CN102156100A - Multispectral-based multipoint sampling multiparameter water quality on-line analytical system - Google Patents
Multispectral-based multipoint sampling multiparameter water quality on-line analytical system Download PDFInfo
- Publication number
- CN102156100A CN102156100A CN 201110085260 CN201110085260A CN102156100A CN 102156100 A CN102156100 A CN 102156100A CN 201110085260 CN201110085260 CN 201110085260 CN 201110085260 A CN201110085260 A CN 201110085260A CN 102156100 A CN102156100 A CN 102156100A
- Authority
- CN
- China
- Prior art keywords
- sewage
- solenoid valve
- water inlet
- sample
- clean water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 220
- 238000005070 sampling Methods 0.000 title claims abstract description 33
- 239000010865 sewage Substances 0.000 claims abstract description 164
- 230000003287 optical effect Effects 0.000 claims abstract description 42
- 238000001514 detection method Methods 0.000 claims abstract description 40
- 238000004458 analytical method Methods 0.000 claims abstract description 27
- 230000003595 spectral effect Effects 0.000 claims abstract description 17
- 239000013307 optical fiber Substances 0.000 claims description 25
- 229910052724 xenon Inorganic materials 0.000 claims description 16
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 16
- 238000001228 spectrum Methods 0.000 abstract description 14
- 238000000295 emission spectrum Methods 0.000 abstract description 9
- 238000001069 Raman spectroscopy Methods 0.000 abstract description 7
- 238000004140 cleaning Methods 0.000 abstract description 7
- 238000000411 transmission spectrum Methods 0.000 abstract description 5
- 238000013461 design Methods 0.000 abstract description 3
- 238000012545 processing Methods 0.000 abstract description 3
- 238000013480 data collection Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 7
- 230000005284 excitation Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 239000002957 persistent organic pollutant Substances 0.000 description 4
- 238000002211 ultraviolet spectrum Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 238000001506 fluorescence spectroscopy Methods 0.000 description 3
- 238000002189 fluorescence spectrum Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004847 absorption spectroscopy Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009614 chemical analysis method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000002795 fluorescence method Methods 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012821 model calculation Methods 0.000 description 1
- 238000004204 optical analysis method Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种基于多光谱的多点采样多参数水质在线分析系统,它包括光学系统、水路系统和检测控制系统;光学系统采用多波长激光器、脉冲氙灯光源和CCD光谱检测器,扫描待测水样的紫外可见透射光谱和荧光、拉曼等发射光谱,并转化成数字信号。水路系统采用多点采样设计,通过对水泵、电磁阀的开关控制,实现定量污水、定量清水进入采样装置进行光谱数据的采集,同时具有污水管路系统的自动清洗功能。检测控制系统采用工控机作为核心处理单元;整个系统可自动连续运行,适用于在线分析。
The invention discloses a multi-point sampling multi-parameter water quality online analysis system based on multi-spectrum, which includes an optical system, a waterway system and a detection control system; Measure the ultraviolet-visible transmission spectrum and fluorescence, Raman and other emission spectra of water samples, and convert them into digital signals. The waterway system adopts a multi-point sampling design. Through the switch control of the water pump and solenoid valve, quantitative sewage and quantitative clean water enter the sampling device for spectral data collection, and it also has the automatic cleaning function of the sewage pipeline system. The detection and control system uses industrial computer as the core processing unit; the whole system can run automatically and continuously, which is suitable for online analysis.
Description
技术领域technical field
本发明属于资源环境技术领域,用于水质参数的在线快速检测,特别是指一种基于多光谱的多点采样多参数水质在线分析系统。The invention belongs to the technical field of resources and environment, and is used for online rapid detection of water quality parameters, in particular to a multi-spectrum-based multi-point sampling and multi-parameter water quality online analysis system.
背景技术Background technique
有机污染物综合指标(如TOC、COD、BOD、DOC和高锰酸盐指数等)从不同侧面反映了水体受有机物污染的总体水平,是衡量水质污染程度的重要指标,也是国家颁布的“减排”和“总量控制”的定量考核依据。近年来,水质参数在线分析仪(主要检测COD、TOC等)的开发研制受到广泛重视,其产品种类、型号众多。基于测量原理的不同,这些在线分析仪基本上可分两类:基于化学方法的在线水质分析仪,以及基于光学方法的在线水质分析仪。与化学分析方法相比,光学分析法依据光谱数据对有机污染物的类别与综合指标进行定性定量分析,它具有无化学试剂污染、分析速度快、系统运行费用低、易于实现在线分析等显著优点。Comprehensive indicators of organic pollutants (such as TOC, COD, BOD, DOC, and permanganate index, etc.) reflect the overall level of water body pollution by organic matter from different aspects, and are important indicators for measuring the degree of water pollution. Quantitative assessment basis for "discharge" and "total control". In recent years, the research and development of online analyzers for water quality parameters (mainly detecting COD, TOC, etc.) have received extensive attention, and there are many types and models of their products. Based on different measurement principles, these online analyzers can basically be divided into two categories: online water quality analyzers based on chemical methods, and online water quality analyzers based on optical methods. Compared with the chemical analysis method, the optical analysis method performs qualitative and quantitative analysis on the categories and comprehensive indicators of organic pollutants based on spectral data. It has significant advantages such as no chemical reagent pollution, fast analysis speed, low system operation cost, and easy online analysis. .
目前进入市场的基于光学测量原理的在线水质分析仪主要基于紫外/可见(UV/Vis)吸光度或紫外/可见吸收光谱分析方法。但现有的紫外/可见吸收光谱在线分析仪由于难以适应不同类型与不同污染程度的污水,加上在线分析装置检测单元易受污水污染,造成分析仪准确性差、维护工作量大等局限,难以满足大规模水质实时监测的需要。鉴于紫外吸收法在线水质分析仪的分析测量精度不足,近年来研究人员开始转向具有更高灵敏度的荧光法。但荧光光谱的不足之处为存在淬灭、自吸收、内滤光等不稳定因素,还含有水的拉曼散射和瑞利散射等干扰。The online water quality analyzers based on the principle of optical measurement currently entering the market are mainly based on ultraviolet/visible (UV/Vis) absorbance or ultraviolet/visible absorption spectroscopy analysis methods. However, the existing UV/visible absorption spectrum online analyzer is difficult to adapt to different types of sewage with different pollution levels, and the detection unit of the online analysis device is easily polluted by sewage, resulting in poor accuracy of the analyzer and heavy maintenance workload. Meet the needs of large-scale real-time monitoring of water quality. In view of the insufficient analysis and measurement accuracy of the online water quality analyzer by the ultraviolet absorption method, researchers have begun to turn to the fluorescence method with higher sensitivity in recent years. However, the shortcomings of fluorescence spectroscopy are that there are unstable factors such as quenching, self-absorption, and internal filtering, and there are also interferences such as Raman scattering and Rayleigh scattering of water.
现有的单一紫外吸收光谱法或荧光光谱法用于水质有机污染综合指标分析均有不足之处,另一方面,两种光谱又存在一定的相关性和互补性。水中有机物产生荧光的前提是能够吸收激发光,所以能够产生荧光的有机物在紫外光谱上都有吸收峰。由于悬浮物或某些种类的有机物会在同样波长的紫外光谱上产生强度十分近似的吸收峰,仅凭紫外光谱不能区分这些物质的种类;但它们在UV光激发下会产生不同的荧光光谱,从而提高了水质分析的分辨度。此外,荧光光谱的一个重要缺陷是不稳定性,这方面紫外光谱可以起弥补作用。The existing single ultraviolet absorption spectrometry or fluorescence spectrometry have some deficiencies in the analysis of comprehensive indicators of water quality organic pollution. On the other hand, there is a certain correlation and complementarity between the two spectra. The prerequisite for organic matter in water to produce fluorescence is to be able to absorb excitation light, so organic matter that can produce fluorescence has absorption peaks in the ultraviolet spectrum. Since suspended matter or certain types of organic matter will produce very similar absorption peaks on the ultraviolet spectrum of the same wavelength, the types of these substances cannot be distinguished only by the ultraviolet spectrum; but they will produce different fluorescence spectra when excited by UV light. Thereby improving the resolution of water quality analysis. In addition, an important defect of fluorescence spectroscopy is instability, which can be compensated by ultraviolet spectroscopy.
申请号为200810060383.6的发明专利“一种多源光谱融合便携式水质分析仪”公开了一种多源光谱融合便携式水质分析仪,它包括光学系统和检测控制系统,采用集成激光器、氘卤灯光源和双光谱检测器扫描待测水样的紫外可见透射光谱和荧光、拉曼等发射光谱,采用嵌入式数据处理单元根据采集到的水样光谱数据计算出水质分析指标值,并控制整台仪器的工作,通过显示屏和键盘实现用户的交互。由于采用锂电池供电,发射光360°接收等特别设计,它结构紧凑,便于携带使用。由于该发明专利中与待测样品接触的部件仅有样品池,无自动进水、排水、稀释配比、清洗的水路系统,因而仅能离线检测使用,对需要长期连续监测的场合如污水处理厂等的在线监测则无能为力;并且由于该发明专利的光学系统中对样品的发射光采用与入射光成360°角度方向的接收方式,需要同时采用线阵CCD和面阵CCD两套光谱检测系统,其光路系统较为复杂,成本较高;另外,该发明专利对激发荧光、拉曼等发射光谱的激发光采用405nm、532nm、635nm、650nm、660nm、690nm、785nm、808nm、830nm八个波长的激光器,其波长范围在可见光乃至近红外范围内,由于绝大多数产生荧光的物质所需的激发波长范围为紫外可见波段,因此该发明的激光器不利于荧光发射光谱的检测。The invention patent with the application number of 200810060383.6 "a multi-source spectrum fusion portable water quality analyzer" discloses a multi-source spectrum fusion portable water quality analyzer, which includes an optical system and a detection and control system, and uses an integrated laser, a deuterium-halogen light source and The dual-spectrum detector scans the ultraviolet-visible transmission spectrum and fluorescence, Raman and other emission spectra of the water sample to be tested. The embedded data processing unit calculates the water quality analysis index value based on the collected water sample spectral data, and controls the entire instrument. Work, realize user interaction through the display screen and keyboard. Due to the special design of using lithium battery for power supply and 360° receiving of emitted light, it has a compact structure and is easy to carry and use. Since the only part in contact with the sample to be tested in this invention patent is the sample pool, there is no water system for automatic water intake, drainage, dilution ratio, and cleaning, so it can only be used for offline detection. For occasions that require long-term continuous monitoring, such as sewage treatment The on-line monitoring of the factory, etc. is powerless; and because the emitted light of the sample in the patented optical system of the invention adopts a 360° angle receiving method with the incident light, it is necessary to use two spectral detection systems of linear array CCD and area array CCD at the same time , the optical path system is relatively complex and the cost is high; in addition, the invention patent uses eight wavelengths of 405nm, 532nm, 635nm, 650nm, 660nm, 690nm, 785nm, 808nm, 830nm for the excitation light of the emission spectrum such as excitation fluorescence and Raman The wavelength range of the laser is in the visible light or near-infrared range. Since the excitation wavelength range required by most substances that generate fluorescence is in the ultraviolet-visible band, the laser of the invention is not conducive to the detection of fluorescence emission spectrum.
发明内容Contents of the invention
本发明的目的是针对现有技术的不足,提供一种基于多光谱的多点采样多参数水质在线分析系统。The purpose of the present invention is to provide a multi-spectrum-based multi-point sampling and multi-parameter water quality online analysis system for the deficiencies of the prior art.
本发明的目的是通过以下技术方案来实现的:一种基于多光谱的多点采样多参数水质在线分析系统,它包括光学系统、水路系统和检测控制系统。The purpose of the present invention is achieved through the following technical solutions: a multi-spectral multi-point sampling multi-parameter water quality online analysis system, which includes an optical system, a waterway system and a detection control system.
其中,光学系统包括:脉冲氙灯、第一凹面镜、第一滤光片、第一凸透镜、第一光纤、第二凸透镜、样品池、第三凸透镜、第二光纤、狭缝、第二滤光片、第二凹面镜、光栅、电荷耦合元件、多波长激光器、第三光纤和第四凸透镜等;脉冲氙灯位于第一凹面镜的凹面焦点处,第一凹面镜与第一滤光片、第一凸透镜同轴水平依次排列,第一光纤的两端分别与第一凸透镜和第二凸透镜相连,第二凸透镜与样品池、第三凸透镜同轴水平依次排列,第四凸透镜与样品池同轴水平依次排列并与第二凸透镜、样品池、第三凸透镜的轴相垂直,第二光纤的两端分别与第三凸透镜和狭缝相连,狭缝与第二滤光片同轴水平依次排列,第三光纤的两端分别与多波长激光器和第四凸透镜相连。Wherein, the optical system includes: a pulsed xenon lamp, a first concave mirror, a first filter, a first convex lens, a first optical fiber, a second convex lens, a sample cell, a third convex lens, a second optical fiber, a slit, and a second filter sheet, second concave mirror, grating, charge-coupled element, multi-wavelength laser, third optical fiber and fourth convex lens, etc.; the pulse xenon lamp is located at the concave focus of the first concave mirror, the first concave mirror and the first filter, the second A convex lens is arranged coaxially and horizontally in sequence, the two ends of the first optical fiber are respectively connected with the first convex lens and the second convex lens, the second convex lens is arranged coaxially with the sample cell and the third convex lens is horizontally arranged sequentially, and the fourth convex lens is coaxially arranged with the sample cell Arranged in order and perpendicular to the axes of the second convex lens, the sample cell, and the third convex lens, the two ends of the second optical fiber are respectively connected with the third convex lens and the slit, and the slit is arranged coaxially and horizontally with the second optical filter. The two ends of the three optical fibers are respectively connected with the multi-wavelength laser and the fourth convex lens.
水路系统包括:若干个进水单元、污水定量杯、污水总排水管路、清水循环槽、清水进水泵、第四清水进水电磁阀、第五清水进水电磁阀、第六清水进水电磁阀、清水定量杯、第四污水溢流管路、第一清水溢流管路、第二清水溢流管路、第一混合电磁阀、第二混合电磁阀、混合槽、样品进水电磁阀、样品池、样品排水电磁阀、总排水口、第一样品溢流管路和第二样品溢流管路等;The waterway system includes: several water inlet units, sewage quantitative cup, sewage main drainage pipeline, clean water circulation tank, clean water inlet pump, fourth clean water inlet solenoid valve, fifth clean water inlet solenoid valve, sixth clean water inlet electromagnetic valve Valve, clean water quantitative cup, fourth sewage overflow pipeline, first clean water overflow pipeline, second clean water overflow pipeline, first mixing solenoid valve, second mixing solenoid valve, mixing tank, sample water inlet solenoid valve , sample pool, sample drain solenoid valve, main drain, first sample overflow pipeline and second sample overflow pipeline, etc.;
每个进水单元包括:第一污水进水口、第一污水进水泵、第一污水槽、第一污水进水电磁阀、第一污水排水电磁阀、第一污水溢流管路、第一清水进水电磁阀;其中,第一污水进水泵的一端连接第一污水进水口,另一端连接第一污水槽,第一污水进水电磁阀、第一污水排水电磁阀、第一污水溢流管路、第一清水进水电磁阀分别与第一污水槽连接,第一污水进水电磁阀的另一端与进水单元之外的污水定量杯相连,第一污水排水电磁阀和第一污水溢流管路的另一端与进水单元之外的污水总排水管路相连,第一清水进水电磁阀的另一端与进水单元之外的清水进水泵相连,第一污水排水电磁阀位于第一污水槽的底部之下;污水定量杯分别和第一污水进水电磁阀、第二污水进水电磁阀、第三污水进水电磁阀、第五清水进水电磁阀、第四污水溢流管路、第一混合电磁阀相连,清水定量杯分别和第四清水进水电磁阀、第一清水溢流管路、第二混合电磁阀相连,混合槽分别与第六清水进水电磁阀、第一混合电磁阀、第二混合电磁阀、样品进水电磁阀、第一样品溢流管路相连,样品池分别与样品进水电磁阀、样品排水电磁阀、第二样品溢流管路相连,总排水口分别与污水总排水管路、第一样品溢流管路、第二样品溢流管路相连,污水定量杯和清水定量杯水平排列,污水定量杯和清水定量杯位于第一污水槽、第二污水槽、第三污水槽的底部之下,第一混合电磁阀和第二混合电磁阀分别位于污水定量杯和清水定量杯的底部之下,混合槽位于第一混合电磁阀和第二混合电磁阀之下,样品进水电磁阀位于混合槽的底部之下,样品池位于样品进水电磁阀的底部之下,样品排水电磁阀位于样品池的底部之下,总排水口位于污水总排水管路、第一样品溢流管路、第二样品溢流管路、样品排水电磁阀的底部之下。Each water inlet unit includes: a first sewage water inlet, a first sewage water inlet pump, a first sewage tank, a first sewage water inlet solenoid valve, a first sewage discharge solenoid valve, a first sewage overflow pipeline, and a first clean water Water inlet solenoid valve; wherein, one end of the first sewage water inlet pump is connected to the first sewage water inlet, the other end is connected to the first sewage tank, the first sewage water inlet solenoid valve, the first sewage drainage solenoid valve, and the first sewage overflow pipe road and the first clean water inlet solenoid valve are respectively connected with the first sewage tank, the other end of the first sewage inlet solenoid valve is connected with the sewage quantitative cup outside the water inlet unit, the first sewage discharge solenoid valve and the first sewage overflow The other end of the flow pipeline is connected to the sewage main drainage pipeline outside the water inlet unit, the other end of the first clean water inlet solenoid valve is connected to the clean water inlet pump outside the water inlet unit, and the first sewage discharge solenoid valve is located at the second Under the bottom of a sewage tank; the sewage quantitative cup is respectively connected with the first sewage water inlet electromagnetic valve, the second sewage water inlet electromagnetic valve, the third sewage water inlet electromagnetic valve, the fifth clean water inlet electromagnetic valve, and the fourth sewage overflow The pipeline is connected to the first mixing solenoid valve, the clean water quantitative cup is connected to the fourth clean water inlet solenoid valve, the first clean water overflow pipeline, and the second mixing solenoid valve, and the mixing tank is connected to the sixth clean water inlet solenoid valve, The first mixing solenoid valve, the second mixing solenoid valve, the sample water inlet solenoid valve, and the first sample overflow pipeline are connected, and the sample pool is respectively connected to the sample water inlet solenoid valve, sample drain solenoid valve, and the second sample overflow pipeline The main drain is connected to the sewage main drainage pipeline, the first sample overflow pipeline, and the second sample overflow pipeline respectively. The sewage quantitative cup and the clean water quantitative cup are arranged horizontally, and the sewage quantitative cup and the clean water quantitative cup are located in the second Under the bottoms of the first sewage tank, the second sewage tank and the third sewage tank, the first mixing solenoid valve and the second mixing solenoid valve are respectively located under the bottoms of the sewage quantitative cup and the clean water quantitative cup, and the mixing tank is located at the bottom of the first mixing electromagnetic valve. valve and the second mixing solenoid valve, the sample water inlet solenoid valve is located under the bottom of the mixing tank, the sample cell is located under the bottom of the sample water inlet solenoid valve, the sample drain solenoid valve is located under the bottom of the sample cell, the total drain The outlet is located below the bottom of the sewage main drain line, the first sample overflow line, the second sample overflow line, and the sample drain solenoid valve.
检测控制系统包括:控制单元工控机、LCD显示屏、键盘鼠标、电源模块、光谱检测器和数字I/O USB模块等,其中,LCD显示屏、键盘鼠标、电源模块、光谱检测器和数字I/O USB模块分别与控制单元工控机相连;光学系统的多波长激光器分别与电源模块和数字I/O USB模块相连,光学系统的脉冲氙灯分别与电源模块和控制单元工控机相连;水路系统的各水泵和电磁阀均分别与电源模块和数字I/O USB模块相连;水路系统的样品池分别与光学系统的多波长激光器、脉冲氙灯以及检测控制系统的光谱检测器相连。The detection and control system includes: control unit industrial computer, LCD display, keyboard and mouse, power module, spectral detector and digital I/O USB module, etc., among which, LCD display, keyboard and mouse, power module, spectral detector and digital I/O The /O USB modules are respectively connected with the control unit industrial computer; the multi-wavelength lasers of the optical system are respectively connected with the power supply module and the digital I/O USB module, and the pulse xenon lamps of the optical system are respectively connected with the power supply module and the control unit industrial computer; the waterway system The water pumps and solenoid valves are respectively connected to the power supply module and the digital I/O USB module; the sample pool of the waterway system is connected to the multi-wavelength laser of the optical system, the pulsed xenon lamp and the spectral detector of the detection control system.
本发明的有益效果是,一种基于多光谱的多点采样多参数水质在线分析系统,同时采用紫外可见(UV/Vis)透射光谱和荧光、拉曼等发射光谱,对水质的多种有机污染物综合参数进行在线分析,充分利用紫外和荧光光谱各自的优势,实现信息互补,得到对水质更全面、准确的分析,从而提高有机污染物参数的预测精度。该系统多点采样和全自动化的设计,特别适用于需多处设置水质监测网点的污水处理厂等场所的应用需求。The beneficial effect of the present invention is that, a multi-spectrum-based multi-point sampling multi-parameter water quality online analysis system simultaneously adopts ultraviolet-visible (UV/Vis) transmission spectrum and fluorescence, Raman and other emission spectra to eliminate various organic pollution of water quality On-line analysis of comprehensive parameters of organic pollutants, making full use of the respective advantages of ultraviolet and fluorescence spectra, realizing complementary information, obtaining a more comprehensive and accurate analysis of water quality, thereby improving the prediction accuracy of organic pollutant parameters. The multi-point sampling and fully automatic design of the system is especially suitable for the application requirements of sewage treatment plants and other places that need to set up water quality monitoring networks in multiple places.
附图说明Description of drawings
图1是基于多光谱的多点采样多参数水质在线分析系统的光学系统结构图;Fig. 1 is the optical system structure diagram of the multi-point sampling multi-parameter water quality online analysis system based on multi-spectrum;
图2是基于多光谱的多点采样多参数水质在线分析系统的水路系统结构图;Fig. 2 is a water system structure diagram of a multi-point sampling multi-parameter water quality online analysis system based on multi-spectrum;
图3是基于多光谱的多点采样多参数水质在线分析系统的检测控制系统结构图;Fig. 3 is a detection and control system structure diagram of the multi-point sampling multi-parameter water quality online analysis system based on multi-spectrum;
图4是本发明的分析系统工作流程图;Fig. 4 is the analysis system work flowchart of the present invention;
图中,脉冲氙灯1、第一凹面镜2、第一滤光片3、第一凸透镜4、第一光纤5、第二凸透镜6、样品池7、第三凸透镜8、第二光纤9、狭缝10、第二滤光片11、第二凹面镜12、光栅13、电荷耦合元件14、多波长激光器15、第三光纤16、第四凸透镜17、多点采样的第一污水进水口18、第二污水进水口19、第三污水进水口20、第一污水进水泵21、第二污水进水泵22、第三污水进水泵23、第一污水槽24、第二污水槽25、第三污水槽26、第一污水进水电磁阀27、第二污水进水电磁阀28、第三污水进水电磁阀29、第一污水排水电磁阀30、第二污水排水电磁阀31、第三污水排水电磁阀32、污水定量杯33、第一污水溢流管路34、第二污水溢流管路35、第三污水溢流管路36、污水总排水管路37、清水循环槽38、清水进水泵39、第一清水进水电磁阀40、第二清水进水电磁阀41、第三清水进水电磁阀42、第四清水进水电磁阀43、第五清水进水电磁阀44、第六清水进水电磁阀45、清水定量杯46、第四污水溢流管路47、第一清水溢流管路48、第二清水溢流管路49、第一混合电磁阀50、第二混合电磁阀51、混合槽52、样品进水电磁阀53、样品排水电磁阀54、总排水口55、第一样品溢流管路56、第二样品溢流管路57。In the figure, the
具体实施方式Detailed ways
本发明基于多光谱的多点采样多参数水质在线分析系统包括:光学系统,水路系统和检测控制系统。其中光学系统实现从光源发光、照射样品到透射光和荧光、拉曼等发射光的接收等一系列功能;水路系统与光学系统相连,实现进水、溢流排水、定量稀释配比、清洗等功能;检测控制系统分别与光学系统和水路系统相连,实现对光谱数据信号的检测、计算水质参数的分析值、控制光学系统和水路系统中各部件自动运行以及通过LCD显示屏、键盘鼠标实现和用户的交互等功能。The multi-spectral multi-point sampling multi-parameter water quality online analysis system of the present invention includes: an optical system, a waterway system and a detection control system. Among them, the optical system realizes a series of functions from the light source to emit light, irradiate the sample to the reception of transmitted light, fluorescence, Raman and other emitted light; the water system is connected to the optical system to realize water intake, overflow drainage, quantitative dilution ratio, cleaning, etc. Function; the detection control system is respectively connected with the optical system and the waterway system to realize the detection of the spectral data signal, calculate the analysis value of the water quality parameters, control the automatic operation of each component in the optical system and the waterway system, and realize and User interaction and other functions.
如图1所示,光学系统包括:脉冲氙灯1、第一凹面镜2、第一滤光片3、第一凸透镜4、第一光纤5、第二凸透镜6、样品池7、第三凸透镜8、第二光纤9、狭缝10、第二滤光片11、第二凹面镜12、光栅13、电荷耦合元件14、多波长激光器15、第三光纤16、第四凸透镜17。As shown in Figure 1, the optical system includes: a
图1中各部件之间的位置关系为:脉冲氙灯1位于第一凹面镜2的凹面焦点处,第一凹面镜2与第一滤光片3、第一凸透镜4同轴水平依次排列,第一光纤5的两端分别与第一凸透镜4和第二凸透镜6相连,样品池7俯视为正方形,第二凸透镜6与样品池7、第三凸透镜8同轴水平依次排列,第四凸透镜17与样品池7同轴水平依次排列并与第二凸透镜6、样品池7、第三凸透镜8的轴相垂直,第二光纤9的两端分别与第三凸透镜8和狭缝10相连,狭缝10与第二滤光片11同轴水平依次排列,第三光纤16的两端分别与多波长激光器15和第四凸透镜17相连。The positional relationship between the components in Fig. 1 is: the
图1中脉冲氙灯1发出的紫外可见光由第一凹面镜2反射变为平行光,平行光由第一滤光片3滤波后经第一凸透镜4聚焦送入第一光纤5,由第二凸透镜6变为平行光照射到样品池7,透射光在与入射光成180°方向处由第三凸透镜8接收聚焦送入第二光纤9,到达狭缝10,经第二滤光片11后由第二凹面镜12转为平行光后照射到光栅13上分光,最后由电荷耦合元件14接收检测,变成数字信号后由检测系统读取;多波长激光器15由266nm、355nm、532nm三个紫外可见波段范围内波长的激光器组合而成,由多波长激光器15发出的激光经第三光纤16后由第四凸透镜17转化为平行光后送入样品池7照射样品,在与入射光成90°方向上,样品的荧光、拉曼散射等发射光经第三凸透镜8聚焦后到第二光纤9送到狭缝10,经第二滤光片11滤波后,被第二凹面镜12反射到光栅13上分光,最后由电荷耦合元件14接收检测,变成数字信号后由检测系统读取。多波长激光器一个波长的激光激发的发射光检测结束后,控制系统根据内置程序,切换下一个激发波长,直到多个波长的激光全部激发测量完毕。In Fig. 1, the ultraviolet and visible light emitted by the
如图2所示,基于多光谱的多点采样多参数水质在线分析系统的水路系统包括:若干个进水单元、污水定量杯33、污水总排水管路37、清水循环槽38、清水进水泵39、第四清水进水电磁阀43、第五清水进水电磁阀44、第六清水进水电磁阀45、清水定量杯46、第四污水溢流管路47、第一清水溢流管路48、第二清水溢流管路49、第一混合电磁阀50、第二混合电磁阀51、混合槽52、样品进水电磁阀53、样品池7、样品排水电磁阀54、总排水口55、第一样品溢流管路56、第二样品溢流管路57。As shown in Figure 2, the waterway system of the multi-spectral multi-point sampling multi-parameter water quality online analysis system includes: several water inlet units, sewage quantitative cup 33, sewage
如图2所示的实施例中,有三个采样点,故有三个进水单元,但本发明不限于此。每个进水单元结构相同,以第一进水单元为例,第一进水单元包括第一污水进水口18、第一污水进水泵21、第一污水槽24、第一污水进水电磁阀27、第一污水排水电磁阀30、第一污水溢流管路34、第一清水进水电磁阀40。第一进水单元各部件之间的连接和位置关系为:第一污水进水泵21的一端连接第一污水进水口18,另一端连接第一污水槽24,第一污水进水电磁阀27、第一污水排水电磁阀30、第一污水溢流管路34、第一清水进水电磁阀40分别与第一污水槽24连接,其中第一污水进水电磁阀27的另一端与进水单元之外的污水定量杯33相连,第一污水排水电磁阀30和第一污水溢流管路34的另一端与进水单元之外的污水总排水管路37相连,第一清水进水电磁阀40的另一端与进水单元之外的清水进水泵39相连,第一污水排水电磁阀30位于第一污水槽24的底部之下。In the embodiment shown in FIG. 2, there are three sampling points, so there are three water inlet units, but the present invention is not limited thereto. Each water inlet unit has the same structure. Taking the first water inlet unit as an example, the first water inlet unit includes a first
图2中除进水单元外,其余各部件之间的连接和位置关系为:污水定量杯33分别和第一污水进水电磁阀27、第二污水进水电磁阀28、第三污水进水电磁阀29、第五清水进水电磁阀44、第四污水溢流管路47、第一混合电磁阀50相连,清水定量杯46分别和第四清水进水电磁阀43、第一清水溢流管路48、第二混合电磁阀51相连,混合槽52分别与第六清水进水电磁阀45、第一混合电磁阀50、第二混合电磁阀51、样品进水电磁阀53、第一样品溢流管路56相连,样品池7分别与样品进水电磁阀53、样品排水电磁阀54、第二样品溢流管路57相连,总排水口55分别与污水总排水管路37、第一样品溢流管路56、第二样品溢流管路57相连,污水定量杯33和清水定量杯46水平排列,污水定量杯33和清水定量杯46位于第一污水槽24、第二污水槽25、第三污水槽26的底部之下,第一混合电磁阀50和第二混合电磁阀51分别位于污水定量杯33和清水定量杯46的底部之下,混合槽52位于第一混合电磁阀50和第二混合电磁阀51之下,样品进水电磁阀53位于混合槽52的底部之下,样品池7位于样品进水电磁阀53的底部之下,样品排水电磁阀54位于样品池7的底部之下,总排水口55位于污水总排水管路37、第一样品溢流管路56、第二样品溢流管路57、样品排水电磁阀54的底部之下。Except for the water inlet unit in Fig. 2, the connection and positional relationship between the other components are: the sewage quantitative cup 33 is respectively connected to the first sewage water
图2中以三个采样点为例,首先,控制系统根据内置程序选择当前采样点,例如选择第一个采样点时,通过开启第一污水进水泵21,将第一进水口18处的污水抽取至第一污水槽24,通过对第一污水进水电磁阀27和第一污水排水电磁阀30的开关控制,使被选择的采样点的污水样品流速稳定的进入污水定量杯33,多余的污水通过开启第一污水排水电磁阀30或通过第一污水溢流管路34,经污水总排水管路37进入总排水口55被排走;同时,控制系统根据不同采样点污水的水质参数范围设定污水与清水的配比,并根据配比从清水循环槽38中通过清水进水泵39抽取稀释用清水,开启第四清水进水阀40加入清水定量杯46中,污水定量杯33和清水定量杯46中的多余的污水样品和清水分别通过第四污水溢流管路47和第一清水溢流管路48排走,其中多余的污水样品最终经污水总排水管路37进入总排水口55被排走,多余的清水则流回清水循环槽38;然后,待污水定量杯33和清水定量杯46中的污水样品和清水达到稳定的配比体积后,控制系统开启第一混合电磁阀50和第二混合电磁阀51将二者加入混合槽52内,待样品混合均匀稳定后,开启样品进水电磁阀53将稀释和混合均匀的样品送入样品池7进行光学检测和光谱数据的采集,检测结束后开启样品排水电磁阀54将样品通过总排水口55排走,其中混合槽52和样品池7中如有样品溢出则分别通过第一样品溢流管路56、第二样品溢流管路57进入总排水口55被排走。另外,污水管路系统的清洗过程为:控制系统通过开启清水进水泵39抽取清洗用清水,通过控制第一清水进水电磁阀40、第二清水进水电磁阀41、第三清水进水电磁阀42、第五清水进水电磁阀44、第六清水进水电磁阀45的开关,和控制第一污水排水电磁阀30、第二污水排水电磁阀31、第三污水排水电磁阀32、混合电磁阀50、样品进水电磁阀53、样品排水电磁阀54的开关,将清水分别送入第一污水槽24、第二污水槽25、第三污水槽26、污水定量杯33、混合槽52和样品池7内进行污水管路系统的清洗,清洗后的水最终进入总排水口55被排走。Taking three sampling points as an example in Fig. 2, at first, the control system selects the current sampling point according to the built-in program. Extracted to the
如图3所示,基于多光谱的多点采样多参数水质在线分析系统的检测控制系统包括:控制单元工控机、LCD显示屏、键盘鼠标、电源模块、光谱检测器、数字I/O USB模块。各部件之间的连接关系为: LCD显示屏、键盘鼠标、电源模块、光谱检测器和数字I/O USB模块分别与控制单元工控机相连;光学系统的多波长激光器分别与电源模块和数字I/O USB模块相连,光学系统的脉冲氙灯分别与电源模块和控制单元工控机相连;水路系统的各水泵和电磁阀均分别与电源模块和数字I/O USB模块相连;水路系统的样品池分别与光学系统的多波长激光器、脉冲氙灯以及检测控制系统的光谱检测器相连。As shown in Figure 3, the detection and control system of the multi-point sampling and multi-parameter water quality online analysis system based on multi-spectrum includes: control unit industrial computer, LCD display, keyboard and mouse, power module, spectral detector, digital I/O USB module . The connection relationship between the components is as follows: LCD display screen, keyboard and mouse, power supply module, spectrum detector and digital I/O USB module are respectively connected to the control unit industrial computer; the multi-wavelength laser of the optical system is respectively connected to the power supply module and digital I/O /O USB module is connected, the pulse xenon lamp of the optical system is connected with the power supply module and the control unit industrial computer respectively; the water pumps and solenoid valves of the waterway system are connected with the power supply module and the digital I/O USB module respectively; the sample pools of the waterway system are respectively connected It is connected with the multi-wavelength laser of the optical system, the pulsed xenon lamp and the spectral detector of the detection control system.
其中工控机为整个检测控制系统的中枢,控制各模块的启动和运行,内嵌操作系统和多光谱多参数水质在线分析软件,提供数据接口供两组光源和光谱检测器使用,同时提供各种过压、过流保护,保证仪器的电路安全;LCD显示屏、键盘鼠标为与用户交互的设备,用户通过键盘操作板发送各种命令,由LCD显示屏读取测量结果,获取操作提示;电源模块在控制系统作用下为整个系统供电;对光学系统的多波长激光器,由控制单元工控机通过数字I/O USB模块发送指令,实现对多波长激光器的开关和功率控制及波长切换;对光学系统的脉冲氙灯光源,由控制单元工控机通过USB接口发送指令,实现光路的软开关和功率控制,以便和激发-发射光路分时测量,并根据光谱检测器反馈的光谱数据,调整光源功率和积分时间以便获得合适的信号强度;光谱检测器通过USB接口接收检测控制系统的指令并定时将采集的光谱数据上传至控制单元工控机;对水路系统的各水泵和电磁阀,由控制单元工控机通过数字I/O USB模块发送指令,实现各水泵和电磁阀的开关控制。Among them, the industrial computer is the center of the entire detection and control system, controlling the start and operation of each module, embedded with the operating system and multi-spectral multi-parameter water quality online analysis software, providing data interfaces for two groups of light sources and spectral detectors, and providing various Overvoltage and overcurrent protection to ensure the safety of the circuit of the instrument; LCD display, keyboard and mouse are devices that interact with the user. The user sends various commands through the keyboard operation panel, and the LCD display reads the measurement results and obtains operation prompts; power supply The module supplies power to the entire system under the action of the control system; for the multi-wavelength laser of the optical system, the control unit industrial computer sends instructions through the digital I/O USB module to realize the switch, power control and wavelength switching of the multi-wavelength laser; for the optical The pulse xenon light source of the system is sent by the control unit industrial computer through the USB interface to realize the soft switch and power control of the optical path, so as to measure with the excitation-emission optical path in time, and adjust the light source power and Integrate time to obtain appropriate signal strength; the spectrum detector receives the instruction of the detection control system through the USB interface and regularly uploads the collected spectral data to the control unit industrial computer; for each water pump and solenoid valve of the waterway system, the control unit industrial computer Send instructions through the digital I/O USB module to realize the switch control of each water pump and solenoid valve.
如图4所示,本发明的分析系统工作流程为:用户按开机键,系统开始启动,同时,透射光源脉冲氙灯被点亮,并自行稳定。系统启动后,程序发出指令初始化LCD屏幕、数字I/O USB模块、光谱检测器,然后请用户确认如采样时间间隔、多点采样的配比值等初始设定,之后系统进入待机状态。若设定的检测时间到或用户通过键盘鼠标选择开始检测,则分析系统开始工作。首先进行管路清洗,然后选择污水采样点n进水并按照控制系统的设定采用清水进行稀释配比并送入样品池,之后激发-发射光光路开始工作,检测发射光谱信号。当一次发射光谱检测完成后,系统判断全部发射光谱检测是否完成(以266nm、355nm、532nm三个波长的激光器组合而成的多波长激光器为例,则判断激光器切换关键字k是否为3)。若发射光谱检测没有完成,则置激光器切换关键字k=k+1,关掉原来的激光器,点亮下一个激光器,改变激发波长后,再次检测、存储;若发射光谱检测已完成,则启动透射光谱检测,记录透射光谱数据。一个样品检测完成后,将检测数据送入工控机检测控制系统内进行模型计算处理,得到COD、TOC等多个水质参数的检测值,送LCD屏幕显示测量结果,同时系统判断全部污水采样点检测是否已完成(以三个采样点为例,则判断采样点切换关键字n是否为3)。若采样点尚未检测完成,则置采样点切换关键字n=n+1,开始对一个新的采样点的进水和检测过程;若全部采样点均已检测完成,则系统返回至待机状态,等待下一次采样时刻或用户发出新指令。As shown in Figure 4, the workflow of the analysis system of the present invention is as follows: the user presses the power button, the system starts to start, and at the same time, the pulsed xenon lamp of the transmitted light source is lit and stabilized by itself. After the system is started, the program issues instructions to initialize the LCD screen, digital I/O USB module, and spectral detector, and then asks the user to confirm the initial settings such as the sampling time interval and the ratio of multi-point sampling, and then the system enters the standby state. If the set detection time is up or the user chooses to start detection through the keyboard and mouse, the analysis system will start to work. Firstly, the pipeline is cleaned, and then the sewage sampling point is selected to enter the water, and according to the setting of the control system, it is diluted with clean water and sent to the sample pool. After that, the excitation-emission light path starts to work, and the emission spectrum signal is detected. After one emission spectrum detection is completed, the system judges whether all emission spectrum detections are completed (taking a multi-wavelength laser composed of lasers with three wavelengths of 266nm, 355nm, and 532nm as an example, it is judged whether the laser switching keyword k is 3). If the emission spectrum detection is not completed, set the laser switching keyword k=k+1, turn off the original laser, turn on the next laser, change the excitation wavelength, detect and store again; if the emission spectrum detection has been completed, start Transmission spectrum detection, record transmission spectrum data. After the detection of a sample is completed, the detection data is sent to the industrial computer detection and control system for model calculation and processing, and the detection values of multiple water quality parameters such as COD and TOC are obtained, and the measurement results are displayed on the LCD screen, and the system judges the detection of all sewage sampling points at the same time Whether it has been completed (taking three sampling points as an example, it is judged whether the switching keyword n of the sampling point is 3). If the sampling point has not been detected, set the sampling point switching keyword n=n+1 to start the water intake and detection process of a new sampling point; if all the sampling points have been detected, the system returns to the standby state. Wait for the next sampling moment or a new instruction from the user.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110085260 CN102156100A (en) | 2011-04-06 | 2011-04-06 | Multispectral-based multipoint sampling multiparameter water quality on-line analytical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110085260 CN102156100A (en) | 2011-04-06 | 2011-04-06 | Multispectral-based multipoint sampling multiparameter water quality on-line analytical system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102156100A true CN102156100A (en) | 2011-08-17 |
Family
ID=44437675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110085260 Pending CN102156100A (en) | 2011-04-06 | 2011-04-06 | Multispectral-based multipoint sampling multiparameter water quality on-line analytical system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102156100A (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103245644A (en) * | 2013-03-27 | 2013-08-14 | 中国科学院安徽光学精密机械研究所 | Quick detecting device and method of toxic and harmful organic chemical pollutants in water body |
CN103411910A (en) * | 2013-08-13 | 2013-11-27 | 杭州派析光电科技有限公司 | On-line ultraviolet spectrum detection method and system for traditional Chinese medicine extraction process |
CN103983585A (en) * | 2014-06-06 | 2014-08-13 | 力合科技(湖南)股份有限公司 | Multi-parameter water quality analyzer |
CZ305559B6 (en) * | 2014-12-10 | 2015-12-09 | Meopta- optika, s.r.o. | Imaging spectrograph optical system of high resolution for Raman spectroscopy in deep UV spectrum |
CZ305560B6 (en) * | 2014-12-10 | 2015-12-09 | Meopta- optika, s.r.o. | Imaging spectrograph optical system of high resolution for Raman spectroscopy in deep UV spectrum |
CN105424634A (en) * | 2015-10-29 | 2016-03-23 | 中国计量学院 | Water quality COD detector based on optical fiber coupling ultraviolet light source and prediction model optimization system of water quality COD detector |
CN105784606A (en) * | 2016-04-28 | 2016-07-20 | 无锡昊瑜节能环保设备有限公司 | Optical property based water quality monitoring system |
CN105806768A (en) * | 2016-04-28 | 2016-07-27 | 绍兴文理学院 | Sewage laser test table |
CN106770181A (en) * | 2017-02-24 | 2017-05-31 | 天津大学 | A kind of multifocal point type Raman spectrum Acquisition Instrument based on diffraction optical element |
CN106872362A (en) * | 2017-01-18 | 2017-06-20 | 浙江大学 | LED light source device and its application for visible and near infrared spectrum detection |
CN107290291A (en) * | 2017-07-02 | 2017-10-24 | 广东技术师范学院 | The method that double optical path modulation transmissions and fluorescence excitation light source measure complicated solution composition |
CN107478617A (en) * | 2017-09-04 | 2017-12-15 | 中国计量大学 | Long-range underground water multi-parameter online test method and measurement apparatus |
CN107560737A (en) * | 2017-09-28 | 2018-01-09 | 清华大学 | A kind of vehicle axles multiple point temperature measurement device and method based on infrared multispectral |
CN107631983A (en) * | 2017-10-23 | 2018-01-26 | 杭州希玛诺光电技术股份有限公司 | A kind of multispectral parallel generation device of sample for water analysis |
CN107748174A (en) * | 2017-11-25 | 2018-03-02 | 王会会 | A kind of water quality detecting device |
CN107782453A (en) * | 2017-09-28 | 2018-03-09 | 清华大学 | Vehicle axles multiple point temperature measurement device and method based on visible ray and infrared multispectral |
CN107966406A (en) * | 2017-12-18 | 2018-04-27 | 南通善水化工科技发展有限公司 | A kind of water quality automatic checkout equipment |
CN107976405A (en) * | 2017-12-25 | 2018-05-01 | 四川大学 | A kind of device that on-line monitoring river pollution is realized by light reaction |
CN108507955A (en) * | 2018-03-22 | 2018-09-07 | 上海交通大学 | The device and method of multispectral synchronous detection chemical oxygen demand of water body |
CN108693165A (en) * | 2018-07-10 | 2018-10-23 | 西北大学 | A kind of time-resolved Raman spectro scopy equipment |
CN108918196A (en) * | 2018-09-17 | 2018-11-30 | 安徽水韵环境检测有限公司 | Water quality detection technique is carried out using multi-point water quality sampling |
CN109520983A (en) * | 2018-11-20 | 2019-03-26 | 山东船舶技术研究院 | A kind of quality evaluation method and device based on DOM |
CN110208200A (en) * | 2019-06-04 | 2019-09-06 | 中国原子能科学研究院 | A kind of four, uranic while on-line measurement system |
CN110346260A (en) * | 2019-08-02 | 2019-10-18 | 东北石油大学 | Fine and close oil reservoir matrix rock core static state imbibition recovery ratio laser measuring device for measuring and method |
CN110488710A (en) * | 2019-08-26 | 2019-11-22 | 武汉和时利自动化系统工程有限公司 | Drain contamination for river channel point Check System and method based on the variation of sewage finger-print |
CN110687057A (en) * | 2018-07-04 | 2020-01-14 | 中国科学院深圳先进技术研究院 | Water in-situ detection device |
CN110907375A (en) * | 2019-12-09 | 2020-03-24 | 苏州同阳科技发展有限公司 | Full-spectrum water quality online monitoring device and method |
CN111220599A (en) * | 2018-11-24 | 2020-06-02 | 朱燕超 | Sampling device and sampling method for water quality detection |
CN112255181A (en) * | 2020-10-19 | 2021-01-22 | 北京微芯区块链与边缘计算研究院 | Miniature spectrometer for water quality on-line monitoring |
CN112362631A (en) * | 2020-12-02 | 2021-02-12 | 华夏安健物联科技(青岛)有限公司 | Device for monitoring dissolved organic matters in water body by fluorescence spectrometry and detection method |
CN112630182A (en) * | 2020-12-18 | 2021-04-09 | 湖南工程学院 | Sewage detection system |
CN113984671A (en) * | 2021-09-27 | 2022-01-28 | 苏州雷博亚仪器有限公司 | Multi-index detector and method for online or real-time detection of water quality |
RU2771221C1 (en) * | 2021-03-10 | 2022-04-28 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Ижевская государственная сельскохозяйственная академия" | Device for selective monitoring of emergency discharges |
CN114705667A (en) * | 2022-04-12 | 2022-07-05 | 中国农业科学院农业质量标准与检测技术研究所 | A device for pollutant enrichment and in-situ detection in flow systems |
CN115684059A (en) * | 2023-01-04 | 2023-02-03 | 中国市政工程华北设计研究总院有限公司 | Method and system for detecting water body based on multiple spectra |
RU2792152C1 (en) * | 2022-08-24 | 2023-03-17 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Удмуртский государственный аграрный университет" | Emergency discharge control device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2859515Y (en) * | 2005-06-01 | 2007-01-17 | 浙江大学 | Ultraviolet multi-spectrum on-line water quality COD rapid survey instrument |
JP2007327909A (en) * | 2006-06-09 | 2007-12-20 | Fujifilm Corp | Optical tomographic imaging system |
CN101275905A (en) * | 2008-04-18 | 2008-10-01 | 浙江大学 | A multi-source spectrum fusion portable water quality analyzer |
CN201191269Y (en) * | 2008-05-18 | 2009-02-04 | 锦州华冠环境科技实业公司 | Chemical oxygen demand water quality on-line automatic monitoring instrument |
CN201532390U (en) * | 2009-11-13 | 2010-07-21 | 中国水产科学研究院渔业机械仪器研究所 | A multi-point continuous automatic water quality monitoring device |
CN202002881U (en) * | 2011-04-06 | 2011-10-05 | 浙江大学 | Multispectral-based multipoint-sampling multi-parameter water quality online analysis system |
-
2011
- 2011-04-06 CN CN 201110085260 patent/CN102156100A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2859515Y (en) * | 2005-06-01 | 2007-01-17 | 浙江大学 | Ultraviolet multi-spectrum on-line water quality COD rapid survey instrument |
JP2007327909A (en) * | 2006-06-09 | 2007-12-20 | Fujifilm Corp | Optical tomographic imaging system |
CN101275905A (en) * | 2008-04-18 | 2008-10-01 | 浙江大学 | A multi-source spectrum fusion portable water quality analyzer |
CN201191269Y (en) * | 2008-05-18 | 2009-02-04 | 锦州华冠环境科技实业公司 | Chemical oxygen demand water quality on-line automatic monitoring instrument |
CN201532390U (en) * | 2009-11-13 | 2010-07-21 | 中国水产科学研究院渔业机械仪器研究所 | A multi-point continuous automatic water quality monitoring device |
CN202002881U (en) * | 2011-04-06 | 2011-10-05 | 浙江大学 | Multispectral-based multipoint-sampling multi-parameter water quality online analysis system |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103245644A (en) * | 2013-03-27 | 2013-08-14 | 中国科学院安徽光学精密机械研究所 | Quick detecting device and method of toxic and harmful organic chemical pollutants in water body |
CN103411910A (en) * | 2013-08-13 | 2013-11-27 | 杭州派析光电科技有限公司 | On-line ultraviolet spectrum detection method and system for traditional Chinese medicine extraction process |
CN103411910B (en) * | 2013-08-13 | 2015-09-09 | 杭州派析光电科技有限公司 | The online ultraviolet spectrum detection method of extraction of traditional Chinese medicine and system |
CN103983585A (en) * | 2014-06-06 | 2014-08-13 | 力合科技(湖南)股份有限公司 | Multi-parameter water quality analyzer |
US10190912B2 (en) | 2014-12-10 | 2019-01-29 | Meopata—Optika, S.R.O. | Optical system of a high-resolution imaging spectrograph for deep UV Raman spectroscopy |
CZ305559B6 (en) * | 2014-12-10 | 2015-12-09 | Meopta- optika, s.r.o. | Imaging spectrograph optical system of high resolution for Raman spectroscopy in deep UV spectrum |
CZ305560B6 (en) * | 2014-12-10 | 2015-12-09 | Meopta- optika, s.r.o. | Imaging spectrograph optical system of high resolution for Raman spectroscopy in deep UV spectrum |
CN105424634A (en) * | 2015-10-29 | 2016-03-23 | 中国计量学院 | Water quality COD detector based on optical fiber coupling ultraviolet light source and prediction model optimization system of water quality COD detector |
CN105806768A (en) * | 2016-04-28 | 2016-07-27 | 绍兴文理学院 | Sewage laser test table |
CN105784606A (en) * | 2016-04-28 | 2016-07-20 | 无锡昊瑜节能环保设备有限公司 | Optical property based water quality monitoring system |
CN106872362A (en) * | 2017-01-18 | 2017-06-20 | 浙江大学 | LED light source device and its application for visible and near infrared spectrum detection |
CN106872362B (en) * | 2017-01-18 | 2023-12-12 | 浙江大学 | LED light source device for visible and near infrared spectrum detection and application thereof |
CN106770181A (en) * | 2017-02-24 | 2017-05-31 | 天津大学 | A kind of multifocal point type Raman spectrum Acquisition Instrument based on diffraction optical element |
CN107290291A (en) * | 2017-07-02 | 2017-10-24 | 广东技术师范学院 | The method that double optical path modulation transmissions and fluorescence excitation light source measure complicated solution composition |
CN107478617A (en) * | 2017-09-04 | 2017-12-15 | 中国计量大学 | Long-range underground water multi-parameter online test method and measurement apparatus |
CN107478617B (en) * | 2017-09-04 | 2023-10-31 | 中国计量大学 | Remote groundwater multi-parameter online detection method and measurement device |
CN107782453A (en) * | 2017-09-28 | 2018-03-09 | 清华大学 | Vehicle axles multiple point temperature measurement device and method based on visible ray and infrared multispectral |
CN107560737A (en) * | 2017-09-28 | 2018-01-09 | 清华大学 | A kind of vehicle axles multiple point temperature measurement device and method based on infrared multispectral |
CN107631983A (en) * | 2017-10-23 | 2018-01-26 | 杭州希玛诺光电技术股份有限公司 | A kind of multispectral parallel generation device of sample for water analysis |
CN107748174A (en) * | 2017-11-25 | 2018-03-02 | 王会会 | A kind of water quality detecting device |
CN107966406A (en) * | 2017-12-18 | 2018-04-27 | 南通善水化工科技发展有限公司 | A kind of water quality automatic checkout equipment |
CN107976405A (en) * | 2017-12-25 | 2018-05-01 | 四川大学 | A kind of device that on-line monitoring river pollution is realized by light reaction |
CN108507955A (en) * | 2018-03-22 | 2018-09-07 | 上海交通大学 | The device and method of multispectral synchronous detection chemical oxygen demand of water body |
CN110687057A (en) * | 2018-07-04 | 2020-01-14 | 中国科学院深圳先进技术研究院 | Water in-situ detection device |
CN108693165A (en) * | 2018-07-10 | 2018-10-23 | 西北大学 | A kind of time-resolved Raman spectro scopy equipment |
CN108918196A (en) * | 2018-09-17 | 2018-11-30 | 安徽水韵环境检测有限公司 | Water quality detection technique is carried out using multi-point water quality sampling |
CN109520983B (en) * | 2018-11-20 | 2021-02-12 | 山东船舶技术研究院 | DOM-based water quality evaluation method and device |
CN109520983A (en) * | 2018-11-20 | 2019-03-26 | 山东船舶技术研究院 | A kind of quality evaluation method and device based on DOM |
CN111220599A (en) * | 2018-11-24 | 2020-06-02 | 朱燕超 | Sampling device and sampling method for water quality detection |
CN110208200A (en) * | 2019-06-04 | 2019-09-06 | 中国原子能科学研究院 | A kind of four, uranic while on-line measurement system |
CN110346260A (en) * | 2019-08-02 | 2019-10-18 | 东北石油大学 | Fine and close oil reservoir matrix rock core static state imbibition recovery ratio laser measuring device for measuring and method |
CN110346260B (en) * | 2019-08-02 | 2022-03-08 | 东北石油大学 | Laser measurement device and method for static imbibition recovery factor of tight oil reservoir matrix core |
CN110488710A (en) * | 2019-08-26 | 2019-11-22 | 武汉和时利自动化系统工程有限公司 | Drain contamination for river channel point Check System and method based on the variation of sewage finger-print |
CN110907375B (en) * | 2019-12-09 | 2023-01-17 | 苏州同阳科技发展有限公司 | Full-spectrum water quality online monitoring device and method |
CN110907375A (en) * | 2019-12-09 | 2020-03-24 | 苏州同阳科技发展有限公司 | Full-spectrum water quality online monitoring device and method |
CN112255181A (en) * | 2020-10-19 | 2021-01-22 | 北京微芯区块链与边缘计算研究院 | Miniature spectrometer for water quality on-line monitoring |
CN112362631A (en) * | 2020-12-02 | 2021-02-12 | 华夏安健物联科技(青岛)有限公司 | Device for monitoring dissolved organic matters in water body by fluorescence spectrometry and detection method |
CN112630182A (en) * | 2020-12-18 | 2021-04-09 | 湖南工程学院 | Sewage detection system |
RU2771221C1 (en) * | 2021-03-10 | 2022-04-28 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Ижевская государственная сельскохозяйственная академия" | Device for selective monitoring of emergency discharges |
CN113984671A (en) * | 2021-09-27 | 2022-01-28 | 苏州雷博亚仪器有限公司 | Multi-index detector and method for online or real-time detection of water quality |
CN114705667A (en) * | 2022-04-12 | 2022-07-05 | 中国农业科学院农业质量标准与检测技术研究所 | A device for pollutant enrichment and in-situ detection in flow systems |
RU2792152C1 (en) * | 2022-08-24 | 2023-03-17 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Удмуртский государственный аграрный университет" | Emergency discharge control device |
CN115684059A (en) * | 2023-01-04 | 2023-02-03 | 中国市政工程华北设计研究总院有限公司 | Method and system for detecting water body based on multiple spectra |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102156100A (en) | Multispectral-based multipoint sampling multiparameter water quality on-line analytical system | |
CN205786295U (en) | A kind of double light path water body environment on-line measurement device | |
CN202002881U (en) | Multispectral-based multipoint-sampling multi-parameter water quality online analysis system | |
CN105954192B (en) | A kind of double light path water body environment on-line measurement device based on spectral measurement methods | |
CN101183071B (en) | Novel water quality analysis meter | |
CN102519897B (en) | Water quality COD detection method and apparatus based on LED multi-feature wavelength | |
CN104165853B (en) | A kind of spectrographic method water body environment on-line measurement device | |
CN100578196C (en) | Method for Measuring Total Nitrogen and Total Phosphorus in Water Body by Ultrasonic Combined Ozone Digestion Spectrophotometry | |
CN102661923A (en) | Complex monitor for automatically monitoring multiple parameters of water on line | |
CN106198424A (en) | A kind of based on full spectral water quality on-line monitoring equipment and monitoring method thereof | |
CN101275905A (en) | A multi-source spectrum fusion portable water quality analyzer | |
CN203275288U (en) | Online automatic water quality multiple parameter monitor gathering spectrum and sensor technologies | |
CN105277530B (en) | A kind of flow injection micro Raman spectra device and detection method for water pollution analyte detection | |
CN204536203U (en) | A kind of integrated probe formula photoelectricity multi-parameter water-quality on-line measurement system | |
CN103245644B (en) | Quick detecting device and method of toxic and harmful organic chemical pollutants in water body | |
CN213398205U (en) | High-stability multi-parameter water quality online monitoring device based on spectrum method | |
CN101608998A (en) | Multiparameter water quality quick detection device based on the ARM technology | |
CN103575666A (en) | Online photoelectric detection device and detection method for residual concentration of corrosion inhibitor | |
CN204142624U (en) | A kind of online water monitoring device measured based on complex spectrum | |
CN106932373A (en) | Total organic carbon optics home position sensing | |
CN2575678Y (en) | Globe satellite positioning sea chart and fish school detector | |
CN2859515Y (en) | Ultraviolet multi-spectrum on-line water quality COD rapid survey instrument | |
CN204188514U (en) | A kind of Full-automatic infrared oil tester | |
CN204177735U (en) | A kind of spectroscopic methodology water body environment on-line measurement device | |
CN206920339U (en) | Total organic carbon optics home position sensing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110817 |