[go: up one dir, main page]

CN102122070B - Design method of reflective optical integrator based on planar mirror array - Google Patents

Design method of reflective optical integrator based on planar mirror array Download PDF

Info

Publication number
CN102122070B
CN102122070B CN 201110067896 CN201110067896A CN102122070B CN 102122070 B CN102122070 B CN 102122070B CN 201110067896 CN201110067896 CN 201110067896 CN 201110067896 A CN201110067896 A CN 201110067896A CN 102122070 B CN102122070 B CN 102122070B
Authority
CN
China
Prior art keywords
integrator
unit
plane
axis
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201110067896
Other languages
Chinese (zh)
Other versions
CN102122070A (en
Inventor
房丰洲
程颖
张效栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN 201110067896 priority Critical patent/CN102122070B/en
Publication of CN102122070A publication Critical patent/CN102122070A/en
Application granted granted Critical
Publication of CN102122070B publication Critical patent/CN102122070B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

本发明属于光学器件设计技术领域,涉及一种基于平面镜阵列的反射型光学积分器设计方法,包括:积分器平面单元中心的确定;确定各个积分器平面单元的方向;确定积分器阵列在Y方向上的位置参数和方向参数;确定积分器阵列在X方向上的位置参数和方向参数;建立积分器模型;根据所设计的积分器模型设计加工路径,进行超精密车削加工。采用本发明方法设计的反射型积分器比传统的透射型积分器结构简单,而且稳定性好,在相同入射光的能量情况下,有更加优秀的光照强度的分布均匀。

Figure 201110067896

The invention belongs to the technical field of optical device design, and relates to a reflective optical integrator design method based on a plane mirror array, including: determining the center of the planar unit of the integrator; determining the direction of each planar unit of the integrator; determining the direction of the integrator array in the Y direction The position parameters and direction parameters on the X direction; determine the position parameters and direction parameters of the integrator array in the X direction; establish the integrator model; design the machining path according to the designed integrator model, and carry out ultra-precision turning. The reflective integrator designed by the method of the present invention is simpler in structure than the traditional transmissive integrator, and has better stability, and has more excellent uniform distribution of light intensity under the condition of the same incident light energy.

Figure 201110067896

Description

一种基于平面镜阵列的反射型光学积分器设计方法A Design Method of Reflective Optical Integrator Based on Plane Mirror Array

技术领域 technical field

本发明属于光学器件设计技术领域,具体涉及一种光学积分器。The invention belongs to the technical field of optical device design, and in particular relates to an optical integrator.

背景技术 Background technique

积分照明就是把杂乱无章的光经过光学系统整合成照射均匀的光,或者实现亮度提高和均匀,可广泛应用于绿色能源、空间技术等领域。光学积分器是积分照明中最重要的光学器件。根据光的传播定律,光学积分器可以分为折射型(透射型)和反射型。折射型的光学积分器如微透镜阵列,一般折射型光学积分器用于同轴系统中,同轴系统的缺点就是光路长,导致光学系统的外形轮廓大。利用微透镜阵列完成光束的均光是目前普遍采用的均光的方式,但是由于利用了透镜所以会引入透镜的一些缺点,如像差大、光损失严重等,这些缺点会影响接收面的光束的均匀性。而反射型积分器采用离轴方式,缩减了光路长度、占用空间小。更重要的是,积分器用反射镜代替了折射镜,从而减少了像差对光路的影响,同时也减少了折射材料对光辐射能量的吸收损失,增大了能量的利用率。Integral lighting is to integrate chaotic light into uniform light through an optical system, or to achieve brightness improvement and uniformity, and can be widely used in green energy, space technology and other fields. The optical integrator is the most important optical device in integrating illumination. According to the law of light propagation, optical integrators can be divided into refraction type (transmission type) and reflection type. Refractive optical integrators, such as microlens arrays, are generally used in coaxial systems. The disadvantage of coaxial systems is that the optical path is long, resulting in a large outline of the optical system. The light uniformity of the light beam is achieved by using a microlens array. However, due to the use of the lens, some shortcomings of the lens will be introduced, such as large aberrations and serious light loss. These shortcomings will affect the light beam on the receiving surface. uniformity. The reflective integrator adopts an off-axis method, which reduces the length of the optical path and occupies a small space. More importantly, the integrator uses a reflector instead of a refractor, thereby reducing the influence of aberrations on the optical path, and also reducing the absorption loss of the light radiation energy by the refraction material, and increasing the energy utilization rate.

由于反射型积分器外形结构复杂,加工不易实现,目前很少使用。但随着超精密技术的发展和成熟,尤其是采用具有刀具伺服的单点金刚石切削技术的发展,为复杂形状光学器件的加工提供了有力的工具,为反射型积分器的应用提供了保障。因此,鉴于反射型积分器的众多应用优点,有必要开展反射型积分器设计方面的研究。Due to the complex shape and structure of the reflective integrator, the processing is not easy to realize, so it is rarely used at present. However, with the development and maturity of ultra-precision technology, especially the development of single-point diamond cutting technology with tool servo, it provides a powerful tool for the processing of optical devices with complex shapes, and provides a guarantee for the application of reflective integrators. Therefore, in view of the many application advantages of reflective integrators, it is necessary to carry out research on the design of reflective integrators.

发明内容 Contents of the invention

本发明的目的是提出一种简单可行的反射型积分器设计方法。本发明采用多个平面组成的平面阵列进行反射型积分器设计,将平行于光轴的光线经过积分器的反射会聚到一个方形的平面上,并实现良好的均匀照明。本发明的技术方案如下:The purpose of the present invention is to propose a simple and feasible design method of reflective integrator. The present invention adopts a planar array composed of multiple planes to design a reflective integrator, and converges the light parallel to the optical axis to a square plane through the reflection of the integrator, and realizes good uniform illumination. Technical scheme of the present invention is as follows:

一种基于平面镜阵列的反射型光学积分器设计方法,该种反射型光学积分器包括一个平面反射镜阵列,以平面反射镜阵列中心处的平面中心为坐标原点,以平行光入射的反方向为Z轴,建立直角坐标系,沿着Z轴的平行光经过积分器的反射后,到达接收面;积分器的结构参数包括各个平面单元沿着X轴和Y轴的边长、接收面的边长2d和积分器的焦距f,每个平面单元的位置参数包括单元中心点的坐标、分别绕X轴和Y轴的旋转角度以及绕X轴和Y轴旋转的旋转中心的坐标,其设计方法包括:A reflective optical integrator design method based on a plane mirror array, the reflective optical integrator includes a plane mirror array, the center of the plane at the center of the plane mirror array is the coordinate origin, and the opposite direction of the incident parallel light is Z axis, establish a Cartesian coordinate system, the parallel light along the Z axis is reflected by the integrator, and then reaches the receiving surface; the structural parameters of the integrator include the side lengths of each plane unit along the X and Y axes, and the sides of the receiving surface The length 2d and the focal length f of the integrator, the position parameters of each plane unit include the coordinates of the center point of the unit, the rotation angles around the X-axis and Y-axis respectively, and the coordinates of the rotation center around the X-axis and Y-axis, and its design method include:

第一步.积分器平面单元中心的确定:The first step. Determination of the center of the planar unit of the integrator:

(1)根据接收面和反射面的距离确定抛物面的焦距f,从而得到抛物面的方程:X2+Y2=4fZ,(1) Determine the focal length f of the paraboloid according to the distance between the receiving surface and the reflecting surface, thereby obtaining the equation of the paraboloid: X 2 +Y 2 =4fZ,

(2)根据接收面的大小确定位于坐标原点处的积分器单元的边长,两者的数值是相等的,(2) Determine the side length of the integrator unit located at the origin of the coordinates according to the size of the receiving surface, the values of the two are equal,

(3)将(1)中的抛物面在XOY面上划分成一系列网格,网格的边界线平行于X轴和Y轴,将网格上的每个点作为积分器单元中心在XOY面上的投影,原点处的积分器单元中心为(0,0,0),根据光线追迹和网格上的点的位置,确定各个积分器单元中心的位置,对于各个积分器单元中心,分别按照下面的第二步至第四步的方式沿Y方向和X方向迭代计算与其相应的各个平面单元的位置参数和方向参数;(3) Divide the paraboloid in (1) into a series of grids on the XOY surface, the boundary lines of the grids are parallel to the X axis and the Y axis, and each point on the grid is used as the center of the integrator unit on the XOY surface The projection of the integrator unit at the origin is (0, 0, 0). According to the ray tracing and the position of the point on the grid, the position of each integrator unit center is determined. For each integrator unit center, respectively according to From the second step to the fourth step below, iteratively calculate the position parameter and direction parameter of each plane unit corresponding to it along the Y direction and the X direction;

第二步.对于每个积分器单元中心,设其在XOY面上的坐标分别为X0和Y0,其在抛物面上的切线矢量为K[k1,k2],k1=-X0/(2f),k2=-Y0/(2f),并设平面单元的法矢量的方向和抛物面切线方向垂直,按照下列的方法确定与其相应的平面单元的法向量[a,b,c],

Figure BDA0000051284420000021
Figure BDA0000051284420000022
Figure BDA0000051284420000023
从而确定平面单元的方向;Step 2. For the center of each integrator unit, set its coordinates on the XOY plane as X 0 and Y 0 respectively, and its tangent vector on the paraboloid is K[k 1 , k 2 ], k 1 =-X 0 /(2f), k 2 =-Y 0 /(2f), and the direction of the normal vector of the plane unit is perpendicular to the direction of the paraboloid tangent, and the normal vector [a, b, c],
Figure BDA0000051284420000021
Figure BDA0000051284420000022
Figure BDA0000051284420000023
To determine the direction of the planar unit;

第三步.确定积分器阵列在Y方向上的位置参数和方向参数:设Ai是前一个平面单元与当前平面单元在Y方向上的边缘点,则Ai是已知的;Ai+1是当前平面单元与该边缘点相连接的一点,Ai=A,根据Ai(Xi,Yi,Zi)和积分器单元中心可确定Y方向上的平面单元的中心在Z方向的坐标值Z1=a*(X0-Xi)+b*(Y0-Yi)+Zi,再根据平面单元的法向量,求得Y方向上的平面单元中心坐标值P1(X1,Y1,Z1),这样就获得了平面单元在Y方向上的位置参数和方向参数。The third step. Determine the position parameter and direction parameter of the integrator array on the Y direction: Let A i be the edge point of the previous plane unit and the current plane unit on the Y direction, then A i is known; A i+ 1 is the point where the current plane unit is connected to the edge point, A i =A, according to A i (X i , Y i , Zi ) and the center of the integrator unit, it can be determined that the center of the plane unit in the Y direction is in the Z direction coordinate value Z 1 = a*(X 0 -X i )+b*(Y 0 -Y i )+Z i , and then obtain the coordinate value P 1 of the center of the plane unit in the Y direction according to the normal vector of the plane unit (X 1 , Y 1 , Z 1 ), thus obtaining the position parameter and direction parameter of the plane unit in the Y direction.

第四步.确定积分器阵列在X方向上的位置参数和方向参数:设Bi是前一个平面单元与当前平面单元在X方向上的边缘点,则Bi是已知的;Bi+1是当前平面单元与该边缘点相连接的一点,Bi=B,根据Bi(Xi,Yi,Zi)和积分器单元中心可以确定X方向上的平面单元中心在Z方向的坐标值Z2=a*(Xi-X0)+b*(Yi-Y0)+Zi,再根据平面单元的法向量,求得X方向上的平面中心坐标值P2(X2,Y2,Z2),这样就得到了平面单元在X方向上的位置参数和方向参数;The 4th step. Determine the position parameter and the direction parameter of the integrator array on the X direction: Let B i be the edge point of the previous plane unit and the current plane unit on the X direction, then B i is known; B i+ 1 is the point where the current plane unit is connected to the edge point, Bi = B, according to Bi (X i , Y i , Zi ) and the center of the integrator unit, it can be determined that the center of the plane unit in the X direction is in the Z direction Coordinate value Z 2 =a*(X i -X 0 )+b*(Y i -Y 0 )+Z i , and then obtain the plane center coordinate value P 2 (X 2 , Y 2 , Z 2 ), so that the position parameter and direction parameter of the plane unit in the X direction are obtained;

第五步.建立积分器模型:Step 5. Build the integrator model:

(1)确定积分器的位置参数:根据积分器单元在X方向和Y方向的位置和方向,可以分别计算出平面阵列在X和Y方向上的转角a0=π/2-arccos(-a)和b0=π/2-arccos(-b),其中,a0代表平面绕Y轴的转角;b0代表平面绕X轴的转角;(1) Determine the position parameters of the integrator: According to the position and direction of the integrator unit in the X direction and the Y direction, the rotation angle a 0 of the plane array in the X and Y directions can be calculated respectively: 0 = π/2-arccos(-a ) and b 0 =π/2-arccos(-b), wherein, a 0 represents the rotation angle of the plane around the Y axis; b 0 represents the rotation angle of the plane around the X axis;

(2)确定积分器的结构参数:分别求得平面单元在X轴和Y轴的矩形边长d1=d/cos(a)和d2=d/cos(b),其中d1代表平面单元在X轴方向上的长度;d2代表平面单元在Y轴方向上的长度;(2) Determine the structural parameters of the integrator: obtain the rectangular side lengths d 1 =d/cos(a) and d 2 =d/cos(b) of the planar unit on the X-axis and Y-axis respectively, where d 1 represents the plane The length of the unit in the X-axis direction; d 2 represents the length of the plane unit in the Y-axis direction;

(3)按照上述方法得到沿着X轴正方向上的积分器模型,将该积分器模型在X方向上进行关于Y轴的对称扩展,就得到了一个关于Y轴对称的积分器模型;(3) Obtain the integrator model along the positive direction of the X-axis according to the method above, and carry out the symmetrical extension of the integrator model about the Y-axis in the X direction to obtain an integrator model symmetrical about the Y-axis;

(4)除去关于Y轴对称的积分器模型上位于积分器中心处附近的平面阵列,以实现离轴反射的目的;(4) Remove the planar array located near the center of the integrator on the integrator model that is symmetrical about the Y axis, to achieve the purpose of off-axis reflection;

第六步.根据所设计的积分器模型设计加工路径,进行超精密车削加工。Step 6. Design the processing path according to the designed integrator model, and perform ultra-precision turning processing.

常规的折射型的光学积分器需要会聚透镜将第二个微透镜阵列的光束进行会聚,才能实现匀光的目的。相比较折射型的光学积分器,本发明设计的反射式光学积分器就不需要会聚透镜,在接收面直接可以形成均匀照明分布,只需要一个反射镜即可实现折射型积分器的作用。本发明设计的反射型积分器比传统的透射型积分器结构简单,而且稳定性好,在相同入射光的能量情况下,有更加优秀的光照强度的分布均匀,尤其是接收面边缘处的光强度分布更加稳定。而且因为减少了像差和透射损失,到达接收面能量也有了大幅度的提高。Conventional refractive optical integrators require a converging lens to converge the light beams of the second microlens array in order to achieve uniform light. Compared with the refraction-type optical integrator, the reflective-type optical integrator designed in the present invention does not need a converging lens, and can directly form a uniform illumination distribution on the receiving surface, and only needs one reflector to realize the function of the refraction-type integrator. The reflective integrator designed by the present invention is simpler in structure than the traditional transmissive integrator, and has better stability. Under the same incident light energy, it has more excellent uniform distribution of light intensity, especially the light at the edge of the receiving surface. The intensity distribution is more stable. Moreover, due to the reduction of aberrations and transmission losses, the energy reaching the receiving surface has also been greatly improved.

附图说明 Description of drawings

图1本发明的积分器的整体结构图。Fig. 1 is the overall structural diagram of the integrator of the present invention.

图2设计整体流程图。Figure 2 design the overall flow chart.

图3积分器中心处的平面单元。Figure 3 Planar cell at the center of the integrator.

图4积分器沿着X方向的单元。Figure 4 Integrator elements along the X direction.

图5积分器沿着Y方向的单元。Figure 5 Integrator unit along the Y direction.

图6积分器的三维轮廓图。Figure 6. Three-dimensional contour plot of the integrator.

图7(a)沿着X轴正方向上的积分器模型;(b)关于Y轴对称的积分器模型;(c)除去积分器模型上位于积分器中心处附近的平面阵列。Figure 7 (a) Integrator model along the positive direction of the X axis; (b) Integrator model symmetrical about the Y axis; (c) Remove the planar array near the center of the integrator on the integrator model.

具体实施方式 Detailed ways

本发明设计的积分器由平面反射镜阵列组成,如图1所示。以积分器中心处的平面中心为坐标原点,以平行光入射的反方向为Z轴,建立如图1所示的直角坐标系。积分器的位置参数包括单元中心点的坐标、各个平面单元沿着X轴和Y轴的边长、接收面的边长和积分器的焦距。每个平面单元的方向参数包括平面单元分别绕X轴和Y轴的旋转角度以及绕X轴和Y轴旋转的旋转中心的坐标。The integrator designed by the present invention is composed of a plane reflector array, as shown in FIG. 1 . Taking the center of the plane at the center of the integrator as the origin of the coordinates, and taking the opposite direction of the incident parallel light as the Z-axis, establish a rectangular coordinate system as shown in Figure 1. The position parameters of the integrator include the coordinates of the center point of the unit, the side lengths of each planar unit along the X-axis and the Y-axis, the side length of the receiving surface and the focal length of the integrator. The orientation parameter of each plane unit includes the rotation angle of the plane unit around the X axis and the Y axis and the coordinates of the rotation center around the X axis and the Y axis.

图1为积分器的整体结构图,沿着Z轴的平行光经过积分器的反射后,到达接收面。若要实现积分器的匀光,关键就是要精确计算每个单元的位置,即根据接收面的大小确定平面阵列单元的尺寸,将平面阵列围绕X轴和Y轴进行特定角度的旋转实现积分器的均光的作用。参见图2,本发明的积分器的设计主要步骤如下。Figure 1 is the overall structural diagram of the integrator. The parallel light along the Z axis reaches the receiving surface after being reflected by the integrator. In order to achieve uniform light of the integrator, the key is to accurately calculate the position of each unit, that is, determine the size of the planar array unit according to the size of the receiving surface, and rotate the planar array around the X-axis and Y-axis at a specific angle to realize the integrator The uniform light effect. Referring to Fig. 2, the main steps of designing the integrator of the present invention are as follows.

1.位于坐标原点处的积分器单元的确定。需要根据积分器的焦距和接收面的大小确定。1. Determination of the integrator cell located at the origin of the coordinates. It needs to be determined according to the focal length of the integrator and the size of the receiving surface.

2.完成Y轴方向上的积分器单元参数的计算,主要确定积分器单元中心坐标、在Y轴方向上的绕X轴的转角、旋转中心的坐标以及积分器单元的边长。2. Complete the calculation of the integrator unit parameters in the Y-axis direction, mainly determine the center coordinates of the integrator unit, the rotation angle around the X-axis in the Y-axis direction, the coordinates of the rotation center and the side length of the integrator unit.

3.依次完成X轴方向上的积分器单元参数的计算,主要确定积分器单元中心坐标、在X轴方向上的绕Y轴的转角、旋转中心的坐标以及积分器单元的边长。3. Complete the calculation of the integrator unit parameters in the X-axis direction in turn, mainly determine the center coordinates of the integrator unit, the rotation angle around the Y-axis in the X-axis direction, the coordinates of the rotation center and the side length of the integrator unit.

4.根据积分器单元的中心、分别与X轴和Y轴的旋转角度以及旋转中心的坐标和积分器的边长在3D软件中建立模型,完成加工模型的建立。4. Establish a model in 3D software according to the center of the integrator unit, the rotation angles with the X-axis and Y-axis respectively, the coordinates of the rotation center and the side length of the integrator to complete the establishment of the processing model.

5.确定了积分器的立体模型以后,根据超精密车削技术即可加工出积分器的实物,并且可以控制表面粗糙度在几十纳米范围内。5. After determining the three-dimensional model of the integrator, the real object of the integrator can be processed according to the ultra-precision turning technology, and the surface roughness can be controlled within the range of tens of nanometers.

本发明实施过程中提及的积分器平面单元中心的确定具体实施步骤为:The specific implementation steps of the determination of the center of the integrator plane unit mentioned in the implementation process of the present invention are:

(1)根据接收面和反射面的距离确定抛物面的焦距f,从而得到抛物面的方程:X2+Y2=4fZ,(1) Determine the focal length f of the paraboloid according to the distance between the receiving surface and the reflecting surface, thereby obtaining the equation of the paraboloid: X 2 +Y 2 =4fZ,

(2)根据接收面的大小确定位于坐标原点处的积分器单元的边长,两者的数值是相等的,(2) Determine the side length of the integrator unit located at the origin of the coordinates according to the size of the receiving surface, the values of the two are equal,

(3)将(1)中的抛物面在XOY面上划分成一系列网格,网格的边界线平行于X轴和Y轴,网格上的点是平面阵列中心在XOY面上的投影,也就是说平面阵列中心在X和Y方向上的坐标已经确定了。初始原点处的积分器单元中心为(0,0,0),为了确定其他积分器单元中心的位置,需要确定积分器平面单元中心在Z方向上的坐标。一旦确定了积分器单元中心坐标,也就确定了积分器单元的位置参数。(3) Divide the paraboloid in (1) into a series of grids on the XOY plane. The boundary lines of the grids are parallel to the X-axis and the Y-axis. The points on the grid are the projections of the center of the plane array on the XOY plane. That is to say, the coordinates of the center of the plane array in the X and Y directions have been determined. The center of the integrator unit at the initial origin is (0, 0, 0). In order to determine the position of the center of other integrator units, it is necessary to determine the coordinates of the center of the plane unit of the integrator in the Z direction. Once the center coordinates of the integrator unit are determined, the location parameters of the integrator unit are also determined.

本发明实施过程中提及的Y轴方向上的积分器的平面单元的位置参数和方向参数的确定方法的具体实施步骤为:The specific implementation steps of the position parameter and the direction parameter determination method of the planar unit of the integrator on the Y-axis direction mentioned in the implementation process of the present invention are:

(1)确定平面单元的方向,方法为根据抛物面在该点处的切线方向确定,该平面单元法矢量的方向和抛物面切线方向垂直。根据已知的积分器平面单元的中心的X0和Y0,可以得到该点平面处的法矢量K[k1,k2],有:(1) Determine the direction of the plane unit, the method is to determine according to the tangent direction of the paraboloid at this point, and the direction of the normal vector of the plane unit is perpendicular to the tangent direction of the parabola. According to the known X 0 and Y 0 of the center of the plane unit of the integrator, the normal vector K[k 1 , k 2 ] at the point plane can be obtained, as follows:

k1=-X0/(2f)        (1)k 1 =-X 0 /(2f) (1)

k2=-Y0/(2f)        (2)k 2 =-Y 0 /(2f) (2)

归一化处理,得到平面的法向量K’[a,b,c]。After normalization, the normal vector K'[a, b, c] of the plane is obtained.

aa == -- kk 11 // (( kk 11 22 ++ kk 22 22 ++ 11 )) 11 // 22 -- -- -- (( 33 ))

bb == -- kk 22 // (( kk 11 22 ++ kk 22 22 ++ 11 )) 11 // 22 -- -- -- (( 44 ))

cc == 11 // (( kk 11 22 ++ kk 22 22 ++ 11 )) 11 // 22 -- -- -- (( 55 ))

这样就得到了平面单元的法向量,从而确定了该平面单元的方向。In this way, the normal vector of the plane unit is obtained, thereby determining the direction of the plane unit.

(2)建立与上一个平面单元的连续关系,保证积分器的连续性,设Ai是上一个面的边缘点,Ai+1是与其相连接的一点,所以满足:(2) Establish a continuous relationship with the previous plane unit to ensure the continuity of the integrator. Let A i be the edge point of the previous plane, and A i+1 be a point connected to it, so it satisfies:

Ai=Ai+1            (6)A i =A i+1 (6)

根据Ai(Xi,Yi,Zi)和O(X0,Y0,Z0)可以确定所求平面中心P在Z方向的坐标值Z:According to A i (X i , Y i , Zi ) and O(X 0 , Y 0 , Z 0 ), the coordinate value Z of the plane center P in the Z direction can be determined:

Z1=a*(X0-Xi)+b*(Y0-Yi)+Zi            (7)Z 1 =a*(X 0 -X i )+b*(Y 0 -Y i )+Z i (7)

求解方程组(4),(5),(6)和(8),即可得到其中心坐标值P1(X1,Y1,Z1),这样就获得了该平面的位置参数P1和方向参数K’。Solving the equations (4), (5), (6) and (8), you can get its center coordinate value P 1 (X 1 , Y 1 , Z 1 ), so you can get the position parameter P 1 of the plane and the orientation parameter K'.

本发明实施过程中提及的X轴方向上的积分器单元的位置参数和方向参数的确定方法的具体实施步骤为:The specific implementation steps of the position parameter and the direction parameter determination method of the integrator unit on the X-axis direction mentioned in the implementation process of the present invention are:

(1)根据已知的积分器平面单元的中心的X0和Y0,可以得到该点平面处的法矢量K[k1,k2],(1) According to the known X 0 and Y 0 of the center of the plane unit of the integrator, the normal vector K[k 1 , k 2 ] at the point plane can be obtained,

k1=-X0/(2f)                         (8)k 1 =-X 0 /(2f) (8)

k2=-Y0/(2f)                         (9)k 2 =-Y 0 /(2f) (9)

归一化处理,得到平面的法向量K’[a,b,c]。After normalization, the normal vector K'[a, b, c] of the plane is obtained.

aa == -- kk 11 // (( kk 11 22 ++ kk 22 22 ++ 11 )) 11 // 22 -- -- -- (( 1010 ))

bb == -- kk 22 // (( kk 11 22 ++ kk 22 22 ++ 11 )) 11 // 22 -- -- -- (( 1111 ))

cc == 11 // (( kk 11 22 ++ kk 22 22 ++ 11 )) 11 // 22 -- -- -- (( 1212 ))

这样就确定了该平面单元的方向K’。This determines the direction K' of the planar unit.

(3)为了保证积分器单元的连续性,需要建立该平面单元与上一个平面单元的位置坐标的关系。设Bi是上一个面的边缘点,Bi+1是与其相连接的一点,所以满足:(3) In order to ensure the continuity of the integrator unit, it is necessary to establish the relationship between the position coordinates of this plane unit and the previous plane unit. Let B i be the edge point of the previous surface, and B i+1 is a point connected to it, so it satisfies:

Bi=Bi+1        (13)B i =B i+1 (13)

由上一个平面的Bi(Xi,Yi,Zi)和O2(X0,Y0,Z0)可以确定所求平面的面中心P2在Z方向的坐标值:From the Bi (X i , Y i , Zi ) and O 2 (X 0 , Y 0 , Z 0 ) of the previous plane, the coordinate value of the surface center P 2 of the desired plane in the Z direction can be determined:

Z2=a*(Xi-X0)+b*(Yi-Y0)+Z0            (14)Z 2 =a*(X i -X 0 )+b*(Y i -Y 0 )+Z 0 (14)

根据公式(11),(12),(13),(15)即可得到其中心坐标值P2(X2,Y2,Z2)。这样就得到了所求平面单元的位置参数P2和方向参数K’。According to formulas (11), (12), (13), and (15), the center coordinate value P 2 (X 2 , Y 2 , Z 2 ) can be obtained. In this way, the position parameter P 2 and the direction parameter K' of the requested plane unit are obtained.

本发明实施过程中提及的积分器模型确定方法的具体实施步骤为:The specific implementation steps of the integrator model determination method mentioned in the implementation process of the present invention are:

(1)确定积分器的位置参数,根据积分器单元在X方向和Y方向的位置和方向,可以分别计算出平面阵列在X和Y方向上的转角:(1) Determine the position parameters of the integrator. According to the position and direction of the integrator unit in the X direction and the Y direction, the rotation angle of the plane array in the X and Y directions can be calculated respectively:

a0=π/2-arccos(-a)                   (15)a 0 =π/2-arccos(-a) (15)

b0=π/2-arccos(-b)                   (16)b 0 =π/2-arccos(-b) (16)

其中a0代表平面绕Y轴的转角;b0代表平面绕X轴的转角。Where a 0 represents the rotation angle of the plane around the Y axis; b 0 represents the rotation angle of the plane around the X axis.

(2)确定积分器的结构参数,平面单元在X轴和Y轴的矩形边长:(2) Determine the structural parameters of the integrator, the length of the rectangular side of the plane unit on the X-axis and Y-axis:

d1=d/cos(a)                          (17)d 1 =d/cos(a) (17)

d2=d/cos(b)                          (18)d 2 =d/cos(b) (18)

其中d1代表平面在X轴方向上的长度;d2代表平面在Y轴方向上的长度。可以得到图7(a)所示的积分器轮廓图。Among them, d 1 represents the length of the plane in the X-axis direction; d 2 represents the length of the plane in the Y-axis direction. The integrator profile shown in Figure 7(a) can be obtained.

(3)按照上述方法得到沿着X轴正方向上的积分器模型,如图7(a),将该积分器在X方向上关于Y轴对称,就得到了一个关于Y轴对称的积分器模型7(b)。(3) Obtain the integrator model along the positive direction of the X-axis according to the above method, as shown in Figure 7(a), if the integrator is symmetrical about the Y-axis in the X-direction, an integrator model that is symmetrical about the Y-axis is obtained 7(b).

(4)除去积分器模型上位于积分器中心处附近的平面阵列,以实现离轴反射的目的,如图7(c)。(4) Remove the planar array located near the center of the integrator on the integrator model to achieve the purpose of off-axis reflection, as shown in Figure 7(c).

将本发明的反射积分器用在太阳模拟器设计的方法如下:根据入射光口径的大小确定反射积分器整体的大小,按照积分器原理求出积分器整体轮廓图。在太阳模拟器中光源为短弧氙灯,需要经过聚光镜会聚到离轴抛物面上,经过离轴抛物面的准直得到平行光,再入射到反射积分器上,实现对光线的均匀化。The method of using the reflective integrator of the present invention in solar simulator design is as follows: determine the overall size of the reflective integrator according to the size of the incident light aperture, and obtain the overall profile of the integrator according to the principle of the integrator. In the solar simulator, the light source is a short-arc xenon lamp, which needs to be converged to an off-axis parabola through a condenser, collimated by an off-axis parabola to obtain parallel light, and then incident on a reflection integrator to achieve uniformity of light.

为了对比两种积分器的性能,本发明的对两种积分器的仿真采用相同能量的入射光入射,均为21×21mm的方形平行光,其中每根光线的功率为1W/cm2。从两个积分器接收面的对比来看,反射型的积分器要比透射型的积分器的辐照度均匀性分布更好,其接收面的功率的最大值为1.49×102W/cm2,而相同条件下的折射型的积分器的功率的最大值仅为0.215W/cm2。通过对比可以看到,本发明设计的反射型积分器比传统的透射型积分器结构简单,而且稳定性好,在相同入射光的能量情况下,有更加优秀的光照强度的分布均匀,尤其是接收面边缘处的光强度分布更加稳定。而且因为减少了像差和透射损失,到达接收面能量也有了大幅度的提高。In order to compare the performance of the two integrators, the simulation of the two integrators in the present invention adopts the same energy of incident light, both of which are 21×21mm square parallel light, and the power of each light is 1W/cm 2 . From the comparison of the receiving surfaces of the two integrators, the reflective integrator has better irradiance uniformity distribution than the transmissive integrator, and the maximum power of the receiving surface is 1.49×10 2 W/cm 2 , while the maximum power of the refraction integrator under the same conditions is only 0.215W/cm 2 . It can be seen by comparison that the reflective integrator designed by the present invention is simpler in structure than the traditional transmissive integrator, and has better stability. The light intensity distribution at the edge of the receiving surface is more stable. Moreover, due to the reduction of aberrations and transmission losses, the energy reaching the receiving surface has also been greatly improved.

Claims (1)

1.一种基于平面镜阵列的反射型光学积分器设计方法,该种反射型光学积分器包括一个平面反射镜阵列,以平面反射镜阵列中心处的平面中心为坐标原点,以平行光入射的反方向为Z轴,建立直角坐标系,沿着Z轴的平行光经过积分器的反射后,到达接收面;积分器的结构参数包括各个平面单元沿着X轴和Y轴的边长、接收面的边长2d和积分器的焦距f,每个平面单元的位置参数包括单元中心点的坐标、分别绕X轴和Y轴的旋转角度以及绕X轴和Y轴旋转的旋转中心的坐标,其设计方法包括:1. A reflective optical integrator design method based on a plane mirror array, this kind of reflective optical integrator comprises a plane reflector array, with the center of the plane at the center of the plane reflector array as the origin of coordinates, with the reflection of parallel light incident The direction is the Z axis, and a rectangular coordinate system is established. The parallel light along the Z axis is reflected by the integrator and reaches the receiving surface; the structural parameters of the integrator include the side lengths of each plane unit along the X and Y axes, the receiving surface The side length 2d and the focal length f of the integrator, the position parameters of each plane unit include the coordinates of the center point of the unit, the rotation angles around the X-axis and the Y-axis respectively, and the coordinates of the rotation center around the X-axis and the Y-axis, which Design methods include: 第一步.积分器平面单元中心的确定:The first step. Determination of the center of the planar unit of the integrator: (1)根据接收面和反射面的距离确定积分器的焦距f,从而得到抛物面的方程:X2+Y2=4fZ,(1) Determine the focal length f of the integrator according to the distance between the receiving surface and the reflecting surface, so as to obtain the equation of the paraboloid: X 2 +Y 2 =4fZ, (2)根据接收面的大小确定位于坐标原点处的积分器单元的边长,两者的数值是相等的,(2) Determine the side length of the integrator unit at the origin of the coordinates according to the size of the receiving surface, and the values of the two are equal. (3)将(1)中的抛物面在XOY面上划分成一系列网格,网格的边界线平行于X轴和Y轴,将网格上的每个点作为积分器单元中心在XOY面上的投影,原点处的积分器单元中心为(0,0,0),根据光线追迹和网格上的点的位置,确定各个积分器单元中心的位置,对于各个积分器单元中心,分别按照下面的第二步至第四步的方式沿Y方向和X方向迭代计算与其相应的各个平面单元的位置参数和方向参数;(3) Divide the paraboloid in (1) into a series of grids on the XOY surface, the boundary lines of the grids are parallel to the X axis and the Y axis, and each point on the grid is used as the center of the integrator unit on the XOY surface The projection of the integrator unit at the origin is (0, 0, 0). According to the ray tracing and the position of the point on the grid, the position of each integrator unit center is determined. For each integrator unit center, respectively according to From the second step to the fourth step below, iteratively calculate the position parameter and direction parameter of each plane unit corresponding to it along the Y direction and the X direction; 第二步.对于每个积分器单元中心,设其在XOY面上的坐标分别为X0和Y0,其在抛物面上的切线矢量为K[k1,k2],k1=-X0/(2f),k2=-Y0/(2f),并设平面单元的法矢量的方向和抛物面切线方向垂直,按照下列的方法确定与其相应的平面单元的法向量[a,b,c], a = - k 1 / ( k 1 2 + k 2 2 + 1 ) 1 / 2 , b = - k 2 / ( k 1 2 + k 2 2 + 1 ) 1 / 2 , c = 1 / ( k 1 2 + k 2 2 + 1 ) 1 / 2 , 从而确定平面单元的方向;Step 2. For the center of each integrator unit, set its coordinates on the XOY plane as X 0 and Y 0 respectively, and its tangent vector on the paraboloid is K[k 1 ,k 2 ], k 1 =-X 0 /(2f), k 2 =-Y 0 /(2f), and assuming that the direction of the normal vector of the plane unit is perpendicular to the direction of the tangent of the paraboloid, the normal vector of the corresponding plane unit [a,b, c], a = - k 1 / ( k 1 2 + k 2 2 + 1 ) 1 / 2 , b = - k 2 / ( k 1 2 + k 2 2 + 1 ) 1 / 2 , c = 1 / ( k 1 2 + k 2 2 + 1 ) 1 / 2 , To determine the direction of the planar unit; 第三步.确定积分器阵列在Y方向上的位置参数和方向参数:设Ai是前一个平面单元与当前平面单元在Y方向上的边缘点,则Ai是已知的;Ai+1是当前平面单元与该边缘点相连接的一点,Ai=A,根据Ai(Xi,Yi,Zi)和积分器单元中心可确定Y方向上的平面单元的中心在Z方向的坐标值Z1=a*(X0-Xi)+b*(Y0-Yi)+Zi,再根据平面单元的法向量,求得Y方向上的平面单元中心坐标值P1(X1,Y1,Z1),这样就获得了平面单元在Y方向上的位置参数和方向参数;The third step. Determine the position parameter and direction parameter of the integrator array on the Y direction: Let A i be the edge point of the previous plane unit and the current plane unit on the Y direction, then A i is known; A i+ 1 is the point where the current plane unit is connected to the edge point, A i =A, according to A i (X i ,Y i ,Z i ) and the center of the integrator unit, the center of the plane unit in the Y direction can be determined in the Z direction coordinate value Z 1 =a*(X 0 -X i )+b*(Y 0 -Y i )+Z i , and then obtain the center coordinate value P 1 of the plane unit in the Y direction according to the normal vector of the plane unit (X 1 , Y 1 , Z 1 ), thus obtaining the position parameter and direction parameter of the plane unit in the Y direction; 第四步.确定积分器阵列在X方向上的位置参数和方向参数:设Bi是前一个平面单元与当前平面单元在X方向上的边缘点,则Bi是已知的;Bi+1是当前平面单元与该边缘点相连接的一点,Bi=B,根据Bi(Xi,Yi,Zi)和积分器单元中心可以确定X方向上的平面单元中心在Z方向的坐标值Z2=a*(Xi-X0)+b*(Yi-Y0)+Zi,再根据平面单元的法向量,求得X方向上的平面中心坐标值P2(X2,Y2,Z2),这样就得到了平面单元在X方向上的位置参数和方向参数;The 4th step. Determine the position parameter and the direction parameter of the integrator array on the X direction: Let B i be the edge point of the previous plane unit and the current plane unit on the X direction, then B i is known; B i+ 1 is the point where the current plane unit is connected to the edge point, Bi = B, according to Bi (X i , Y i , Zi ) and the center of the integrator unit, the center of the plane unit in the X direction can be determined in the Z direction Coordinate value Z 2 =a*(X i -X 0 )+b*(Y i -Y 0 )+Z i , and then obtain the plane center coordinate value P 2 (X 2 , Y 2 , Z 2 ), so that the position parameter and direction parameter of the plane unit in the X direction are obtained; 第五步.建立积分器模型:the fifth step. Build the integrator model: (1)确定积分器的位置参数:根据积分器单元在X方向和Y方向的位置和方向,可以分别计算出平面阵列在X和Y方向上的转角a0=π/2-arccos(-a)和b0=π/2-arccos(-b),其中,a0代表平面绕Y轴的转角;b0代表平面绕X轴的转角;(1) Determine the position parameters of the integrator: According to the position and direction of the integrator unit in the X and Y directions, the rotation angle a of the plane array in the X and Y directions can be calculated respectively 0 =π/2-arccos(-a ) and b 0 =π/2-arccos(-b), where a 0 represents the rotation angle of the plane around the Y axis; b 0 represents the rotation angle of the plane around the X axis; (2)确定积分器的结构参数:分别求得平面单元在X轴和Y轴的矩形边长d1=d/cos(a)和d2=d/cos(b),其中d1代表平面单元在X轴方向上的长度;d2代表平面单元在Y轴方向上的长度;(2) Determine the structural parameters of the integrator: obtain the rectangular side lengths d 1 =d/cos(a) and d 2 =d/cos(b) of the plane unit on the X-axis and Y-axis respectively, where d 1 represents the plane The length of the unit in the X-axis direction; d 2 represents the length of the plane unit in the Y-axis direction; (3)按照上述方法得到沿着X轴正方向上的积分器模型,将该积分器模型在X方向上进行关于Y轴的对称扩展,就得到了一个关于Y轴对称的积分器模型;(3) Obtain the integrator model along the positive direction of the X-axis according to the above method, and expand the integrator model symmetrically about the Y-axis in the X-direction to obtain an integrator model that is symmetrical about the Y-axis; (4)除去关于Y轴对称的积分器模型上位于积分器中心处附近的平面阵列,以实现离轴反射的目的;(4) Remove the planar array located near the center of the integrator on the integrator model that is symmetrical about the Y axis, so as to achieve the purpose of off-axis reflection; 第六步.根据所设计的积分器模型设计加工路径,进行超精密车削加工。Step 6. Design the processing path according to the designed integrator model, and perform ultra-precision turning processing.
CN 201110067896 2011-03-21 2011-03-21 Design method of reflective optical integrator based on planar mirror array Active CN102122070B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110067896 CN102122070B (en) 2011-03-21 2011-03-21 Design method of reflective optical integrator based on planar mirror array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110067896 CN102122070B (en) 2011-03-21 2011-03-21 Design method of reflective optical integrator based on planar mirror array

Publications (2)

Publication Number Publication Date
CN102122070A CN102122070A (en) 2011-07-13
CN102122070B true CN102122070B (en) 2013-08-28

Family

ID=44250654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110067896 Active CN102122070B (en) 2011-03-21 2011-03-21 Design method of reflective optical integrator based on planar mirror array

Country Status (1)

Country Link
CN (1) CN102122070B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104101933B (en) * 2014-07-15 2017-07-07 首都师范大学 Planar optical elements and its method for designing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1549047A (en) * 2003-05-15 2004-11-24 乐金电子(沈阳)有限公司 Integrator and projector using the same principle
CN1894604A (en) * 2003-12-10 2007-01-10 皇家飞利浦电子股份有限公司 Optical integrator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3788622B2 (en) * 2004-10-29 2006-06-21 シャープ株式会社 Optical integrator, illumination device, and projection-type image display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1549047A (en) * 2003-05-15 2004-11-24 乐金电子(沈阳)有限公司 Integrator and projector using the same principle
CN1894604A (en) * 2003-12-10 2007-01-10 皇家飞利浦电子股份有限公司 Optical integrator

Also Published As

Publication number Publication date
CN102122070A (en) 2011-07-13

Similar Documents

Publication Publication Date Title
CN105487145B (en) A kind of method for surpassing surface structure ultra thin optical lens based on artificial micro-structure
CN102519152A (en) Calculating method for mirror field optical efficiency on basis of graphics processing unit (GPU) tower type solar energy thermoelectric system
CN101251650A (en) LED three-dimensional optical system design method and optical system with given illuminance distribution
CN103592702A (en) Double-free-form-surface lens for laser beam shaping and design method thereof
CN109445093B (en) LED free-form surface lens array device for uniform illumination of inclined plane
CN102645686B (en) Design method of uniformly-converging Fresnel lens
CN103441178B (en) Compact double reflection-type photovoltaic condenser based on compound eye
CN104898264A (en) Large-caliber rotationally symmetric non-imaging free-form surface reflector and design method thereof
CN104034058A (en) Imaging method of tower-type solar thermoelectric system mirror field based on GPU
CN103592767B (en) A laser beam shaping device using a double free-form lens
CN102200636B (en) Design method of non-imaging optical element
CN105866868B (en) A kind of multiple tooth grating trapper of broadband micro-nano two dimension
CN114296245B (en) Raman beam shaping device
CN102122070B (en) Design method of reflective optical integrator based on planar mirror array
CN102866491A (en) High-order cylindrical surface reflection type solar energy collecting mirror
CN103047607B (en) Manufacture method of free-curved-surface lens for LED collimation
Ding et al. Designing compact and ultra-efficient illumination lenses with prescribed irradiance properties for extended light sources
CN209640518U (en) A double-glued axicon mirror for generating long-distance high-resolution Bessel beams
CN104329810B (en) A kind of uniform condensing device and method for designing thereof
CN102116934B (en) Design Method of Reflective Optical Integrator Based on Parabolic Mirror Array
Antonov et al. Microprismatic plane-focusing Fresnel lenses for light concentration in solar photovoltaic modules
CN102364377B (en) Adjusting method for laser beam-expanding lens system
Hu et al. Design of off-axis double reflection freeform miniaturized antenna
CN110414058A (en) A Fitting Method of Convolution Kernel Function in Tower Solar Thermal Power Station
EP2795388B1 (en) Optical element

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant