CN102146814A - Supercritical low temperature air power generation device - Google Patents
Supercritical low temperature air power generation device Download PDFInfo
- Publication number
- CN102146814A CN102146814A CN2011101088497A CN201110108849A CN102146814A CN 102146814 A CN102146814 A CN 102146814A CN 2011101088497 A CN2011101088497 A CN 2011101088497A CN 201110108849 A CN201110108849 A CN 201110108849A CN 102146814 A CN102146814 A CN 102146814A
- Authority
- CN
- China
- Prior art keywords
- power generation
- heat
- low
- overcritical
- generating device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 38
- 239000006096 absorbing agent Substances 0.000 claims abstract description 13
- 230000005611 electricity Effects 0.000 claims abstract description 11
- 238000001514 detection method Methods 0.000 claims abstract description 4
- 239000012530 fluid Substances 0.000 abstract description 25
- 238000005516 engineering process Methods 0.000 abstract description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 5
- 239000006227 byproduct Substances 0.000 abstract description 5
- 239000002918 waste heat Substances 0.000 abstract description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical group O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 230000005494 condensation Effects 0.000 abstract description 3
- 238000009833 condensation Methods 0.000 abstract description 3
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 2
- 239000001569 carbon dioxide Substances 0.000 abstract description 2
- 238000000034 method Methods 0.000 abstract description 2
- 238000010521 absorption reaction Methods 0.000 abstract 1
- 125000004122 cyclic group Chemical group 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 3
- 230000003203 everyday effect Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Images
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种新能源发电装置,尤其是一种超临界低温空气能发电装置。The invention relates to a new energy power generation device, in particular to a supercritical low-temperature air energy power generation device.
背景技术Background technique
地球上的能源绝大部分都来源于太阳,不管风能、水能、生物能还是化石能源--煤炭、石油、天然气、可燃冰。在能源日益紧张的今天,新的可再生绿色洁净发电技术日益受到重视。现在,新能源中,水力、风力等太阳能发电技术以及太阳光发电的直接利用技术—光电池、镜面聚热发电技术已相当成熟;水力发电开发潜力已不大;而风力、太阳光太过分散,使得风力、太阳光的直接发电装置占地面积庞大、一次性投资极高。地球大气每天都在重复吸收并发散太阳辐射的能量,而吸收太阳光热能的环境流体—空气中、水中的太阳热能每天更新,几乎取之不尽用之不竭。因而人们都在加紧研究新的间接利用太阳能热能的环境流体—空气中、水中的热力发电技术。其中低温太阳能热力发电技术是最有潜力前途的高新技术。目前,公知的热泵式低温热能发电装置采用热泵系统富集空气中、水中的低温太阳热能再采用朗肯循环系统发电。其中热泵系统主要包括压缩机、冷凝器、节流器、蒸发器;朗肯循环系统主要包括冷凝器、循环泵、蒸发器、膨胀发电机组。该热泵式低温太阳能热力发电技术不仅热泵运行需消耗能量,而且朗肯循环发电系统的冷凝器所耗损的大量热量会流出系统不被有效利用。它投资高、尤其热效率低。Most of the energy on the earth comes from the sun, no matter wind energy, water energy, biomass energy or fossil energy - coal, oil, natural gas, combustible ice. In today's increasingly tense energy environment, new renewable, green and clean power generation technologies are receiving increasing attention. Now, among the new energy sources, solar power generation technologies such as hydropower and wind power, as well as direct utilization technologies of solar power generation—photovoltaic cells and mirror surface concentrating power generation technologies are quite mature; hydropower development potential is not great; and wind power and sunlight are too scattered, making The direct power generation devices of wind power and sunlight occupy a large area, and the one-time investment is extremely high. The earth's atmosphere is repeatedly absorbing and emitting the energy of solar radiation every day, and the environmental fluids that absorb solar heat energy—the solar heat energy in the air and water are renewed every day, which is almost inexhaustible. Thereby people are stepping up the study of new environmental fluids that indirectly utilize solar thermal energy—thermoelectric power generation technology in air and water. Among them, low-temperature solar thermal power generation technology is the most promising high-tech. At present, the known heat pump type low-temperature thermal power generation device adopts a heat pump system to enrich low-temperature solar heat energy in air and water, and then uses a Rankine cycle system to generate power. The heat pump system mainly includes compressors, condensers, throttles, and evaporators; the Rankine cycle system mainly includes condensers, circulating pumps, evaporators, and expansion generators. The heat pump low-temperature solar thermal power generation technology not only consumes energy for the operation of the heat pump, but also a large amount of heat consumed by the condenser of the Rankine cycle power generation system will flow out of the system and not be effectively used. It has high investment and low thermal efficiency.
发明内容Contents of the invention
为了克服现有的热泵式低温热能发电装置投资高、尤其热效率低的不足, 本发明提供一种超临界低温空气能发电装置,该超临界低温空气能发电装置使工质在临界状态下冷凝,放热少,并且循环利用冷凝热,达到超临界低温空气能发电装置热电效率高、能量转换密度高、单位功率投资低、成本低、副产冷气不耗电的目的。In order to overcome the disadvantages of high investment and low thermal efficiency of the existing heat pump low-temperature thermal power generation device, the present invention provides a supercritical low-temperature air power generation device. The supercritical low-temperature air power generation device condenses the working medium in a critical state. Less heat is released, and condensation heat is recycled to achieve the goals of high thermoelectric efficiency, high energy conversion density, low investment per unit power, low cost, and no power consumption for by-product air-conditioning of supercritical low-temperature air power generation devices.
本发明解决其技术问题所采用的技术方案是:该超临界低温空气能发电装置主要包括吸热器、膨胀发电机组、回热器、冷却器、增压泵、制冷机;它还包括系统内相连接的管道、附件及检测和控制装置,密闭系统内有工质,工质为氮气或混合工质。在封闭循环发电系统中,工质经吸热器吸收低温环境流体—空气中、水中的热能加热液态工质成为高压超临界流体,然后高压超临界流体进入膨胀发电机组膨胀降温降压做功发电;膨胀发电机组出口是临界状态工质,临界状态工质经回热器放热冷凝成液态,经冷却器进一步冷却,再由增压泵压入回热器,吸收膨胀发电机组出口的临界状态工质的热量,同时传递冷量给膨胀发电机组出口的临界状态工质并使之冷凝;预热的高压工质再经吸热器进一步吸收低温环境流体—空气中、水中的热能加热液态工质成为高压超临界流体,再流向膨胀发电机组;这样形成了封闭循环发电系统。冷却器与制冷机通过管道相连,制冷机也可以用自然或其他人工冷源代替。吸热器可采用微通道管式高效换热器。回热器可采用套管式高效换热器。冷却器可采用套管式高效换热器。增压泵可采用多级隔膜增压泵。膨胀发动机与发电机连接组成膨胀发电机组,膨胀发动机可采用多级螺杆膨胀机组。膨胀发动机与增压泵主轴可以相连接。该超临界低温空气能发电装置也可以安装于车船及其他机械设备作为直接动力装置或充电装置。该超临界低温空气能发电装置也可以用于余热废热地热等中低温热源发电;用于余热废热地热等中低温热源发电时可用二氧化碳或混合工质。该超临界低温空气能发电装置副产冷气。该超临界低温空气能发电装置启动电力使用蓄电池或电网电力,发电电力除自用外上传电网。The technical solution adopted by the present invention to solve the technical problem is: the supercritical low-temperature air power generation device mainly includes a heat absorber, an expansion generator set, a heat regenerator, a cooler, a booster pump, and a refrigerator; Connected pipelines, accessories, and detection and control devices. There is a working fluid in the closed system, and the working fluid is nitrogen or a mixed working fluid. In the closed cycle power generation system, the working fluid absorbs the low-temperature ambient fluid through the heat absorber—the heat energy in the air and water to heat the liquid working medium to become a high-pressure supercritical fluid, and then the high-pressure supercritical fluid enters the expansion generator set to expand, cool down and depressurize to generate power; The outlet of the expansion generator set is the critical state working fluid, which is condensed into a liquid state through the heat release of the regenerator, further cooled by the cooler, and then pressed into the regenerator by the booster pump to absorb the critical state work at the outlet of the expansion generator set At the same time, the cold energy is transferred to the critical state working medium at the outlet of the expansion generator set and condensed; the preheated high-pressure working medium further absorbs the low-temperature environmental fluid through the heat absorber—the heat energy in the air and water to heat the liquid working medium Become a high-pressure supercritical fluid, and then flow to the expansion generator set; thus forming a closed cycle power generation system. The cooler is connected to the refrigerator through pipelines, and the refrigerator can also be replaced by natural or other artificial cooling sources. The heat absorber can adopt a micro-channel tubular high-efficiency heat exchanger. The regenerator can adopt the casing type high-efficiency heat exchanger. The cooler can adopt sleeve type high-efficiency heat exchanger. The booster pump can use a multi-stage diaphragm booster pump. The expansion engine is connected with the generator to form an expansion generator set, and the expansion engine can adopt a multi-stage screw expansion set. The main shaft of the expansion engine and the booster pump can be connected. The supercritical low-temperature air energy generating device can also be installed on vehicles, ships and other mechanical equipment as a direct power device or a charging device. The supercritical low-temperature air energy power generation device can also be used for power generation with waste heat, waste heat, geothermal and other medium and low temperature heat sources; carbon dioxide or mixed working fluid can be used for power generation with waste heat, waste heat, geothermal and other medium and low temperature heat sources. The supercritical low-temperature air power generation device produces cold air as a by-product. The starting power of the supercritical low-temperature air energy generating device uses storage battery or grid power, and the generated power is uploaded to the grid except for self-use.
本发明的有益效果是,该超临界低温空气能发电装置使工质在临界状态下冷凝,放热少,循环利用冷凝热,使该超临界低温空气能发电装置热效率高、能量转换密度高、单位功率投资低、成本低、副产冷气不耗电。The beneficial effect of the present invention is that the supercritical low-temperature air power generation device condenses the working fluid in a critical state, with less heat release, and the condensation heat is recycled, so that the supercritical low-temperature air power generation device has high thermal efficiency, high energy conversion density, The unit power investment is low, the cost is low, and the by-product air conditioner does not consume electricity.
附图说明Description of drawings
下面结合附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with drawings and embodiments.
附图是本发明实施例的工作流程示意图。Accompanying drawing is the workflow diagram of the embodiment of the present invention.
图中 1. 吸热器、2. 膨胀发电机组、3. 回热器、4. 冷却器、5. 增压泵、6. 制冷机。In the figure 1. Heat absorber, 2. Expansion generator set, 3. Regenerator, 4. Cooler, 5. Booster pump, 6. Refrigerator.
具体实施方式Detailed ways
在附图所示实施例中,该超临界低温空气能发电装置主要包括吸热器(1)、膨胀发电机组(2)、回热器(3)、冷却器(4)、增压泵(5)、制冷机(6);它还包括系统内相连接的管道、附件及检测和控制装置,密闭系统内有工质,工质为氮气或混合工质。在封闭循环系统中,工质经吸热器(1)吸收低温环境流体—空气中、水中的热能加热液态工质成为高压超临界流体,然后高压超临界流体进入膨胀发电机组(2)膨胀降温降压做功发电;膨胀发电机组(2)出口是临界状态工质,临界状态工质经回热器(3)放热冷凝成液态,经冷却器(4)进一步冷却,再由增压泵(5)压入回热器(3),吸收膨胀发电机组(2)出口的临界状态工质的热量,同时传递冷量给膨胀发电机组(2)出口的临界状态工质并使之冷凝;预热的高压工质再经吸热器(1)进一步吸收低温环境流体—空气中、水中的热能加热液态工质成为高压超临界流体,再流向膨胀发电机组(2);这样形成了封闭循环发电系统。冷却器(4)与制冷机(6)通过管道相连。吸热器(1)采用微通道管式高效换热器。回热器(3)采用套管式高效换热器。冷却器(4)采用套管式高效换热器。增压泵(5)采用多级隔膜增压泵。膨胀发动机与发电机连接组成膨胀发电机组(2),膨胀发动机采用多级螺杆膨胀机组。In the embodiment shown in the drawings, the supercritical low-temperature air power generation device mainly includes a heat absorber (1), an expansion generator set (2), a heat regenerator (3), a cooler (4), and a booster pump ( 5) Refrigerator (6); it also includes connected pipes, accessories, and detection and control devices in the system. There is a working medium in the closed system, and the working medium is nitrogen or a mixed working medium. In the closed cycle system, the working fluid absorbs the low-temperature ambient fluid through the heat absorber (1)—the heat energy in the air and water heats the liquid working fluid to become a high-pressure supercritical fluid, and then the high-pressure supercritical fluid enters the expansion generator set (2) to expand and cool down Step-down power generation; the outlet of the expansion generator unit (2) is the critical state working fluid, which is condensed into a liquid state through the heat release of the regenerator (3), further cooled by the cooler (4), and then pumped by the booster pump ( 5) Press into the regenerator (3) to absorb the heat of the critical state working fluid at the outlet of the expansion generator set (2), and at the same time transfer the cold energy to the critical state working fluid at the outlet of the expansion generator set (2) and make it condense; The hot high-pressure working fluid passes through the heat absorber (1) to further absorb the low-temperature ambient fluid—the heat energy in the air and water to heat the liquid working medium to become a high-pressure supercritical fluid, and then flows to the expansion generator set (2); thus forming a closed cycle power generation system. The cooler (4) is connected with the refrigerator (6) through pipelines. The heat absorber (1) adopts a micro-channel tubular high-efficiency heat exchanger. The regenerator (3) adopts a casing type high-efficiency heat exchanger. The cooler (4) adopts a sleeve-type high-efficiency heat exchanger. The booster pump (5) adopts a multistage diaphragm booster pump. The expansion engine is connected with the generator to form an expansion generating unit (2), and the expansion engine adopts a multi-stage screw expansion unit.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101088497A CN102146814A (en) | 2011-04-28 | 2011-04-28 | Supercritical low temperature air power generation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101088497A CN102146814A (en) | 2011-04-28 | 2011-04-28 | Supercritical low temperature air power generation device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102146814A true CN102146814A (en) | 2011-08-10 |
Family
ID=44421261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011101088497A Pending CN102146814A (en) | 2011-04-28 | 2011-04-28 | Supercritical low temperature air power generation device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102146814A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102322727A (en) * | 2011-09-08 | 2012-01-18 | 罗良宜 | Air energy air liquefaction separation device |
CN103993922A (en) * | 2014-05-30 | 2014-08-20 | 西安交通大学 | A Low-Temperature Waste Heat CO2 Rankine Cycle System |
CN104863654A (en) * | 2015-04-21 | 2015-08-26 | 中国石油大学(华东) | Device and method for exploitation of terrestrial heat through supercritical carbon dioxide |
CN105317485A (en) * | 2014-12-08 | 2016-02-10 | 忻元敏 | Novel energy conversion system |
CN106224186A (en) * | 2016-07-14 | 2016-12-14 | 西安热工研究院有限公司 | A CO2 Brayton cycle photothermal power generation system with heat storage and cooling |
CN108825318A (en) * | 2018-09-20 | 2018-11-16 | 北京宏远佰思德科技有限公司 | A kind of cryogenic fluid electricity generation system and dynamical system |
CN109028271A (en) * | 2018-07-11 | 2018-12-18 | 北京石油化工学院 | A kind of cooling heating and power generation system |
CN111271146A (en) * | 2020-02-06 | 2020-06-12 | 上海朝临动力科技有限公司 | Supercritical CO2Brayton cycle power generation system and working method thereof |
CN114127392A (en) * | 2019-07-19 | 2022-03-01 | 西门子能源环球有限责任两合公司 | System for converting thermal energy into mechanical energy |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08338207A (en) * | 1995-06-15 | 1996-12-24 | Mitsubishi Heavy Ind Ltd | Exhaust heat recovery device |
CN1721694A (en) * | 2004-07-15 | 2006-01-18 | 孟英志 | Method and installation for power generation and sea water desalination utilizing air energy, ice-cold energy, solar energy and thermal difference energy |
CN101298843A (en) * | 2008-06-05 | 2008-11-05 | 昆明理工大学 | Method for supercritical Rankine cycle recycling low-temperature waste heat power |
CN101302944A (en) * | 2007-05-08 | 2008-11-12 | 齐树亮 | Method and apparatus for transforming heat energy into kinetic energy in the air |
US20090266075A1 (en) * | 2006-07-31 | 2009-10-29 | Siegfried Westmeier | Process and device for using of low temperature heat for the production of electrical energy |
CN201546768U (en) * | 2009-07-31 | 2010-08-11 | 王世英 | A low-grade heat flow power generation system |
CN202055876U (en) * | 2011-04-28 | 2011-11-30 | 罗良宜 | Supercritical low temperature air power generation device |
-
2011
- 2011-04-28 CN CN2011101088497A patent/CN102146814A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08338207A (en) * | 1995-06-15 | 1996-12-24 | Mitsubishi Heavy Ind Ltd | Exhaust heat recovery device |
CN1721694A (en) * | 2004-07-15 | 2006-01-18 | 孟英志 | Method and installation for power generation and sea water desalination utilizing air energy, ice-cold energy, solar energy and thermal difference energy |
US20090266075A1 (en) * | 2006-07-31 | 2009-10-29 | Siegfried Westmeier | Process and device for using of low temperature heat for the production of electrical energy |
CN101302944A (en) * | 2007-05-08 | 2008-11-12 | 齐树亮 | Method and apparatus for transforming heat energy into kinetic energy in the air |
CN101298843A (en) * | 2008-06-05 | 2008-11-05 | 昆明理工大学 | Method for supercritical Rankine cycle recycling low-temperature waste heat power |
CN201546768U (en) * | 2009-07-31 | 2010-08-11 | 王世英 | A low-grade heat flow power generation system |
CN202055876U (en) * | 2011-04-28 | 2011-11-30 | 罗良宜 | Supercritical low temperature air power generation device |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102322727A (en) * | 2011-09-08 | 2012-01-18 | 罗良宜 | Air energy air liquefaction separation device |
CN103993922A (en) * | 2014-05-30 | 2014-08-20 | 西安交通大学 | A Low-Temperature Waste Heat CO2 Rankine Cycle System |
CN103993922B (en) * | 2014-05-30 | 2016-03-30 | 西安交通大学 | A Low-Temperature Waste Heat CO2 Rankine Cycle System |
CN105317485A (en) * | 2014-12-08 | 2016-02-10 | 忻元敏 | Novel energy conversion system |
CN104863654A (en) * | 2015-04-21 | 2015-08-26 | 中国石油大学(华东) | Device and method for exploitation of terrestrial heat through supercritical carbon dioxide |
CN104863654B (en) * | 2015-04-21 | 2016-03-02 | 中国石油大学(华东) | A kind of supercritical carbon dioxide underground heat quarrying apparatus and method |
CN106224186A (en) * | 2016-07-14 | 2016-12-14 | 西安热工研究院有限公司 | A CO2 Brayton cycle photothermal power generation system with heat storage and cooling |
CN106224186B (en) * | 2016-07-14 | 2018-10-30 | 西安热工研究院有限公司 | A kind of CO with accumulation of heat and refrigeration2Brayton cycle solar-thermal generating system |
CN109028271A (en) * | 2018-07-11 | 2018-12-18 | 北京石油化工学院 | A kind of cooling heating and power generation system |
CN108825318A (en) * | 2018-09-20 | 2018-11-16 | 北京宏远佰思德科技有限公司 | A kind of cryogenic fluid electricity generation system and dynamical system |
CN114127392A (en) * | 2019-07-19 | 2022-03-01 | 西门子能源环球有限责任两合公司 | System for converting thermal energy into mechanical energy |
CN111271146A (en) * | 2020-02-06 | 2020-06-12 | 上海朝临动力科技有限公司 | Supercritical CO2Brayton cycle power generation system and working method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202055876U (en) | Supercritical low temperature air power generation device | |
WO2022166384A1 (en) | Carbon dioxide gas-liquid phase change-based energy storage apparatus capable of converting heat energy into mechanical energy | |
CN102146814A (en) | Supercritical low temperature air power generation device | |
CN102182655B (en) | Low-temperature Rankine double-cycle power generation device | |
CN102563987A (en) | Vapor-compression refrigerating plant driven by organic Rankine cycle and method | |
CN106224040A (en) | A kind of electric heating energy-storage polygenerations systeme | |
CN201650630U (en) | A device that uses solar and geothermal power to generate electricity | |
CN206054020U (en) | It is a kind of to integrate heat supply, refrigeration and the electric heating energy-storage system for generating electricity | |
CN109140797B (en) | Solar energy and air energy combined power generation system and refrigerating, power generation and heating method thereof | |
CN103670970A (en) | Combined cooling, heating and power device and method for gradient utilization of solar energy | |
CN114738061A (en) | Solar auxiliary heating type compressed air energy storage system coupled with kalina circulation | |
CN108425709A (en) | A kind of carbon dioxide low temperature Rankine cycle electricity generation system | |
CN103925024A (en) | Water-power cogeneration system for recovering waste heat of concentrated seawater of desalination and method of system | |
CN118057705B (en) | Steam cycle Carnot battery energy storage and combined cooling and power supply system based on wind and light absorption | |
CN105089849A (en) | Exhaust afterheat temperature difference thermoelectric system | |
CN102080635A (en) | Device for generating electricity by using solar energy and ground heat and using method thereof | |
CN201991579U (en) | air power generation device | |
CN102383882A (en) | A new type of air energy refrigeration power generation device | |
CN102251876A (en) | Transcritical low temperature air energy thermal power generation device | |
CN202501677U (en) | Vapor Compression Refrigeration Device Driven by Organic Rankine Cycle | |
CN102191958A (en) | Low temperature air power generation device | |
CN201991715U (en) | Low-temperature solar thermal power generation device | |
CN211370630U (en) | Seawater temperature difference power generation circulating system based on single-screw expander | |
CN201943904U (en) | Thermal power generating system using solar-energy return-heating, reheating and inter-cooling gas turbine circulation | |
CN202081927U (en) | Low temperature Rankine double cycle power generation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110810 |