CN102136970B - Parallel multi-channel reconfigurable instrument based on LXI - Google Patents
Parallel multi-channel reconfigurable instrument based on LXI Download PDFInfo
- Publication number
- CN102136970B CN102136970B CN 201110043739 CN201110043739A CN102136970B CN 102136970 B CN102136970 B CN 102136970B CN 201110043739 CN201110043739 CN 201110043739 CN 201110043739 A CN201110043739 A CN 201110043739A CN 102136970 B CN102136970 B CN 102136970B
- Authority
- CN
- China
- Prior art keywords
- instrument
- fpga
- signal
- output
- lxi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Tests Of Electronic Circuits (AREA)
Abstract
本发明公开了一种基于LXI的并行多通道可重构仪器,包括基板、仪器功能板、FPGA逻辑电路、测试程序集和Web服务器;其中基板和仪器功能板为本发明的主要部件,二者共同安装在仪器箱中。前者主要实现系统的软件功能和硬件逻辑电路,后者主要实现模拟信号和数字信号之间的相互转换。本发明基于LXI标准设计,便于二次开发;仪器具备多通道并行测试能力,每个通道可灵活改变仪器的功能;仪器的使用无须安装软件,只要通过浏览器即可操作仪器和对仪器进行在线配置。
The invention discloses a parallel multi-channel reconfigurable instrument based on LXI, including a substrate, an instrument function board, an FPGA logic circuit, a test program set and a Web server; wherein the substrate and the instrument function board are the main components of the present invention, both Together installed in the instrument box. The former mainly realizes the software functions and hardware logic circuits of the system, and the latter mainly realizes the mutual conversion between analog signals and digital signals. The invention is designed based on the LXI standard, which is convenient for secondary development; the instrument has multi-channel parallel test capability, and each channel can flexibly change the function of the instrument; the use of the instrument does not need to install software, as long as the browser can be used to operate the instrument and perform online testing on the instrument configure.
Description
技术领域 technical field
本发明涉及一种基于LXI的并行多通道可重构仪器,属于自动化测试领域,尤其涉及基于LXI总线的通用测试领域。The invention relates to a parallel multi-channel reconfigurable instrument based on LXI, which belongs to the field of automatic testing, in particular to the field of general testing based on LXI bus.
背景技术 Background technique
电子系统的开发手段可以分为两种方法:硬件方法和软件方法。一方面,开发硬件系统能够为特定的目标任务进行定制,并且运行效率高,然而较长的开发周期,较大的开发成本和较低的灵活性(重用性)等明显缺点限制了它的发展。软件系统能够很好的解决硬件系统的不足,但是在大数据吞吐量的高速系统中,数据传输速率和计算速率往往成为软件系统的瓶颈。另一方面,软件系统的开发离不开其所依赖的硬件系统,所以软件系统的功能受限于硬件系统所提供的支持。硬件系统和软件系统各自的优缺点促使人们提出软硬件一体化的思想,而实时电路重构技术是当前最有效的解决途径之一。The development means of the electronic system can be divided into two kinds of methods: hardware method and software method. On the one hand, the development of hardware systems can be customized for specific target tasks, and the operating efficiency is high, but the obvious disadvantages such as long development cycle, large development cost and low flexibility (reusability) limit its development. . The software system can well solve the shortage of the hardware system, but in the high-speed system with large data throughput, the data transmission rate and calculation rate often become the bottleneck of the software system. On the other hand, the development of a software system is inseparable from the hardware system it depends on, so the functions of the software system are limited by the support provided by the hardware system. The respective advantages and disadvantages of hardware system and software system prompt people to put forward the idea of software and hardware integration, and real-time circuit reconfiguration technology is one of the most effective solutions at present.
虽然可重构系统(Reconfigurable System)的概念早在20世纪70年代就已经提出,但由于没有理想的可重构器件等原因,这方面的研究没有很大的突破。自20世纪90年代以来,随着大规模集成电路的迅速发展,在硬件方面,发展可重构处理的关键之处FPGA,无论在结构和规模方面都取得了较大的发展。可重构系统的最大特征是在电子系统工作状态下,通过软件动态地改变硬件电路,以适应不同的具体应用。Although the concept of reconfigurable system (Reconfigurable System) has been proposed as early as the 1970s, due to the lack of ideal reconfigurable devices and other reasons, there has been no great breakthrough in research in this area. Since the 1990s, with the rapid development of large-scale integrated circuits, in terms of hardware, FPGA, the key to the development of reconfigurable processing, has achieved greater development in terms of structure and scale. The biggest characteristic of reconfigurable system is that in the working state of the electronic system, the hardware circuit can be dynamically changed through software to adapt to different specific applications.
在自动化测试测试,传统仪器的功能由生产厂家设计和定义,用户只能使用既定的仪器功能。它一方面极大地降低了仪器的使用灵活性;另一方面,不同的仪器都拥有独立、完整的硬件系统和软件系统,不仅造成资源浪费,增加了系统体积,而且提高了整体的成本。In automated testing, the functions of traditional instruments are designed and defined by the manufacturer, and users can only use the established instrument functions. On the one hand, it greatly reduces the flexibility of the instrument; on the other hand, different instruments have independent and complete hardware systems and software systems, which not only causes waste of resources, increases the system size, but also increases the overall cost.
发明内容 Contents of the invention
本发明的目的是为了解决传统仪器使用灵活性差和设计重用度低的技术问题,提出一种基于LXI的并行多通道可重构仪器,集成了万用表、示波器、直流电源、信号发生器等仪器功能,而且本发明通过嵌入式系统实现了一种基于LXI标准的仪器架构,标准的使用提高了仪器的通用性和重用性。The purpose of the present invention is to solve the technical problems of poor use flexibility and low design reuse of traditional instruments, and propose a parallel multi-channel reconfigurable instrument based on LXI, which integrates instrument functions such as multimeter, oscilloscope, DC power supply, and signal generator , and the present invention realizes an instrument architecture based on the LXI standard through an embedded system, and the use of the standard improves the versatility and reusability of the instrument.
本发明的基于LXI的并行多通道可重构仪器,包括基板、仪器功能板、FPGA逻辑电路、测试程序集和Web服务器;The LXI-based parallel multi-channel reconfigurable instrument of the present invention includes a substrate, an instrument function board, an FPGA logic circuit, a test program set and a Web server;
仪器功能板包括A/D转换模块、D/A转换模块和频率/相位测量模块;A/D转换模块和频率/相位测量模块连接输入调理电路,D/A转换模块连接输出调理电路;测试信号中的模拟信号量输入至仪器功能板的输入调理电路,然后经过A/D转换模块转换成数字量输出到基板;频率信号输入至仪器功能板的输入调理电路,频率/相位测量模块将其转换为TTL电平的方波,输出至基板;基板输出至仪器功能板的数字量经过D/A转换模块转换成模拟信号,然后通过输出调理电路输出;The instrument function board includes an A/D conversion module, a D/A conversion module and a frequency/phase measurement module; the A/D conversion module and the frequency/phase measurement module are connected to the input conditioning circuit, and the D/A conversion module is connected to the output conditioning circuit; the test signal The analog signal quantity in the instrument is input to the input conditioning circuit of the instrument function board, and then converted into a digital quantity by the A/D conversion module and output to the substrate; the frequency signal is input to the input conditioning circuit of the instrument function board, and the frequency/phase measurement module converts it The square wave of TTL level is output to the substrate; the digital quantity output from the substrate to the instrument function board is converted into an analog signal by the D/A conversion module, and then output through the output conditioning circuit;
仪器功能板和基板通过数字I/O连接器连接;The instrument function board and the base board are connected through a digital I/O connector;
基板包括ARM9核心板、FPGA、CPLD、电源管理、以太网网络接口和USB接口,另外还设有用于调试的RS232C串口;电源管理给基板和仪器功能板提供电压,FPGA的上层通过数据/地址/控制总线和ARM9核心板相连,底层通过数字I/O连接器和仪器功能板相连;系统上电后,CPLD的配置模块自动从FLASH存储器读取硬件电路配置信息,配置FPGA内部的逻辑电路;在上电情况下,如果用户需要改变仪器功能,从上位机发送命令给ARM9核心板,再由ARM9核心板通知CPLD重新配置FPGA中的FPGA逻辑电路;仪器总线上的每个I/O口所对应的仪器功能由用户重新定义;The substrate includes ARM9 core board, FPGA, CPLD, power management, Ethernet network interface and USB interface, and also has RS232C serial port for debugging; power management provides voltage to the The control bus is connected to the ARM9 core board, and the bottom layer is connected to the instrument function board through a digital I/O connector; after the system is powered on, the configuration module of the CPLD automatically reads the hardware circuit configuration information from the FLASH memory, and configures the logic circuit inside the FPGA; In the case of power-on, if the user needs to change the function of the instrument, send a command from the host computer to the ARM9 core board, and then the ARM9 core board will notify the CPLD to reconfigure the FPGA logic circuit in the FPGA; each I/O port on the instrument bus corresponds to The function of the instrument is redefined by the user;
FPGA逻辑电路在FPGA中实现,测试程序集和Web服务器是在基于ARM9核心板的嵌入式Linux下位机操作系统中实现的;The FPGA logic circuit is implemented in FPGA, and the test program set and Web server are implemented in the embedded Linux lower computer operating system based on the ARM9 core board;
FPGA逻辑电路的底层仪器时序逻辑电路负责与仪器功能板的A/D转换模块、D/A转换模块通信,其上层的总线接口单元负责与ARM9核心板通信;FPGA内部RAM的功能是数据寄存和数据缓冲,SFR的功能是对ARM9核心板发来的控制命令进行解析,RAM和SFR采取统一寻址的方式,统一由上层的总线接口单元对其进行管理;The underlying instrument sequential logic circuit of the FPGA logic circuit is responsible for communicating with the A/D conversion module and D/A conversion module of the instrument function board, and the bus interface unit on the upper layer is responsible for communicating with the ARM9 core board; the function of the FPGA internal RAM is data storage and Data buffering, the function of SFR is to analyze the control commands sent by the ARM9 core board, RAM and SFR adopt a unified addressing method, which is managed by the bus interface unit of the upper layer;
测试程序集的底层通过驱动程序与FPGA逻辑电路进行通信,其上层通过SOCKET协议与上位机进行通信;测试程序集主要实现:一、与底层的FPGA逻辑电路通信,对包含在逻辑电路中的被测信号的信息作进一步解析,转化为与仪器功能相关的测量值;二、对上位机发来的指令分发给不同的仪器,然后把指令解析为可被FPGA识别的控制信息;三、基于网络通信的C/S模型,提供一个SOCKET服务器,用于与上位机的SOCKET客户端进行交互;The bottom layer of the test program set communicates with the FPGA logic circuit through the driver program, and its upper layer communicates with the host computer through the SOCKET protocol; the test program set mainly realizes: 1. Communication with the FPGA logic circuit at the bottom layer, and the control of the logic circuit included in the logic circuit The information of the measured signal is further analyzed and converted into the measurement value related to the function of the instrument; second, the instructions sent by the host computer are distributed to different instruments, and then the instructions are parsed into control information that can be recognized by the FPGA; third, based on the network The C/S model of communication provides a SOCKET server for interacting with the SOCKET client of the host computer;
用户通过上位机操作系统的浏览器访问LXI仪器的网页,该网页是通过嵌入式Web服务器实现的;Web服务器采用开源的BOA服务器实现,Web服务器还内置了一个基于FLASH的SOCKET客户端,用于与测试程序集的SOCKET服务器之间的数据通信;并且,此SOCKET的数据格式均以符合LXI规范的程控仪器命令标准进行编写;用户通过网页下载、更换和配置仪器的测试程序集,达到软件在线重构的目的。The user accesses the web page of LXI instrument through the browser of the host computer operating system. The web page is realized through the embedded web server; the web server is realized by the open source BOA server, and the web server also has a built-in SOCKET client based on FLASH for Data communication with the SOCKET server of the test program set; and, the data format of this SOCKET is written in accordance with the program-controlled instrument command standard conforming to the LXI specification; the user downloads, replaces and configures the test program set of the instrument through the webpage to achieve online software purpose of refactoring.
本发明的优点在于:The advantages of the present invention are:
(1)基于LXI标准设计,便于二次开发;(1) Based on the LXI standard design, it is convenient for secondary development;
(2)仪器具备多通道并行测试能力,每个通道可灵活改变仪器的功能;(2) The instrument has multi-channel parallel test capability, and each channel can flexibly change the function of the instrument;
(3)仪器的使用无须安装软件,只要通过浏览器即可操作仪器和对仪器进行在线配置。(3) The use of the instrument does not need to install software, as long as the instrument can be operated and configured online through the browser.
附图说明Description of drawings
图1为本发明总体设计框图;Fig. 1 is overall design block diagram of the present invention;
图2为本发明的硬件整体结构示意图;Fig. 2 is a schematic diagram of the overall structure of the hardware of the present invention;
图3为仪器功能板模拟信号测量通道和模拟信号输出通道的原理框图;Fig. 3 is the functional block diagram of the analog signal measurement channel and the analog signal output channel of the instrument function board;
图4为基板原理框图;Figure 4 is a schematic block diagram of the substrate;
图5为本发明的软件结构示意图;Fig. 5 is a schematic diagram of the software structure of the present invention;
图中:In the picture:
1-基板 2-仪器功能板 3-FPGA逻辑电路1-Substrate 2-Instrument function board 3-FPGA logic circuit
4-测试程序集 5-Web服务器 6-接口板4-Test assembly 5-Web server 6-Interface board
201-A/D转换模块 202-D/A转换模块 203-频率/相位测量模块201-A/D conversion module 202-D/A conversion module 203-Frequency/phase measurement module
具体实施方式 Detailed ways
下面将结合附图和实施例对本发明作进一步的详细说明。The present invention will be further described in detail with reference to the accompanying drawings and embodiments.
本发明是一种基于LXI的并行多通道可重构仪器,如1所示,硬件部分主要包括基板1和仪器功能板2,软件部分主要包括FPGA逻辑电路3、测试程序集4和Web服务器5。The present invention is a parallel multi-channel reconfigurable instrument based on LXI. As shown in 1, the hardware part mainly includes a substrate 1 and an instrument function board 2, and the software part mainly includes an
本发明的硬件整体结构如图2所示,其中基板1和仪器功能板2为本发明的主要部件,二者共同安装在仪器箱中。前者主要实现系统的软件功能和硬件逻辑电路,后者主要实现模拟信号和数字信号之间的相互转换。The overall structure of the hardware of the present invention is shown in Figure 2, wherein the substrate 1 and the instrument function board 2 are the main components of the present invention, and both are installed in the instrument box together. The former mainly realizes the software functions and hardware logic circuits of the system, and the latter mainly realizes the mutual conversion between analog signals and digital signals.
为了方便用户使用,用户可以根据测试信号的接口要求,自行设计接口板6,仪器功能板2通过68针机箱电缆和接口板6相连,测试信号通过接口板6输入至仪器功能板2。For the convenience of users, the user can design the interface board 6 according to the interface requirements of the test signal. The instrument function board 2 is connected to the interface board 6 through a 68-pin chassis cable, and the test signal is input to the instrument function board 2 through the interface board 6.
仪器功能板2如图2所示,包括A/D转换模块201、D/A转换模块202和频率/相位测量模块203,A/D转换模块201和频率/相位测量模块203连接输入调理电路,D/A转换模块202连接输出调理电路,测试信号中的模拟信号量通过接口板6输入至仪器功能板2的输入调理电路,然后经过A/D转换模块201转换成数字量输出到基板1,频率信号通过接口板6输入至仪器功能板2的输入调理电路,频率/相位测量模块203将其转换为TTL电平的方波,输出至基板1,基板1输出至仪器功能板2的数字量经过D/A转换模块202转换成模拟信号,然后通过输出调理电路,输出至接口板6。As shown in Figure 2, the instrument function board 2 includes an A/
具体的,本发明中的仪器功能板2包括4个A/D转换模块201、4个D/A转换模块202、2个频率/相位测量模块203,4个A/D转换模块201和输入调理电路构成4路模拟信号测量通道,4个D/A转换模块202和输出调理电路构成4路模拟信号输出通道,2个频率/相位测量模块203和输入调理电路构成2路频率检测专用通道,其中的模拟信号测量通道和模拟信号输出通道的电路原理框图如图3所示。Specifically, the instrument function board 2 in the present invention includes 4 A/
模拟信号测量通道包括输入调理电路和A/D转换模块201(ADC),模拟信号测量范围为-10V~10V。输入调理电路包括过电保护、输入模式选择开关、程控放大器和低通滤波,所有被测测试信号以差分模式进入仪器功能板2的输入调理电路,降低了电路中其他信号对被测测试信号产生的干扰。当该模拟信号测量通道用作信号测量或校准功能时,输入模拟式选择开关响应地把被测测试信号的正相端或DAC的校准电压接入到程控放大器的正相端;另一方面,当该模拟测量通道选择为差分、单端或AISENSE测量模式时,模拟式选择开关相应地把输入信号的反相端、地或者AISENSE接入到程控放大器的反向端。程控放大器采用AD8250,该芯片具有良好的输入、输出特性,能够对其放大倍数进行1、2、5、10倍放大,可通过两个控制引脚选择。被测测量信号经过程控放大器转换为单端信号,再经过低通滤波器输入到ADC芯片。ADC采用12位分辨率的AD7898,最高采样率为220kHz,最后采样到的数据通过数字I/O连接器中的高速SPI串行接口输出到基板2的FPGA中。The analog signal measurement channel includes an input conditioning circuit and an A/D conversion module 201 (ADC), and the analog signal measurement range is -10V~10V. The input conditioning circuit includes over-current protection, input mode selection switch, program-controlled amplifier and low-pass filter. All the tested test signals enter the input conditioning circuit of the instrument function board 2 in differential mode, which reduces the impact of other signals in the circuit on the tested test signal. interference. When the analog signal measurement channel is used as a signal measurement or calibration function, the input analog selector switch responds to connect the positive phase terminal of the tested test signal or the calibration voltage of the DAC to the normal phase terminal of the program-controlled amplifier; on the other hand, When the analog measurement channel is selected as differential, single-ended or AISENSE measurement mode, the analog selector switch connects the inverting terminal, ground or AISENSE of the input signal to the inverting terminal of the program-controlled amplifier accordingly. The program-controlled amplifier adopts AD8250. This chip has good input and output characteristics, and can perform 1, 2, 5, and 10 times of magnification on its magnification, which can be selected by two control pins. The measured measurement signal is converted into a single-ended signal by a program-controlled amplifier, and then input to the ADC chip through a low-pass filter. The ADC adopts AD7898 with 12-bit resolution, and the highest sampling rate is 220kHz. The finally sampled data is output to the FPGA on the base board 2 through the high-speed SPI serial interface in the digital I/O connector.
模拟信号输出通道包括D/A转换模块202(DAC)和输出调理电路。DAC芯片采用12位分辨率的AD5620,其输出建立时间为8us,并有外部基准源AD780提供2.5V标准电压。DAC的输出范围为0~2.5V,输出调理电路包括电压电流选择开关、开关电容滤波、电压放大、校准选择开关、V/I转换器(电压转电流),经过电压电流选择模拟开关可选择输出电压或输出电流。当输出电压时,输出信号经过开关电容滤波使信号变平滑,最后经过电压放大电路放大至-10V~10V的输出范围;当输出电流时,通过V/I转换器(电压转电流)把电压量转换为相应的电流量。开关电容滤波采用MAX7424低通滤波芯片,其滤波频带为1Hz~30kHz,滤波器的截止频率可通过时钟输入引脚控制。。The analog signal output channel includes a D/A conversion module 202 (DAC) and an output conditioning circuit. The DAC chip adopts AD5620 with 12-bit resolution, its output settling time is 8us, and an external reference source AD780 provides 2.5V standard voltage. The output range of DAC is 0~2.5V, and the output conditioning circuit includes voltage and current selection switch, switched capacitor filter, voltage amplification, calibration selection switch, V/I converter (voltage to current), and the output can be selected through the voltage and current selection analog switch voltage or output current. When outputting voltage, the output signal is filtered by a switched capacitor to smooth the signal, and finally amplified to an output range of -10V to 10V by a voltage amplifier circuit; when outputting current, the voltage is converted by a V/I converter (voltage to current) Converted to the corresponding amount of current. The switched capacitor filter adopts MAX7424 low-pass filter chip, and its filter frequency band is 1Hz ~ 30kHz, and the cut-off frequency of the filter can be controlled by the clock input pin. .
对于频率信号的测量,仪器功能板2采用专用的频率测量通道。在该通道中,被测信号首先经过反馈放大电路放大,然后进入比较器LM311N整形得到方波信号,再通过SN740稳定方波信号并转换成TTL电平,最终通过数字I/O连接器输出至FPGA。For frequency signal measurement, the instrument function board 2 uses a dedicated frequency measurement channel. In this channel, the measured signal is first amplified by the feedback amplifier circuit, then enters the comparator LM311N to shape the square wave signal, then stabilizes the square wave signal through the SN740 and converts it into a TTL level, and finally outputs it through the digital I/O connector to FPGA.
硬件可重构主要通过基板1上的FPGA实现。基板1如图2所示,包括ARM9核心板、FPGA、CPLD、电源管理,以太网网络接口和USB接口。仪器功能板2和基板1通过两个64-pin板对板接插件连接(即图3中的数字I/O连接器),有利于用户跟据不同测试对象和性能要求设计不同的仪器功能板2,而无须更换其他仪器部件,提高了系统的灵活性和重用性。本发明在基板1的硬件架构上,采用ARM9核心板+FPGA为核心,综合前者高性能、低功耗和后者并行处理、算法可配置的各自优势,构成软、硬件可重构系统的载体。在软件架构上,基于ARM9核心板101运行嵌入式操作系统,可方便地对网络通信相关功能进行开发和管理,实现仪器的LXI接口。另外,基板1上还有电源管理,给基板1和仪器功能板2提供4种常用电压:+12V、-12V、5V、3.3V。在接口设计上,除了以太网网络接口外,基板1保留了USB接口和RS232C串口,方便仪器调试和日后功能升级。The reconfigurable hardware is mainly realized through the FPGA on the substrate 1 . The substrate 1 is shown in Fig. 2, including ARM9 core board, FPGA, CPLD, power management, Ethernet network interface and USB interface. The instrument function board 2 and the substrate 1 are connected through two 64-pin board-to-board connectors (that is, the digital I/O connector in Figure 3), which is beneficial for users to design different instrument function boards according to different test objects and performance requirements 2. There is no need to replace other instrument parts, which improves the flexibility and reusability of the system. In the hardware architecture of the substrate 1, the present invention adopts the ARM9 core board + FPGA as the core, and combines the former's high performance, low power consumption and the latter's respective advantages of parallel processing and configurable algorithms to form the carrier of the software and hardware reconfigurable system . In terms of software architecture, the embedded operating system runs on the
基板1的电路原理框图如图4所示,其中FPGA的位置处于可重构仪器的中心,它的上层通过数据/地址/控制总线和ARM9核心板相连,底层通过数字I/O连接器和仪器功能板2相连。例如,当系统用作万用表功能时,FPGA首先对ADC采集得到的数据进行处理,然后由ARM9通过数据总线读取;又如,当系统用于信号发生器功能时,ARM9将通过总线控制相应的FPGA,输出DAC的控制时序,从而控制DAC输出相应的模拟量。The schematic circuit diagram of substrate 1 is shown in Figure 4, where the FPGA is located at the center of the reconfigurable instrument, its upper layer is connected to the ARM9 core board through the data/address/control bus, and the bottom layer is connected to the instrument through the digital I/O connector Function board 2 is connected. For example, when the system is used as a multimeter function, the FPGA first processes the data collected by the ADC, and then ARM9 reads it through the data bus; for another example, when the system is used as a signal generator function, ARM9 will control the corresponding The FPGA outputs the control timing of the DAC, thereby controlling the DAC to output the corresponding analog value.
FPGA是基于SRAM技术的易失性器件,支持实时电路重构,它内部的硬件电路信息在掉电后会丢失,因此需要外部存储器件。系统上电后,CPLD的配置模块自动从FLASH读取硬件电路配置信息,配置FPGA内部的逻辑电路。在上电情况下,如果用户需要改变仪器功能,只要从上位机发送命令给ARM9,再由ARM9通知CPLD重新配置FPGA逻辑电路3。另外,由于FPGA通过两个64-pin数字I/O连接器和测试功能板2连接,因此仪器总线上的每个I/O口所对应的仪器功能均可由用户重新定义。FPGA逻辑电路3的重构和数字I/O接口的重定义,使仪器硬件的功能也发生相应的改变,最终实现对仪器硬件功能的在线重构。FPGA is a volatile device based on SRAM technology and supports real-time circuit reconfiguration. Its internal hardware circuit information will be lost after power-off, so an external storage device is required. After the system is powered on, the CPLD configuration module automatically reads the hardware circuit configuration information from the FLASH, and configures the logic circuit inside the FPGA. In the case of power-on, if the user needs to change the function of the instrument, just send a command from the host computer to ARM9, and then ARM9 will notify the CPLD to reconfigure the
图5为本仪器的软件结构框图,包括FPGA逻辑电路3、测试程序集4和Web服务器5。其中FPGA逻辑电路3在FPGA中实现,测试程序集4和Web服务器5是在基于ARM9的嵌入式Linux下位机操作系统中实现的。FIG. 5 is a block diagram of the software structure of the instrument, including an
FPGA逻辑电路3的底层仪器时序逻辑电路负责与仪器功能板2的A/D、D/A等芯片通信,其上层的总线接口单元负责与ARM9核心板通信。此外,FPGA内部RAM的功能是数据寄存和数据缓冲,而SFR(Specific Functional Register,专用功能寄存器)的功能是对ARM9发来的控制命令进行解析。RAM和SFR采取统一寻址的方式,统一由上层的总线接口单元对其进行管理。The underlying instrument sequential logic circuit of the
测试程序集4的底层通过驱动程序与FPGA逻辑电路4进行通信,其上层通过SOCKET(套接字)协议与上位机进行通信。测试程序集4主要实现以下三个功能:一、与底层的FPGA逻辑电路通信,对包含在逻辑电路中的被测信号的信息作进一步解析,转化为与仪器功能相关的测量值(如万用表的电压值);二、对上位机发来的指令分发给不同的仪器(如万用表、示波器等),然后把指令解析为可被FPGA识别的控制信息;三、基于网络通信的C/S模型,提供一个SOCKET服务器,用于与上位机的SOCKET客户端进行交互。The bottom layer of the test program set 4 communicates with the
用户可以通过上位机操作系统的浏览器访问LXI仪器的网页,该网页是通过嵌入式Web服务器5实现的。Web服务器采用开源的BOA服务器实现,BOA是一个单任务的小型HTTP服务器,非常适合应用在嵌入式系统中。BOA服务器的动态网页效果通过“公共网关接口”(CGI,Common Gateway Interface)技术实现,它为网页的动态信息与测试程序集4之间的交互提供接口。除了BOA服务器外,Web服务器5还内置了一个基于FLASH的SOCKET客户端,用于与测试程序集4的SOCKET服务器之间的数据通信。并且,此SOCKET的数据格式均以符合LXI规范的程控仪器命令标准(SCPI,Standard Command forProgrammable Instrument)进行编写,有助于用户进行二次开发。此外,用户可以通过网页下载、更换和配置仪器的测试程序集4,达到软件在线重构的目的。The user can access the web page of the LXI instrument through the browser of the host computer operating system, and the web page is realized through the embedded
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110043739 CN102136970B (en) | 2011-02-22 | 2011-02-22 | Parallel multi-channel reconfigurable instrument based on LXI |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110043739 CN102136970B (en) | 2011-02-22 | 2011-02-22 | Parallel multi-channel reconfigurable instrument based on LXI |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102136970A CN102136970A (en) | 2011-07-27 |
CN102136970B true CN102136970B (en) | 2013-01-30 |
Family
ID=44296631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110043739 Expired - Fee Related CN102136970B (en) | 2011-02-22 | 2011-02-22 | Parallel multi-channel reconfigurable instrument based on LXI |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102136970B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102521958B (en) * | 2011-12-20 | 2014-11-26 | 陕西海泰电子有限责任公司 | B type LXI multifunctional data acquisition instrument |
CN102420735B (en) * | 2011-12-20 | 2014-03-12 | 陕西海泰电子有限责任公司 | Local area network (LAN) extension for instrumentation (LXI) interface circuit based on hardware extraction of 1588 time stamp |
CN102436735B (en) * | 2011-12-20 | 2013-07-24 | 陕西海泰电子有限责任公司 | B-type LXI synchronous data acquisition instrument |
CN103257910B (en) * | 2013-04-26 | 2016-08-03 | 北京航空航天大学 | Can be used for the embedded reconfigurable general-utility test platform of LXI of on-the-spot test |
CN103308880B (en) * | 2013-07-08 | 2016-02-10 | 北京新航智科技有限公司 | A kind of calibration steps of multichannel analog amount current input module of production in enormous quantities |
CN103561116B (en) * | 2013-11-20 | 2016-09-21 | 哈尔滨工业大学 | Use the method that restructural PXI serial communication card realizes remote reconstruction |
CN104331281B (en) * | 2014-10-27 | 2017-12-01 | 中国电子科技集团公司第四十一研究所 | A kind of proxy server and method that remote control function is provided for LXI modules |
CN104935786B (en) * | 2015-05-28 | 2018-03-27 | 武汉精测电子集团股份有限公司 | A kind of method of image signal source and its processing picture signal based on soft processor |
CN107991932B (en) * | 2017-12-20 | 2020-09-15 | 天津大学 | Wiring-free reconfigurable experimental instrument panel and method supporting digital automatic mapping |
CN111965447B (en) * | 2020-07-22 | 2022-10-18 | 电子科技大学 | A Hardware Configurable Analog Signal Comprehensive Test System |
CN115550336A (en) * | 2022-09-16 | 2022-12-30 | 宁夏隆基宁光仪表股份有限公司 | NB-IoT meter test communication method, system and test equipment based on Web |
CN118012024A (en) * | 2024-04-02 | 2024-05-10 | 深圳市卓驭科技有限公司 | Vehicle-mounted reliability test system and method, control method of upper computer, computer device, computer-readable storage medium and computer program product |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201608702U (en) * | 2009-09-25 | 2010-10-13 | 陕西海泰电子有限责任公司 | Power switch based on LXI bus |
-
2011
- 2011-02-22 CN CN 201110043739 patent/CN102136970B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201608702U (en) * | 2009-09-25 | 2010-10-13 | 陕西海泰电子有限责任公司 | Power switch based on LXI bus |
Non-Patent Citations (2)
Title |
---|
基于LXI总线的可重构软硬件一体测试仪;张启蒙等;《计算机测量与控制》;20100731;第18卷(第7期);第1687-1690页 * |
张启蒙等.基于LXI总线的可重构软硬件一体测试仪.《计算机测量与控制》.2010,第18卷(第7期),第1687-1690页. |
Also Published As
Publication number | Publication date |
---|---|
CN102136970A (en) | 2011-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102136970B (en) | Parallel multi-channel reconfigurable instrument based on LXI | |
CN103257910B (en) | Can be used for the embedded reconfigurable general-utility test platform of LXI of on-the-spot test | |
CN104504975B (en) | Portable comprehensive electronic experiment bed based on field programmable gate array | |
CN101806857B (en) | Online fault diagnostic apparatus for circuit board | |
CN102279830B (en) | Multifunctional data acquisition module based on compact peripheral component interconnect (CPCI) bus | |
CN111965447B (en) | A Hardware Configurable Analog Signal Comprehensive Test System | |
CN111142008B (en) | Circuit board power parameter testing system and method | |
CN102967326B (en) | A kind of encoder interfaces proving installation based on Nios II processor | |
CN104237905B (en) | Big Dipper detector | |
CN101221422A (en) | A portable vibration data acquisition device and method based on embedded technology | |
CN102436735B (en) | B-type LXI synchronous data acquisition instrument | |
CN104198918A (en) | Testing system for small-lot production of high-speed and -precision ADC (analog to digital converter) chips | |
CN207198253U (en) | A kind of servo rotary transformer analog device based on FPGA | |
CN102393301B (en) | Engine Flexibility Test System | |
CN207232289U (en) | A kind of power electronics equips plate level Redundant Test System | |
CN201142137Y (en) | A portable single-channel vibration data acquisition device based on embedded technology | |
CN203037755U (en) | Programmable intelligent network electric power meter | |
CN221946484U (en) | Magnetic sensor communication system | |
CN110727213A (en) | Multisource signal acquisition card | |
CN221926533U (en) | Portable many function comprehensive tester | |
CN105629815A (en) | Embedded type data acquisition and recording system | |
CN208459818U (en) | Source signal capture card | |
CN109541493B (en) | ZigBee internet of things welding power parameter indirect measurement device based on virtual instrument | |
CN201152972Y (en) | A high-performance intelligent VXI bus test module based on M module | |
CN109374971B (en) | Megahertz Impedance Measuring Meter Based on Embedded System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130130 Termination date: 20140222 |