CN102148300A - Manufacturing method of ultraviolet LED (light-emitting diode) - Google Patents
Manufacturing method of ultraviolet LED (light-emitting diode) Download PDFInfo
- Publication number
- CN102148300A CN102148300A CN2011100638678A CN201110063867A CN102148300A CN 102148300 A CN102148300 A CN 102148300A CN 2011100638678 A CN2011100638678 A CN 2011100638678A CN 201110063867 A CN201110063867 A CN 201110063867A CN 102148300 A CN102148300 A CN 102148300A
- Authority
- CN
- China
- Prior art keywords
- layer
- gan
- ultraviolet led
- type
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Led Devices (AREA)
Abstract
本发明提供一种紫外LED的制作方法,包括下述步骤:步骤1:取一衬底;步骤2:在衬底上依次生长成核层和n型层;步骤3:在n型层上生长多量子阱层;步骤4:在多量子阱层上生长电子阻挡层和p型层,完成结构的生长。本发明可以解决白光固态照明中用紫外光激射RGB荧光粉产生白光这一方法中紫外LED输出功率低的问题。
The invention provides a method for making an ultraviolet LED, comprising the following steps: step 1: take a substrate; step 2: grow a nucleation layer and an n-type layer on the substrate in sequence; step 3: grow on the n-type layer Multi-quantum well layer; step 4: growing an electron blocking layer and a p-type layer on the multi-quantum well layer to complete the growth of the structure. The invention can solve the problem of low output power of ultraviolet LED in the method of using ultraviolet light to laser RGB fluorescent powder to generate white light in white light solid-state lighting.
Description
技术领域technical field
本发明属于氮化物基材料生长与器件制作领域,特别是指一种可以提高紫外LED输出功率的紫外LED的制作方法。The invention belongs to the field of nitride-based material growth and device manufacturing, in particular to a method for manufacturing an ultraviolet LED that can improve the output power of the ultraviolet LED.
背景技术Background technique
白光固态照明发光二极管(LED)被认为是继白炽灯和荧光灯之后的第三代照明光源。与传统光源相比,全固态工作的半导体照明光源具有发光效率高、寿命长、体积小、响应速度快、耐抗震冲击、使用安全等一系列优势,是一种符合环保和节能的绿色照明光源。White solid-state lighting light-emitting diodes (LEDs) are considered the third generation of lighting sources after incandescent and fluorescent lamps. Compared with traditional light sources, all-solid-state semiconductor lighting sources have a series of advantages such as high luminous efficiency, long life, small size, fast response, shock resistance, and safe use. It is a green lighting source that is environmentally friendly and energy-saving. .
目前,实现白光固态照明的方式主要有三种,用的最多的是蓝光LED+YAG荧光粉,然而用该种方式得到的白光随发射方向变化,其显色率,色温随着工作电流以及工作温度的变化有比较大的变化。其次就是用紫外LED激射RGB荧光粉产生白光,由于其发光不存在方向性,显色指数和色温不随工作电流和工作温度变化发生明显变化,同时还可以自由的通过不同的RGB配比得到不同色温但显色指数高的白光,实现不同照明需求。基于以上优势,该种产生白光的方式成为未来白光LED的发展趋势。At present, there are mainly three ways to realize white light solid-state lighting, and the most used one is blue LED+YAG phosphor powder. There are relatively large changes. The second is to use ultraviolet LEDs to laser RGB phosphors to produce white light. Because there is no directionality in the light emission, the color rendering index and color temperature do not change significantly with the change of operating current and operating temperature. At the same time, different RGB ratios can be obtained freely. White light with high color temperature but high color rendering index can meet different lighting needs. Based on the above advantages, this method of generating white light will become the development trend of white light LED in the future.
但是该种产生白光的方式存在一个致命的缺点,那就是不能生产出大功率的紫外LED。无论是基于AlGaN发光的深紫外LED还是基于InGaN和GaN发光的近紫外LED,目前的输出功率都很低。因此,要想使该种产生白光的方式取代目前的蓝光LED+YAG荧光粉的方式,就要提高紫外LED输出功率。But there is a fatal shortcoming in this way of producing white light, that is, it cannot produce high-power ultraviolet LEDs. Whether it is a deep-ultraviolet LED based on AlGaN or a near-ultraviolet LED based on InGaN and GaN, the current output power is very low. Therefore, in order to replace the current method of blue LED+YAG phosphor with this method of generating white light, it is necessary to increase the output power of the ultraviolet LED.
造成紫外LED输出功率低的其中一个因素就是AlGaN、InGaN与GaN彼此之间均存在晶格失配,导致外延片缺陷密度高。如果可以找到一种与以上材料晶格匹配的材料,就能降低缺陷密度,消除压电极化,提高紫外LED最终的输出功率。One of the factors causing the low output power of UV LEDs is the lattice mismatch between AlGaN, InGaN and GaN, resulting in a high defect density of epitaxial wafers. If a material that matches the lattice of the above materials can be found, the defect density can be reduced, the piezoelectric polarization can be eliminated, and the final output power of the UV LED can be improved.
基于以上原因,考虑到另外一种三元氮化物合金AlInN。AlN的带宽为6.2eV,InN的带宽为0.7eV,所以在III族氮化物三元合金材料中AlInN的带隙宽度具有最大的可调范围。当In的组分为0.18时,Al0.82In0.18N的晶格常数与GaN是匹配的,此时其带宽约为4.5eV,可以考虑用Al0.82In0.18N/GaN取代AlGaN/GaN。经过实验与理论论证,发现:与AlGaN/GaN结构相比,一方面晶格匹配的Al0.82In0.18N/GaN多量子阱能够避免由于晶格失配带来的裂纹或位错;另一方面Al0.82In0.18N室温下带宽约为4.5eV,可以阻止多量子阱中垒层的带尾吸收。因此,Al0.82In0.18N/GaN结构可以替代AlGaN/GaN结构。另外,Al0.82In0.18N/GaN单量子阱中的内建电场为3.64MVcm-1,主要由自发极化引起,其发光可以覆盖紫外谱中很宽的波段。因此Al0.82In0.18N/GaN结构可以作为一种紫外发光器件,室温下发光效率超过相应AlGaN结构的30倍。Based on the above reasons, another ternary nitride alloy AlInN is considered. The bandwidth of AlN is 6.2eV, and the bandwidth of InN is 0.7eV, so the bandgap width of AlInN has the largest adjustable range among III-nitride ternary alloy materials. When the composition of In is 0.18, the lattice constant of Al 0.82 In 0.18 N matches that of GaN, and its bandwidth is about 4.5eV. Al 0.82 In 0.18 N/GaN can be considered to replace AlGaN/GaN. After experiments and theoretical demonstrations, it was found that compared with the AlGaN/GaN structure, on the one hand, the lattice-matched Al 0.82 In 0.18 N/GaN multiple quantum wells can avoid cracks or dislocations caused by lattice mismatch; on the other hand, The bandwidth of Al 0.82 In 0.18 N at room temperature is about 4.5eV, which can prevent the band tail absorption of the barrier layer in the multiple quantum wells. Therefore, the Al 0.82 In 0.18 N/GaN structure can replace the AlGaN/GaN structure. In addition, the built-in electric field in Al 0.82 In 0.18 N/GaN single quantum well is 3.64MVcm -1 , which is mainly caused by spontaneous polarization, and its luminescence can cover a wide band in the ultraviolet spectrum. Therefore, the Al 0.82 In 0.18 N/GaN structure can be used as an ultraviolet light-emitting device, and the luminous efficiency at room temperature is 30 times higher than that of the corresponding AlGaN structure.
同时,由于AlInN的晶格常数具有很大的可调范围,使它能够与其他的外延层有良好的晶格匹配,还可以用来制备AlInN/InGaN和AlInN/AlGaN等无失配的异质结构,通过调节不同的组分配比,该两种结构作为有源区的LED的发光波长都可以保证在紫外范围内。At the same time, since the lattice constant of AlInN has a large adjustable range, it can have good lattice matching with other epitaxial layers, and can also be used to prepare mismatch-free heterogeneous materials such as AlInN/InGaN and AlInN/AlGaN. structure, by adjusting different component distribution ratios, the light emitting wavelength of the LED with the two structures as the active region can be guaranteed to be in the ultraviolet range.
再者,由于AlInN良好的晶格匹配功能,结合其禁带宽度相对较宽的特点,还可以将其用作电子阻挡层,取代传统的AlGaN结构,提高电子的注入效率,最终也将有助于提高紫外LED的输出功率。Furthermore, due to the good lattice matching function of AlInN, combined with its relatively wide bandgap, it can also be used as an electron blocking layer to replace the traditional AlGaN structure and improve the injection efficiency of electrons, which will eventually help To improve the output power of UV LED.
发明内容Contents of the invention
本发明的目的在于,提供一种紫外LED的制作方法,其可以解决白光固态照明中用紫外光激射RGB荧光粉产生白光这一方法中紫外LED输出功率低的问题。The object of the present invention is to provide a method for manufacturing ultraviolet LEDs, which can solve the problem of low output power of ultraviolet LEDs in the method of using ultraviolet light to laser RGB phosphors to produce white light in white light solid-state lighting.
为达到上述目的,本发明提供一种紫外LED的制作方法,包括下述步骤:In order to achieve the above object, the present invention provides a method for making an ultraviolet LED, comprising the following steps:
步骤1:取一衬底;Step 1: Take a substrate;
步骤2:在衬底上依次生长成核层和n型层;Step 2: growing a nucleation layer and an n-type layer sequentially on the substrate;
步骤3:在n型层上生长多量子阱层;Step 3: growing multiple quantum well layers on the n-type layer;
步骤4:在多量子阱层上生长电子阻挡层和p型层,完成结构的生长。Step 4: growing an electron blocking layer and a p-type layer on the multi-quantum well layer to complete the growth of the structure.
其中所述衬底为蓝宝石衬底或硅衬底。Wherein the substrate is a sapphire substrate or a silicon substrate.
其中所述成核层为低温AlN层或低温GaN层,所述低温AlN层的生长温度为550-650℃,低温GaN的生长温度为500-600℃,该成核层的厚度为10-50nm。Wherein the nucleation layer is a low-temperature AlN layer or a low-temperature GaN layer, the growth temperature of the low-temperature AlN layer is 550-650°C, the growth temperature of the low-temperature GaN is 500-600°C, and the thickness of the nucleation layer is 10-50nm .
其中所述n型层为高温AlGaN层或GaN层,其中AlGaN的生长温度为1000-1150℃,GaN的生长温度为950-1100℃,该n型层的厚度为0.5-2μm。The n-type layer is a high-temperature AlGaN layer or GaN layer, wherein the growth temperature of AlGaN is 1000-1150° C., the growth temperature of GaN is 950-1100° C., and the thickness of the n-type layer is 0.5-2 μm.
其中所述多量子阱层的周期数为2-10。Wherein the number of periods of the multi-quantum well layer is 2-10.
其中所述多量子阱层是AlInN/AlGaN、AlInN/GaN或AlInN/InGaN,其中阱层厚度为1.0-6.0nm,垒层厚度为5.0-20nm。Wherein the multiple quantum well layer is AlInN/AlGaN, AlInN/GaN or AlInN/InGaN, wherein the thickness of the well layer is 1.0-6.0nm, and the thickness of the barrier layer is 5.0-20nm.
其中所述电子阻挡层为AlInN层,其掺杂类型为p型,生长温度为720-850℃,厚度为20-50nm。Wherein the electron blocking layer is an AlInN layer, its doping type is p-type, its growth temperature is 720-850° C., and its thickness is 20-50 nm.
其中所述p型层为AlGaN层或GaN层,其中AlGaN层的生长温度为1000-1150℃,GaN层的生长温度为950-1100℃,该p型层的厚度为0.1-0.5μm。The p-type layer is an AlGaN layer or a GaN layer, wherein the growth temperature of the AlGaN layer is 1000-1150° C., the growth temperature of the GaN layer is 950-1100° C., and the thickness of the p-type layer is 0.1-0.5 μm.
采用上述方法的有益效果在于:本发明通过使用AlInN材料解决目前存在的紫外LED输出功率低的问题。In组分为0.18的AlInN材料的晶格常数与GaN相同,但是其禁带宽度比GaN高出约0.9eV,用Al0.82In0.18N/GaN作多量子阱,一方面能够避免由于晶格失配带来的裂纹或位错,降低压电极化作用;另一方面Al0.82In0.18N室温下带宽约为4.5eV,可以阻止多量子阱中垒层的带尾吸收。同理,通过调节组分得到晶格匹配的AlInN/InGaN和AlInN/AlGaN多量子阱,可以收到同样的效果。采用Al0.82In0.18N作电子阻挡层时可以有效阻挡电子流入p型层,提高有源区的电子空穴复合效率。以上方法都可以提高紫外LED最终的输出功率。The beneficial effect of adopting the above method is that the present invention solves the current problem of low output power of ultraviolet LEDs by using AlInN material. The lattice constant of the AlInN material with an In composition of 0.18 is the same as that of GaN, but its forbidden band width is about 0.9eV higher than that of GaN. Using Al 0.82 In 0.18 N/GaN as a multiple quantum well, on the one hand, can avoid The cracks or dislocations brought by matching reduce the piezoelectric polarization; on the other hand, the bandwidth of Al 0.82 In 0.18 N at room temperature is about 4.5eV, which can prevent the band tail absorption of the barrier layer in the multiple quantum wells. In the same way, the same effect can be obtained by adjusting the composition to obtain lattice-matched AlInN/InGaN and AlInN/AlGaN multiple quantum wells. When Al 0.82 In 0.18 N is used as the electron blocking layer, it can effectively block electrons from flowing into the p-type layer, and improve the electron-hole recombination efficiency in the active region. The above methods can improve the final output power of the UV LED.
附图说明Description of drawings
为描述本发明的具体内容,以下结合附图和具体实施方式对本发明作进一步的详细说明,其中:In order to describe the specific content of the present invention, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments, wherein:
图1是本发明的方法流程示意图;Fig. 1 is a schematic flow chart of the method of the present invention;
图2是本发明的结构示意图。Fig. 2 is a structural schematic diagram of the present invention.
具体实施方式Detailed ways
请参阅图1及图2所示,本发明提供一种紫外LED的制作方法,包括下述步骤:Please refer to Fig. 1 and shown in Fig. 2, the present invention provides a kind of manufacturing method of ultraviolet LED, comprises the following steps:
步骤1:取一衬底1,该衬底1为蓝宝石衬底或硅衬底;Step 1: Take a substrate 1, which is a sapphire substrate or a silicon substrate;
步骤2:在衬底1上依次生长成核层2、n型层3,所述成核层2为低温AlN层或低温GaN层,其中低温AlN层的生长温度为550-650℃,低温GaN层2的生长温度为500-600℃,该成核层2的厚度为10-50nm;所述n型层3为高温AlGaN或GaN层,其中AlGaN层的生长温度为1000-1150℃,GaN层的生长温度为950-1100℃,该n型层3的厚度为0.5-2μm;Step 2: growing a nucleation layer 2 and an n-type layer 3 sequentially on the substrate 1, the nucleation layer 2 is a low-temperature AlN layer or a low-temperature GaN layer, wherein the growth temperature of the low-temperature AlN layer is 550-650°C, and the low-temperature GaN layer The growth temperature of layer 2 is 500-600°C, and the thickness of the nucleation layer 2 is 10-50nm; the n-type layer 3 is a high-temperature AlGaN or GaN layer, wherein the growth temperature of the AlGaN layer is 1000-1150°C, and the GaN layer The growth temperature is 950-1100° C., and the thickness of the n-type layer 3 is 0.5-2 μm;
步骤3:在n型层3上生长多量子阱层4,所述多量子阱层4是AlInN/AlGaN、AlInN/GaN或AlInN/InGaN,其阱层厚度为1.0-6.0nm,垒层厚度为5.0-20nm,周期数为2-10;Step 3: grow a multi-quantum well layer 4 on the n-type layer 3, the multi-quantum well layer 4 is AlInN/AlGaN, AlInN/GaN or AlInN/InGaN, the thickness of the well layer is 1.0-6.0nm, and the thickness of the barrier layer is 5.0-20nm, the number of cycles is 2-10;
步骤4:在多量子阱层4上依次生长电子阻挡层5、p型层6,所述电子阻挡层5为AlInN层,掺杂类型为p型,生长温度为720-850℃,厚度为20-50nm;所述p型层6为AlGaN层或GaN层,其中AlGaN层的生长温度为1000-1150℃,GaN层的生长温度为950-1100℃,该p型层6的厚度为0.1-0.5μm,完成结构的生长。Step 4: On the multi-quantum well layer 4, an electron blocking layer 5 and a p-type layer 6 are sequentially grown, the electron blocking layer 5 is an AlInN layer, the doping type is p-type, the growth temperature is 720-850°C, and the thickness is 20 -50nm; the p-type layer 6 is an AlGaN layer or a GaN layer, wherein the growth temperature of the AlGaN layer is 1000-1150°C, the growth temperature of the GaN layer is 950-1100°C, and the thickness of the p-type layer 6 is 0.1-0.5 μm, to complete the growth of the structure.
实例example
请再参阅图1及图2,本发明提供一种紫外LED的制作方法,包括下述步骤:Please refer to Fig. 1 and Fig. 2 again, the present invention provides a kind of manufacturing method of ultraviolet LED, comprises the following steps:
步骤1:取蓝宝石一衬底1;Step 1: Take a sapphire substrate 1;
步骤2:在衬底1上依次生长成核层2、n型层3,所述成核层2为低温GaN,其生长温度为550℃,厚度为30nm;所述n型层3为高温GaN层,其生长温度为1050℃,厚度为1.5μm;Step 2: growing a nucleation layer 2 and an n-type layer 3 sequentially on the substrate 1, the nucleation layer 2 is low-temperature GaN, its growth temperature is 550°C, and the thickness is 30nm; the n-type layer 3 is high-temperature GaN layer, the growth temperature is 1050°C, and the thickness is 1.5μm;
步骤3:在n型层3上生长多量子阱层4,所述多量子阱层4为AlInN/GaN,其阱层厚度为3.0nm,垒层厚度为12.0nm,周期数为5;Step 3: growing a multi-quantum well layer 4 on the n-type layer 3, the multi-quantum well layer 4 is AlInN/GaN, the thickness of the well layer is 3.0nm, the thickness of the barrier layer is 12.0nm, and the number of periods is 5;
步骤4:在多量子阱层4上分别生长电子阻挡层5、p型层6,所述电子阻挡层5为AlInN层,其掺杂类型为p型,生长温度为800℃,厚度为30nm;所述p型层6为GaN层,其生长温度为1000℃,厚度为,0.2μm,完成结构的生长。Step 4: growing an electron blocking layer 5 and a p-type layer 6 on the multi-quantum well layer 4 respectively, the electron blocking layer 5 is an AlInN layer, its doping type is p-type, the growth temperature is 800°C, and the thickness is 30nm; The p-type layer 6 is a GaN layer with a growth temperature of 1000° C. and a thickness of 0.2 μm to complete the growth of the structure.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100638678A CN102148300A (en) | 2011-03-17 | 2011-03-17 | Manufacturing method of ultraviolet LED (light-emitting diode) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100638678A CN102148300A (en) | 2011-03-17 | 2011-03-17 | Manufacturing method of ultraviolet LED (light-emitting diode) |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102148300A true CN102148300A (en) | 2011-08-10 |
Family
ID=44422429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100638678A Pending CN102148300A (en) | 2011-03-17 | 2011-03-17 | Manufacturing method of ultraviolet LED (light-emitting diode) |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102148300A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105280768A (en) * | 2015-09-18 | 2016-01-27 | 华灿光电股份有限公司 | Epitaxial wafer growth method having high luminescence efficiency |
CN105449052A (en) * | 2014-08-25 | 2016-03-30 | 东莞市中镓半导体科技有限公司 | Method for preparing high-efficiency near-ultraviolet LED with asymmetric current expansion layer by using MOCVD |
CN105895759A (en) * | 2016-06-24 | 2016-08-24 | 太原理工大学 | Deep ultra violet (DUV) light-emitting diode (LED) epitaxial wafer structure |
CN106784180A (en) * | 2016-12-06 | 2017-05-31 | 中国科学院半导体研究所 | The preparation method of UV LED device |
CN106848011A (en) * | 2017-01-24 | 2017-06-13 | 厦门三安光电有限公司 | Gallium nitride based light emitting diode and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080277682A1 (en) * | 2007-03-29 | 2008-11-13 | The Regents Of The University Of California | Dual surface-roughened n-face high-brightness led |
CN101515618A (en) * | 2009-03-31 | 2009-08-26 | 西安电子科技大学 | Multiple quantum well uv-LED device on sapphire substrate and manufacturing method |
CN101621108A (en) * | 2009-07-30 | 2010-01-06 | 厦门大学 | Ultraviolet light-emitting diode (LED) structure based on InN/GaN strained quantum well and preparation method thereof |
CN101740693A (en) * | 2009-12-25 | 2010-06-16 | 武汉华灿光电有限公司 | Method for reducing luminous decay of III group nitride light-emitting diode |
WO2011027896A1 (en) * | 2009-09-07 | 2011-03-10 | パナソニック電工株式会社 | Nitride semiconductor multilayer structure, method for producing same, and nitride semiconductor light-emitting element |
-
2011
- 2011-03-17 CN CN2011100638678A patent/CN102148300A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080277682A1 (en) * | 2007-03-29 | 2008-11-13 | The Regents Of The University Of California | Dual surface-roughened n-face high-brightness led |
CN101515618A (en) * | 2009-03-31 | 2009-08-26 | 西安电子科技大学 | Multiple quantum well uv-LED device on sapphire substrate and manufacturing method |
CN101621108A (en) * | 2009-07-30 | 2010-01-06 | 厦门大学 | Ultraviolet light-emitting diode (LED) structure based on InN/GaN strained quantum well and preparation method thereof |
WO2011027896A1 (en) * | 2009-09-07 | 2011-03-10 | パナソニック電工株式会社 | Nitride semiconductor multilayer structure, method for producing same, and nitride semiconductor light-emitting element |
CN101740693A (en) * | 2009-12-25 | 2010-06-16 | 武汉华灿光电有限公司 | Method for reducing luminous decay of III group nitride light-emitting diode |
Non-Patent Citations (1)
Title |
---|
《Appl. Phys. Lett.》 20081231 G. Franssen, T. Suski, M. Kryko, A. Khachapuridze, R. Kudrawiec Built-in electric field and large Stokes shift in near-lattice-matched GaN/AlInN quantum wells 201901 6-7 第92卷, 2 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105449052A (en) * | 2014-08-25 | 2016-03-30 | 东莞市中镓半导体科技有限公司 | Method for preparing high-efficiency near-ultraviolet LED with asymmetric current expansion layer by using MOCVD |
CN105449052B (en) * | 2014-08-25 | 2018-03-13 | 东莞市中镓半导体科技有限公司 | A kind of method that high brightness near ultraviolet LED is prepared using MOCVD technologies |
CN105280768A (en) * | 2015-09-18 | 2016-01-27 | 华灿光电股份有限公司 | Epitaxial wafer growth method having high luminescence efficiency |
CN105280768B (en) * | 2015-09-18 | 2018-10-09 | 华灿光电股份有限公司 | Epitaxial wafer growth method with high-luminous-efficiency |
CN105895759A (en) * | 2016-06-24 | 2016-08-24 | 太原理工大学 | Deep ultra violet (DUV) light-emitting diode (LED) epitaxial wafer structure |
CN105895759B (en) * | 2016-06-24 | 2018-07-17 | 太原理工大学 | A kind of DUV LED epitaxial wafer structure |
CN106784180A (en) * | 2016-12-06 | 2017-05-31 | 中国科学院半导体研究所 | The preparation method of UV LED device |
CN106848011A (en) * | 2017-01-24 | 2017-06-13 | 厦门三安光电有限公司 | Gallium nitride based light emitting diode and preparation method thereof |
WO2018137336A1 (en) * | 2017-01-24 | 2018-08-02 | 厦门三安光电有限公司 | Gallium nitride-based light emitting diode and manufacturing method therefor |
CN106848011B (en) * | 2017-01-24 | 2018-11-02 | 厦门三安光电有限公司 | Gallium nitride based light emitting diode and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101645480B (en) | Method for enhancing antistatic ability of GaN-based light-emitting diode | |
CN108231960B (en) | An AlGaN-based semiconductor ultraviolet device that improves light efficiency and its preparation method | |
CN101488550B (en) | Manufacturing method for LED in high In ingredient multiple InGaN/GaN quantum wells structure | |
CN108461592B (en) | A light-emitting diode epitaxial wafer and its manufacturing method | |
CN102664145B (en) | Method for growing asymmetric electron storing layer high-luminance luminous diode by metal organic compound gas phase epitaxy technology | |
CN104538517B (en) | LED epitaxial structure with n-type superlattice structure and growth method of LED epitaxial structure | |
CN106571416B (en) | Light emitting diode epitaxial wafer and manufacturing method thereof | |
CN101728472A (en) | Multilayer LED chip structure and preparation method thereof | |
CN108091740A (en) | Light emitting diode epitaxial wafer and manufacturing method thereof | |
CN105870283A (en) | Light-emitting diode with composite polar face electron blocking layer | |
CN103296165A (en) | Energy band adjustable light-emitting diode (LED) quantum well structure | |
CN109004074A (en) | LED epitaxial structure and preparation method thereof | |
WO2016197650A1 (en) | Dopant-free algan-based ultraviolet light emitting diode and preparation method thereof | |
CN103413877A (en) | Method for growing quantum well stress release layer of epitaxial structure and epitaxial structure | |
CN108054260A (en) | Epitaxial wafer of light emitting diode and preparation method | |
CN102044606A (en) | A kind of LED epitaxial wafer and its epitaxial growth method | |
CN102148300A (en) | Manufacturing method of ultraviolet LED (light-emitting diode) | |
CN105304778A (en) | Epitaxial structure capable of raising GaN-based LED antistatic performance and preparation method | |
CN106356433A (en) | Light-emitting diode structure with component and thickness gradient stress release layer and preparation method of light-emitting diode structure | |
CN108550676B (en) | A light-emitting diode epitaxial wafer and its manufacturing method | |
CN106910802B (en) | Epitaxial structure for realizing short-wavelength ultraviolet LED | |
CN104868027A (en) | Phosphor-free GaN-based white light LED epitaxial structure and preparation method thereof | |
CN105742429A (en) | Ultraviolet GaN-based LED epitaxy structure and manufacturing method thereof | |
CN105226150A (en) | A kind of N-B is two mixes efficient white light LED structure of the GaN base unstressed configuration powder of SiC substrate and its preparation method and application | |
CN104037274A (en) | Epitaxial growth method and structure for LED (Light-Emitting Diode) luminous layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110810 |