CN102157371B - Method for producing monocrystalline silicon nanometer structure - Google Patents
Method for producing monocrystalline silicon nanometer structure Download PDFInfo
- Publication number
- CN102157371B CN102157371B CN2011100709207A CN201110070920A CN102157371B CN 102157371 B CN102157371 B CN 102157371B CN 2011100709207 A CN2011100709207 A CN 2011100709207A CN 201110070920 A CN201110070920 A CN 201110070920A CN 102157371 B CN102157371 B CN 102157371B
- Authority
- CN
- China
- Prior art keywords
- silicon
- mask pattern
- line width
- doping concentration
- ion implantation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Weting (AREA)
- Micromachines (AREA)
Abstract
本发明公开了一种制作单晶硅纳米结构的方法,首先根据单晶硅纳米结构的图形在硅衬底上光刻,定义微米级线宽的掩膜图形;然后通过离子注入在掩膜图形外形成重掺杂区域;接着高温退火使注入的离子扩散进入掩膜图形下面的硅材料中,形成中度掺杂区域,将掩膜图形下低掺杂浓度区域的线宽减小至纳米量级;最后用HNA溶液选择性腐蚀掉中度掺杂区域内的硅,得到低掺杂浓度的单晶硅纳米结构。本发明的方法不仅具备MEMS工艺与IC工艺兼容性好、操作方便、成本低廉、便于大规模生产等优点,而且相对于利用侧墙和光刻胶灰化技术的纳米结构制作方法,拥有更好的线宽可控性。
The invention discloses a method for making a single crystal silicon nanostructure. Firstly, according to the pattern of the single crystal silicon nanostructure, photolithography is carried out on a silicon substrate to define a mask pattern with a micron-level line width; and then ion implantation is performed on the mask pattern A heavily doped region is formed outside; followed by high temperature annealing to diffuse the implanted ions into the silicon material under the mask pattern to form a moderately doped region, reducing the line width of the low doping concentration region under the mask pattern to nanometers level; finally, the silicon in the moderately doped region is selectively etched away with HNA solution to obtain a single crystal silicon nanostructure with low doping concentration. The method of the present invention not only has the advantages of good compatibility between MEMS technology and IC technology, convenient operation, low cost, and convenience for large-scale production, but also has better line width controllability.
Description
技术领域 technical field
本发明涉及微纳机电系统领域,特别涉及一种制作单晶硅纳米结构的方法,这是一种利用传统MEMS的制造工艺,以低成本,大批量制作单晶硅纳米结构的简单方法,使制作的单晶硅纳米结构的尺寸基本可控。The present invention relates to the field of micro-nano electromechanical systems, in particular to a method for manufacturing single-crystal silicon nanostructures, which is a simple method for producing single-crystal silicon nanostructures in large quantities at low cost by using traditional MEMS manufacturing techniques, so that The size of the fabricated single crystal silicon nanostructure is basically controllable.
背景技术 Background technique
单晶硅纳米结构作为纳米硅器件的重要组成部分,在量子限制和表面活性等方面有许多优异的性质,因此有着广泛的应用。例如,与MOSFET结合进行诸如蛋白质、DNA等生物大分子的检测;作为光子晶体研究或者纳米自旋器件研究的基本结构和器件等等。As an important part of nano-silicon devices, single crystal silicon nanostructures have many excellent properties in terms of quantum confinement and surface activity, so they have a wide range of applications. For example, combined with MOSFET to detect biological macromolecules such as protein and DNA; as the basic structure and device for photonic crystal research or nano-spin device research, etc.
传统的硅纳米线(SiNWs)制作方法主要采用纳米加工工艺。纳米加工工艺是自下而上的“组装”纳米线,主要包括激光烧蚀法(Laserablation)、多孔氧化铝模板法等等。激光烧蚀法主要利用汽-液-固相方法(Vapor-liquid-solid method,VLS),当饱和的气态硅不断扩散进入硅与金属催化剂的合金液滴时,固态的硅就会不断从液滴中析出,从而在液-固界面间生长出纳米线。多孔氧化铝模板法利用纳米多孔铝作为模板,硅烷气体在金(Au)、银(Ag)等催化剂的作用下,在纳米孔隙中合成硅,最后除去多孔铝得到纳米线。这些纳米加工工艺虽然具有成本低、尺寸均匀等优点,但条件苛刻,难以操作,兼容性差,且易受催化剂污染。The traditional fabrication method of silicon nanowires (SiNWs) mainly adopts nanofabrication process. The nanofabrication process is a bottom-up "assembly" of nanowires, mainly including laser ablation (Laserablation), porous alumina template method and so on. The laser ablation method mainly uses the Vapor-liquid-solid method (Vapor-liquid-solid method, VLS). When the saturated gaseous silicon continuously diffuses into the alloy droplets of silicon and metal catalyst, the solid silicon will continue to flow out of the liquid. The droplets are precipitated to grow nanowires at the liquid-solid interface. The porous alumina template method uses nanoporous aluminum as a template, and silane gas synthesizes silicon in nanopores under the action of catalysts such as gold (Au) and silver (Ag), and finally removes porous aluminum to obtain nanowires. Although these nanofabrication processes have the advantages of low cost and uniform size, they are harsh, difficult to operate, poor in compatibility, and easily contaminated by catalysts.
近年来随着光刻技术的进步,扫描探针光刻(Scanning Probe Lithograph,SPL)和电子束光刻(EBL)也越来越多的用于单晶硅纳米结构的制作。但是这些方法比较耗时,投入的费用也比较昂贵,难以用于大规模制作单晶硅纳米结构。In recent years, with the advancement of lithography technology, scanning probe lithography (Scanning Probe Lithograph, SPL) and electron beam lithography (EBL) are also increasingly used in the fabrication of single crystal silicon nanostructures. However, these methods are time-consuming and expensive, and are difficult to be used for large-scale production of single-crystal silicon nanostructures.
相对于以上几种方法,基于微机械加工工艺制备纳米结构的方法具有与IC工艺兼容、成本低廉、便于大规模生产等优点。已经报道的方法主要是侧墙掩膜技术(Sidewall MaskingTechnique)和光刻胶灰化技术(Photoresist Ashing Technique)。这两种方法均是先利用淀积的材料或者硅化的光刻胶形成侧墙,再以此作为掩膜进行刻蚀,得到纳米线,但是线宽可控程度不高。Compared with the above methods, the method of preparing nanostructures based on micromachining technology has the advantages of being compatible with IC technology, low cost, and convenient for large-scale production. The reported methods are mainly Sidewall Masking Technique and Photoresist Ashing Technique. Both of these two methods first use deposited materials or silicided photoresist to form sidewalls, and then use this as a mask to etch to obtain nanowires, but the controllability of the line width is not high.
由此可知,在相关技术领域,需要一种能大规模、经济和有效的单晶硅纳米结构制作方法,而微机械加工工艺是关注的热点。It can be seen that in related technical fields, a large-scale, economical and effective method for manufacturing single crystal silicon nanostructures is needed, and micromachining technology is a hot spot of concern.
发明内容 Contents of the invention
本发明的目的是基于微机械加工工艺,提供一种低成本、大规模、线宽可控的制作单晶硅纳米结构的方法。进一步的,利用所制作的单晶硅纳米结构批量制作具有预定线宽的单晶硅纳米结构传感器、纳米量子器件等。The object of the present invention is to provide a low-cost, large-scale, and controllable line width method for manufacturing single-crystal silicon nanostructures based on micromachining technology. Further, the fabricated single crystal silicon nanostructures are used to mass produce single crystal silicon nanostructure sensors, nanometer quantum devices and the like with predetermined line widths.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种制作单晶硅纳米结构的方法,包括下述步骤:A method for making a single crystal silicon nanostructure, comprising the steps of:
1)选择掺杂浓度在1012cm-3以下的低掺杂浓度硅衬底;1) Select a silicon substrate with a low doping concentration below 10 12 cm -3 ;
2)根据所要制作的单晶硅纳米结构的图形在硅衬底上光刻,定义微米级线宽的掩膜图形;2) According to the pattern of the monocrystalline silicon nanostructure to be fabricated, photolithography is performed on the silicon substrate to define a mask pattern with a micron-scale line width;
3)进行离子注入,在微米级线宽的掩膜图形外形成重掺杂区域,掺杂浓度大于1019cm-3;3) Ion implantation is performed to form a heavily doped region outside the mask pattern with a micron-scale line width, and the doping concentration is greater than 10 19 cm -3 ;
4)对硅衬底进行高温退火,注入的离子将扩散进入掩膜图形下面的硅材料中,形成中度掺杂区域,掺杂浓度在1017~1019cm-3,使掩膜图形下低掺杂浓度区域的线宽减小至纳米量级;4) Perform high-temperature annealing on the silicon substrate, and the implanted ions will diffuse into the silicon material under the mask pattern to form a moderately doped region with a doping concentration of 10 17 ~ 10 19 cm -3 , making the mask pattern The line width of the low doping concentration region is reduced to the nanometer level;
5)用HNA溶液选择性腐蚀掉中度掺杂区域内的硅,得到低掺杂浓度的单晶硅纳米结构。5) Using HNA solution to selectively etch away the silicon in the moderately doped region to obtain a single crystal silicon nanostructure with low doping concentration.
进一步的,上述步骤2)之前可以先在硅衬底上用热氧化的方法形成一层SiO2层,该SiO2层将作为后续注入的离子注入保护层;在步骤5)用HNA溶液选择性腐蚀硅之前,先用缓冲氢氟酸(BHF)溶液(HF∶NH4F=1∶4(体积比))腐蚀掉该SiO2层和退火时可能形成的自然氧化层。Further, before the above step 2), one layer of SiO2 layer can be formed on the silicon substrate by thermal oxidation method, and this SiO2 layer will be used as the ion implantation protective layer for subsequent implantation; in step 5) selectively use HNA solution Before etching silicon, first use buffered hydrofluoric acid (BHF) solution (HF:NH 4 F = 1:4 (volume ratio)) to etch away the SiO 2 layer and the natural oxide layer that may be formed during annealing.
上述步骤1)一般选用普通硅基片或SOI硅片作为衬底,硅衬底的掺杂浓度大约在1011cm-3。The above-mentioned step 1) generally selects an ordinary silicon substrate or an SOI silicon substrate as the substrate, and the doping concentration of the silicon substrate is about 1011 cm −3 .
上述步骤2)掩膜图形的线宽小于2μm,优选小于1μm。The line width of the above step 2) mask pattern is less than 2 μm, preferably less than 1 μm.
上述步骤3)离子注入的种类一般与所使用的衬底的类型相当,即p型衬底注入III族离子,n型衬底注入V族离子。离子注入浓度应尽量大,确保注入后形成的重掺杂区域的掺杂浓度高于1019cm-3。必要时,应该在注入前对光刻胶进行烘焙,以确保光刻胶不会在大剂量注入中开裂。The type of ion implantation in the above step 3) is generally equivalent to the type of substrate used, that is, group III ions are implanted into p-type substrates, and group V ions are implanted into n-type substrates. The ion implantation concentration should be as large as possible to ensure that the doping concentration of the heavily doped region formed after implantation is higher than 10 19 cm -3 . If necessary, the photoresist should be baked prior to implantation to ensure that the photoresist does not crack during high-dose implants.
上述步骤4)退火的温度在950℃~1050℃,退火的时间由掩膜图形尺寸和所需纳米结构尺寸决定,可以结合设计的尺寸和具体的工艺参数进行理论估算或者使用相关软件的模拟结果,一般为3-10小时。退火时,注入的离子将向衬底的各个方向发生扩散,包括平行于衬底表面的侧向扩散。利用注入离子的扩散,在硅衬底中形成的一些中度掺杂区域,The above step 4) the annealing temperature is between 950°C and 1050°C. The annealing time is determined by the size of the mask pattern and the size of the required nanostructure. It can be theoretically estimated by combining the designed size and specific process parameters or using the simulation results of related software. , generally 3-10 hours. During annealing, the implanted ions will diffuse in all directions of the substrate, including lateral diffusion parallel to the substrate surface. Using the diffusion of implanted ions, some moderately doped regions are formed in the silicon substrate,
上述步骤5)所用HNA溶液优选为HNO3∶HF∶HAc=3∶1∶8(体积比)的溶液。由于HNA溶液对掺杂浓度在1017cm-3以上的硅衬底腐蚀速率大约在1~2μm/min,远快于轻掺杂的硅衬底,腐蚀选择比大约在160∶1。因此,利用HNA溶液选择性去除中度掺杂区域后,将留下轻掺杂的单晶硅纳米结构。在HNA溶液腐蚀硅衬底时,HNO3在腐蚀液中会被还原成HNO2。随着HNA溶液腐蚀硅衬底的进行,HNO2的浓度将增大。较高浓度的HNO2会影响HNA溶液的选择性。这种情况下,可以加入适量氧化剂(如H2O2),把HNO2氧化成HNO3,来消除HNO2的影响;也可以加入适量还原剂NaN3,来去除HNO2。鉴于HNA溶液的腐蚀速率较快,并且在腐蚀过程中会生成影响选择比的HNO2,因此HNA溶液的腐蚀时间不宜过长。具体时间可根据所需制备的纳米结构的线宽,通过预实验确定。The HNA solution used in the above step 5) is preferably a solution of HNO 3 :HF:HAc=3:1:8 (volume ratio). Since HNA solution etches silicon substrates with a doping concentration above 10 17 cm -3 at about 1-2 μm/min, much faster than lightly doped silicon substrates, the etching selectivity ratio is about 160:1. Therefore, lightly doped single-crystal silicon nanostructures will remain after the selective removal of moderately doped regions using HNA solution. When HNA solution etches the silicon substrate, HNO 3 will be reduced to HNO 2 in the etching solution. As the HNA solution corrodes the silicon substrate, the concentration of HNO 2 will increase. Higher concentration of HNO2 will affect the selectivity of HNA solution. In this case, you can add an appropriate amount of oxidant (such as H 2 O 2 ) to oxidize HNO 2 into HNO 3 to eliminate the influence of HNO 2 ; you can also add an appropriate amount of reducing agent NaN 3 to remove HNO 2 . In view of the fast corrosion rate of the HNA solution, and HNO 2 that affects the selectivity will be generated during the corrosion process, the corrosion time of the HNA solution should not be too long. The specific time can be determined through preliminary experiments according to the line width of the nanostructure to be prepared.
本发明采用HNA选择性腐蚀技术在硅衬底上制作单晶硅纳米结构,克服了采用纳米加工工艺的条件苛刻、难以操作、兼容性差且易受催化剂污染的问题,以及扫描探针光刻(SPL)和电子束光刻(EBL)技术的耗时和高成本问题。本发明的方法不仅具备基于传统的MEMS工艺的制备方法的优点,诸如兼容性好,操作方便,成本低廉,便于大规模生产等,同时相对于利用侧墙和光刻胶灰化技术的方法,拥有更好的线宽可控性。The invention adopts the HNA selective etching technology to manufacture single crystal silicon nanostructures on the silicon substrate, which overcomes the problems of harsh conditions, difficult operation, poor compatibility and easy contamination by catalysts of the nano-processing technology, and scanning probe photolithography ( SPL) and electron beam lithography (EBL) techniques are time-consuming and costly. The method of the present invention not only has the advantages of the preparation method based on the traditional MEMS process, such as good compatibility, convenient operation, low cost, and convenient mass production, etc. Have better line width controllability.
本发明通过采用简单、可重复的工序,可以制作高集成度的单晶硅纳米器件,并且不受光刻最小尺寸限制,可以取代耗时昂贵的电子束光刻法,以及不易控制、兼容性差的汽-液-固相法。通过本发明方法制作的单晶硅纳米结构,可应用于多种微纳机电器件的制备,例如,可以制作检测生物活性分子的Bio-MEMS传感器,以及研究纳米自旋电子学的重要器件等。The invention adopts simple and repeatable procedures, can manufacture highly integrated monocrystalline silicon nano-devices, and is not limited by the minimum size of lithography, can replace time-consuming and expensive electron beam lithography, and is difficult to control and has poor compatibility vapor-liquid-solid phase method. The single crystal silicon nanostructure produced by the method of the present invention can be applied to the preparation of various micro-nano electromechanical devices, for example, it can produce Bio-MEMS sensors for detecting biologically active molecules, and important devices for studying nano-spintronics.
附图说明 Description of drawings
图1(a)-(d)为本发明实施例制作单晶硅纳米线的工艺流程示意图,其中:(a)显示了在氧化硅缓冲层上形成光刻胶掩膜的步骤;(b)显示了高浓度离子注入步骤;(c)显示了退火形成中度离子掺杂区域的步骤;(d)显示了HNA选择性腐蚀硅形成纳米结构的步骤。Fig. 1 (a)-(d) is the process flow schematic diagram of the embodiment of the present invention making monocrystalline silicon nanowire, wherein: (a) has shown the step of forming photoresist mask on silicon oxide buffer layer; (b) The step of high-concentration ion implantation is shown; (c) shows the step of annealing to form a moderately ion-doped region; (d) shows the step of HNA selectively etching silicon to form a nanostructure.
图2是两张利用本发明方法制作的单晶硅纳米结构的扫描电镜照片。Fig. 2 is a scanning electron micrograph of two single crystal silicon nanostructures fabricated by the method of the present invention.
具体实施方式 Detailed ways
下面结合附图,通过实施例进一步详细描述HNA选择性腐蚀法制作单晶硅纳米结构的方法。The method for fabricating single-crystal silicon nanostructures by the HNA selective etching method will be further described in detail below with reference to the accompanying drawings.
如图1所示,根据下述步骤制作单晶硅纳米结构:As shown in Figure 1, a single crystal silicon nanostructure is produced according to the following steps:
1.选用普通硅片或SOI硅片作为衬底1,硅衬底的掺杂浓度大约在1011cm-3。1. Select ordinary silicon wafer or SOI silicon wafer as the
2.在硅衬底1上用热氧化的方法形成一层SiO2层2,该SiO2层将作为离子注入的保护层;然后根据版图设计,光刻定义微米级线宽的掩膜图形,形成光刻胶离子注入掩膜3,参见图1(a)。2. Form a layer of SiO 2 layer 2 on the
3.进行离子注入,在硅衬底上掩膜图形外形成重掺杂区域4,见图1(b)。3. Perform ion implantation to form a heavily doped region 4 outside the mask pattern on the silicon substrate, see FIG. 1(b).
4.高温退火,注入的离子在高温退火中将向衬底1的各个方向发生扩散,包括平行于衬底表面的侧向扩散,由于注入离子的扩散,在硅衬底1上将形成的一些中度掺杂区域5,掺杂浓度大约在1017~1019cm-3,掩膜图形下低掺杂浓度区域的线宽也将减小至纳米量级,见图1(c)。退火的温度为1000℃,退火的时间为3小时以上。4. High-temperature annealing, the implanted ions will diffuse to all directions of the
5.先用缓冲氢氟酸(BHF)溶液(HF∶NH4F=1∶4(体积比))腐蚀SiO2离子注入保护层2,再用HNA溶液(HNO3∶HF∶HAc=3∶1∶8)进行选择性腐蚀掉中度掺杂区域5,在硅衬底上得到低掺杂浓度的单晶硅纳米结构6,见图1(d)。5. Corrode the SiO 2 ion implantation
上述方法利用HNA选择性腐蚀法制作单晶硅纳米结构,并且可以通过掩膜图形的版图设计和退火时间调整纳米结构的线宽。The above method utilizes the HNA selective etching method to fabricate the single crystal silicon nanostructure, and the line width of the nanostructure can be adjusted through the layout design of the mask pattern and the annealing time.
图2是利用本发明方法制作的单晶硅纳米线的扫描电镜照片,其中图2(a)版图设计线宽为2μm,HNA腐蚀后形成的纳米线的线宽约为1μm,图2(b)为版图设计线宽为0.6μm,HNA腐蚀后形成的纳米线的线宽约为370nm。Fig. 2 is the scanning electron micrograph of the monocrystalline silicon nanowire that utilizes the inventive method to make, and wherein Fig. 2 (a) layout design line width is 2 μ m, the line width of the nano wire that forms after HNA corrosion is about 1 μ m, Fig. 2 (b ) for the layout design line width of 0.6 μm, the line width of the nanowires formed after HNA etching is about 370 nm.
以上通过具体实施方式描述了本发明利用HNA的选择性腐蚀制作单晶硅纳米结构的方法,本领域的技术人员应当理解,上述描述不应视为对本发明的限制。在不脱离本发明精神和实质的范围内,可以对本发明做一定的变形或修改,本发明的保护范围视所附权利要求书而定。The method for fabricating single-crystal silicon nanostructures by selective etching of HNA in the present invention has been described above through specific implementation methods. Those skilled in the art should understand that the above description should not be considered as a limitation of the present invention. Within the scope of not departing from the spirit and essence of the present invention, certain deformation or modification can be made to the present invention, and the protection scope of the present invention depends on the appended claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100709207A CN102157371B (en) | 2011-03-23 | 2011-03-23 | Method for producing monocrystalline silicon nanometer structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100709207A CN102157371B (en) | 2011-03-23 | 2011-03-23 | Method for producing monocrystalline silicon nanometer structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102157371A CN102157371A (en) | 2011-08-17 |
CN102157371B true CN102157371B (en) | 2012-08-22 |
Family
ID=44438779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100709207A Expired - Fee Related CN102157371B (en) | 2011-03-23 | 2011-03-23 | Method for producing monocrystalline silicon nanometer structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102157371B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2562135A1 (en) * | 2011-08-22 | 2013-02-27 | ETH Zurich | Method for producing and aligning nanowires and applications of such a method |
CN103021806B (en) * | 2012-09-18 | 2017-06-23 | 上海集成电路研发中心有限公司 | A kind of method of preparing silicon nanowire on monocrystalline silicon substrate |
CN103232023B (en) * | 2013-04-22 | 2016-06-29 | 西安交通大学 | A kind of silicon microstructure processing method processed based on femtosecond laser with wet etching |
CN104347385A (en) * | 2013-07-23 | 2015-02-11 | 中芯国际集成电路制造(上海)有限公司 | Selective etching method of semiconductor device, and manufacture method of BSI image sensor |
CN110854018A (en) * | 2019-11-28 | 2020-02-28 | 长春长光圆辰微电子技术有限公司 | High-selectivity silicon etching solution and use method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1474434A (en) * | 2003-07-25 | 2004-02-11 | �й���ѧԺ�Ϻ�ϵͳ����Ϣ�����о� | Method for manufacturing silicon nanowire |
CN1700426A (en) * | 2004-05-21 | 2005-11-23 | 中国科学院微电子研究所 | Etching method of polysilicon gate with line width of 15-50 nanometers |
CN1935632A (en) * | 2005-09-22 | 2007-03-28 | 电子部品研究院 | Method of manufacturing a nanowire device |
CN1958436A (en) * | 2006-10-17 | 2007-05-09 | 浙江大学 | Method for preparing Nano silicon line |
JP2008311617A (en) * | 2007-05-15 | 2008-12-25 | Canon Inc | Nano structure, and manufacturing method of nano structure |
CN101723312A (en) * | 2008-10-15 | 2010-06-09 | 中国科学院半导体研究所 | Method for preparing tri-dimension-limited crystal-facet-dependent silicon nanostructures |
WO2011019282A1 (en) * | 2009-08-14 | 2011-02-17 | Universiteit Twente | Method for manufacturing a single crystal nano-wire. |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101127132B1 (en) * | 2005-05-13 | 2012-03-21 | 삼성전자주식회사 | Si nanowire substrate and fabrication method of the same, and fabrication method of thin film transistor using the same |
-
2011
- 2011-03-23 CN CN2011100709207A patent/CN102157371B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1474434A (en) * | 2003-07-25 | 2004-02-11 | �й���ѧԺ�Ϻ�ϵͳ����Ϣ�����о� | Method for manufacturing silicon nanowire |
CN1700426A (en) * | 2004-05-21 | 2005-11-23 | 中国科学院微电子研究所 | Etching method of polysilicon gate with line width of 15-50 nanometers |
CN1935632A (en) * | 2005-09-22 | 2007-03-28 | 电子部品研究院 | Method of manufacturing a nanowire device |
CN1958436A (en) * | 2006-10-17 | 2007-05-09 | 浙江大学 | Method for preparing Nano silicon line |
JP2008311617A (en) * | 2007-05-15 | 2008-12-25 | Canon Inc | Nano structure, and manufacturing method of nano structure |
CN101723312A (en) * | 2008-10-15 | 2010-06-09 | 中国科学院半导体研究所 | Method for preparing tri-dimension-limited crystal-facet-dependent silicon nanostructures |
WO2011019282A1 (en) * | 2009-08-14 | 2011-02-17 | Universiteit Twente | Method for manufacturing a single crystal nano-wire. |
Also Published As
Publication number | Publication date |
---|---|
CN102157371A (en) | 2011-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI472477B (en) | 矽 nano structure and its manufacturing method and application | |
CN102157371B (en) | Method for producing monocrystalline silicon nanometer structure | |
CN102214586B (en) | Preparation method of silicon nanowire field effect transistor | |
US20140256078A1 (en) | Semiconductor processing by magnetic field guided etching | |
CN102427023B (en) | A kind of preparation method of silicon nanowires | |
CN102496563B (en) | A kind of method of preparing silicon nanowire on monocrystalline silicon substrate | |
TW201302600A (en) | 矽Nami line array manufacturing method | |
CN102086024B (en) | Preparation method of silicon nanowire | |
CN105555705B (en) | Preparation method of silicon nanowire array | |
CN102437017B (en) | Method for preparing nano structure on surface of (111) silicon wafer | |
CN102205943A (en) | Preparation method of monocrystalline silicon nanostructure | |
CN102945791B (en) | A kind of preparation method of silicon nanowire array | |
TWI460121B (en) | Graphical nanowire array and germanium microstructure | |
Chen et al. | Silicon carbide nano-via arrays fabricated by double-sided metal-assisted photochemical etching | |
CN104071745B (en) | A kind of preparation method of the silicon nano-wire field effect tube with closely connected unsettled grid | |
CN106645357B (en) | A kind of preparation method of crystalline nanowire bioprobe device | |
CN103673864B (en) | Silicon germanium heterojunction nano-wire array takes into account preparation method as the strain of sensitive element | |
CN102398893A (en) | Method for preparing nanometer structures from top to bottom on surfaces of (110) type silicon chips | |
KR101671627B1 (en) | Method for graphene-assisted chemical etching of silicon | |
KR101191981B1 (en) | semiconductor nanowires array and manufacturing method thereof | |
US20060071207A1 (en) | Selective deposition of ZnO nanostructures on a silicon substrate using a nickel catalyst and either patterned polysilicon or silicon surface modification | |
Ramadan et al. | Fully controllable silicon nanowire fabricated using optical lithography and orientation dependent oxidation | |
KR101588577B1 (en) | A fabrication method of vertically aligned GaAs semiconductor nanowire arrays with large area | |
CN103441062B (en) | A kind of Ge component and the preparation method of bandwidth regulatable SiGe nano belt | |
KR101220522B1 (en) | Manufacturing method of silicon nanowires array using porous multilayer metal film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120822 Termination date: 20150323 |
|
EXPY | Termination of patent right or utility model |