CN102136567B - Preparing method of tin-nickel-carbon composite cathode material of lithium ion battery - Google Patents
Preparing method of tin-nickel-carbon composite cathode material of lithium ion battery Download PDFInfo
- Publication number
- CN102136567B CN102136567B CN201110037446.8A CN201110037446A CN102136567B CN 102136567 B CN102136567 B CN 102136567B CN 201110037446 A CN201110037446 A CN 201110037446A CN 102136567 B CN102136567 B CN 102136567B
- Authority
- CN
- China
- Prior art keywords
- tin
- nickel
- negative electrode
- carbon composite
- ion battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 239000002131 composite material Substances 0.000 title claims abstract description 46
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 24
- VXUOMCPXTWHTET-UHFFFAOYSA-N [C].[Ni].[Sn] Chemical compound [C].[Ni].[Sn] VXUOMCPXTWHTET-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 239000010406 cathode material Substances 0.000 title 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 80
- 230000008569 process Effects 0.000 claims abstract description 43
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 37
- 239000010439 graphite Substances 0.000 claims abstract description 37
- 239000011248 coating agent Substances 0.000 claims abstract description 31
- 238000000576 coating method Methods 0.000 claims abstract description 31
- 238000007747 plating Methods 0.000 claims abstract description 28
- 239000007773 negative electrode material Substances 0.000 claims abstract description 23
- 238000004070 electrodeposition Methods 0.000 claims abstract description 21
- 238000002360 preparation method Methods 0.000 claims abstract description 18
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 17
- 239000000956 alloy Substances 0.000 claims abstract description 17
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 claims abstract description 17
- 235000011180 diphosphates Nutrition 0.000 claims abstract description 17
- 239000003792 electrolyte Substances 0.000 claims abstract description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000011889 copper foil Substances 0.000 claims abstract description 13
- 230000004913 activation Effects 0.000 claims abstract description 4
- 239000002245 particle Substances 0.000 claims description 14
- 239000002270 dispersing agent Substances 0.000 claims description 11
- 239000002736 nonionic surfactant Substances 0.000 claims description 9
- 230000007935 neutral effect Effects 0.000 claims description 8
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 5
- 238000000498 ball milling Methods 0.000 claims description 5
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 3
- 239000004471 Glycine Substances 0.000 claims description 3
- 238000007385 chemical modification Methods 0.000 claims description 3
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 18
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- 229910052744 lithium Inorganic materials 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000010405 anode material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical group [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910001128 Sn alloy Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000011031 large-scale manufacturing process Methods 0.000 description 2
- -1 lithium hexafluorophosphate Chemical compound 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- CLDVQCMGOSGNIW-UHFFFAOYSA-N nickel tin Chemical compound [Ni].[Sn] CLDVQCMGOSGNIW-UHFFFAOYSA-N 0.000 description 2
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- RLGQACBPNDBWTB-UHFFFAOYSA-N cetyltrimethylammonium ion Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)C RLGQACBPNDBWTB-UHFFFAOYSA-N 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- ICKLSPKTPKWFAP-UHFFFAOYSA-N diazanium;bromide;chloride Chemical compound [NH4+].[NH4+].[Cl-].[Br-] ICKLSPKTPKWFAP-UHFFFAOYSA-N 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000008233 hard water Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 229940051841 polyoxyethylene ether Drugs 0.000 description 1
- 229920000056 polyoxyethylene ether Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
本发明公开了一种锂离子电池锡镍碳复合负极材料的制备方法,属于一种锂离子电池技术领域,使用电沉积工艺制备锂离子电池锡镍碳复合负极材料;电沉积工艺为:工艺(1)石墨粉体→对石墨粉体进行表面化学改性处理→加入至焦磷酸盐合金镀液→对加入石墨粉体的焦磷酸盐合金镀液进行超声波分散;工艺(2)铜箔集流体→活化处理;工艺(3)将工艺(2)最后得到的铜箔集流体为阴极,以硬质石墨板为阳极,以工艺(1)得到的镀液为电解质,进行电沉积镀膜,最后得到复合镀层。本发明的一种锂离子电池锡镍碳复合负极材料的制备方法和现有技术相比,利用电沉积制备锡镍碳复合负极材料,具有成本低、制备工艺简单、电化学性能优良、寿命长等特点。The invention discloses a preparation method of a tin-nickel-carbon composite negative electrode material for a lithium ion battery, which belongs to the technical field of lithium ion batteries, and uses an electrodeposition process to prepare a tin-nickel-carbon composite negative electrode material for a lithium ion battery; the electrodeposition process is: process ( 1) Graphite powder → chemically modify the surface of the graphite powder → add to the pyrophosphate alloy plating solution → ultrasonically disperse the pyrophosphate alloy plating solution added to the graphite powder; process (2) Copper foil current collector →Activation treatment; process (3) uses the copper foil current collector obtained in process (2) as the cathode, uses the hard graphite plate as the anode, and uses the plating solution obtained in process (1) as the electrolyte to perform electrodeposition coating, and finally obtains Composite coating. Compared with the prior art, the preparation method of a tin-nickel-carbon composite negative electrode material for a lithium ion battery of the present invention uses electrodeposition to prepare the tin-nickel-carbon composite negative electrode material, which has the advantages of low cost, simple preparation process, excellent electrochemical performance and long service life. Features.
Description
技术领域 technical field
本发明涉及一种锂离子电池技术领域,具体地说是一种锂离子电池锡镍碳复合负极材料的制备方法。 The invention relates to the technical field of lithium-ion batteries, in particular to a method for preparing a tin-nickel-carbon composite negative electrode material for lithium-ion batteries. the
背景技术 Background technique
由于能源紧缺及城市环境污染日益严重,寻找替代石油的、环保清洁的替代能源,解决城市的大气污染,是目前全球面临的迫切需要解决的一个社会问题,而先进的电动汽车被公认为是今后发展节能环保绿色交通的最重要方式。当前,各国争相发展的电动汽车、混合动力汽车都需要电池来提供动力,作为电动车的配套电源,锂离子电池的突出性能具有独特的优势。电池中正、负极活性材料及电极制备技术是控制锂离子电池性能的关键,已成为国内外研究人员的共识。 Due to the shortage of energy and the increasingly serious urban environmental pollution, it is an urgent social problem that the world is facing to find an alternative energy source that replaces oil, is environmentally friendly and clean, and solves urban air pollution. Advanced electric vehicles are recognized as the future It is the most important way to develop energy-saving, environment-friendly and green transportation. At present, the electric vehicles and hybrid vehicles that are competing to develop in various countries need batteries to provide power. As the supporting power supply of electric vehicles, the outstanding performance of lithium-ion batteries has unique advantages. Positive and negative active materials in batteries and electrode preparation technology are the key to controlling the performance of lithium-ion batteries, which has become the consensus of researchers at home and abroad. the
石墨粉体以其加工工艺相对简单、成本低、较好的锂离子储存能力和循环充放电能力,成为目前锂电池负极材料的主体。但石墨粉体理论比容量小,容量衰减率较大,高倍率充放电性能较差,促使人们寻求更加优异的锂离子电池负极材料。从电极制备技术看,大规模应用于生产的主要是涂敷滚压法,该工艺简单、成本低,但涂层在集流体上结合力弱,反复循环过程中,尤其在大功率充放电过程中,涂敷的负极材料容易脱落,电池寿命缩短,使用成本大幅度提高。 Graphite powder has become the main body of current lithium battery anode materials due to its relatively simple processing technology, low cost, good lithium ion storage capacity and cycle charge and discharge capacity. However, the theoretical specific capacity of graphite powder is small, the capacity decay rate is large, and the high-rate charge-discharge performance is poor, prompting people to seek more excellent lithium-ion battery anode materials. From the perspective of electrode preparation technology, the coating and rolling method is mainly used in large-scale production. This process is simple and low in cost, but the coating has weak binding force on the current collector. During repeated cycles, especially in the process of high-power charging and discharging In the process, the coated negative electrode material is easy to fall off, the battery life is shortened, and the cost of use is greatly increased. the
近一两年,国内外有关于氧化物负极材料、锡合金及锡合金-碳复合负极制备及性能研究的相关报道,合成方法有固相法、化学还原法、低压气相法、溶胶凝胶法和电沉积法等。其中电沉积法工艺简单、易规模化、与集流体结合力强,具有重要的研究价值,但目前电沉积工艺规范不稳定,镀层中碳含量低,难以得到应用。 In the past one or two years, there have been related reports on the preparation and performance research of oxide anode materials, tin alloys and tin alloy-carbon composite anodes at home and abroad. The synthesis methods include solid-phase method, chemical reduction method, low-pressure gas-phase method, and sol-gel method. and electrodeposition methods. Among them, the electrodeposition method is simple in process, easy to scale, and has a strong combination with the current collector, which has important research value. However, the current electrodeposition process specification is unstable, and the carbon content in the coating is low, so it is difficult to be applied. the
综上所述,目前负极材料的主体仍然是石墨粉体,研究开发具有更高电荷储存能力和循环性能,与集流体结合良好的锡镍/石墨复合负极制备工艺及其电化学性能,是实现锂电池大功率充放电的重要途径。 To sum up, at present, the main body of the negative electrode material is still graphite powder. The research and development of the tin-nickel/graphite composite negative electrode preparation process and its electrochemical performance with higher charge storage capacity and cycle performance and good combination with the current collector is the key to realize An important way for high-power charging and discharging of lithium batteries. the
发明内容 Contents of the invention
本发明的技术任务是针对以上不足之处,提供一种利用电沉积制备锡镍碳复合负极材料、成本低、制备工艺简单、电化学性能优良、寿命长的一种锂离子电池锡镍碳复合负极材料的制备方法。 The technical task of the present invention is to provide a tin-nickel-carbon composite negative electrode material for lithium-ion batteries that uses electrodeposition to prepare tin-nickel-carbon composite negative electrode materials, has low cost, simple preparation process, excellent electrochemical performance, and long service life. Preparation method of negative electrode material. the
本发明解决其技术问题所采用的技术方案是:使用电沉积工艺制备锂离子电池锡镍 碳复合负极材料;电沉积工艺为: The technical solution adopted by the present invention to solve its technical problems is: use electrodeposition process to prepare tin-nickel-carbon composite negative electrode material for lithium ion battery; electrodeposition process is:
工艺(1):石墨粉体→对石墨粉体进行表面化学改性处理→加入至焦磷酸盐合金镀液→对加入石墨粉体的焦磷酸盐合金镀液进行超声波分散; Process (1): Graphite powder → chemically modify the surface of graphite powder → add to pyrophosphate alloy bath → ultrasonically disperse the pyrophosphate alloy bath added with graphite powder;
工艺(2):铜箔集流体→活化处理; Process (2): copper foil current collector → activation treatment;
工艺(3):将工艺(2)最后得到的铜箔集流体为阴极,以硬质石墨板为阳极,以工艺(1)得到的镀液为电解质,进行电沉积镀膜,最后得到复合镀层。 Process (3): The copper foil current collector finally obtained in process (2) is used as a cathode, the hard graphite plate is used as an anode, and the plating solution obtained in process (1) is used as an electrolyte to perform electrodeposition coating, and finally a composite coating is obtained. the
所述的石墨粉体粒度为5~12μm。采用球磨方法对石墨进行处理,得到粒度为5~12μm的石墨粉体。 The particle size of the graphite powder is 5-12 μm. The graphite is processed by a ball milling method to obtain graphite powder with a particle size of 5-12 μm. the
所述的石墨粉体→对石墨粉体进行表面化学改性处理工艺为:在镀液中石墨粉体含量为15g·L-1的条件下,选用1.0~1.4g·L-1的十六烷基三甲基溴化铵、非离子型表面活性剂及4~6g·L-1的中性电解质NaCl形成为复合分散剂。 The described graphite powder→surface chemical modification treatment process of graphite powder is as follows: under the condition that the content of graphite powder in the bath is 15g·L -1 , 1.0~1.4g·L -1 of sixteen Alkyltrimethylammonium bromide, non-ionic surfactant and 4-6g·L -1 neutral electrolyte NaCl form a composite dispersant.
所述的非离子型表面活性剂采用0.8~1.0g·L-1的平平加。 The non-ionic surfactant is added in a level of 0.8-1.0 g·L -1 .
所述的焦磷酸盐合金镀液采用环保型焦磷酸盐体系,包括NiCl250~70g·L-1、SnCl210~18g·L-1、K4P2O7180~210g·L-1、甘氨酸20g·L-1;焦磷酸盐合金镀液pH为7.5~8.5。 The pyrophosphate alloy plating solution adopts an environment-friendly pyrophosphate system, including NiCl 2 50~70g·L -1 , SnCl 2 10~18g·L -1 , K 4 P 2 O 7 180~210g·L -1 1. Glycine 20g·L -1 ; the pH of the pyrophosphate alloy plating solution is 7.5-8.5.
所述的电沉积镀膜,以硬质石墨板为阳极,铜箔集流体为阴极,在施镀过程中,电流密度为1~1.4A·dm-2,温度55℃~60℃。 The electrodeposited coating uses a hard graphite plate as an anode and a copper foil current collector as a cathode. During the plating process, the current density is 1-1.4A·dm -2 and the temperature is 55°C-60°C.
所述的最后获得复合镀层质量百分含量为38%~56%的Sn,27%~56%的Ni,6%~17%的石墨。 The composite coating obtained at the end has a mass percent content of 38%-56% of Sn, 27%-56% of Ni, and 6%-17% of graphite. the
所述的复合镀层在0.2C充放电机制下,首次容量密度达到600mA.h.g-1以上,充放电效率为85%,二十个循环后放电容量保持在250mA.h.g-1左右,充放电效率保持在90%。 Under the charging and discharging mechanism of 0.2C, the composite coating has a capacity density of more than 600mA.hg -1 for the first time, and a charge-discharge efficiency of 85%. After twenty cycles, the discharge capacity remains at about 250mA.hg -1 , and the charge-discharge efficiency Keep it at 90%.
所述的电沉积工艺前,采用球磨方法对石墨进行预处理,得到粒度为5~12μm的石墨粉体。因为石墨的密度比电解液的密度大,石墨颗粒在重力作用下会以一定的速度下沉,同时也会受到电解液对它向上的浮力,因此石墨的粒径对石墨在镀液中的影响很大,减少石墨的粒径对降低沉降速度是很有效的。石墨在镀液中均匀地悬浮,可为石墨在镀层中的均匀分布创造有利条件。 Before the electrodeposition process, the graphite is pretreated by ball milling to obtain graphite powder with a particle size of 5-12 μm. Because the density of graphite is higher than that of the electrolyte, graphite particles will sink at a certain speed under the action of gravity, and will also be buoyant to it upwards from the electrolyte, so the particle size of graphite has an effect on graphite in the plating solution Very large, reducing the particle size of graphite is very effective in reducing the sedimentation velocity. Graphite is evenly suspended in the plating solution, which can create favorable conditions for the uniform distribution of graphite in the coating. the
石墨粉体能否与镀液均匀润湿是实现合金镀层与石墨粉体共沉积的前提,本发明通过正交试验等方法,筛选了各类分散剂,最终确定十六烷基三甲基溴化铵、平平加、中性氯化钠形成复合分散剂,其在镀液中的主要作用是降低石墨表面的润湿角,使石墨粉体带正电荷,使石墨粉体更容易向阴极沉积。当镀液中石墨含量为15g·L-时,复合分散剂的最佳组 成为十六烷基三甲基溴化铵1.0~1.4g·L-1、平平加等非离子型表面活性剂0.8~1.0g·L-1,中性电解质NaCl4~6g·L-1。通过该复合分散剂处理后,石墨粉体与镀液形成的乳液可在24小时内保持稳定,而且粉体表面带正电荷,有力地实现了粉体与镀层的共沉积。当电流密度1.0~1.4A·dm-2,温度55~60℃时,以石墨为阳极,铜箔集流体为阴极,可获得含量分别为38%~56%的Sn,27%~56%的Ni,及6%~17%C的复合镀层。 Whether the graphite powder can be uniformly wetted with the plating solution is the prerequisite for realizing the co-deposition of the alloy coating and the graphite powder. The present invention screens various dispersants through orthogonal experiments and other methods, and finally determines the hexadecyl trimethyl bromide Ammonium chloride, Pingpingjia, and neutral sodium chloride form a composite dispersant, and its main function in the plating solution is to reduce the wetting angle of the graphite surface, make the graphite powder positively charged, and make the graphite powder easier to deposit on the cathode . When the graphite content in the plating solution is 15g·L -1 , the optimum composition of the composite dispersant is cetyltrimethylammonium bromide 1.0~1.4g·L -1 , non-ionic surfactant such as Pingpingjia 0.8 ~1.0g·L -1 , neutral electrolyte NaCl4~6g·L -1 . After being treated with the composite dispersant, the emulsion formed by the graphite powder and the plating solution can remain stable within 24 hours, and the surface of the powder is positively charged, which effectively realizes co-deposition of the powder and the coating. When the current density is 1.0~1.4A·dm -2 and the temperature is 55~60℃, graphite is used as anode and copper foil current collector is used as cathode. Ni, and 6% ~ 17% C composite coating.
复合镀层为正极,金属锂为负极,以六氟磷酸锂为电解质,组成扣式锂电池,通过电池参数测试仪测试其电化学性能,在0.2C机制下,首次比容量达到600mA.h.g~1以上,充放电效率在85%,二十个循环后放电容量保持在250mA.h.g-1左右,充放电效率保持在90%。 The composite coating is the positive electrode, metal lithium is the negative electrode, and lithium hexafluorophosphate is used as the electrolyte to form a button lithium battery. The electrochemical performance is tested by the battery parameter tester. Under the 0.2C mechanism, the specific capacity reaches 600mA.h.g~1 for the first time. The discharge efficiency is 85%, the discharge capacity is maintained at about 250mA.h.g-1 after 20 cycles, and the charge-discharge efficiency is maintained at 90%. the
平平加:脂肪醇聚氧乙烯醚,匀染剂又名平平加,属非离子型表面活性剂,外观为乳白色或米黄色软膏状,分子量较高时,呈固体状(可根据要求制成片状固体),易溶于水、乙醇、乙二醇等,有浊点,1%水溶液PH值为中性。能耐酸、耐碱、耐硬水、耐热、耐重金属盐。具有良好的湿润性能,且具有较好的乳化、分散、洗净等性能。 Pingpingjia: Fatty alcohol polyoxyethylene ether, leveling agent, also known as Pingpingjia, is a non-ionic surfactant. Its appearance is milky white or beige ointment. When the molecular weight is high, it is solid (it can be made into tablets according to requirements) solid), easily soluble in water, ethanol, ethylene glycol, etc., with a cloud point, and the PH value of 1% aqueous solution is neutral. It is resistant to acid, alkali, hard water, heat and heavy metal salts. It has good wetting properties, and has good emulsifying, dispersing, cleaning and other properties. the
本发明的一种锂离子电池锡镍碳复合负极材料的制备方法和现有技术相比,具有以下优点:提出了电沉积制备锂电池锡镍合金-碳复合负极的工艺规范,在铜泊集流体上形成以锡合金为连续相,以石墨粉体为弥散相的牢固、均匀、稳定的复合镀层,发挥金属与石墨粉体储存电荷的双重优势,改善了合金镀层致密的表面形貌,并与集流体形成冶金结合,获得结合力强、电化学性能优良、长寿命锂电池负极,以适应电池大功率充放电需要;不但工艺简单,成本低,且易于实现规模化生产。 Compared with the prior art, the preparation method of a tin-nickel-carbon composite negative electrode material for a lithium ion battery of the present invention has the following advantages: the process specification for preparing a lithium battery tin-nickel alloy-carbon composite negative electrode by electrodeposition is proposed. A solid, uniform, and stable composite coating with tin alloy as the continuous phase and graphite powder as the dispersed phase is formed on the fluid, giving full play to the dual advantages of metal and graphite powder in storing charges, improving the dense surface morphology of the alloy coating, and Form a metallurgical combination with the current collector to obtain a negative electrode with strong binding force, excellent electrochemical performance, and long life to meet the needs of high-power charging and discharging of the battery; not only the process is simple, the cost is low, and it is easy to achieve large-scale production. the
具体实施方式 Detailed ways
本发明的一种锂离子电池锡镍碳复合负极材料的制备方法,使用电沉积工艺制备锂离子电池锡镍碳复合负极材料;电沉积工艺为: A kind of preparation method of lithium-ion battery tin-nickel-carbon composite negative electrode material of the present invention, uses electrodeposition process to prepare lithium-ion battery tin-nickel-carbon composite negative electrode material; Electrodeposition process is:
工艺(1):石墨粉体→对石墨粉体进行表面化学改性处理→加入至焦磷酸盐合金镀液→对加入石墨粉体的焦磷酸盐合金镀液进行超声波分散; Process (1): Graphite powder → chemically modify the surface of graphite powder → add to pyrophosphate alloy bath → ultrasonically disperse the pyrophosphate alloy bath added with graphite powder;
工艺(2):铜箔集流体→活化处理; Process (2): copper foil current collector → activation treatment;
工艺(3):将工艺(2)最后得到的铜箔集流体为阴极,以硬质石墨板为阳极,以工艺(1)得到的镀液为电解质,进行电沉积镀膜,最后得到复合镀层。 Process (3): The copper foil current collector finally obtained in process (2) is used as a cathode, the hard graphite plate is used as an anode, and the plating solution obtained in process (1) is used as an electrolyte to perform electrodeposition coating, and finally a composite coating is obtained. the
石墨粉体粒度为5~12μm。采用球磨方法对石墨进行处理,得到粒度为5~12μm的石墨粉体。 The particle size of graphite powder is 5-12 μm. The graphite is processed by a ball milling method to obtain graphite powder with a particle size of 5-12 μm. the
对石墨粉体进行表面化学改性处理工艺为:在镀液中石墨粉体含量为15g·L-1的条 件下,选用1.0~1.4g·L-1的十六烷基三甲基溴化铵、非离子型表面活性剂及4~6g·L-1的中性电解质NaCl形成为复合分散剂。 The surface chemical modification treatment process of graphite powder is as follows: under the condition that the content of graphite powder in the bath is 15g L -1 , select 1.0~1.4g L -1 cetyl trimethyl Ammonium, non-ionic surfactant and 4-6g·L -1 neutral electrolyte NaCl form a composite dispersant.
非离子型表面活性剂采用0.8~1.0g·L-1的平平加。 The non-ionic surfactant is added at a level of 0.8~1.0g·L -1 .
焦磷酸盐合金镀液采用环保型焦磷酸盐体系,包括NiCl250~70g·L-1、SnCl210~18g·L-1、K4P2O7180~210g·L-1、甘氨酸20g·L-1;焦磷酸盐合金镀液pH为7.5~8.5。 The pyrophosphate alloy plating solution adopts an environment-friendly pyrophosphate system, including NiCl 2 50~70g·L -1 , SnCl 2 10~18g·L -1 , K 4 P 2 O 7 180~210g·L -1 , glycine 20g·L -1 ; the pH of the pyrophosphate alloy plating solution is 7.5-8.5.
电沉积镀膜,以硬质石墨板为阳极,铜箔集流体为阴极,在施镀过程中,电流密度为1~1.4A·dm-2,温度55℃~60℃。 For electrodeposition coating, the hard graphite plate is used as the anode, and the copper foil current collector is used as the cathode. During the plating process, the current density is 1-1.4A·dm -2 , and the temperature is 55°C-60°C.
最后获得复合镀层质量百分含量为38%~56%的Sn,27%~56%的Ni,6%~17%的石墨。 Finally, the mass percent content of the composite coating is 38%-56% of Sn, 27%-56% of Ni, and 6%-17% of graphite. the
复合镀层在0.2C充放电机制下,首次容量密度达到600mA.h.g-1以上,充放电效率为85%,二十个循环后放电容量保持在250mA.h.g-1左右,充放电效率保持在90%。 Under the charge and discharge mechanism of 0.2C, the capacity density of the composite coating reaches more than 600mA.hg -1 for the first time, and the charge and discharge efficiency is 85%. After twenty cycles, the discharge capacity remains at about 250mA.hg -1 and the charge and discharge efficiency remains at 90 %.
电沉积工艺前,对采用球磨方法对石墨进行预处理,得到粒度为5~12μm的石墨粉体。因为石墨的密度比电解液的密度大,石墨颗粒在重力作用下会以一定的速度下沉,同时也会受到电解液对它向上的浮力,因此石墨的粒径对石墨在镀液中的影响很大,减少石墨的粒径对降低沉降速度是很有效的。石墨在镀液中均匀地悬浮,可为石墨在镀层中的均匀分布创造有利条件。 Before the electrodeposition process, the graphite is pretreated by ball milling to obtain graphite powder with a particle size of 5-12 μm. Because the density of graphite is higher than that of the electrolyte, the graphite particles will sink at a certain speed under the action of gravity, and will also be buoyed upward by the electrolyte, so the particle size of graphite has an effect on graphite in the plating solution. Very large, reducing the particle size of graphite is very effective in reducing the sedimentation velocity. Graphite is evenly suspended in the plating solution, which can create favorable conditions for the uniform distribution of graphite in the coating. the
石墨粉体能否与镀液均匀润湿是实现合金镀层与石墨粉体共沉积的前提,本发明通过正交试验等方法,筛选了各类分散剂,最终确定十六烷基三甲基溴化铵、平平加等非离子型表面活性剂、中性氯化钠形成复合分散剂,其在镀液中的主要作用是降低石墨表面的润湿角,使石墨粉体带正电荷,使石墨粉体更容易向阴极沉积。当镀液中石墨含量为15g·L-时,复合分散剂的最佳组成为十六烷基三甲基溴化铵1.0~1.4g·L-1、平平加等非离子型表面活性剂0.8~1.0g·L-1,中性电解质NaCl4~6g·L-1。通过该复合分散剂处理后,石墨粉体与镀液形成的乳液可在24小时内保持稳定,而且粉体表面带正电荷,有力地实现了粉体与镀层的共沉积。当电流密度1.0~1.4A·dm-2,温度55~60℃时,以石墨为阳极,铜箔集流体为阴极,可获得含量分别为38%~56%的Sn,27%~56%的Ni,及6%~17%C的复合镀层。 Whether the graphite powder can be uniformly wetted with the plating solution is the prerequisite for realizing the co-deposition of the alloy coating and the graphite powder. The present invention screens various dispersants through orthogonal experiments and other methods, and finally determines the hexadecyl trimethyl bromide Non-ionic surfactants such as ammonium chloride and Pingpingjia, and neutral sodium chloride form a composite dispersant. Its main function in the plating solution is to reduce the wetting angle of the graphite surface, make the graphite powder positively charged, and make the graphite Powders are easier to deposit towards the cathode. When the graphite content in the bath is 15g·L -1 , the optimum composition of the composite dispersant is 1.0-1.4g·L -1 cetyltrimethylammonium bromide, 0.8 ~1.0g·L -1 , neutral electrolyte NaCl4~6g·L -1 . After being treated with the composite dispersant, the emulsion formed by the graphite powder and the plating solution can remain stable within 24 hours, and the surface of the powder is positively charged, which effectively realizes co-deposition of the powder and the coating. When the current density is 1.0~1.4A·dm -2 and the temperature is 55~60℃, graphite is used as anode and copper foil current collector is used as cathode. Ni, and 6% ~ 17% C composite coating.
复合镀层为正极,金属锂为负极,以六氟磷酸锂为电解质,组成扣式锂电池,通过电池参数测试仪测试其电化学性能,在0.2C机制下,首次比容量达到600mA.h.g~1以上,充放电效率在85%,二十个循环后放电容量保持在250mA.h.g~1左右,充放电效率保持在90%。 The composite coating is the positive electrode, metal lithium is the negative electrode, and lithium hexafluorophosphate is used as the electrolyte to form a button lithium battery. The electrochemical performance is tested by the battery parameter tester. Under the 0.2C mechanism, the specific capacity reaches 600mA.h.g~1 for the first time. The discharge efficiency is 85%, the discharge capacity is maintained at about 250mA.h.g~1 after 20 cycles, and the charge-discharge efficiency is maintained at 90%. the
除说明书所述的技术特征外,均为本专业技术人员的已知技术。 Except for the technical features described in the instructions, all are known technologies by those skilled in the art. the
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110037446.8A CN102136567B (en) | 2011-02-14 | 2011-02-14 | Preparing method of tin-nickel-carbon composite cathode material of lithium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110037446.8A CN102136567B (en) | 2011-02-14 | 2011-02-14 | Preparing method of tin-nickel-carbon composite cathode material of lithium ion battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102136567A CN102136567A (en) | 2011-07-27 |
CN102136567B true CN102136567B (en) | 2014-03-26 |
Family
ID=44296271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110037446.8A Expired - Fee Related CN102136567B (en) | 2011-02-14 | 2011-02-14 | Preparing method of tin-nickel-carbon composite cathode material of lithium ion battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102136567B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103022424B (en) * | 2012-12-21 | 2014-10-29 | 湘潭大学 | Carbon nano tube enhanced tin-nickel alloy cathode and preparation method thereof |
CN103137956B (en) * | 2013-03-15 | 2015-08-12 | 中国计量学院 | The lithium ion battery negative material nickeltin powder preparation method of a kind of porous, chondritic |
CN104477892B (en) * | 2014-12-12 | 2016-08-24 | 盐城市新能源化学储能与动力电源研究中心 | Flaky graphite alkene device prepared by the preparation method of a kind of flaky graphite alkene and use the method |
CN104835946A (en) * | 2015-05-30 | 2015-08-12 | 田东 | Tin and carbon composite cathode material of lithium ion battery and preparation method of tin and carbon composite cathode material |
CN106654171A (en) * | 2015-10-29 | 2017-05-10 | 深圳市比克动力电池有限公司 | A composite dispersant, lithium ion battery anode slurry, an anode and a lithium ion battery |
CN106601993A (en) * | 2016-12-29 | 2017-04-26 | 深圳市沃特玛电池有限公司 | Lithium ion battery negative electrode plate and preparation method therefor |
CN111366853B (en) * | 2018-12-25 | 2023-02-10 | 微宏动力系统(湖州)有限公司 | Test method and application of negative electrode material cycle performance |
CN110364736A (en) * | 2019-07-12 | 2019-10-22 | 大连恒超锂业科技有限公司 | Lithium battery negative electrode slurry and preparation method thereof |
CN117849515B (en) * | 2024-03-06 | 2024-05-24 | 福建龙亿粉体装备制造有限公司 | Automatic monitoring system and method for operation of negative equipment based on Internet of things |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1529368A (en) * | 2003-10-17 | 2004-09-15 | 清华大学 | A kind of synthetic method of negative electrode material of lithium ion battery |
JP2005108440A (en) * | 2003-03-24 | 2005-04-21 | Samsung Sdi Co Ltd | ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME |
CN1738077A (en) * | 2005-09-06 | 2006-02-22 | 天津力神电池股份有限公司 | Method for preparing negative pole material of lithium ion cell high-capacity tin composite |
TW200713671A (en) * | 2005-09-28 | 2007-04-01 | Univ Nat Tsing Hua | Modification and preparation method of negative electrode material |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8367251B2 (en) * | 2007-08-30 | 2013-02-05 | Sony Corporation | Anode with lithium containing ionic polymer coat, method of manufacturing same, secondary battery, and method of manufacturing same |
-
2011
- 2011-02-14 CN CN201110037446.8A patent/CN102136567B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005108440A (en) * | 2003-03-24 | 2005-04-21 | Samsung Sdi Co Ltd | ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME |
CN1529368A (en) * | 2003-10-17 | 2004-09-15 | 清华大学 | A kind of synthetic method of negative electrode material of lithium ion battery |
CN1738077A (en) * | 2005-09-06 | 2006-02-22 | 天津力神电池股份有限公司 | Method for preparing negative pole material of lithium ion cell high-capacity tin composite |
TW200713671A (en) * | 2005-09-28 | 2007-04-01 | Univ Nat Tsing Hua | Modification and preparation method of negative electrode material |
Non-Patent Citations (2)
Title |
---|
"锂离子电池负极碳复合材料的制备与性能研究";孙杨正;《上海交通大学硕士学位论文》;20031231(第2003年期);正文第17页第1段到第28段第1段 * |
孙杨正."锂离子电池负极碳复合材料的制备与性能研究".《上海交通大学硕士学位论文》.2003,(第2003年期), |
Also Published As
Publication number | Publication date |
---|---|
CN102136567A (en) | 2011-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102136567B (en) | Preparing method of tin-nickel-carbon composite cathode material of lithium ion battery | |
CN101510625B (en) | An ultra-high rate lithium-ion battery | |
CN102332572B (en) | Anode material and manufacturing method thereof as well as lithium ion battery and negative plate thereof | |
CN101950804B (en) | A kind of method for preparing spherical SnS2 negative electrode material of lithium ion battery | |
CN114094089B (en) | A kind of positive electrode lithium supplement additive and its preparation and application in lithium-ion batteries | |
CN103094628B (en) | A kind of high performance Water-soluble lithium ion battery | |
CN106549189A (en) | Battery, set of cells and uninterrupted power source | |
CN103618094B (en) | The preparation method of a kind of high-capacity lithium sulfur flow battery and electrode thereof | |
CN110600747A (en) | Flexible three-dimensional layered MXene @ indium composite film and preparation method and application thereof | |
CN103762348B (en) | SnSbCu/MCMB/C core-shell structure serving as anode material of lithium ion battery and preparation method thereof | |
CN105609732A (en) | Carbon-coated zinc ferrite electrode material and preparation method and application thereof | |
CN108807912B (en) | C @ SnOx(x=0,1,2)Preparation and application of @ C mesoporous nano hollow sphere structure | |
CN109755563A (en) | A kind of negative lead paste of lead-acid battery and preparation method thereof | |
CN108598361A (en) | A kind of anode plate for lithium ionic cell and preparation method thereof, lithium ion battery | |
CN109326775A (en) | A kind of preparation method of water system Battery Zinc negative electrode material | |
CN103094524B (en) | A kind of tin alloy membrane electrode and application thereof | |
CN103904352B (en) | Zinc electrolyte for flow battery and preparation method thereof | |
CN104409729A (en) | Method for doping graphene in lithium iron phosphate battery anode slurry | |
CN103531757B (en) | High magnification pulsed discharge zinc-silver oxide cell electrode composite material | |
CN108963241A (en) | battery, battery pack and uninterruptible power supply | |
CN106601993A (en) | Lithium ion battery negative electrode plate and preparation method therefor | |
CN206673045U (en) | A kind of pole group of lead-acid accumulator based on sheath copper bus-bar | |
CN105449240A (en) | Flow battery system | |
CN103066256A (en) | Preparation method for nanometer copper-tin nickel alloy cathode material, nanometer copper-tin nickel alloy cathode material and lithium ion battery | |
CN115472836A (en) | Anode-free zinc metal battery with zwitterionic polymer as binder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140326 Termination date: 20150214 |
|
EXPY | Termination of patent right or utility model |