to split the laser light to obtain detection light and control light;
所述MZI,用于对输入的所述控制光进行干涉,得到干涉后的控制光;The MZI is configured to interfere with the input control light to obtain the control light after interference;
所述光电探测器,用于将所述干涉后的控制光进行光电转换得到第一电信号;The photodetector is used to photoelectrically convert the interfering control light to obtain a first electrical signal;
所述第一控制器,用于根据所述第一电信号产生控制信号,以对所述MZI进行控制,使得所述MZI的两臂上传输的光信号的光程差为所述激光的波长的四分之一;The first controller is configured to generate a control signal according to the first electrical signal to control the MZI so that the optical path difference of the optical signals transmitted on the two arms of the MZI is the wavelength of the laser a quarter of
所述调制器,用于对所述探测光进行调制,生成探测光脉冲;The modulator is configured to modulate the probe light to generate a probe light pulse;
所述调制源,用于产生调制控制信号控制所述调制器对所述探测光进行调制;The modulation source is used to generate a modulation control signal to control the modulator to modulate the detection light;
所述相干接收机,用于接收从下行链路中传输回来的光信号,并对所述从下行链路中传输回来的光信号进行相干处理,得到第二电信号;The coherent receiver is configured to receive an optical signal transmitted back from the downlink, and perform coherent processing on the optical signal transmitted back from the downlink to obtain a second electrical signal;
所述振荡器,用于产生电本振信号;The oscillator is used to generate an electrical local oscillator signal;
所述混频器,用于将所述电本振信号与所述第二电信号进行混频,得到基带信号;The mixer is configured to mix the electrical local oscillator signal with the second electrical signal to obtain a baseband signal;
所述第二控制器,用于根据所述第一电信号,计算得到所述激光的实际中心频率相对于所述激光的中心频率的标准值的偏差度,并基于所述偏差度,产生控制信号以控制所述振荡器调谐其输出的所述电本振信号的频率,使得所述混频器得到的所述基带信号的实际中心频率收敛于所述激光的中心频率的标准值。The second controller is configured to calculate the degree of deviation of the actual center frequency of the laser relative to the standard value of the center frequency of the laser according to the first electrical signal, and generate a control based on the degree of deviation signal to control the oscillator to tune the frequency of the electrical local oscillator signal output by it, so that the actual center frequency of the baseband signal obtained by the mixer converges to the standard value of the center frequency of the laser.
本发明将激光器输出的激光划分为探测光和控制光,根据控制光计算得到激光的实际中心频率相对于激光的中心频率的标准值的偏差度;根据该偏差度进行相应的补偿,以消除激光器的激光的中心频率的漂移所带来的影响,提高光相干探测性能,并且能够减少对光源线宽的要求。In the present invention, the laser output by the laser is divided into detection light and control light, and the deviation degree of the actual center frequency of the laser relative to the standard value of the center frequency of the laser is calculated according to the control light; corresponding compensation is performed according to the deviation degree to eliminate the laser light The influence brought by the drift of the center frequency of the laser can improve the performance of optical coherent detection, and can reduce the requirement on the line width of the light source.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1a为本发明一实施例提供的动态频偏矫正的方法流程图;Fig. 1a is a flowchart of a method for dynamic frequency offset correction provided by an embodiment of the present invention;
图1b为本发明一实施例提供的相干光时域反射仪系统的示意图;Fig. 1b is a schematic diagram of a coherent optical time domain reflectometer system provided by an embodiment of the present invention;
图1c为本发明一实施例提供的相干光时域反射仪系统的示意图;Fig. 1c is a schematic diagram of a coherent optical time domain reflectometer system provided by an embodiment of the present invention;
图1d为本发明一实施例提供的相干光时域反射仪系统的示意图。Fig. 1d is a schematic diagram of a coherent optical time domain reflectometer system provided by an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
本发明实施例通过对激光器的频偏进行检测,并进行相应的频率偏移的矫正,由此消除激光器输出的激光的频率漂移所带来的影响,能够降低通信系统对带宽的要求,并提高相干光时域反射仪系统的性能。The embodiment of the present invention detects the frequency offset of the laser and corrects the corresponding frequency offset, thereby eliminating the influence of the frequency drift of the laser output by the laser, reducing the bandwidth requirements of the communication system, and improving Performance of a coherent optical time domain reflectometer system.
图1a所示为本发明一实施例提供的一种动态频偏矫正的方法流程图,包括:Figure 1a shows a flow chart of a method for dynamic frequency offset correction provided by an embodiment of the present invention, including:
步骤11、对激光器输出的激光进行分光处理,生成探测光和控制光。Step 11, performing spectroscopic processing on the laser output from the laser to generate detection light and control light.
在本实施例中,通过一分光器如耦合器对激光进行分光处理,生成探测光和控制光。探测光的功率用于产生探测光脉冲对链路光纤进行故障定位及探测,其功率应远大于控制光的功率,可选的,探测光与控制光的比例可以为图中所示的99∶1。In this embodiment, a beam splitter such as a coupler is used to split the laser light to generate detection light and control light. The power of the detection light is used to generate the detection light pulse to locate and detect the fault of the link fiber, and its power should be much greater than the power of the control light. Optionally, the ratio of the detection light to the control light can be 99 as shown in the figure: 1.
步骤12、将所述控制光输入到马赫-泽德干涉仪MZI中进行干涉,得到干涉后的控制光;
步骤13、对所述干涉后的控制光进行光电转换,得到第一电信号;
步骤14、根据所述第一电信号控制在所述MZI的两臂上传输的光信号的光程差,使得所述光程差为所述激光的波长的四分之一;
本实施例中使用马赫泽德干涉仪MZI对控制光进行干涉,得到干涉后的控制光,然后对该干涉后的控制光进行光电转换,得到第一电信号。由于该第一电信号的功率大小能够反映MZI中两臂的光程差(也即两臂上传输的光信号的光程差),故可以根据该第一电信号调整MZI两臂的光程差,使得光程差为该激光的四分之一,以此修正温度以及振动等外界因素对MZI探测的影响。MZI可以通过调整压电陶瓷的伸缩度以调整MZI两臂的光程差。当MZI两臂的光程差正好为激光波长的四分之一时,所述MZI的输出处于线性输出区,输出的光强与激光器输出的激光的中心频率的漂移程度呈正比。In this embodiment, the Mach-Zehnder interferometer MZI is used to interfere the control light to obtain the interfered control light, and then perform photoelectric conversion on the interfered control light to obtain the first electrical signal. Since the power of the first electrical signal can reflect the optical path difference between the two arms of the MZI (that is, the optical path difference of the optical signals transmitted on the two arms), the optical path of the two arms of the MZI can be adjusted according to the first electrical signal. Difference, so that the optical path difference is a quarter of the laser, so as to correct the influence of external factors such as temperature and vibration on MZI detection. MZI can adjust the optical path difference between the two arms of MZI by adjusting the stretching degree of piezoelectric ceramics. When the optical path difference between the two arms of the MZI is exactly 1/4 of the laser wavelength, the output of the MZI is in the linear output region, and the output light intensity is proportional to the drift degree of the center frequency of the laser output from the laser.
步骤15、根据所述第一电信号,计算得到所述激光的实际中心频率相对于所述激光的中心频率的标准值的偏差度。
步骤16、根据所述偏差度进行相应的补偿,使得从下行链路传输回来的光信号经接收后得到的基带信号的实际中心频率收敛于所述基带信号的中心频率的标准值。Step 16: Perform corresponding compensation according to the degree of deviation, so that the actual center frequency of the baseband signal obtained after receiving the optical signal transmitted back from the downlink converges to the standard value of the center frequency of the baseband signal.
在得到激光的实际中心频率相对于激光中心频率的标准值的偏差度后,可以采取如下两种方式使得从下行链路传输回相干光时域反射仪系统的光信号经接收后得到的基带信号的实际中心频率收敛于该基带信号的中心频率的标准值,以消除由于激光器输出的激光的中心频率漂移所带来的影响。After obtaining the deviation degree of the actual center frequency of the laser relative to the standard value of the laser center frequency, the following two methods can be adopted to make the baseband signal obtained after receiving the optical signal transmitted from the downlink back to the coherent optical time domain reflectometer system The actual center frequency converges to the standard value of the center frequency of the baseband signal, so as to eliminate the influence caused by the center frequency drift of the laser output by the laser.
方式一:将所述探测光与所述相干光时域反射仪系统接收到的来自下行链路的光信号进行相干处理,对相干处理得到的光信号进行光电转换,得到第二电信号;根据所述偏差度,控制用于与所述第二电信号进行混频得到所述基带信号的电本振信号的频率,使得所述基带信号的实际中心频率收敛于所述基带信号的中心频率的标准值。Method 1: performing coherent processing on the detection light and the optical signal from the downlink received by the coherent optical time domain reflectometer system, and performing photoelectric conversion on the optical signal obtained by the coherent processing to obtain a second electrical signal; The degree of deviation is used to control the frequency of the electrical local oscillator signal used for mixing with the second electrical signal to obtain the baseband signal, so that the actual center frequency of the baseband signal converges to the center frequency of the baseband signal standard value.
方式二:在将所述探测光进行调制生成探测光脉冲时,根据所述偏差度控制用于进行所述调制的调制源的输出频率,使得所述探测光脉冲的中心频率收敛域于所述激光的中心频率的标准值。Mode 2: when the probe light is modulated to generate a probe light pulse, the output frequency of the modulation source used for the modulation is controlled according to the degree of deviation, so that the center frequency of the probe light pulse converges to the The standard value of the center frequency of the laser.
在本实施例中,可以通过一分光器将探测光进行划分,将划分出的一部分探测光输出到相干接收机,通过相干接收机对从下行链路中传输回来的光信号进行相干处理,得到第二电信号;将所述电本振信号与所述第二电信号进行混频,得到基带信号;然后根据偏差度,控制用于与所述第二电信号进行混频得到所述基带信号的电本振信号的频率,使得所述基带信号的实际中心频率收敛于所述基带信号的中心频率的标准值。In this embodiment, the detection light can be divided by an optical splitter, and a part of the divided detection light is output to a coherent receiver, and the optical signal transmitted back from the downlink is coherently processed by the coherent receiver to obtain second electrical signal; mixing the electrical local oscillator signal with the second electrical signal to obtain a baseband signal; and then controlling the frequency mixing with the second electrical signal to obtain the baseband signal according to the degree of deviation The frequency of the electric local oscillator signal, so that the actual center frequency of the baseband signal converges to the standard value of the center frequency of the baseband signal.
以下结合具体的应用场景对动态频偏矫正的方法进行具体说明,本实施例的相干光时域反射仪系统可以为如图1b所示的系统,包括:激光器1,耦合器A2,光电探测器7,第一控制器8,第二控制器10,调制源11,调制器12,以及MZI5;其中,MZI5包括,耦合器B3、压电陶瓷9和耦合器C6。The method of dynamic frequency offset correction will be described in detail below in combination with specific application scenarios. The coherent optical time domain reflectometer system in this embodiment can be a system as shown in Figure 1b, including: a laser 1, a coupler A2, and a
以下结合该相干光时域反射仪系统,详细说明动态频偏矫正的方法。The method for dynamic frequency offset correction will be described in detail below in conjunction with the coherent optical time domain reflectometer system.
激光器1输出的光功率经过耦合器A2后分作两路输出,其中一路输出大部分功率,作为探测光供探测用;另一路输出功率较小,作为控制光供控制用。The optical power output by the laser 1 is divided into two outputs after passing through the coupler A2, one of which outputs most of the power, which is used as the detection light for detection; the other output power is small, and is used as the control light for control.
控制光输入MZI5的耦合器B3的分作两路,两路光通过不同的路径到达MZI5的耦合器C6做相干处理,其输出光的强度将反映两臂光程的差异。MZI5对输入的控制光进行干涉后,得到的控制光输入光电探测器7,光电探测器7对其进行光电转换后,得到第一电信号以用于控制器产生控制信号。The coupler B3 that controls the light input to the MZI5 is divided into two paths, and the two paths of light reach the coupler C6 of the MZI5 through different paths for coherent processing, and the intensity of the output light will reflect the difference in the optical distance of the two arms. After the MZI5 interferes with the input control light, the obtained control light is input to the
光电探测器7将该第一电信号传输给第一控制器8。第一控制器8做出控制决策,产生控制信号以对MZI5进行控制,控制MZI5中的压电陶瓷9的伸缩以调节MZI5两臂的光程差,使得光程差为该激光波长的四分之一,修正温度以及振动等外界因素对MZI5的影响,使得MZI5的输出始终处在线性输出区。第一控制器8对MZI5的反馈控制就可以在一定程度上修正了外界因素对MZI5的影响。The
进一步的,还需执行以下的步骤以进一步消除激光器输出的激光的中心频率的漂移。Further, the following steps need to be performed to further eliminate the drift of the center frequency of the laser output by the laser.
将所述光电探测器7输出的第一电信号输入第二控制器10;由第二控制器10根据该第一电信号,计算得到所述激光的实际中心频率相对于所述激光的中心频率的标准值的偏差度;由第二控制器10根据该偏差度,做出相应的控制以补偿所述激光中心频率的漂移。第二控制器10根据该偏差度,做控制决策,在将所述探测光进行调制生成探测光脉冲时,根据所述偏差度控制用于进行调制控制的调制源11的输出频率,使得所述探测光脉冲的实际中心频率收敛域于所述激光的中心频率的标准值。The first electrical signal output by the
在对调制源11进行了调整后,探测光进入调制器12接受调制,生成探测光脉冲,该探测光脉冲的中心频率进行了矫正,通过上行链路13进入被监测的光缆,使得输入光缆的探测光脉冲的中心频率始终处在标准值附近。由于本发明实施例中产生的探测光脉冲的中心频率已经进行了矫正,故该探测光脉冲在光纤中发生反射和/或散射的光信号,下行链路传输回相干光时域反射仪系统后,经接收得到的基带信号的实际中心频率就能收敛于该基带信号的中心频率的标准值,从而也就消除了由于激光器的中心频率漂移所带来的影响。After the modulation source 11 is adjusted, the detection light enters the
在另一种应用场景中,相干光时域反射仪系统可以设计成如图1c所示的系统,包括:激光器1,耦合器A2,光电探测器7,第一控制器8,第二控制器10,调制源11,调制器12以及MZI5;其中,MZI5包括,耦合器B3、压电陶瓷9和耦合器C6。In another application scenario, the coherent optical time domain reflectometer system can be designed as a system as shown in Figure 1c, including: a laser 1, a coupler A2, a
在此基础上,该系统还包括:相干接收机15、混频器17、振荡器16和基带滤波器18。On this basis, the system also includes: a
以下结合该相干光时域反射仪系统,详细说明动态频偏矫正的方法。The method for dynamic frequency offset correction will be described in detail below in conjunction with the coherent optical time domain reflectometer system.
激光器1输出的光功率经过耦合器A2后分作两路输出,其中一路输出大部分功率,作为探测光供探测用;另一路输出功率较小,作为控制光供控制用。The optical power output by the laser 1 is divided into two outputs after passing through the coupler A2, one of which outputs most of the power, which is used as the detection light for detection; the other output power is small, and is used as the control light for control.
控制光输入MZI5的耦合器B3后分作两路,两路光通过不同的路径到达MZI5的耦合器C6做相干处理,其输出光的强度将反映两臂光程的差异。MZI5对输入的控制光进行干涉后,得到的控制光输入光电探测器7,光电探测器7对其进行光电转换后,得到第一电信号以用于控制器产生控制信号。The control light input into the coupler B3 of MZI5 is divided into two paths, and the two paths of light reach the coupler C6 of MZI5 through different paths for coherent processing, and the intensity of the output light will reflect the difference in the optical distance of the two arms. After the MZI5 interferes with the input control light, the obtained control light is input to the
光电探测器7将该第一电信号传输给第一控制器8。第一控制器8做出控制决策,产生控制信号以对MZI5进行控制,控制MZI5中的压电陶瓷9的伸缩以调节MZI5两臂的光程差,使MZI5两臂的光程差为该激光波长的四分之一。The
该系统中的,调制源11产生调制控制信号控制所述调制器12对所述探测光进行调制;调制器12对所述探测光进行调制,生成探测光脉冲。In this system, the modulation source 11 generates a modulation control signal to control the
相干接收机15,接收从下行链路中传输回来的光信号,并对所述从下行链路中传输回来的光信号进行相干处理,得到第二电信号。The
振荡器16,用于产生电本振信号。The
混频器17,用于将所述电本振信号与所述第二电信号进行混频,得到基带信号。The
本实施例进行动态频偏的矫正的方法如下:The method for correcting the dynamic frequency offset in this embodiment is as follows:
将所述光电探测器7输出的第一电信号输入第二控制器10;由第二控制器10根据该第一电信号,计算得到所述激光的实际中心频率相对于所述激光的中心频率的标准值的偏差度;并基于所述偏差度,产生控制信号以控制所述振荡器16调谐其输出的所述电本振信号的频率,使得所述混频器17得到的所述基带信号的实际中心频率收敛于所述激光的中心频率的标准值,由此实现了动态频偏的矫正。The first electrical signal output by the
在本实施例中,还可以通过一耦合器将探测光进行划分,将划分出的一部分探测光输出到相干接收机,此时的相干光时域反射仪系统如图1d所示,通过耦合器D,将探测光分成两部分,一部分输入调制器12进行调制,另一部分输入相干接收机15与从下行链路中传输回来的光信号进行相干处理,产生第二电信号,第二控制器10调谐后产生的的电本振信号与该第二电信号进行混频,得到的基带信号的实际中心频率收敛于所述基带信号的中心频率的标准值,由此实现了动态频偏的矫正。In this embodiment, a coupler can also be used to divide the probe light, and a part of the probe light can be output to the coherent receiver. At this time, the coherent optical time domain reflectometer system is shown in Figure 1d, through the coupler D, the detection light is divided into two parts, one part is input to the
本实施例将激光器输出的激光划分为探测光和控制光,根据控制光计算得到激光的实际中心频率相对于激光的中心频率的标准值的偏差度;根据该偏差度进行相应的补偿控制,以消除激光器的中心频率漂移所带来的影响,提高光相干探测性能,并且能够减少对光源线宽的要求。In this embodiment, the laser output by the laser is divided into probe light and control light, and the deviation degree of the actual center frequency of the laser relative to the standard value of the center frequency of the laser is calculated according to the control light; corresponding compensation control is performed according to the deviation degree, so that The influence brought by the center frequency drift of the laser is eliminated, the optical coherent detection performance is improved, and the requirement for the line width of the light source can be reduced.
本发明一实施例提供了一种相干光时域反射仪系统,该系统的结构示意图可以参见图1c。包括:激光器1、第一分光器2(可以为图示中的耦合器A)、MZI5、光电探测器7、第一控制器5、第二控制器10,调制器12和调制源11。An embodiment of the present invention provides a coherent optical time domain reflectometer system, and a schematic structural diagram of the system can be referred to in FIG. 1c. It includes: a laser 1 , a first beam splitter 2 (could be a coupler A in the figure), an
所述激光器1,用于产生激光;The laser 1 is used to generate laser light;
所述第一分光器2,用于对所述激光进行分光,得到探测光和控制光;The
所述MZI5,用于对输入的所述控制光进行干涉,得到干涉后的控制光;The MZI5 is configured to interfere with the input control light to obtain the control light after interference;
所述光电探测器7,用于将所述干涉后的控制光进行光电转换得到第一电信号;The
所述第一控制器8,用于根据所述第一电信号产生控制信号,以对所述MZI5进行控制,使得所述MZI5的两臂上传输的光信号的光程差为所述激光的波长的四分之一;The
所述调制器12,用于对所述探测光进行调制,生成探测光脉冲;The
所述调制源11,用于产生调制控制信号控制所述调制器12对所述探测光进行调制;The modulation source 11 is configured to generate a modulation control signal to control the
所述第二控制器10,用于根据所述第一电信号,计算得到所述激光的实际中心频率相对于所述激光的中心频率的标准值的偏差度,并基于所述偏差度,产生控制信号以控制所述调制源11输出所述调制控制信号的输出频率,使得所述调制器12调制生成的所述探测光脉冲的实际中心频率收敛于所述激光的中心频率的标准值。The
此外,本实施例的所述系统还进一步包括:相干接收机15,用于接收从下行链路中传输回来的光信号,并对所述从下行链路中传输回来的光信号进行相干处理。In addition, the system of this embodiment further includes: a
在基于图1c所示的相干光时域反射仪系统的基础上,还可以通过一分光器将探测光进行划分,将划分出的一部分探测光输出到相干接收机15。此时需要对系统进行进一步的改进,改进后的相干光时域反射仪系统的结构示意图可参见图1d所示,此时,所述系统还进一步包括:第二分光器4(可以为图1d所示中的耦合器D),用于从所述探测光中分出一部分光,并将其输入到所述相干接收机15。On the basis of the coherent optical time domain reflectometer system shown in FIG. 1 c , the detection light can also be divided by an optical splitter, and a part of the divided detection light is output to the
本实施例中的相干光时域反射仪系统的各模块之间的交互机理和功能可参见图1a至图1d对应实施例的记载,在此不再赘述。For the interaction mechanism and functions among the modules of the coherent optical time domain reflectometer system in this embodiment, please refer to the descriptions of the corresponding embodiments in FIG. 1a to FIG. 1d , and details will not be repeated here.
本实施例将激光器输出的激光划分为探测光和控制光,根据控制光计算得到激光的实际中心频率相对于激光的中心频率的标准值的偏差度;根据该偏差度进行相应的补偿控制,以消除激光器的中心频率漂移所带来的影响,提高光相干探测性能,并且能够减少对光源线宽的要求。In this embodiment, the laser output by the laser is divided into probe light and control light, and the deviation degree of the actual center frequency of the laser relative to the standard value of the center frequency of the laser is calculated according to the control light; corresponding compensation control is performed according to the deviation degree, so that The influence brought by the center frequency drift of the laser is eliminated, the optical coherent detection performance is improved, and the requirement for the line width of the light source can be reduced.
本发明一实施例提供了一种相干光时域反射仪系统,该系统的结构示意图可参见图1d。包括:激光器1、第一分光器2(可以为图示中的耦合器A)、MZI5、光电探测器7、第一控制器8、第二控制器10,调制器12、调制源11、相干接收机15、混频器17和振荡器16。An embodiment of the present invention provides a coherent optical time domain reflectometer system, and the structural diagram of the system can be seen in FIG. 1d. Including: laser 1, first beam splitter 2 (could be coupler A in the figure), MZI5,
所述激光器1,用于产生激光;The laser 1 is used to generate laser light;
所述第一分光器2,用于对所述激光进行分光,得到探测光和控制光;The
所述MZI5,用于对输入的所述控制光进行干涉,得到干涉后的控制光;The MZI5 is configured to interfere with the input control light to obtain the control light after interference;
所述光电探测器7,用于将所述干涉后的控制光进行光电转换得到第一电信号;The
所述第一控制器8,用于根据所述第一电信号产生控制信号,以对所述MZI5进行控制,使得所述MZI5的两臂上传输的光信号的光程差为所述激光的波长的四分之一;The
所述调制器12,用于对所述探测光进行调制,生成探测光脉冲;The
所述调制源11,用于产生调制控制信号控制所述调制器12对所述探测光进行调制;The modulation source 11 is configured to generate a modulation control signal to control the
所述相干接收机15,用于接收从下行链路中传输回来的光信号,并对所述从下行链路中传输回来的光信号进行相干处理,得到第二电信号;The
所述振荡器16,用于产生电本振信号;The
所述混频器17,用于将所述电本振信号与所述第二电信号进行混频,得到基带信号;The
所述第二控制器10,用于根据所述第一电信号,计算得到所述激光的实际中心频率相对于所述激光的中心频率的标准值的偏差度,并基于所述偏差度,产生控制信号以控制所述振荡器16调谐其输出的所述电本振信号的频率,使得所述混频器17得到的所述基带信号的实际中心频率收敛于所述激光的中心频率的标准值。The
本实施例可以通过一分光器将探测光进行划分,将划分出的一部分探测光输出到相干接收机15,所述系统还进一步包括:第二分光器4(可以为图示中的耦合器D),用于从所述探测光中分出一部分光,并将其输入到所述相干接收机15中与所述从下行链路中传输回来的光信号进行相干。In this embodiment, the detection light can be divided by a light splitter, and a part of the detection light is output to the
本实施例中的光纤通信系统动态频偏矫正的装置的各模块之间的交互机理和功能可参见图1a至图1d对应实施例的记载,在此不再赘述。For the interaction mechanism and functions among the modules of the device for dynamic frequency offset correction of the optical fiber communication system in this embodiment, please refer to the descriptions of the corresponding embodiments in FIG. 1a to FIG. 1d , which will not be repeated here.
本实施例将激光器输出的激光划分为探测光和控制光,根据控制光计算得到激光的实际中心频率相对于激光的中心频率的标准值的偏差度;根据该偏差度进行相应的补偿控制,以消除激光器的中心频率漂移所带来的影响,提高光相干探测性能,并且能够减少对光源线宽的要求。In this embodiment, the laser output by the laser is divided into probe light and control light, and the deviation degree of the actual center frequency of the laser relative to the standard value of the center frequency of the laser is calculated according to the control light; corresponding compensation control is performed according to the deviation degree, so that The influence brought by the center frequency drift of the laser is eliminated, the optical coherent detection performance is improved, and the requirement for the line width of the light source can be reduced.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention.
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010601965.8A CN102170307B (en) | 2010-12-14 | 2010-12-14 | Dynamic Frequency Offset Correction Method and Coherent Optical Time Domain Reflectometer System |
PCT/CN2011/083566 WO2012079480A1 (en) | 2010-12-14 | 2011-12-06 | Dynamic frequency deviation correction method and coherence optical time-domain reflectometer system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010601965.8A CN102170307B (en) | 2010-12-14 | 2010-12-14 | Dynamic Frequency Offset Correction Method and Coherent Optical Time Domain Reflectometer System |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102170307A true CN102170307A (en) | 2011-08-31 |
CN102170307B CN102170307B (en) | 2014-01-08 |
Family
ID=44491302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010601965.8A Expired - Fee Related CN102170307B (en) | 2010-12-14 | 2010-12-14 | Dynamic Frequency Offset Correction Method and Coherent Optical Time Domain Reflectometer System |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102170307B (en) |
WO (1) | WO2012079480A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012079480A1 (en) * | 2010-12-14 | 2012-06-21 | 华为技术有限公司 | Dynamic frequency deviation correction method and coherence optical time-domain reflectometer system |
CN104677398A (en) * | 2015-03-13 | 2015-06-03 | 南京大学 | A Φ-OTDR Sensitization Method and Device Based on Frequency Drift Dynamic Compensation |
CN105699050A (en) * | 2016-02-04 | 2016-06-22 | 南京晓庄学院 | Combined type distributed optical fiber sensing method and system integrated with chaotic light source and coherent detection |
CN106533547A (en) * | 2016-10-19 | 2017-03-22 | 全球能源互联网研究院 | Electric power optical fiber communication line fault monitoring device |
WO2018232571A1 (en) * | 2017-06-19 | 2018-12-27 | 华为技术有限公司 | Uplink optical signal modulation method, optical communication node and system |
CN110459937A (en) * | 2018-05-08 | 2019-11-15 | 华为技术有限公司 | Laser |
CN110492941A (en) * | 2018-05-14 | 2019-11-22 | 华为技术有限公司 | A kind of optica signal receivingl transmitting apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101394232A (en) * | 2007-12-17 | 2009-03-25 | 北京邮电大学 | A Device and Method for Inserting and Erasing Optical Marks Based on SOA-MZI |
CN101459638A (en) * | 2007-12-14 | 2009-06-17 | 华为技术有限公司 | Receiving apparatus and method for differential quadrature phased shift keying DQPSK signal |
EP1723704B1 (en) * | 2004-03-02 | 2009-07-08 | Board of Trustees operating Michigan State University | Laser system using ultra-short laser pulses |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2327715A1 (en) * | 1999-12-16 | 2001-06-16 | John William Stayt Jr. | Method and apparatus for stabilizing laser wavelength |
CN102170307B (en) * | 2010-12-14 | 2014-01-08 | 华为技术有限公司 | Dynamic Frequency Offset Correction Method and Coherent Optical Time Domain Reflectometer System |
-
2010
- 2010-12-14 CN CN201010601965.8A patent/CN102170307B/en not_active Expired - Fee Related
-
2011
- 2011-12-06 WO PCT/CN2011/083566 patent/WO2012079480A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1723704B1 (en) * | 2004-03-02 | 2009-07-08 | Board of Trustees operating Michigan State University | Laser system using ultra-short laser pulses |
CN101459638A (en) * | 2007-12-14 | 2009-06-17 | 华为技术有限公司 | Receiving apparatus and method for differential quadrature phased shift keying DQPSK signal |
CN101394232A (en) * | 2007-12-17 | 2009-03-25 | 北京邮电大学 | A Device and Method for Inserting and Erasing Optical Marks Based on SOA-MZI |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012079480A1 (en) * | 2010-12-14 | 2012-06-21 | 华为技术有限公司 | Dynamic frequency deviation correction method and coherence optical time-domain reflectometer system |
CN104677398A (en) * | 2015-03-13 | 2015-06-03 | 南京大学 | A Φ-OTDR Sensitization Method and Device Based on Frequency Drift Dynamic Compensation |
CN105699050A (en) * | 2016-02-04 | 2016-06-22 | 南京晓庄学院 | Combined type distributed optical fiber sensing method and system integrated with chaotic light source and coherent detection |
CN105699050B (en) * | 2016-02-04 | 2018-02-13 | 南京晓庄学院 | Merge the compound distributing optical fiber sensing method and system of chaos light source and coherent detection |
CN106533547A (en) * | 2016-10-19 | 2017-03-22 | 全球能源互联网研究院 | Electric power optical fiber communication line fault monitoring device |
CN106533547B (en) * | 2016-10-19 | 2018-12-18 | 全球能源互联网研究院有限公司 | Power optical fiber communication line fault monitoring device |
WO2018232571A1 (en) * | 2017-06-19 | 2018-12-27 | 华为技术有限公司 | Uplink optical signal modulation method, optical communication node and system |
CN110459937A (en) * | 2018-05-08 | 2019-11-15 | 华为技术有限公司 | Laser |
CN110459937B (en) * | 2018-05-08 | 2021-03-23 | 华为技术有限公司 | Laser device |
CN110492941A (en) * | 2018-05-14 | 2019-11-22 | 华为技术有限公司 | A kind of optica signal receivingl transmitting apparatus |
CN110492941B (en) * | 2018-05-14 | 2021-01-29 | 华为技术有限公司 | Optical signal receiving and transmitting device |
US11171722B2 (en) | 2018-05-14 | 2021-11-09 | Huawei Technologies Co., Ltd. | Optical signal transceiver apparatus |
Also Published As
Publication number | Publication date |
---|---|
CN102170307B (en) | 2014-01-08 |
WO2012079480A1 (en) | 2012-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11086187B2 (en) | Bias control of optical modulators | |
CN102170307B (en) | Dynamic Frequency Offset Correction Method and Coherent Optical Time Domain Reflectometer System | |
CN102215104A (en) | Delay-locked-loop-based remote microwave signal phase-stabilized optical fiber transmission device | |
US10498459B2 (en) | Optical transmitter and skew compensation method | |
JPH079386B2 (en) | Optical fiber dispersion characteristics measurement method | |
CN108306689A (en) | Double parallel Mach-Zehnder modulators based on three pilot tones(DPMZM)Arbitrary point autobias control method | |
US10498457B2 (en) | Optical carrier-suppressed signal generator | |
US10608748B2 (en) | Common mode rejection ratio measurement device for coherent optical receiver, and measurement method | |
CN108616311A (en) | A kind of device and method based on Mach-Zehnder type optical filter frequency measurements | |
US10180617B1 (en) | Optical modulating apparatus and method for controlling optical modulator | |
US10976576B2 (en) | Bias control for downhole optical intensity modulators | |
JP2007219063A (en) | Light modulating device | |
CN118784079B (en) | A method and device for transmitting optical frequency via optical fiber based on event timing | |
Zhao et al. | Modulator bias control based on bi-PID algorithm for optical time and frequency transmission | |
JP5978611B2 (en) | Laser phase / frequency noise compensation method and system in optical device | |
CN116203536A (en) | Frequency modulation continuous wave laser frequency modulation bandwidth locking device and laser radar equipment | |
US8270844B2 (en) | Low jitter RF distribution system | |
RU2777422C1 (en) | Method and device for generating quantum states in phase-coded quantum key distribution system | |
CN112432764B (en) | Optical device broadband frequency response measuring method and device | |
WO2021084710A1 (en) | LiDAR DEVICE, LiDAR SYSTEM, AND MEASUREMENT METHOD USING LiDAR | |
JP6475567B2 (en) | Optical transmitter | |
WO2025074639A1 (en) | Optical receiver, its balance adjusting method and device | |
JPH0242329A (en) | Device for measuring optical frequency modulation characteristic | |
CN116990989A (en) | Electro-optical modulator bias point control method and device | |
WO2023144868A1 (en) | Optical pulse generation device and generation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: SHENZHEN LIANCHUANG INTELLECTUAL PROPERTY SERVICE Free format text: FORMER OWNER: HUAWEI TECHNOLOGY CO., LTD. Effective date: 20150703 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20150703 Address after: 518129 Nanshan District Nanshan digital cultural industry base, east block, Guangdong, Shenzhen 407 Patentee after: Shenzhen LIAN intellectual property service center Address before: 518129 Bantian HUAWEI headquarters office building, Longgang District, Guangdong, Shenzhen Patentee before: Huawei Technologies Co., Ltd. |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140108 Termination date: 20171214 |
|
CF01 | Termination of patent right due to non-payment of annual fee |