CN102158007B - Electromechanical driver - Google Patents
Electromechanical driver Download PDFInfo
- Publication number
- CN102158007B CN102158007B CN201110061364.7A CN201110061364A CN102158007B CN 102158007 B CN102158007 B CN 102158007B CN 201110061364 A CN201110061364 A CN 201110061364A CN 102158007 B CN102158007 B CN 102158007B
- Authority
- CN
- China
- Prior art keywords
- differential screw
- fixed
- friction wheel
- driven pulley
- sleeve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- 230000033001 locomotion Effects 0.000 abstract description 31
- 230000003287 optical effect Effects 0.000 abstract description 19
- 230000006835 compression Effects 0.000 abstract description 16
- 238000007906 compression Methods 0.000 abstract description 16
- 230000005540 biological transmission Effects 0.000 abstract description 6
- 238000012423 maintenance Methods 0.000 abstract description 2
- 238000012545 processing Methods 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 5
- 230000002457 bidirectional effect Effects 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000009347 mechanical transmission Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Images
Landscapes
- Transmission Devices (AREA)
Abstract
一种机电式驱动器,由差动螺旋副结构、摩擦轮结构、压紧装置构成,电机通过摩擦轮结构驱动差动螺旋副结构,把旋转运动转换为直线运动;螺旋传动结构采用差动螺旋副结构,提高了螺旋传动结构的精度;摩擦轮结构通过做螺旋运动的从动轮,避免了电机等动力元件的轴向运动,提高了系统的平稳性;压紧装置利用压缩弹簧为摩擦轮结构提供所需压紧力,保证了摩擦轮结构的正常工作。在能动光学系统中,本发明固定于镜室,经由力传感器、柔性连接件等,对光学镜面施加拉压作用力,控制系统根据力传感器作用力测量值与能动光学系统所需作用力之差对电机的运动量进行调整,直到满足光学镜面面形的要求。本发明具有加工、维修以及更换方便,性能可靠稳定的优点。
An electromechanical driver is composed of a differential screw pair structure, a friction wheel structure, and a pressing device. The motor drives the differential screw pair structure through the friction wheel structure to convert rotational motion into linear motion; the screw transmission structure adopts a differential screw pair The structure improves the precision of the screw transmission structure; the friction wheel structure avoids the axial movement of the power components such as the motor through the driven wheel of the spiral motion, and improves the stability of the system; the compression device uses the compression spring to provide friction wheel structure The required pressing force ensures the normal operation of the friction wheel structure. In the active optical system, the present invention is fixed in the mirror chamber, and through force sensors, flexible connectors, etc., the tension and pressure force is applied to the optical mirror surface, and the control system is based on the difference between the force measurement value of the force sensor and the force required by the active optical system. Adjust the amount of movement of the motor until it meets the requirements of the optical mirror surface shape. The invention has the advantages of convenient processing, maintenance and replacement, and reliable and stable performance.
Description
技术领域 technical field
本发明涉及一种在能动光学系统中沿光学镜轴向施加拉压双向作用力的机电式驱动器,属于机械装置。The invention relates to an electromechanical driver for applying tension and compression bidirectional force along the axial direction of an optical mirror in a dynamic optical system, which belongs to a mechanical device.
背景技术 Background technique
在国内外大口径望远镜系统中,主镜系统采用能动光学系统,它利用能动薄主镜背面安装的驱动器阵列改变主镜面形,进而实现对波前误差的校正,使得望远镜光学系统保持良好的光学波前质量。在能动薄主镜光学系统中,驱动器主要用于承受能动主镜重量和校正主镜面形,因此要求驱动器具有行程大,负载强,精度高,运动平稳等特点,国内外大口径望远镜系统一般采用液压式、气压式或机械式结构来实现驱动器装置,同时在工作过程中,利用力传感器测量驱动器的输出作用力,并把测量值发送给控制系统。例如,图1给出了NTT中的驱动器,采用的是机械式结构,它利用固定平衡锤承担镜面重量,并利用步进电机经由滚珠丝杠推动自由平衡锤移动,通过杠杆结构为校正面形提供变化的作用力,该驱动器的负载能力较小,且只能提供单向压力载荷。图2表示VLT设计的驱动器结构,它由主动结构和被动结构两部分组成,主动结构为机械式结构,利用电机驱动滚珠丝杠和弹性元件来产生变化的作用力,该部分力主用于校正镜面面形,被动结构为液压式结构,主要用于承受主镜重量,该驱动器载荷大,精度高,但是体积庞大,安装和维修不太方便。图3描述了SUBARU望远镜的驱动器结构,它也采用了机械式驱动器结构,驱动器与镜面的接触点位于主镜的重心面,利用平衡锤承担主镜轴向和径向重量,校正面形的作用力由电机经过丝杠推动弹簧来提供,该驱动器精度高,行程大,运动平稳,但是结构同样巨大,造价昂贵。如图4给出了LAMOST望远镜的驱动器采用了电机驱动滚珠丝杠与弹性元件的结构,属于机械式结构。图5表示的结构是国内专利《一种气压式力促动器》(姚正秋、王跃飞、崔向群,专利号ZL97236305.X)中提到一种气压式驱动器(文献中称为促动器,这里统一称为驱动器),它利用电机通过滚珠丝杠驱动一个设置有密封充气的波纹管,来实现对能动光学镜面施加双向作用力。由于滚珠丝杠的存在,使得驱动器不能自锁,需要配备锁紧装置。In the large-aperture telescope systems at home and abroad, the primary mirror system adopts a dynamic optical system, which uses the driver array installed on the back of the active thin primary mirror to change the shape of the primary mirror, and then realizes the correction of the wavefront error, so that the telescope optical system maintains a good optical system. wavefront quality. In the active thin primary mirror optical system, the driver is mainly used to bear the weight of the active primary mirror and correct the surface shape of the primary mirror. Therefore, the driver is required to have the characteristics of large stroke, strong load, high precision, and stable movement. Large-aperture telescope systems at home and abroad generally use The driver device is realized by hydraulic, pneumatic or mechanical structure. At the same time, during the working process, the force sensor is used to measure the output force of the driver, and the measured value is sent to the control system. For example, Figure 1 shows the driver in NTT, which adopts a mechanical structure. It uses a fixed counterweight to bear the weight of the mirror, and uses a stepping motor to move the free counterweight through a ball screw. The lever structure is used to correct the surface shape. Providing varying forces, the drive has a small load capacity and can only provide one-way pressure loads. Figure 2 shows the drive structure designed by VLT. It consists of two parts, the active structure and the passive structure. The active structure is a mechanical structure. The motor drives the ball screw and the elastic element to generate a changing force. This part of the force is mainly used to correct the mirror surface. The surface shape and the passive structure are hydraulic structures, which are mainly used to bear the weight of the primary mirror. The driver has a large load and high precision, but it is bulky and inconvenient to install and maintain. Figure 3 describes the driver structure of the SUBARU telescope, which also adopts a mechanical driver structure. The contact point between the driver and the mirror is located on the center of gravity of the primary mirror, and the counterweight is used to bear the axial and radial weight of the primary mirror to correct the surface shape. The force is provided by the motor through the lead screw to push the spring. The driver has high precision, large stroke and smooth movement, but the structure is also huge and expensive. As shown in Figure 4, the driver of the LAMOST telescope adopts the structure of motor-driven ball screw and elastic element, which belongs to the mechanical structure. The structure shown in Figure 5 is a pneumatic actuator mentioned in the domestic patent "A Pneumatic Force Actuator" (Yao Zhengqiu, Wang Yuefei, Cui Xiangqun, Patent No. ZL97236305. It is called a driver), which uses a motor to drive a bellows with airtight sealing through a ball screw, so as to apply a bidirectional force to the active optical mirror. Due to the existence of the ball screw, the drive cannot be self-locked, and a locking device is required.
螺旋传动作为一种极其重要且技术成熟稳定的机械传动结构,在微位移驱动与定位,精密和超精密加工等领域发挥着重要作用,特别是差动螺旋结构的应用,提高了螺旋传动的精度,差动螺旋结构由两个旋向相同,螺距不同的螺纹副组成,等效螺距为两个螺纹副螺距之差,一般差动螺旋结构包括固定螺母、平移螺母和差动螺杆三个部件,由于差动螺杆做螺旋运动,因此电机等动力元件不能直接与其相连,以保证电机等动力元件的平稳性。其它具备产生高精度位移的机械装置还有电致伸缩式、磁致伸缩式、弹性变形式等结构,它们一般具有高刚度、良好的动态特性,但是行程较小,载荷能力低。As an extremely important mechanical transmission structure with mature and stable technology, screw transmission plays an important role in the fields of micro-displacement drive and positioning, precision and ultra-precision machining, etc., especially the application of differential screw structure improves the accuracy of screw transmission , the differential helical structure consists of two thread pairs with the same direction of rotation and different pitches. The equivalent pitch is the difference between the pitches of the two thread pairs. The general differential helical structure includes three parts: a fixed nut, a translation nut and a differential screw. Due to the helical motion of the differential screw, the motor and other power components cannot be directly connected to it to ensure the stability of the motor and other power components. Other mechanical devices capable of producing high-precision displacement include electrostrictive, magnetostrictive, and elastic deformation structures. They generally have high stiffness and good dynamic characteristics, but have a small stroke and low load capacity.
发明内容 Contents of the invention
本发明技术解决问题:克服现有技术的不足,提供一种机电式驱动器,该驱动器使用了差动螺旋结构、摩擦轮结构等基本传动结构,加工、维修以及更换方便,性能可靠稳定。The invention technically solves the problem: overcomes the deficiencies of the prior art, and provides an electromechanical driver, which uses basic transmission structures such as a differential spiral structure and a friction wheel structure, and is easy to process, maintain and replace, and has reliable and stable performance.
本发明的技术解决方案为:机电式驱动器包括:电机8、差动螺旋副结构23、摩擦轮结构17、压紧装置10和减速箱9;电机8经由减速箱9、联轴节30与摩擦轮结构17相连,摩擦轮结构17安装于压紧装置10中,并与差动螺旋副结构23连接,压紧装置10与差动螺旋副结构23均固接于底板28;The technical solution of the present invention is: the electromechanical driver includes:
所述摩擦轮结构17包括主动轮轴14、主动轮18、从动轮19、两个球轴承21和球轴承固定轴20;主动轮轴14经由联轴节30与减速箱9相连,主动轮18绕主动轮轴14旋转,主动轮18与从动轮19外切接触;从动轮19轴向与差动螺纹副结构23的差动螺旋轴24相连接;两个球轴承21位于从动轮19中心高所在平面的两侧成对称分布,两个球轴承21内圈分别固定于两个球轴承固定轴20,球轴承固定轴20均与从动轮19轴向平行安装,球轴承21外圈与从动轮19外切接触;Described
所述压紧装置10包括压缩弹簧11、连接轴12、旋转架13、旋转轴15、主动轮固定架16、从动轮固定架22;主动轮18通过主动轮轴14安装于旋转架13中,旋转架13经由旋转轴15安装于主动轮固定架16,旋转架13经由压缩弹簧11与连接轴12连接,球轴承固定轴20固接于从动轮固定架22中,旋转架13与从动轮固定架22通过连接轴12相连接。Described
所述差动螺旋副结构23包括差动螺旋轴24、套筒固定板25、套筒26和输出轴27;差动螺旋轴24分别与套筒26和输出轴27组成螺旋副,差动螺旋轴24沿轴向与从动轮19相连接,套筒26经由套筒固定板25固定连接于底板28。The differential
本发明的工作过程中,电机首先通过减速箱、联轴节驱动摩擦轮结构,本发明中的摩擦轮结构为平行摩擦轮结构,与传统的平行摩擦轮结构的相同点为主动轮均做旋转运动,不同点为从动轮不做旋转运动而是做螺旋运动,摩擦轮结构还包括两个与从动轮外切接触并做旋转运动的球轴承,摩擦轮结构由压紧装置通过调整压缩弹簧的变形量,使旋转架绕旋转轴转动,来提供所需的压紧力;然后从动轮带动差动螺旋副结构运动,本发明中的差动螺旋副结构主要由套筒、输出轴和差动螺杆三个部件组成,差动螺杆分别与套筒和输出轴组成螺旋副,套筒固定于底板,差动螺杆与从动轮同轴连接,输出轴等效为传统差动螺旋结构中的平移螺母;再后差动螺杆把从动轮的螺旋运动转换输出轴为直线运动输出;最终由连接于输出轴的力传感器把作用力施加于镜面,控制系统根据力传感器测量的作用力与能动光学系统所需作用力之差对电机的运动量进行调整,直到满足镜面面形要求。差动螺旋副结构的应用,提高了螺旋传动结构的精度;摩擦轮结构的存在避免了电机等驱动部件的轴向运动,提高了系统的平稳性;压紧装置主要利用压缩弹簧为摩擦轮结构提供所需压紧力,保证了摩擦轮结构的正常工作。In the working process of the present invention, the motor first drives the friction wheel structure through the reduction box and the shaft coupling. The friction wheel structure in the present invention is a parallel friction wheel structure, and the same point as the traditional parallel friction wheel structure is that the driving wheels all rotate The difference is that the driven wheel does not rotate but does spiral motion. The friction wheel structure also includes two ball bearings that are in circumscribed contact with the driven wheel and rotate. The friction wheel structure is controlled by the compression device by adjusting the compression spring. The amount of deformation makes the rotating frame rotate around the rotating shaft to provide the required pressing force; then the driven wheel drives the differential screw pair structure to move, and the differential screw pair structure in the present invention is mainly composed of a sleeve, an output shaft and a differential The screw is composed of three parts, the differential screw and the sleeve and the output shaft form a screw pair respectively, the sleeve is fixed on the bottom plate, the differential screw is coaxially connected with the driven wheel, and the output shaft is equivalent to the translation nut in the traditional differential screw structure ; and then the differential screw converts the helical motion of the driven wheel to the output shaft as a linear motion output; finally, the force sensor connected to the output shaft applies the force to the mirror, and the control system is based on the force measured by the force sensor and the active optical system. The difference in the required force is used to adjust the amount of movement of the motor until it meets the requirements of the mirror surface shape. The application of the differential screw pair structure improves the precision of the screw transmission structure; the existence of the friction wheel structure avoids the axial movement of the driving parts such as the motor, and improves the stability of the system; the compression device mainly uses the compression spring as the friction wheel structure The required pressing force is provided to ensure the normal operation of the friction wheel structure.
本发明的工作原理为:电机通过减速箱、联轴节驱动摩擦轮结构、差动螺旋副结构,压紧装置为摩擦轮结构提供所需的压紧力,摩擦轮结构把电机的旋转运动转换为螺旋运动输出,然后差动螺旋副结构把输入的螺旋运动转换为直线运动输出,最终由力传感器把作用力施加于镜面,控制系统根据力传感器测量的作用力与能动光学系统所需作用力之差对电机的运动量进行调整,直到满足镜面面形要求。The working principle of the present invention is: the motor drives the friction wheel structure and the differential screw pair structure through the reduction box and the coupling, the pressing device provides the required pressing force for the friction wheel structure, and the friction wheel structure converts the rotational motion of the motor It is the output of spiral motion, and then the differential spiral substructure converts the input spiral motion into linear motion output, and finally the force sensor applies the force to the mirror surface, and the control system is based on the force measured by the force sensor and the force required by the active optical system Adjust the amount of movement of the motor until it meets the requirements of the mirror surface shape.
本发明中的摩擦轮结构由主动轮、从动轮与两个球轴承组成,主动轮在电机驱动下做旋转运动,从动轮做螺旋运动,球轴承内圈固定于球轴承固定轴,外圈与从动轮接触做旋转运动,从动轮与差动螺旋副结构同轴连接,摩擦轮结构的使用避免了电机等动力的轴向运动,提高了系统的平稳性。The friction wheel structure in the present invention is composed of a driving wheel, a driven wheel and two ball bearings. The driving wheel rotates under the drive of the motor, and the driven wheel performs a spiral motion. The inner ring of the ball bearing is fixed on the fixed shaft of the ball bearing, and the outer ring and the The driven wheel is in contact with the rotary motion, and the driven wheel is coaxially connected with the differential screw pair structure. The use of the friction wheel structure avoids the axial movement of the power such as the motor, and improves the stability of the system.
本发明中的压紧装置主要由压缩弹簧、旋转架、主动轮固定架、从动轮固定架等组成,主动轮安装于旋转架,旋转架可绕主动轮固定架转动,球轴承安装于从动轮固定架,主动轮固定架,从动轮固定架均固定于底板,利用压缩弹簧使得旋转架向从动轮固定架转动,从而为摩擦轮结构提供足够的压紧力。The pressing device in the present invention is mainly composed of a compression spring, a rotating frame, a driving wheel fixing frame, a driven wheel fixing frame, etc., the driving wheel is installed on the rotating frame, the rotating frame can rotate around the driving wheel fixing frame, and the ball bearing is installed on the driven wheel The fixed frame, the driving wheel fixed frame, and the driven wheel fixed frame are all fixed on the base plate, and the compression spring is used to make the rotating frame rotate to the driven wheel fixed frame, thereby providing sufficient pressing force for the friction wheel structure.
本发明与现有技术相比的有益效果为:本发明结构原理简单、工艺性好,不仅能够满足能动光学系统中光学镜面对驱动器的技术要求,而且精度比较高,加工维修方便,同时能沿光学镜面轴向施加拉压双向的作用力。Compared with the prior art, the present invention has the beneficial effects that: the present invention is simple in structure and principle, good in manufacturability, not only can meet the technical requirements of the optical mirror in the active optical system for the driver, but also has relatively high precision, convenient processing and maintenance, and can A bidirectional force of tension and compression is applied along the axis of the optical mirror.
附图说明 Description of drawings
图1为NTT望远镜中的驱动器结构示意图;Fig. 1 is the schematic diagram of the driver structure in the NTT telescope;
图2为VLT望远镜中的驱动器结构示意图;Fig. 2 is the schematic diagram of the driver structure in the VLT telescope;
图3为SUBARU望远镜中的驱动器结构示意图;Fig. 3 is a schematic diagram of the driver structure in the SUBARU telescope;
图4为LAMOST望远镜中的驱动器结构示意图;Figure 4 is a schematic diagram of the driver structure in the LAMOST telescope;
图5为专利ZL97236305.X设计的驱动器结构示意图;Figure 5 is a structural schematic diagram of the driver designed by the patent ZL97236305.X;
图6为本发明的一种螺旋传动式驱动器在能动光学系统中的安装结构示意图;Fig. 6 is a schematic diagram of the installation structure of a screw drive driver in the active optical system of the present invention;
图7为本发明的一种螺旋传动式驱动器内部结构示意图;Fig. 7 is a schematic diagram of the internal structure of a screw drive driver of the present invention;
图8为图7中的摩擦轮结构示意图;Fig. 8 is a schematic structural diagram of the friction wheel in Fig. 7;
图9为图7中的压紧装置结构示意图,图9a为压紧装置主动轮部分结构示意图,图9b为压紧装置从动轮部分结构示意图;Fig. 9 is a schematic structural view of the pressing device in Fig. 7, Fig. 9a is a schematic structural view of the driving wheel of the pressing device, and Fig. 9b is a schematic structural view of the driven wheel of the pressing device;
图10为图7中的差动螺旋副结构示意图。FIG. 10 is a schematic diagram of the structure of the differential helical pair in FIG. 7 .
上述图6-图10中,1镜面,2联结件,3上端柔性件,4力传感器,5下端柔性件,6镜室,7驱动器,8电机,9减速箱,10压紧装置,11压缩弹簧,12连接轴,13旋转架,14主动轮轴,15旋转轴,16主动轮固定架,17摩擦轮结构,18主动轮,19从动轮,20球轴承固定轴,21球轴承,22从动轮固定架,23差动螺旋副结构,24差动螺杆,25套筒固定架,26套筒,27输出轴,28底板,29减速箱固定板,30联轴节,31控制系统。In the above-mentioned figures 6-10, 1 mirror surface, 2 coupling parts, 3 upper flexible parts, 4 force sensors, 5 lower flexible parts, 6 mirror chambers, 7 drivers, 8 motors, 9 reduction boxes, 10 pressing devices, 11 compression Spring, 12 connecting shaft, 13 rotating frame, 14 driving wheel shaft, 15 rotating shaft, 16 driving wheel fixing frame, 17 friction wheel structure, 18 driving wheel, 19 driven wheel, 20 ball bearing fixed shaft, 21 ball bearing, 22 driven wheel Fixed frame, 23 differential screw substructure, 24 differential screw rod, 25 sleeve fixed frame, 26 sleeve, 27 output shaft, 28 bottom plate, 29 reduction box fixed plate, 30 coupling, 31 control system.
具体实施方式 Detailed ways
如图6-图10所示,本发明的结构为:As shown in Fig. 6-Fig. 10, the structure of the present invention is:
图6描述了驱动器7在能动光学系统中的安装结构,驱动器7的套筒26固接于镜室6,其输出轴27依次通过下端柔性件5、力传感器4、上端柔性件3、联结件2连接于镜面1。Figure 6 describes the installation structure of the
图7描述了驱动器7的内部结构,电机8经由减速箱9、联轴节30与摩擦轮结构17相连,摩擦轮结构17安装于压紧装置10中,并与差动螺旋副结构23连接,压紧装置10与差动螺旋副结构23均固接于底板28。Fig. 7 has described the internal structure of
图8描述了摩擦轮结构17,它由主动轮18、主动轮轴14、从动轮19、两个球轴承21、球轴承固定轴20组成,主动轮轴14经由联轴节30与减速箱9相连,主动轮18绕主动轮轴14旋转,主动轮18与从动轮19外切接触;从动轮19轴向与差动螺纹副结构23的差动螺旋轴24相连接;球轴承21内圈固定于球轴承固定轴20,球轴承21外圈与从动轮19外切接触。主动轮18在电机8驱动下做旋转运动,从动轮19做螺旋运动,球轴承21内圈固定于球轴承固定轴20,外圈与从动轮19接触做旋转运动,从动轮19与差动螺旋副结构同轴连接,摩擦轮结构的使用避免了电机等动力的轴向运动,提高了系统的平稳性。Fig. 8 has described
图9描述了压紧装置结构10,它由压缩弹簧11、连接轴12、旋转架13、旋转轴15、主动轮固定架16、从动轮固定架22组成,图9a为压紧装置10的主动轮部分结构,主动轮18通过主动轮轴14安装于旋转架13中,旋转架13经由旋转轴15安装于主动轮固定架16,旋转架13经由压缩弹簧11与连接轴12连接,图9b为压紧装置10的从动轮部分结构,球轴承固定轴20固接于从动轮固定架22中,旋转架13与从动轮固定架22通过连接轴12相连接。Fig. 9 has described holding down
图10描述了差动螺纹副结构23,它由差动螺旋轴24、套筒固定板25、套筒26、输出轴27组成,差动螺旋轴24分别与套筒26、输出轴27组成螺旋副,差动螺旋轴24轴向与从动轮19相连接,套筒26法兰端固接于镜室6,另一端经套筒固定板25固接于底板28,输出轴27与下端柔性件5相连。Fig. 10 has described differential
本发明的工作过程:电机8首先通过减速箱9、联轴节30驱动摩擦轮结构17,本发明中的摩擦轮结构17为平行摩擦轮结构,与传统的平行摩擦轮结构的相同点为主动轮18均做旋转运动,不同点为从动轮19不做旋转运动而是做螺旋运动,摩擦轮结构17还包括两个与从动轮19外切接触并做旋转运动的球轴承21,摩擦轮结构17由压紧装置10通过调整压缩弹簧11的变形量,使旋转架13绕旋转轴15转动,来提供所需的压紧力;然后从动轮19带动差动螺旋副结构23运动,本发明中的差动螺旋副结构23主要由套筒26、输出轴27和差动螺杆24三个部件组成,差动螺杆24分别与套筒26和输出轴27组成螺旋副,套筒26固定于底板28,差动螺杆24与从动轮19同轴连接,输出轴27等效为传统差动螺旋结构中的平移螺母;再后差动螺杆24把从动轮19的螺旋运动转换输出轴27为直线运动输出;最终由连接于输出轴27的力传感器4把作用力施加于镜面1,能动光学技术中的控制系统31根据力传感器4测量的作用力与能动光学系统所需作用力之差对电机8的运动量进行调整,直到满足镜面1面形要求。The working process of the present invention: the
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110061364.7A CN102158007B (en) | 2011-03-15 | 2011-03-15 | Electromechanical driver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110061364.7A CN102158007B (en) | 2011-03-15 | 2011-03-15 | Electromechanical driver |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102158007A CN102158007A (en) | 2011-08-17 |
CN102158007B true CN102158007B (en) | 2013-04-10 |
Family
ID=44439253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110061364.7A Expired - Fee Related CN102158007B (en) | 2011-03-15 | 2011-03-15 | Electromechanical driver |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102158007B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104049335B (en) * | 2014-06-18 | 2016-04-20 | 哈尔滨工业大学 | The precision micro-displacement actuator used under a kind of polar low-temperature environment |
CN104985806A (en) * | 2015-07-21 | 2015-10-21 | 温州职业技术学院 | End cap transmission device of filter element welding machine for filter |
CN106697911A (en) * | 2016-12-27 | 2017-05-24 | 山东奇润机械设备有限公司 | Differential reciprocating pushing device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101673118A (en) * | 2009-09-24 | 2010-03-17 | 同济大学 | Combined type transmission variable-angle micrometric displacement regulation device |
CN101818798A (en) * | 2010-04-12 | 2010-09-01 | 中国科学院长春光学精密机械与物理研究所 | Friction transmission rotation driving device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE525020C2 (en) * | 2003-03-21 | 2004-11-09 | Metso Dynapac Ab | Actuators for controlling the eccentric torque of a roller-driven eccentric shaft |
-
2011
- 2011-03-15 CN CN201110061364.7A patent/CN102158007B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101673118A (en) * | 2009-09-24 | 2010-03-17 | 同济大学 | Combined type transmission variable-angle micrometric displacement regulation device |
CN101818798A (en) * | 2010-04-12 | 2010-09-01 | 中国科学院长春光学精密机械与物理研究所 | Friction transmission rotation driving device |
Also Published As
Publication number | Publication date |
---|---|
CN102158007A (en) | 2011-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106426267B (en) | A kind of continuously adjustable joint of the rigidity based on floating spring | |
CN110744584B (en) | Flexible active-passive rigidity-variable joint | |
CN103963032B (en) | The four-dimensional adjusting device of a kind of large space optical sensor | |
CN201060144Y (en) | A rolling friction and wear testing machine | |
CN108233764B (en) | Piezoelectric driving type precise rotation driving device adopting special-shaped hinge transmission mechanism | |
CN106584505A (en) | Modularized variable-stiffness robot joint | |
CN103543008B (en) | Spiral transmission mechanism characteristic experimental apparatus | |
CN102211622B (en) | Cylinder series connection elastic driver | |
CN103507063A (en) | 6-SPS type micro-motion parallel robot on the basis of piezoelectric ceramic drive | |
CN102717383B (en) | Novel six-freedom-degree force feedback device | |
CN104985608A (en) | Stiffness-adjustable flexible joint actuator mechanism | |
CN206643958U (en) | A kind of compact variation rigidity rotates flexible joint | |
CN102158007B (en) | Electromechanical driver | |
CN103307246A (en) | Stroke-adjustable push rod mechanism | |
CN107547004A (en) | A kind of two degrees of freedom micro-nano locating platform and application | |
CN114576507B (en) | Two-dimensional precision rotary table driven by ultrasonic motor | |
CN102980822A (en) | Mechanical type pushing fatigue tester and corrosion fatigue testing method | |
CN106100437B (en) | Clamper power regulated linear inertial piezoelectric actuator and start method | |
CN107009345A (en) | A kind of freedom degree parallel connection micro-manipulating robot | |
CN109586612A (en) | A kind of alternating step piezoelectric stick-slip driver with bionical awn of wheat friction surface | |
CN101818798A (en) | Friction transmission rotation driving device | |
CN115890641B (en) | A decoupled series elastic electric artificial muscle actuator and control method thereof | |
CN103252762B (en) | High-precision rotary table of gapless connecting rod mechanism and capable of moving slightly | |
CN110995058B (en) | A piezoelectric rotary precision drive platform based on parasitic inertia principle | |
CN108322088B (en) | A piezoelectric stick-slip motor adopting an I-shaped structure and its driving method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130410 |
|
CF01 | Termination of patent right due to non-payment of annual fee |