CN102134569A - Maize MAPK gene promoter and application thereof - Google Patents
Maize MAPK gene promoter and application thereof Download PDFInfo
- Publication number
- CN102134569A CN102134569A CN2010101004868A CN201010100486A CN102134569A CN 102134569 A CN102134569 A CN 102134569A CN 2010101004868 A CN2010101004868 A CN 2010101004868A CN 201010100486 A CN201010100486 A CN 201010100486A CN 102134569 A CN102134569 A CN 102134569A
- Authority
- CN
- China
- Prior art keywords
- promoter
- maize
- gene promoter
- gene
- dna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000002017 Zea mays subsp mays Nutrition 0.000 title claims abstract description 55
- 101150105302 MAPK gene Proteins 0.000 title claims abstract description 35
- 240000008042 Zea mays Species 0.000 title description 52
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 title description 43
- 235000009973 maize Nutrition 0.000 title description 43
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 37
- 108091028043 Nucleic acid sequence Proteins 0.000 claims abstract description 21
- 241000196324 Embryophyta Species 0.000 claims abstract description 17
- 150000003839 salts Chemical class 0.000 claims abstract description 14
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims abstract description 12
- 238000009395 breeding Methods 0.000 claims abstract description 12
- 230000001488 breeding effect Effects 0.000 claims abstract description 12
- 235000005822 corn Nutrition 0.000 claims abstract description 12
- 230000004044 response Effects 0.000 claims abstract description 11
- 230000006353 environmental stress Effects 0.000 claims abstract description 8
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 7
- 244000052616 bacterial pathogen Species 0.000 claims abstract description 4
- 241000209149 Zea Species 0.000 claims abstract 4
- 244000052769 pathogen Species 0.000 claims description 11
- 108091054455 MAP kinase family Proteins 0.000 claims description 10
- 102000043136 MAP kinase family Human genes 0.000 claims description 10
- 230000001717 pathogenic effect Effects 0.000 claims description 10
- 108091027981 Response element Proteins 0.000 claims description 9
- FVFVNNKYKYZTJU-UHFFFAOYSA-N 6-chloro-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(Cl)=N1 FVFVNNKYKYZTJU-UHFFFAOYSA-N 0.000 claims description 6
- GEWDNTWNSAZUDX-UHFFFAOYSA-N Jasmonic Acid Methyl Ester Chemical compound CCC=CCC1C(CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-UHFFFAOYSA-N 0.000 claims description 6
- 108700026226 TATA Box Proteins 0.000 claims description 6
- 238000013518 transcription Methods 0.000 claims description 5
- 230000035897 transcription Effects 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 241000894006 Bacteria Species 0.000 claims description 3
- 230000018044 dehydration Effects 0.000 claims description 3
- 238000006297 dehydration reaction Methods 0.000 claims description 3
- 230000004298 light response Effects 0.000 claims 2
- 101150084750 1 gene Proteins 0.000 claims 1
- 230000000694 effects Effects 0.000 claims 1
- 230000000763 evoking effect Effects 0.000 claims 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims 1
- 238000012797 qualification Methods 0.000 claims 1
- 230000035882 stress Effects 0.000 abstract description 11
- 230000009261 transgenic effect Effects 0.000 abstract description 7
- 208000014674 injury Diseases 0.000 abstract description 3
- 230000008733 trauma Effects 0.000 abstract description 3
- 239000002773 nucleotide Substances 0.000 abstract 1
- 125000003729 nucleotide group Chemical group 0.000 abstract 1
- 230000014509 gene expression Effects 0.000 description 21
- 238000000034 method Methods 0.000 description 16
- 108020004414 DNA Proteins 0.000 description 14
- 239000013612 plasmid Substances 0.000 description 14
- 210000000349 chromosome Anatomy 0.000 description 11
- 238000010186 staining Methods 0.000 description 9
- 241000589158 Agrobacterium Species 0.000 description 8
- 230000001744 histochemical effect Effects 0.000 description 8
- 239000012634 fragment Substances 0.000 description 7
- 238000011160 research Methods 0.000 description 7
- JLIDBLDQVAYHNE-YKALOCIXSA-N (+)-Abscisic acid Chemical compound OC(=O)/C=C(/C)\C=C\[C@@]1(O)C(C)=CC(=O)CC1(C)C JLIDBLDQVAYHNE-YKALOCIXSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 208000027418 Wounds and injury Diseases 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 230000008641 drought stress Effects 0.000 description 6
- JXCKZXHCJOVIAV-UHFFFAOYSA-N 6-[(5-bromo-4-chloro-1h-indol-3-yl)oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid;cyclohexanamine Chemical compound [NH3+]C1CCCCC1.O1C(C([O-])=O)C(O)C(O)C(O)C1OC1=CNC2=CC=C(Br)C(Cl)=C12 JXCKZXHCJOVIAV-UHFFFAOYSA-N 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 239000013604 expression vector Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 4
- 102000053187 Glucuronidase Human genes 0.000 description 4
- 108010060309 Glucuronidase Proteins 0.000 description 4
- 102000003960 Ligases Human genes 0.000 description 4
- 108090000364 Ligases Proteins 0.000 description 4
- 108700008625 Reporter Genes Proteins 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 101150054900 gus gene Proteins 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 3
- 102100032606 Heat shock factor protein 1 Human genes 0.000 description 3
- 102100034049 Heat shock factor protein 2 Human genes 0.000 description 3
- 101000867525 Homo sapiens Heat shock factor protein 1 Proteins 0.000 description 3
- 101001016883 Homo sapiens Heat shock factor protein 2 Proteins 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- 108700001094 Plant Genes Proteins 0.000 description 3
- XCCTYIAWTASOJW-XVFCMESISA-N Uridine-5'-Diphosphate Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(O)=O)O[C@H]1N1C(=O)NC(=O)C=C1 XCCTYIAWTASOJW-XVFCMESISA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000013600 plasmid vector Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008261 resistance mechanism Effects 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- GEWDNTWNSAZUDX-WQMVXFAESA-N (-)-methyl jasmonate Chemical compound CC\C=C/C[C@@H]1[C@@H](CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-WQMVXFAESA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 101100506686 Arabidopsis thaliana HSFA1B gene Proteins 0.000 description 2
- 235000017060 Arachis glabrata Nutrition 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 235000010777 Arachis hypogaea Nutrition 0.000 description 2
- 235000018262 Arachis monticola Nutrition 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 108091060211 Expressed sequence tag Proteins 0.000 description 2
- 102100034047 Heat shock factor protein 4 Human genes 0.000 description 2
- 101001016879 Homo sapiens Heat shock factor protein 4 Proteins 0.000 description 2
- 101150017616 Hsf3 gene Proteins 0.000 description 2
- VXQQVDCKACIRQG-UHFFFAOYSA-N NNPP Chemical compound NNPP VXQQVDCKACIRQG-UHFFFAOYSA-N 0.000 description 2
- 101100071480 Oryza sativa subsp. japonica HSFA1 gene Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 108700009124 Transcription Initiation Site Proteins 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000004042 decolorization Methods 0.000 description 2
- FCRACOPGPMPSHN-UHFFFAOYSA-N desoxyabscisic acid Natural products OC(=O)C=C(C)C=CC1C(C)=CC(=O)CC1(C)C FCRACOPGPMPSHN-UHFFFAOYSA-N 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002493 microarray Methods 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 229920002113 octoxynol Polymers 0.000 description 2
- 235000020232 peanut Nutrition 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 230000003805 potassium influx Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229920002477 rna polymer Polymers 0.000 description 2
- 239000012192 staining solution Substances 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 241000219194 Arabidopsis Species 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 102100030011 Endoribonuclease Human genes 0.000 description 1
- 101710199605 Endoribonuclease Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 102000000039 Heat Shock Transcription Factor Human genes 0.000 description 1
- 108050008339 Heat Shock Transcription Factor Proteins 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 102000001291 MAP Kinase Kinase Kinase Human genes 0.000 description 1
- 108060006687 MAP kinase kinase kinase Proteins 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 1
- 102000004232 Mitogen-Activated Protein Kinase Kinases Human genes 0.000 description 1
- 108090000744 Mitogen-Activated Protein Kinase Kinases Proteins 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 101100131111 Oryza sativa subsp. japonica MPK1 gene Proteins 0.000 description 1
- 102000005877 Peptide Initiation Factors Human genes 0.000 description 1
- 108010044843 Peptide Initiation Factors Proteins 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101710113029 Serine/threonine-protein kinase Proteins 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 108010043934 Sucrose synthase Proteins 0.000 description 1
- HLVPIMVSSMJFPS-UHFFFAOYSA-N abscisic acid beta-D-glucopyranosyl ester Natural products O1C(CO)C(O)C(O)C(O)C1OC(=O)C=C(C)C=CC1(O)C(C)=CC(=O)CC1(C)C HLVPIMVSSMJFPS-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229930002877 anthocyanin Natural products 0.000 description 1
- 235000010208 anthocyanin Nutrition 0.000 description 1
- 239000004410 anthocyanin Substances 0.000 description 1
- 150000004636 anthocyanins Chemical class 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000030609 dephosphorylation Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004076 epigenetic alteration Effects 0.000 description 1
- 230000008995 epigenetic change Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 239000003501 hydroponics Substances 0.000 description 1
- 230000006607 hypermethylation Effects 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 238000012177 large-scale sequencing Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 238000012775 microarray technology Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 108060006613 prolamin Proteins 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000025469 response to water deprivation Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 125000003607 serino group Chemical class [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
Images
Landscapes
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明披露了一种玉米MAPK基因的启动子及其应用,其中玉米MAPK基因的启动子是一种能够响应多种环境胁迫信号的启动子,其核苷酸序列如序列表中序列1所示,或者,是与序列1达到85%以上一致性的基因启动子的DNA序列;该启动子用于构建包括干旱、冷、盐、病菌、光、重金属和创伤中的一种或多种诱导响应的载体,从而应用于转基因抗逆植物育种。
The present invention discloses a corn MAPK gene promoter and its application, wherein the corn MAPK gene promoter is a promoter capable of responding to various environmental stress signals, and its nucleotide sequence is shown in sequence 1 in the sequence list , or, is the DNA sequence of a gene promoter that reaches more than 85% identity with Sequence 1; the promoter is used to construct one or more induced responses including drought, cold, salt, germs, light, heavy metal and trauma The carrier, thus applied to the breeding of transgenic stress-resistant plants.
Description
技术领域technical field
本发明涉及植物MAPK基因的启动子,尤其涉及玉米MAPK基因的启动子及其应用。The invention relates to a promoter of a plant MAPK gene, in particular to a promoter of a corn MAPK gene and application thereof.
背景技术Background technique
玉米是全球最为重要的粮食作物之一。干旱是限制全球玉米生产的主要环境因素。据保守估计,仅在热带地区,由于干旱造成的玉米损失每年至少达2000万吨,损失率至少为17%。另据保守估计,玉米占我国粮食总产量国粮食作物产量构成的21.1%。多年来,在国家攻关计划中,玉米育种目标历来强调优质、高产、多抗性,但实际在考核时是以玉米产量为硬指标,这在客观上将会诱导育种专家忽视玉米育种的品质与适应性。此外,玉米的抗旱性状是一个多基因控制的数量性状,抗旱机制十分复杂,因此对其了解有限,在客观上又导致了玉米抗旱育种的困难。Corn is one of the most important food crops in the world. Drought is a major environmental factor limiting global maize production. According to conservative estimates, only in the tropics, the loss of maize due to drought is at least 20 million tons per year, and the loss rate is at least 17%. According to conservative estimates, corn accounts for 21.1% of my country's total grain output. For many years, in the national key research plan, the goal of maize breeding has always emphasized high quality, high yield, and multi-resistance, but the actual evaluation is based on maize yield as a hard indicator, which will objectively induce breeding experts to ignore the quality and adaptability of maize breeding. sex. In addition, the drought resistance trait of maize is a quantitative trait controlled by polygenes, and the drought resistance mechanism is very complicated, so the understanding of it is limited, which objectively leads to the difficulty of drought resistance breeding in maize.
长期以来,国内外寄希望于旱胁迫响应基因的鉴定及其表达研究作为突破口解析玉米的抗旱机制。随着DNA芯片或微阵列技术的发展和应用,已发现了大量植物旱胁迫响应基因及各种基因表达谱,这些基因的表达具有明显的时、空特异性、组织特异性和条件特异性,形成一个复杂的网络调控系统,但是对于这些响应基因表达调节机制仍然未做出合理的解释。For a long time, the identification and expression of drought stress response genes have been hoped at home and abroad as a breakthrough to analyze the drought resistance mechanism of maize. With the development and application of DNA chip or microarray technology, a large number of plant drought stress response genes and various gene expression profiles have been discovered. The expression of these genes has obvious time, space, tissue and condition specificity. Form a complex network regulatory system, but the mechanism of regulation of these responsive gene expression has not yet made a reasonable explanation.
大量研究表明,基因表达的时、空特异性、组织特异性和条件特异性在很大程度上取决于基因的启动子。不同基因的启动子的构成变化较大,例如一般认为由核糖核酸(RNA,Ribonucleic Acid)聚合酶II识别的启动子含一个TATA盒和或一个控制特异性转录起始的启动因子。多年以来,TATA盒被认为是控制基础转录机制的主要的核心元件,但是许多其它基因的启动子缺乏TATA盒元件而含一个启动因子,即使是同一启动子,由于启动子内部的后生的变化(epigenetic alteration),例如甲基化或超甲基化会导致不同基因的转录效应。此外,许多基因,特别是一些家族基因在功能域上没有明显差别,但是其转录过程却十分不同,例如人类和鼠类的热激转录因子HSF1,HSF2,HSF3和HSF4,其中HSF1和HSF3与热激蛋白的表达有关,HSF2对经典的应激物无任何反应,HSF4虽然与HSF1和HSF2相似,但是以组织特异性方式进行表达,原因之一是这些热激转录因子HSFs各自的启动子中的热激元件不同。A large number of studies have shown that the temporal, spatial, tissue-specific and conditional specificity of gene expression largely depends on the gene promoter. The composition of the promoters of different genes varies greatly. For example, it is generally believed that the promoter recognized by ribonucleic acid (RNA, Ribonucleic Acid) polymerase II contains a TATA box and or an initiation factor that controls specific transcription initiation. For many years, the TATA box was considered to be the main core element controlling the basic transcription machinery, but the promoters of many other genes lack the TATA box element and contain a promoter, even for the same promoter, due to epigenetic changes within the promoter ( epigenetic alteration), such as methylation or hypermethylation, can lead to transcriptional effects on different genes. In addition, many genes, especially some family genes, have no obvious differences in functional domains, but their transcription processes are very different, such as human and mouse heat shock transcription factors HSF1, HSF2, HSF3 and HSF4, where HSF1 and HSF3 are related to heat HSF2 has no response to classical stressors. Although HSF4 is similar to HSF1 and HSF2, it is expressed in a tissue-specific manner. One of the reasons is that the promoters of these heat shock transcription factors HSFs The heat shock element is different.
此外,由于玉米的许多性状例如抗逆性状受多基因控制,依靠转化单一基因很难实现玉米全株的系统性抗性。研究证明,转化少量的基因很难赋予作物符合生产需要的抗性性状,国际上也尝试同时转化2个以上的基因,此外,由于受限于目前的转基因技术,尝试同时转化2个以上基因的成功者寥寥无几。In addition, since many traits of maize such as stress resistance are controlled by multiple genes, it is difficult to achieve systemic resistance of the whole maize plant by transforming a single gene. Studies have proved that transforming a small amount of genes is difficult to endow crops with the resistance traits that meet production needs. Internationally, attempts have been made to transform more than two genes at the same time. In addition, due to the limitations of current transgenic technology, attempts to transform more than two genes at the same time The successes are few and far between.
丝裂原活化蛋白激酶(MAPK,Mitogen-Activated Protein Kinase)是存在于所有真核生物中的一类丝氨酸/苏氨酸蛋白激酶,是细胞内信号转导的重要因子,现已发现了至少有4个MAPK亚家族。它们在生物体内通过对蛋白质磷酸化和去磷酸化而起着信号传递和级联放大作用,能够响应多种环境胁迫信号,例如冷和干旱、盐和创伤等。植物体内已发现多个能够同时响应包括干旱在内的多种胁迫的MAPK类激酶,例如在紫花苜蓿细胞中MAPK,烟草细胞中类似SIMK的SIPK和拟南芥的MAPK和MAPKKK。可以预测的是,该类基因的启动子与其它基因的结合可以改变基因对环境的表达响应方式或者能够使基因对某种环境的特异性反应。Mitogen-activated protein kinase (MAPK, Mitogen-Activated Protein Kinase) is a class of serine/threonine protein kinase that exists in all eukaryotes, and is an important factor in intracellular signal transduction. 4 MAPK subfamilies. They play a role in signal transmission and cascade amplification through phosphorylation and dephosphorylation of proteins in organisms, and can respond to a variety of environmental stress signals, such as cold and drought, salt and trauma. Several MAPK kinases have been found in plants that can respond to multiple stresses including drought simultaneously, such as MAPK in alfalfa cells, SIMK-like SIPK in tobacco cells, and MAPK and MAPKKK in Arabidopsis. It can be predicted that the combination of the promoter of this type of gene and other genes can change the expression response mode of the gene to the environment or can make the gene specifically respond to a certain environment.
国内外对玉米基因的启动子的研究已取得了一定的进展。2009年1月7日,启动子专用数据库中(The Eukaryotic Promoter Database)中收录的植物启动子共有198个,其中玉米的启动子有21个。已报道的21个玉米启动子包括了11个醇溶蛋白基因启动子,2个集光蛋白基因的启动子,1个蔗糖合酶基因启动子,1个尿苷二磷酸(UDP,Uridine DiphosPhate)-葡萄糖-淀粉葡糖基转移酶基因启动子,3个花青素合成相关基因启动子,2个醇脱氢酶基因启动子和1个热激蛋白记忆启动子。The research on the promoter of maize gene has made some progress at home and abroad. On January 7, 2009, there were 198 plant promoters recorded in The Eukaryotic Promoter Database, of which 21 were maize promoters. The 21 maize promoters that have been reported include 11 prolamin gene promoters, 2 photogatherin gene promoters, 1 sucrose synthase gene promoter, 1 uridine diphosphate (UDP, Uridine DiphosPhate) - Glucose-amyloglucosyltransferase gene promoter, 3 anthocyanin synthesis-related gene promoters, 2 alcohol dehydrogenase gene promoters and 1 heat shock protein memory promoter.
目前,国内外对于旱胁迫响应的植物MAPK基因的启动子研究尚未予以重视,没有关于MAPK基因的启动子的研究报道。在早期的研究中,本实验室对旱胁迫下玉米表达基因的EST进行了大规模测序分析、制作了11855基因的cDNA微阵列,用该微阵列大规模分析了旱胁迫下苗期玉米的基因表达,发现了旱胁迫下具有显著上调表达特征的MAPK基因(数据未显示)。因此,该MAPK基因启动子的克隆为进一步阐明玉米旱胁迫下的基因表达网络调节和抗旱机制提供理论依据,在转基因玉米抗旱育种研究中的表达载体的构建中也具有潜在的应用价值。At present, the research on the promoter of plant MAPK gene in response to drought stress has not been paid much attention at home and abroad, and there is no research report on the promoter of MAPK gene. In the early research, our laboratory performed large-scale sequencing analysis on the EST of maize expression genes under drought stress, produced a cDNA microarray of 11855 genes, and used this microarray to analyze the genes of maize seedlings under drought stress on a large scale MAPK gene was found to be significantly up-regulated under drought stress (data not shown). Therefore, the cloning of the MAPK gene promoter provides a theoretical basis for further elucidating the gene expression network regulation and drought resistance mechanism of maize under drought stress, and also has potential application value in the construction of expression vectors in the research of drought resistance breeding of transgenic maize.
参考文献:references:
李晚忱,荣廷昭(2000)我国21世纪玉米遗传育种工程技术展望,玉米科学8:10-14.Li Wanchen, Rong Tingzhao (2000) Prospects of Maize Genetics and Breeding Engineering Technology in my country in the 21st Century, Maize Science 8: 10-14.
徐亚维,柴晓杰,王丕武,左艳亭,吕品(2006)玉米淀粉分支酶sbe II b基因启动子的克隆和表达载体构建,玉米科学,14:84-87.Xu Yawei, Chai Xiaojie, Wang Piwu, Zuo Yanting, Lu Pin (2006) Cloning of corn starch branching enzyme sbe II b gene promoter and construction of expression vector, Maize Science, 14:84-87.
张世煌,胡瑞法(2000)玉米育种目标的诱导创新因素,玉米科学,8:3-7.Zhang Shihuang, Hu Ruifa (2000) Factors Inducing Innovation in Maize Breeding Goals, Maize Science, 8: 3-7.
Becker A,Theissen G(2003)The major clades of MADS-box genes and theirrole in the development and evolution of flowering plants.Mol Phyl Evol 29,464-489.Becker A, Theissen G(2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phyl Evol 29, 464-489.
Bray EA,Bailey-Serres J,Weretilnyk E(2000)Responses to abioticstresses.Chapter 22.In W Gruissem,B Buchannan,R Jones,eds,Responses toAbiotic Stresses.American Society of Plant Physiologists,Rockville,MD,pp1158-1249.Bray EA, Bailey-Serres J, Weretilnyk E(2000) Responses to biological stresses. Chapter 22. In W Gruissem, B Buchannan, R Jones, eds, Responses to Abiotic Stresses. American Society of Plant Physiologists, Rockville, MD, pp14958-1
Bruce WB,Edmeades GO,Barker TC(2002)Molecular and physiologicalapproaches to maize improvement for drought tolerance.J Exp Bot 53:13-25.Bruce WB, Edmeades GO, Barker TC (2002) Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot 53: 13-25.
Comelli RN,Viola IL,Gonzalez DH(2009)Characterization of promoterelements required for expression and induction by sucrose of the ArabidopsisCOX5b-1 nuclear gene,encoding the zinc-binding subunit of cytochrome c oxidase.Plant Mol Biol.Jan 1.Comelli RN, Viola IL, Gonzalez DH(2009)Characterization of promoter elements required for expression and induction by sucrose of the ArabidopsisCOX5b-1 nuclear gene, encoding the zinc-binding subunit of cytochrome c oxidase.Plant.J Mol 1 Biol
Durieux AC,Bonnefoy R,Freyssenet D(2005)Kinetic of transgeneexpression after electrotransfer into skeletal muscle:importance of promoterorigin/strength.Biochim Biophys Acta.1725(3):403-409.Durieux AC, Bonnefoy R, Freyssenet D (2005) Kinetic of transgene expression after electrotransfer into skeletal muscle: importance of promoter origin/strength. Biochim Biophys Acta.1725(3): 403-409.
Hoagland DR,Arnon DA(1938)The water-culture method of growing plantswithout soil.California Agricultural Experiment Station Circular.347:1-32.Hoagland DR, Arnon DA (1938) The water-culture method of growing plants without soil. California Agricultural Experiment Station Circular. 347: 1-32.
Hoisington D(2001)Application of biotechnology to maize improvement:Past,Present and Future Prospects.Seventh Eastern and Southern Africa RegionalConference,pp.7-11.Hoisington D(2001) Application of biotechnology to maize improvement: Past, Present and Future Prospects. Seventh Eastern and Southern Africa Regional Conference, pp.7-11.
Jefferson RA(1987)Assaying chimeric genes in plants:the GUS gene fusionsystem.Plant Mol Biol Rep,5:387-405.Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep, 5: 387-405.
Kim K N,Fisher DK(1998)Molecular cloning and characterization of theAmylose-Extender gene encoding starch branching enzyme II B in maize.Plant MolBiol,38:945-956.Kim K N, Fisher DK (1998) Molecular cloning and characterization of theAmylose-Extender gene encoding starch branching enzyme II B in maize. Plant MolBiol, 38: 945-956.
Liu YG,Mitsukawa N,Oosumi T,et al.(1995)Efficient isolation andmapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetricinterlaced PCR.Plant J.8(3):457-462.Liu YG, Mitsukawa N, Oosumi T, et al. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetricinterlaced PCR. Plant J.8(3): 457-462.
Pirkkala L,P,Sistonen L(2001)Roles of the heat shock transcriptionfactors in regulation of the heat shock response and beyond.FASEB J.15(7):1118-1131.Pirkkala L, P, Sistonen L(2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J.15(7):1118-1131.
Wang W,Vinocur B,Altman A(2003)Plant responses to drought,salinity andextreme temperatures:towards genetic engineering for stress tolerance.Planta218:1-14Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta218: 1-14
Welchen E,Viola IL,Kim HJ,Prendes LP,Comelli RN,Chan Hong J,Gonzalez DH(2008)A segment containing a G-box and an ACGT motif confersdifferential expression characteristics and responses to the Arabidopsis Cytc-2 gene,encoding an isoform of cytochrome c.J Exp Bot.Dec 19Welchen E, Viola IL, Kim HJ, Prendes LP, Comelli RN, Chan Hong J, Gonzalez DH(2008) A segment containing a G-box and an ACGT motif confersdifferent expression characteristics and responses to the Arabidopsis Cytc-2 gene, ending cogene isoform of cytochrome c.J Exp Bot.Dec 19
Wong J,Liang V CT,Sachs L M.,and Shi YB(1998)Transcription from thethyroid hormone-dependent promoter of the Xenopus laevis thyroid hormonereceptor bA gene requires a novel upstream element and the initiator,but not aTATA box.Journal of Biological Chemistry,273:14186-14193.Wong J, Liang V CT, Sachs L M., and Shi YB(1998) Transcription from the thyroid hormone-dependent promoter of the Xenopus laevis thyroid hormone receptor bA gene requires a novel upstream element and the Biologn initiator, but not our Biolog n initiator, but not our icalJATA Chemistry, 273: 14186-14193.
Zare M,Jazii FR,Alivand MR,Nasseri NK,Malekzadeh R,Yazdanbod M(2009)Qualitative analysis of Adenomatous Polyposis Coli promoter:hypermethylation,engagement and effects on survival of patients with esophagealcancer in a high risk region of the world,a potential molecular marker.BMC Cancer.9:24.Zare M,Jazii FR,Alivand MR,Nasseri NK,Malekzadeh R,Yazdanbod M(2009)Qualitative analysis of Adenomatous Polyposis Coli promoter:hypermethylation,engagement and effects on survival of patients with esophagealcancer in a high risk region of the world,a potential molecular marker. BMC Cancer. 9: 24.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种玉米MAPK基因的启动子及其应用,能够响应多种环境胁迫信号,以构建多种环境胁迫信号诱导响应的基因表达载体。The technical problem to be solved by the present invention is to provide a maize MAPK gene promoter and its application, which can respond to various environmental stress signals, so as to construct a gene expression vector that induces responses to various environmental stress signals.
为了解决上述技术问题,本发明提供了一种玉米MAPK基因启动子是下列核苷酸序列之一:In order to solve the above technical problems, the invention provides a corn MAPK gene promoter is one of the following nucleotide sequences:
(1)序列表中序列1的DNA序列;(1) the DNA sequence of
(2)与所述序列1限定的DNA序列具有85%以上一致性的DNA序列。(2) A DNA sequence having more than 85% identity with the DNA sequence defined in
优选地,所述基因启动子含有多种环境胁迫信号响应的DNA序列元件。Preferably, the gene promoter contains DNA sequence elements responsive to various environmental stress signals.
优选地,所述多种环境胁迫信号响应的DNA序列元件包括:Preferably, the DNA sequence elements responsive to the multiple environmental stress signals include:
1个铜响应元件(copper-responsive element);1 copper-responsive element;
4个光响应元件(light-responsive element);4 light-responsive elements;
1个缺水/光响应元件(dehydration/light-responsive element);1 dehydration/light-responsive element;
2个盐或病原菌菌应元件(salt/pathogen-responsive element);2 salt or pathogen-responsive elements (salt/pathogen-responsive element);
2个与转录速率相关的TATA盒(TATAAAT或者TAATA);2 TATA boxes (TATAAAT or TAATA) associated with the transcription rate;
1个病原菌菌应元件(pathogen-responsive element);1 pathogen-responsive element;
1个甲基茉莉酸(MeJA-responsive element)响应元件;1 methyl jasmonic acid (MeJA-responsive element) response element;
1个创伤响应元件(wound-responsive element);1 wound-responsive element;
1个具有类似于TATA盒作用的CAAT盒(CAAT box)。1 CAAT box (CAAT box) with a function similar to TATA box.
为了解决上述技术问题,本发明提供了如前所述的玉米MAPK基因启动子在转基因抗逆植物育种方面的应用。In order to solve the above technical problems, the present invention provides the application of the aforementioned maize MAPK gene promoter in the breeding of transgenic stress-resistant plants.
优选地,所述基因启动子用于构建包括干旱、冷、盐、病菌、光、重金属和创伤中的一种或多种诱导响应的载体,从而应用于所述转基因抗逆植物育种。Preferably, the gene promoter is used to construct a vector that induces response to one or more of drought, cold, salt, pathogen, light, heavy metal and wound, so as to be applied to the breeding of the transgenic stress-resistant plant.
本发明提供的源于玉米可被缺水诱导表达的MAPK基因的启动子,该启动子中含有干旱(或缺水)、脱落酸(ABA,ABscisic Acid)、K+流入、冷、盐、病菌、光、糖、重金属和创伤响应的DNA序列元件,因而可能会在玉米受到干旱(或缺水)、ABA、K+流入、冷、盐、病菌、光、糖、重金属和创伤胁迫条件下诱导启动基因的表达。该启动子与现有已报导的玉米基因启动子几乎没有同源性,故是本发明新发现的一种玉米基因的启动子,它在转基因植物抗逆育种中具有重要意义。The present invention provides the promoter of the MAPK gene derived from corn that can be induced by water shortage, and the promoter contains drought (or water shortage), abscisic acid (ABA, ABScisic Acid), K + influx, cold, salt, pathogenic bacteria , light, sugar, heavy metal and wound-responsive DNA sequence elements, and thus may be induced in maize under stress conditions of drought (or lack of water), ABA, K + influx, cold, salt, pathogens, light, sugar, heavy metal and wound stress Initiate gene expression. The promoter has almost no homology with the previously reported maize gene promoter, so it is a newly discovered maize gene promoter in the present invention, and it is of great significance in stress-resistant breeding of transgenic plants.
附图说明Description of drawings
图1为本发明运用染色体步移克隆玉米MAPK基因启动子的方法实施例流程图;Fig. 1 is the flow chart of the method embodiment that the present invention utilizes chromosome walking to clone the corn MAPK gene promoter;
图2为染色体步移PCR扩增MAPK基因上游的染色体DNA片段;Figure 2 is a chromosomal DNA fragment amplified upstream of the MAPK gene by chromosome walking PCR;
图3为本发明克隆的玉米MAPK基因启动子(Pro36N)的DNA序列及其预测性的含响应元件;Fig. 3 is the DNA sequence of the maize MAPK gene promoter (Pro36N) cloned by the present invention and its predictive containing response element;
图4为检测玉米MAPK基因启动子的表达构建的方法;Fig. 4 is the method for detecting the expression construction of corn MAPK gene promoter;
图5为扩增的玉米MAPK基因启动子(Pro36N)的启动葡糖苷酸酶(GUS,glucuronidase)基因表达的组织化学染色检测。Fig. 5 is the histochemical staining detection of the amplified maize MAPK gene promoter (Pro36N) promoting glucuronidase (GUS, glucuronidase) gene expression.
具体实施方式Detailed ways
本发明提供的源于玉米丝裂原活化蛋白激酶(MAPK,Mitogen-ActivatedProtein Kinase)的基因的启动子,含有干旱、冷、盐、病菌、光、重金属和创伤响应的DNA序列元件,能够在植物受到干旱、冷、盐、病菌、光、重金属和创伤胁迫条件下诱导启动基因的表达,因而在转基因植物抗逆育种中具有重要意义。该启动子与现有已报到的基因启动子几乎没有同源性,因而是一种新发现的植物基因的启动子。The promoter provided by the invention is derived from the gene of maize mitogen-activated protein kinase (MAPK, Mitogen-Activated Protein Kinase), contains the DNA sequence element of drought, cold, salt, germ, light, heavy metal and wound response, can be in plant The gene expression can be induced and activated under the stress conditions of drought, cold, salt, pathogen, light, heavy metal and trauma, so it is of great significance in stress-resistant breeding of transgenic plants. The promoter has almost no homology with the reported gene promoters, so it is a newly discovered promoter of plant genes.
以下结合附图和优选实施例对本发明的技术方案进行详细地阐述。以下例举的实施例仅仅用于说明和解释本发明,而不构成对本发明技术方案的限制。The technical solutions of the present invention will be described in detail below in conjunction with the accompanying drawings and preferred embodiments. The following examples are only used to illustrate and explain the present invention, but not to limit the technical solution of the present invention.
在本发明的实施例中所用到的材料包括:Materials used in embodiments of the invention include:
MAPK基因的表达序列标签(ESTs)序列来自本实验室玉米EST测序计划研究课题,并提交于美国国立生物技术信息中心(NCBI)的基因库(GenBank,索引号为EC857736)。The expressed sequence tags (ESTs) of the MAPK gene were obtained from the research project of the maize EST sequencing project in our laboratory and submitted to the GenBank of the National Center for Biotechnology Information (NCBI) (GenBank, index number EC857736).
大肠杆菌(Escherichia coli)株DH5α为本实验室保存。Escherichia coli (Escherichia coli) strain DH5α was preserved in our laboratory.
限制性内切酶、T4连接酶和PCR扩增DNA克隆载体pGEM-T easy Vector购自Promega公司。Restriction endonuclease, T4 ligase and PCR amplified DNA cloning vector pGEM-T easy Vector were purchased from Promega.
X-gluc(进口分装)及凝胶DNA回收试剂盒购自恒因生物公司。X-gluc (imported aliquots) and gel DNA recovery kit were purchased from Hengyin Biological Company.
DNA Marker、普通Taq酶等购自Fermentas公司。DNA Marker, common Taq enzyme, etc. were purchased from Fermentas Company.
胶回收试剂盒和PCR产物纯化试剂盒购自上海生工生物工程技术服务有限公司。Gel recovery kit and PCR product purification kit were purchased from Shanghai Sangon Bioengineering Technology Service Co., Ltd.
农杆菌(Agrobacterium tumefacien)菌株LBA4404、植物表达载体pCambia1301和三亲本结合中的用作辅助质粒DNA在菌体间转移的辅助质粒pRK2073为本实验室收集保存。The Agrobacterium tumefacien strain LBA4404, the plant expression vector pCambia1301, and the auxiliary plasmid pRK2073 used as an auxiliary plasmid DNA transfer between bacteria in the combination of the three parents were collected and preserved in our laboratory.
染色体步移试剂盒Genome Walking Kit购自TAKARA公司;玉米MAPK基因的EST的染色体定位采用植物基因组学网站(PlantGDB,其网址为http://www.plantgdb.org/)数据库中的BLASTN-HTG程序。The Chromosome Walking Kit Genome Walking Kit was purchased from TAKARA Company; the chromosome location of the EST of the maize MAPK gene used the BLASTN-HTG program in the database of the Plant Genomics website (PlantGDB, whose website is http://www.plantgdb.org/) .
MAPK基因启动子的DNA测序委托上海生工生物工程技术服务有限公司进行。基因转录起始位点的预测采用NNPP version 2.2程序(http://www.fruitfly.org/seq_tools/promoter.html)进行。植物基因启动子常规性顺势调控元件预测按照PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)和PLACE (PlantCis-acting Regulatory DNA Elements,http://www.dna.affrc.go.jp/PLACE/)数据库中提供的方法进行。The DNA sequencing of the MAPK gene promoter was entrusted to Shanghai Sangon Bioengineering Technology Service Co., Ltd. The prediction of gene transcription start sites was performed using the NNPP version 2.2 program (http://www.fruitfly.org/seq_tools/promoter.html). The conventional cis-acting regulatory elements of plant gene promoters are predicted according to PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) and PLACE (PlantCis-acting Regulatory DNA Elements, http://www.dna. affrc.go.jp/PLACE/) database provided by the method.
植物的培养采用水培法,培养液为Hoagland溶液(Hoagland and Arnon1938)。The cultivation of plants adopts hydroponics, and the culture medium is Hoagland's solution (Hoagland and Arnon1938).
农杆菌和大肠杆菌培养基为普通的LA(蛋白胨10克、酵母粉5克、NaCl5克,琼脂粉15克,水1000毫升,pH7.0)和LB(未加琼脂粉的LA)培养基。Agrobacterium and Escherichia coli medium are common LA (10 grams of peptone, 5 grams of yeast powder, 5 grams of NaCl, 15 grams of agar powder, 1000 milliliters of water, pH7.0) and LB (LA without adding agar powder).
第一轮染色体步移PCR扩增中所用的3条特异性引物为:The three specific primers used in the first round of chromosome walking PCR amplification are:
SP1:5’-ACGTACTCCGTCATCATGTCGCTCTC-3’,SP1: 5'-ACGTACTCCGTCATCATGTCGCTCTC-3',
SP2:5’-ACGTTGGCGGAGTGGATGTACTTGAG-3’,SP2: 5'-ACGTTGGCGGAGTGGATGTACTTGAG-3',
SP3:5’-TTGGACCGGATGATGTGTGCAG-3’。SP3: 5'-TTGGACCGGATGATGTGTGCAG-3'.
第二轮步移PCR扩增中所用的3条特异性引物为:The 3 specific primers used in the second round of walking PCR amplification are:
Pro-SP1:5’-GCGCTGTGCAGGATCAAATTAAGAG-3’,Pro-SP1: 5'-GCGCTGTGCAGGATCAAATTAAGAG-3',
Pro-SP2:5’-GTCCAACCAATCAATCCATGCCCATC-3’,Pro-SP2: 5'-GTCCAACCAATCAATCCATGCCCATC-3',
Pro-SP3:5’-TGCAGTTCGCGAGAACGTACCAGAC-3’。Pro-SP3: 5'-TGCAGTTCGCGAGAACGTACCAGAC-3'.
基因表达的组织化学检测采用Jefferson(1987)的方法。The method of Jefferson (1987) was used for the histochemical detection of gene expression.
实施例1Example 1
如图1所示,为本发明的克隆玉米MAPK基因启动子的方法实施例流程,包括如下步骤:As shown in Figure 1, for the method embodiment flow process of cloning corn MAPK gene promoter of the present invention, comprise the steps:
10:将玉米MAPK基因的EST序列定位在玉米的染色体上;10: locating the EST sequence of the maize MAPK gene on the maize chromosome;
根据PlantGDB(http://www.plantgdb.org/)数据库中的免费BLASTN-HTG程序分析,将玉米MAPK基因的EST序列定位在玉米的9号染色体上。According to the free BLASTN-HTG program analysis in the PlantGDB (http://www.plantgdb.org/) database, the EST sequence of the maize MAPK gene was mapped to the chromosome 9 of maize.
20:将定位的染色体步移;20: Walk the positioned chromosome;
染色体步移PCR扩增采用TAIL-PCR(Liu et al.,1995)扩增策略,每次扩增出的DNA片段见图2,在T4连接酶作用下克隆到pGEM-T easy Vector质粒载体上进行测序。Chromosome walking PCR amplification adopts TAIL-PCR (Liu et al., 1995) amplification strategy, and the DNA fragments amplified each time are shown in Figure 2, and cloned into the pGEM-T easy Vector plasmid vector under the action of T4 ligase Perform sequencing.
30:将染色体步移产生的PCR产物与含有报告基因的植物基因表达载体连接;30: connecting the PCR product generated by chromosome walking with the plant gene expression vector containing the reporter gene;
在T4连接酶作用下,对克隆到pGEM-T easy Vector质粒载体进行测序,获得玉米MAPK基因启动子(编号为Pro36N)的DNA序列。Under the action of T4 ligase, the plasmid vector cloned into pGEM-T easy Vector was sequenced to obtain the DNA sequence of the maize MAPK gene promoter (numbered as Pro36N).
40:检测报告基因的表达,并对玉米MAPK基因的启动子的DNA片段进行鉴定。40: Detect the expression of the reporter gene, and identify the DNA fragment of the promoter of the maize MAPK gene.
上述鉴定包括对克隆的玉米MAPK基因启动子的DNA序列及其所含响应元件序列进行预测。The above identification includes the prediction of the DNA sequence of the cloned maize MAPK gene promoter and the sequence of the response elements contained therein.
按照图1所示方法流程获得获得了一段序列特异性PCR扩增的DNA片段(如图2所示),即玉米MAPK基因启动子的DNA片段,经测序确定其长387bp,如图3所示。采用神经网络启动子预测程序版本2.2(Neural Network PromoterPrediction,NNPP version 2.2)预测MAPK基因的转录起始位点,利用PlantCARE和PLACE数据库中提供的方法预测分析,发现该DNA区段包含以下响应的DNA序列元件:According to the method process shown in Figure 1, a DNA fragment (as shown in Figure 2) amplified by sequence-specific PCR was obtained, i.e. the DNA fragment of the maize MAPK gene promoter, which was determined to be 387bp in length through sequencing, as shown in Figure 3 . Neural Network Promoter Prediction (NNPP version 2.2) was used to predict the transcription start site of MAPK gene, and the method provided in PlantCARE and PLACE database was used to predict and analyze, and it was found that the DNA segment contained the following corresponding DNA Sequence element:
1个铜响应元件(copper-responsive element);1 copper-responsive element;
4个光响应元件(light-responsive element);4 light-responsive elements;
1个缺水/光响应元件(dehydration/light-responsive element);1 dehydration/light-responsive element;
2个盐或病原菌菌应元件(salt/pathogen-responsive element);2 salt or pathogen-responsive elements (salt/pathogen-responsive element);
2个与转录速率相关的TATA盒(TATAAAT或者TAATA);2 TATA boxes (TATAAAT or TAATA) associated with the transcription rate;
1个病原菌菌应元件(pathogen-responsive element);1 pathogen-responsive element;
1个甲基茉莉酸(MeJA-responsive element)响应元件;1 methyl jasmonic acid (MeJA-responsive element) response element;
1个创伤响应元件(wound-responsive element);1 wound-responsive element;
1个具有类似于TATA盒作用的CAAT盒(CAAT box)。1 CAAT box (CAAT box) with a function similar to TATA box.
玉米MAPK基因启动子的DNA序列如序列1所示。The DNA sequence of the maize MAPK gene promoter is shown in
实施例2Example 2
带有玉米MAPK基因启动子(Pro36N)的转β-葡糖醛酸酶(GUS,β-Glucuronidase)基因表达载体的构建及其GUS基因表达检测Construction of β-glucuronidase (GUS, β-Glucuronidase) gene expression vector with maize MAPK gene promoter (Pro36N) and detection of GUS gene expression
克隆在pGEM-T easy Vector质粒载体上的拟启动子DNA片段,通过SalI/Nco I双酶切并回收。pCAmbia1301经SalI/Nco I双酶切去除GUS基因前的35S启动子DN。在连接酶作用下将Sal I/Nco I双酶切的拟启动子DNA片段和pCAmbia1301连接构建新的重组质粒。用同样的办法构建出带有花生的一段672bp的非启动子DNA的重组质粒作为阴性对照质粒,见图4。The pseudo-promoter DNA fragment cloned on the pGEM-T easy Vector plasmid vector was digested with SalI/NcoI and recovered. pCAmbia1301 was digested with SalI/NcoI to remove the 35S promoter DN before the GUS gene. Under the action of ligase, the pseudo-promoter DNA fragment digested by Sal I/Nco I was ligated with pCAmbia1301 to construct a new recombinant plasmid. In the same way, a recombinant plasmid with a 672 bp non-promoter DNA of peanut was constructed as a negative control plasmid, as shown in FIG. 4 .
构建出的重组质粒通过三亲结合(含有辅助质粒pRK2073的大肠杆菌DH5α,含有重组质粒的大肠杆菌DH5α以及农杆菌LBA4404菌体之间)导入农杆菌LBA4404菌体。利用一次性注射器(带有4#针头)将培养至OD600=0.6带有重组质粒的农杆菌LBA4404菌体注射入三叶期玉米叶脉。1/5Hoagland营养液26℃,12h光照/24h,培养2d后按照Jefferson(1987)的方法进行组织化学染色。组织化学染色具体方法为:将浸泡于X-gluc染色液(100mM(pH 7.0)磷酸缓冲液;0.1%(V/V)Triton-X 100;10mM EDTA;0.5mg/ml X-Gluc;1%(V/V)二甲基亚砜)中,37℃过夜,70%乙醇脱色。组织染色结果见图5。The constructed recombinant plasmid was introduced into Agrobacterium LBA4404 cell through triparental combination (between Escherichia coli DH5α containing the auxiliary plasmid pRK2073, Escherichia coli DH5α containing the recombinant plasmid, and Agrobacterium LBA4404 cell). Agrobacterium LBA4404 cultured to OD 600 =0.6 carrying the recombinant plasmid was injected into the veins of maize leaves at the three-leaf stage using a disposable syringe (with a 4 # needle). 1/5 Hoagland nutrient solution at 26°C, 12h light/24h, cultured for 2 days, followed by Jefferson (1987) method for histochemical staining. The specific method of histochemical staining is: soak in X-gluc staining solution (100mM (pH 7.0) phosphate buffer; 0.1% (V/V) Triton-X 100; 10mM EDTA; 0.5mg/ml X-Gluc; 1% (V/V) dimethyl sulfoxide), 37 ° C overnight, 70% ethanol decolorization. The results of tissue staining are shown in Figure 5.
构建出的重组质粒通过三亲结合(含有辅助质粒pRK2073的大肠杆菌DH5α,含有重组质粒的大肠杆菌DH5α以及农杆菌LBA4404菌体之间)导入农杆菌LBA4404菌体。利用一次性注射器(带有4#针头)将培养至OD600=0.6带有重组质粒的农杆菌LBA4404菌体注射入三叶期玉米叶脉。1/5Hoagland营养液26℃,12h光照/24h,培养2天后按照Jefferson(1987)的方法进行组织化学染色。The constructed recombinant plasmid was introduced into Agrobacterium LBA4404 cell through triparental combination (between Escherichia coli DH5α containing the auxiliary plasmid pRK2073, Escherichia coli DH5α containing the recombinant plasmid, and Agrobacterium LBA4404 cell). Agrobacterium LBA4404 cultured to OD 600 =0.6 carrying the recombinant plasmid was injected into the veins of maize leaves at the three-leaf stage using a disposable syringe (with a 4 # needle). 1/5 Hoagland nutrient solution at 26°C, 12h light/24h, cultured for 2 days, followed by Jefferson (1987) method for histochemical staining.
组织化学染色具体方法为:将浸泡于X-gluc染色液(100mM(pH 7.0)磷酸缓冲液;0.1%(V/V)Triton-X 100;10mM EDTA;0.5mg/ml X-Gluc;1%(V/V)二甲基亚砜)中,37℃过夜,70%乙醇脱色。组织染色结果见图5。The specific method of histochemical staining is: soak in X-gluc staining solution (100mM (pH 7.0) phosphate buffer; 0.1% (V/V) Triton-X 100; 10mM EDTA; 0.5mg/ml X-Gluc; 1% (V/V) dimethyl sulfoxide), 37 ° C overnight, 70% ethanol decolorization. The results of tissue staining are shown in Figure 5.
其中:in:
A:阴性对照。利用花生的一段672bp非启动子DNA取代了pCambia1301上GUS基因的上游CaMV35S启动子的质粒构建。A: negative control. A 672bp non-promoter DNA from peanut was used to replace the upstream CaMV35S promoter of the GUS gene on pCambia1301 for plasmid construction.
B:原始的pCambia1301阳性对照。B: Original pCambia1301 positive control.
C:将染色体步移PCR扩增出的玉米MAPK基因启动子(Pro36N)。扩增的Pro36N启动子(含起始密码子,总长387bp)取代了植物表达pCambia1301上GUS基因的上游CaMV35S启动子的构建。C: Maize MAPK gene promoter (Pro36N) amplified by chromosome walking PCR. The amplified Pro36N promoter (including the start codon, with a total length of 387bp) replaced the construction of the upstream CaMV35S promoter of the GUS gene on pCambia1301 for plant expression.
检测采用农杆菌介导侵染玉米叶片的瞬时表达并结合组织化学染色的方法。组织化学染色的结果,参见图5C,表明Pro36N能够启动报告基因gus的表达,是一个真实的启动子。The detection method adopts the method of Agrobacterium-mediated transient expression in infected maize leaves combined with histochemical staining. The results of histochemical staining, see Fig. 5C, indicated that Pro36N can initiate the expression of the reporter gene gus, which is a true promoter.
本实施例的目的是验证玉米MAPK基因启动子Pro36N能够启动报告基因gus的表达,是一个真实的启动子。The purpose of this example is to verify that the maize MAPK gene promoter Pro36N can initiate the expression of the reporter gene gus, and is a real promoter.
基因序列表gene sequence list
序列1:玉米MAPK基因的启动子DNA序列Sequence 1: promoter DNA sequence of maize MAPK gene
1 TGCAGTTCGCGAGAACGTACCAGACGAGCCCTACCCGCCGTCGGATCCG 491
50 AACAGCTTCCCTTCCATCAGATTCAGAGCGCCGTCCCGCTCACTTTCTC 9850
99 GCTACCTTCCTCAGCCGGAGTCGTGGGCAGAGCAGAGCGATCGAGGCCTG 14899
149 CTTCAGCAGTTCAGCTGCAGCCGCCGCCCGCCCGTCCCCCAGTCCCCAC 196149
197 CTTCTTTTATAAATCCCACGCCTGCGCTTCCTCTTTTGACGAATCGGTC 245197 CTTCTTTTATAAATCCCACGCCTGCGCTTCCTCTTTTGACGAATCGGTC 245
246 GCGAGAGGAGAAACATAGGAGTCAATTAATTTGCCTGTTCTGCTTGCTG 294246
295 CTGACCTTGTGAGTGAGCCGCCGGTCTTCCCCTTCCTCGCCGAGGGGAA 343295
344 ATAATAAGGCAGCCACAGCCAGGGCCGCCCCGAGGAAGAAGATG 387344
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010100486 CN102134569B (en) | 2010-01-25 | 2010-01-25 | Maize MAPK gene promoter and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010100486 CN102134569B (en) | 2010-01-25 | 2010-01-25 | Maize MAPK gene promoter and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102134569A true CN102134569A (en) | 2011-07-27 |
CN102134569B CN102134569B (en) | 2012-12-26 |
Family
ID=44294497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010100486 Expired - Fee Related CN102134569B (en) | 2010-01-25 | 2010-01-25 | Maize MAPK gene promoter and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102134569B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106636031A (en) * | 2016-12-19 | 2017-05-10 | 北京市农林科学院 | Plant drought-resistant relevant protein AsTMK1 and encoding gene and application thereof |
CN106893725A (en) * | 2015-12-18 | 2017-06-27 | 深圳市农科集团有限公司 | A kind of Plant Light regulation type promoter and application |
CN109423494A (en) * | 2017-08-26 | 2019-03-05 | 复旦大学 | Application of the rice tMAPKKK5 gene in terms of improveing rice yield traits |
CN114752579A (en) * | 2020-12-25 | 2022-07-15 | 中国农业大学 | Application of ZmMAPK protein and coding gene thereof in regulation and control of low-temperature stress tolerance of plants |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60045009D1 (en) * | 1999-12-02 | 2010-11-04 | Dow Agrosciences Llc | Mip synthase promotor aus mais |
US7205454B2 (en) * | 2002-07-31 | 2007-04-17 | Bayer Bioscience N.V. | Corn root preferential promoters and uses thereof |
CN101475941B (en) * | 2008-11-28 | 2011-09-07 | 北京市农林科学院 | Maize Zmptil gene promoter and use thereof |
-
2010
- 2010-01-25 CN CN 201010100486 patent/CN102134569B/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106893725A (en) * | 2015-12-18 | 2017-06-27 | 深圳市农科集团有限公司 | A kind of Plant Light regulation type promoter and application |
CN106636031A (en) * | 2016-12-19 | 2017-05-10 | 北京市农林科学院 | Plant drought-resistant relevant protein AsTMK1 and encoding gene and application thereof |
CN106636031B (en) * | 2016-12-19 | 2020-09-01 | 北京市农林科学院 | Plant drought resistance-related protein AsTMK1 and its encoding gene and application |
CN109423494A (en) * | 2017-08-26 | 2019-03-05 | 复旦大学 | Application of the rice tMAPKKK5 gene in terms of improveing rice yield traits |
CN109423494B (en) * | 2017-08-26 | 2021-11-02 | 复旦大学 | Application of rice tMAPKKK5 gene in improving rice yield traits |
CN114752579A (en) * | 2020-12-25 | 2022-07-15 | 中国农业大学 | Application of ZmMAPK protein and coding gene thereof in regulation and control of low-temperature stress tolerance of plants |
CN114752579B (en) * | 2020-12-25 | 2024-03-19 | 中国农业大学 | Application of ZmMAPK protein and its encoding gene in regulating plant low temperature stress tolerance |
Also Published As
Publication number | Publication date |
---|---|
CN102134569B (en) | 2012-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Singh et al. | Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress | |
Chen et al. | GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants | |
Rae et al. | Regulation of multiple aquaporin genes in Arabidopsis by a pair of recently duplicated DREB transcription factors | |
Liu et al. | The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box | |
Shekhawat et al. | Cloning and characterization of a novel stress-responsive WRKY transcription factor gene (MusaWRKY71) from Musa spp. cv. Karibale Monthan (ABB group) using transformed banana cells | |
Bhuria et al. | The promoter of AtUSP is co-regulated by phytohormones and abiotic stresses in Arabidopsis thaliana | |
Huang et al. | Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton (Gossypium hirsutum) | |
Zhu et al. | TRANSLUCENT GREEN, an ERF family transcription factor, controls water balance in Arabidopsis by activating the expression of aquaporin genes | |
Proietti et al. | Cross activity of orthologous WRKY transcription factors in wheat and Arabidopsis | |
Djemal et al. | Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum. L. subsp. durum) | |
Lu et al. | AaERF1 positively regulates the resistance to Botrytis cinerea in Artemisia annua | |
Hu et al. | Cloning and characterization of the Oryza sativa wall-associated kinase gene OsWAK11 and its transcriptional response to abiotic stresses | |
Liu et al. | Molecular cloning, expression profiling and trans-activation property studies of a DREB2-like gene from chrysanthemum (Dendranthema vestitum) | |
Wang et al. | Isolation and functional validation of the CmLOX08 promoter associated with signalling molecule and abiotic stress responses in oriental melon, Cucumis melo var. makuwa Makino | |
Sun et al. | Identification of a new 130 bp cis-acting element in the TsVP1 promoter involved in the salt stress response from Thellungiella halophila | |
Xu et al. | ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants | |
Zhang et al. | RETRACTED ARTICLE: The specific MYB binding sites bound by Ta MYB in the GAPCp2/3 promoters are involved in the drought stress response in wheat | |
Kashyap et al. | Two ICE isoforms showing differential transcriptional regulation by cold and hormones participate in Brassica juncea cold stress signaling | |
Li et al. | Strength comparison between cold-inducible promoters of Arabidopsis cor15a and cor15b genes in potato and tobacco | |
Fang et al. | Characterization of FeDREB1 promoter involved in cold-and drought-inducible expression from common buckwheat (Fagopyrum esculentum) | |
Li et al. | Genome-scale mining of root-preferential genes from maize and characterization of their promoter activity | |
Kavas et al. | Ectopic expression of common bean ERF transcription factor PvERF35 promotes salt stress tolerance in tobacco | |
Ben-Saad et al. | The promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs a stress-inducible expression pattern in transgenic rice plants | |
Hu et al. | Functional roles of the birch BpRAV1 transcription factor in salt and osmotic stress response | |
Zhang et al. | Characterization of NtREL1, a novel root-specific gene from tobacco, and upstream promoter activity analysis in homologous and heterologous hosts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121226 Termination date: 20220125 |