[go: up one dir, main page]

CN102121828A - Method for estimating body posture angle of humanoid robot in real time - Google Patents

Method for estimating body posture angle of humanoid robot in real time Download PDF

Info

Publication number
CN102121828A
CN102121828A CN 201010597601 CN201010597601A CN102121828A CN 102121828 A CN102121828 A CN 102121828A CN 201010597601 CN201010597601 CN 201010597601 CN 201010597601 A CN201010597601 A CN 201010597601A CN 102121828 A CN102121828 A CN 102121828A
Authority
CN
China
Prior art keywords
robot
attitude
axis
dimensional force
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010597601
Other languages
Chinese (zh)
Other versions
CN102121828B (en
Inventor
相远飞
熊蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN 201010597601 priority Critical patent/CN102121828B/en
Publication of CN102121828A publication Critical patent/CN102121828A/en
Application granted granted Critical
Publication of CN102121828B publication Critical patent/CN102121828B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

本发明公开了一种仿人机器人身体姿态角度实时估计方法,该方法首先建立机器人姿态的运动学模型;然后根据机器人姿态的运动学模型,建立带噪声的线性离散随机系统模型,利用卡尔曼滤波的相应方法,基于三轴加速度计的加速度数据,三轴陀螺仪的角速度数据和六维力/力矩传感器三维力数据估计机器人的姿态状态,再根据估计的机器人姿态信息,得到机器人实际的姿态角度,从而矫正机器人当前的姿态;本方法克服了角速度积分的漂移以及传统线性化方法测量范围较小的缺陷,实现了仿人机器人姿态实时准确的估计。

Figure 201010597601

The invention discloses a method for estimating the body posture angle of a humanoid robot in real time. The method firstly establishes a kinematics model of the robot posture; The corresponding method is to estimate the attitude state of the robot based on the acceleration data of the three-axis accelerometer, the angular velocity data of the three-axis gyroscope and the three-dimensional force data of the six-dimensional force/torque sensor, and then obtain the actual attitude angle of the robot according to the estimated robot attitude information , so as to correct the current attitude of the robot; this method overcomes the drift of the angular velocity integral and the defect of the small measurement range of the traditional linearization method, and realizes the real-time and accurate estimation of the attitude of the humanoid robot.

Figure 201010597601

Description

一种仿人机器人身体姿态角度实时估计方法A Real-time Estimation Method of Body Pose Angle of Humanoid Robot

技术领域technical field

本发明属于机器人领域,尤其涉及一种基于六维力/力矩传感器,加速度计和陀螺仪的仿人机器人姿态估计方法。The invention belongs to the field of robots, and in particular relates to a posture estimation method of a humanoid robot based on a six-dimensional force/torque sensor, an accelerometer and a gyroscope.

技术背景technical background

仿人机器人是一种模仿人体骨骼结构的机器人,它与其他机器人的最大区别在于其仿人的双足运动方式。仿生分析表明,仿人机器人具有环境适应能力强、动作灵活等优点,因此,具有更加广阔的应用和发展前景。A humanoid robot is a robot that imitates the skeleton structure of the human body. The biggest difference between it and other robots lies in its humanoid bipedal movement. Bionic analysis shows that humanoid robots have the advantages of strong environmental adaptability and flexible movements, so they have broader application and development prospects.

与轮式机器人和工业机器人不同,仿人机器人的支撑域更小,更容易摔倒。因此需要知道机器人的姿态角度,包括俯仰和滚动角度,以便检测机器人的状态,预防机器人摔倒。Unlike wheeled and industrial robots, humanoid robots have a smaller field of support and are more prone to falls. Therefore, it is necessary to know the attitude angle of the robot, including pitch and roll angles, in order to detect the state of the robot and prevent the robot from falling.

一种比较常用的姿态估计算法是先对角速度的积分经过一个高通滤波器得到角度的高频信号,再对经加速度计算得到的角度经过一个低通滤波器,得到姿态角度的低频信号,这两个角度信号的叠加可以得到完整的姿态角度(参见“K. Loffler, M.Gienger, F.Pfeiffer:Sensor and Control Design of a Dynamically Stable Biped Robot,International Conference on Robotics and Automation,September,2003”) ,但是该方法需要设定合适的低通滤波器和高通滤波器的参数,以达到准确的估计,而且对于不同的步行模式,需要选择不同的滤波器参数,因此该方法的适用范围较小。A more commonly used attitude estimation algorithm is to first pass the integral of angular velocity through a high-pass filter to obtain the high-frequency signal of the angle, and then pass a low-pass filter to the angle obtained by the acceleration calculation to obtain the low-frequency signal of the attitude angle. The complete attitude angle can be obtained by superposition of two angle signals (see "K. Loffler, M. Gienger, F. Pfeiffer: Sensor and Control Design of a Dynamically Stable Biped Robot, International Conference on Robotics and Automation, September, 2003"), However, this method needs to set appropriate low-pass filter and high-pass filter parameters to achieve accurate estimation, and for different walking patterns, different filter parameters need to be selected, so the scope of application of this method is small.

由于姿态估计的非线性,另外一种常见的方法是,对姿态运动学模型在平衡点进行线性化处理,得到该运动学方程的线性模型,利用kalman滤波的方法估计该线性模型的状态,从而得到姿态角度(参见“ An Attitude Control System for small unmanned helicopters based on gyrometer and angular rate gyroscDue to the nonlinearity of attitude estimation, another common method is to linearize the attitude kinematics model at the equilibrium point to obtain the linear model of the kinematic equation, and use the kalman filter method to estimate the state of the linear model, so that Get the attitude angle (see "An Attitude Control System for small unmanned helicopters based on gyrometer and angular rate gyrosc

Henrik Rehbinder和Xiaoming Hu 提出了姿态估计的另一种方法(参见“Drift-free attitude estimation for accelerated rigid bodies,Automatica, 2004”)。在该方法中,利用重力加速度修正机器人的姿态角度。但是该方法需要机器人的横向加速度较小。对于仿人机器人步行中的加速度变化,由于横向加速度引入的模型误差并不能忽略,所以该方法并不适用于仿人机器人的步行。Another approach to pose estimation was proposed by Henrik Rehbinder and Xiaoming Hu (see "Drift-free attitude estimation for accelerated rigid bodies, Automatica, 2004"). In this method, the attitude angle of the robot is corrected using the acceleration of gravity. But this method requires less lateral acceleration of the robot. For the acceleration variation in humanoid robot walking, the model error introduced by lateral acceleration cannot be ignored, so this method is not suitable for humanoid robot walking.

中国发明专利申请200810224579.4提出了一个仿人机器人足部姿态实时检测系统及方法,该姿态检测方法利用三轴加速度信息计算得到静态倾角信息;对采集的角速度信息进行计算得到角度的变化值;根据所述的静态面倾角信息和所述的角度变化值,得到实时的倾角信息。但是由于机器人运动过程中与地面的碰撞,利用加速度计计算所得的静态倾角信息并不准确,而且该方案也没办法克服角速度的积分误差。Chinese invention patent application 200810224579.4 proposes a real-time detection system and method for the foot posture of a humanoid robot. The posture detection method uses the three-axis acceleration information to calculate the static inclination information; calculates the collected angular velocity information to obtain the change value of the angle; according to the obtained The above-mentioned static surface inclination information and the above-mentioned angle change value are used to obtain real-time inclination information. However, due to the collision between the robot and the ground during the movement, the static inclination information calculated by the accelerometer is not accurate, and this scheme cannot overcome the integral error of the angular velocity.

因此,有必要设计一种能够实时,快速并且能有效克服陀螺仪积分误差的仿人机器人姿态角度估计方案。Therefore, it is necessary to design a humanoid robot attitude angle estimation scheme that can be real-time, fast and effectively overcome the integral error of the gyroscope.

发明内容Contents of the invention

本发明的目的是针对现有技术的不足,提供了一种仿人机器人身体姿态角度实时估计方法。The purpose of the present invention is to provide a real-time estimation method for the body attitude angle of a humanoid robot aiming at the deficiencies in the prior art.

本发明的目的是通过以下技术方案来实现的:一种仿人机器人身体姿态角度实时估计方法,仿人机器人姿态估计系统包括三轴陀螺仪、三轴加速度计、kalman滤波器和两个六维力/力矩传感器,其中,三轴陀螺仪、三轴加速度计、和两个六维力/力矩传感器分别与kalman滤波器相连;该方法包括以下几个步骤:The object of the present invention is achieved through the following technical solutions: a real-time estimation method for the body attitude angle of a humanoid robot, the attitude estimation system of the humanoid robot includes a three-axis gyroscope, a three-axis accelerometer, a kalman filter and two six-dimensional A force/torque sensor, wherein a three-axis gyroscope, a three-axis accelerometer, and two six-dimensional force/torque sensors are respectively connected with a kalman filter; the method comprises the following steps:

(1)安装六维力/力矩传感器及三轴陀螺仪和三轴加速度计;其中,两个六维力/力矩传感器分别安装在机器人的两个踝关节上,三轴加速度计和三轴陀螺仪安装在机器人的髋部中心点。(1) Install six-dimensional force/torque sensors, three-axis gyroscopes and three-axis accelerometers; among them, two six-dimensional force/torque sensors are installed on the two ankle joints of the robot, three-axis accelerometers and three-axis gyroscopes The instrument is installed at the hip center point of the robot.

(2)建立机器人姿态的运动学模型;(2) Establish the kinematics model of the robot attitude;

(3)根据机器人姿态的运动学模型,建立带噪声的线性离散随机系统模型,利用卡尔曼滤波的相应方法,基于三轴加速度计的加速度数据,三轴陀螺仪的角速度数据和六维力/力矩传感器三维力数据估计机器人的姿态状态;(3) According to the kinematics model of the robot attitude, a linear discrete random system model with noise is established, using the corresponding method of Kalman filter, based on the acceleration data of the three-axis accelerometer, the angular velocity data of the three-axis gyroscope and the six-dimensional force/ The three-dimensional force data of the torque sensor estimates the attitude state of the robot;

(4)根据估计的机器人姿态信息,得到机器人实际的姿态角度;(4) Obtain the actual attitude angle of the robot according to the estimated attitude information of the robot;

(5)根据得到的机器人实际的姿态角度,矫正机器人当前的姿态 (5) Correct the current posture of the robot according to the obtained actual posture angle of the robot .

本发明的有益效果是,本发明仿人机器人身体姿态角度实时估计方法通过软测量的技术实现,根据机器人姿态的运动学方程,利用kalman滤波的方法,得到机器人姿态状态的最优估计,从而计算出相应的俯仰和滚动角度。本方法克服了角速度积分的漂移以及传统线性化方法测量范围较小的缺陷,实现了仿人机器人姿态实时准确的估计。The beneficial effect of the present invention is that the real-time estimation method of the body attitude angle of the humanoid robot of the present invention is realized through the technology of soft sensing, and according to the kinematic equation of the robot attitude, the optimal estimation of the attitude state of the robot is obtained by using the kalman filter method, thereby calculating corresponding pitch and roll angles. This method overcomes the drift of the angular velocity integral and the defect of the small measurement range of the traditional linearization method, and realizes the real-time and accurate estimation of the attitude of the humanoid robot.

附图说明Description of drawings

图1是仿人机器人姿态估计系统的整体框图;Figure 1 is an overall block diagram of a humanoid robot pose estimation system;

图2是传感器的安装示意图;Figure 2 is a schematic diagram of the installation of the sensor;

图3是机器人稳定行走时身体姿态的滚动角度数据图;Fig. 3 is a data diagram of the rolling angle of the body posture when the robot walks stably;

图4是机器人稳定行走时身体姿态的俯仰角度数据图。Fig. 4 is a data diagram of the pitch angle of the body posture when the robot walks stably.

具体实施方式Detailed ways

Kalman滤波的原理如下:利用给定的系统输出观测序列                                                

Figure 946701DEST_PATH_IMAGE001
,作状态
Figure 891523DEST_PATH_IMAGE002
的最优估计
Figure 306324DEST_PATH_IMAGE003
,使得k+1时刻的估计指标(既估计误差的协方差矩阵)J达到最小:The principle of Kalman filtering is as follows: use a given system to output an observation sequence
Figure 946701DEST_PATH_IMAGE001
, as state
Figure 891523DEST_PATH_IMAGE002
best estimate of
Figure 306324DEST_PATH_IMAGE003
, so that the estimated index (that is, the covariance matrix of the estimated error) J at time k+1 reaches the minimum:

Figure 45610DEST_PATH_IMAGE004
Figure 45610DEST_PATH_IMAGE004

如图1所示,仿人机器人姿态估计系统包括三轴陀螺仪、三轴加速度计、kalman滤波器和两个六维力/力矩传感器,其中,三轴陀螺仪、三轴加速度计、和两个六维力/力矩传感器分别与kalman滤波器相连。三轴加速度计提供机器人运动时的三轴线性加速度数据,三轴陀螺仪提供三轴的角速度数据,两个六维力/力矩传感器提供三维力数据。基于机器人姿态变化的运动学模型建立系统状态方程,根据传感器获得的力数据,加速度数据以及角速度数据,通过kalman滤波的方法得到机器人姿态的最优估计。根据最优估计得到机器人姿态,计算可得相应的姿态角度。As shown in Figure 1, the humanoid robot attitude estimation system includes a three-axis gyroscope, a three-axis accelerometer, a kalman filter and two six-dimensional force/torque sensors, among which, the three-axis gyroscope, three-axis accelerometer, and two Each six-dimensional force/torque sensor is connected with kalman filter respectively. The three-axis accelerometer provides three-axis linear acceleration data when the robot is moving, the three-axis gyroscope provides three-axis angular velocity data, and two six-dimensional force/torque sensors provide three-dimensional force data. The system state equation is established based on the kinematics model of the robot's attitude change, and the optimal estimation of the robot's attitude is obtained through the kalman filter method according to the force data, acceleration data and angular velocity data obtained by the sensor. According to the optimal estimation, the robot attitude is obtained, and the corresponding attitude angle can be obtained by calculation.

本发明仿人机器人身体姿态角度实时估计方法,包括以下几个步骤:首先,安装六维力/力矩传感器及三轴陀螺仪和加速度计传感器;其次,建立机器人姿态的运动学模型;再次,根据机器人姿态的运动学模型,建立带噪声的线性离散随机系统模型,利用卡尔曼滤波的相应方法,基于三轴加速度计的加速度数据,三轴陀螺仪的角速度数据和六维力/力矩传感器三维力数据估计机器人的姿态状态;根据估计后的机器人姿态信息,得到机器人实际的姿态角度。最后,根据得到的机器人姿态俯仰和滚动角度,矫正机器人当前的姿态。The method for estimating the body attitude angle of a humanoid robot in real time in the present invention comprises the following steps: first, install a six-dimensional force/moment sensor and a three-axis gyroscope and an accelerometer sensor; secondly, establish a kinematics model of the robot attitude; again, according to Kinematics model of robot attitude, establish a linear discrete random system model with noise, use the corresponding method of Kalman filter, based on the acceleration data of the three-axis accelerometer, the angular velocity data of the three-axis gyroscope and the three-dimensional force of the six-dimensional force/torque sensor The attitude state of the robot is estimated from the data; according to the estimated attitude information of the robot, the actual attitude angle of the robot is obtained. Finally, correct the current attitude of the robot according to the obtained robot attitude pitch and roll angles.

具体如下,details as follows,

第一步,安装六维力/力矩传感器及三轴陀螺仪和加速度计传感器The first step is to install the six-dimensional force/torque sensor and the three-axis gyroscope and accelerometer sensor

传感器的安装示意图如图2所示:两个六维力/力矩传感器分别安装在机器人的两个踝关节( 脚板与小腿的连接部位)上,并且传感器局部坐标系的x轴正方向沿机器人前进方向,y轴正方向从右至左,z轴正方向竖直向上。三轴加速度计和三轴陀螺仪安装在机器人的髋部中心点,并且其局部坐标系方向和六维力/力矩传感器的坐标系方向一致。The installation diagram of the sensor is shown in Figure 2: two six-dimensional force/torque sensors are respectively installed on the two ankle joints of the robot (the connection between the foot plate and the lower leg), and the positive direction of the x-axis of the local coordinate system of the sensor moves forward along the robot Direction, the positive direction of the y-axis is from right to left, and the positive direction of the z-axis is vertically upward. The three-axis accelerometer and the three-axis gyroscope are installed at the hip center point of the robot, and the direction of its local coordinate system is consistent with the direction of the coordinate system of the six-dimensional force/torque sensor.

第二步,建立机器人姿态的运动学模型。The second step is to establish the kinematics model of the robot pose.

姿态可以用3×3的旋转矩阵来描述,对应绕x轴的旋转角称为滚动角(),相应的旋转矩阵:The attitude can be described by a 3×3 rotation matrix, and the corresponding rotation angle around the x-axis is called the roll angle ( ), the corresponding rotation matrix:

Figure 65065DEST_PATH_IMAGE006
Figure 65065DEST_PATH_IMAGE006

对应绕y轴的旋转角度称为俯仰角(

Figure 334372DEST_PATH_IMAGE007
)相应的旋转矩阵为:The angle of rotation corresponding to the y-axis is called the pitch angle (
Figure 334372DEST_PATH_IMAGE007
) and the corresponding rotation matrix is:

对应绕z轴的旋转角度称为偏转角(),相应的旋转矩阵为:The angle of rotation corresponding to the z-axis is called the deflection angle ( ), the corresponding rotation matrix is:

Figure 784311DEST_PATH_IMAGE010
Figure 784311DEST_PATH_IMAGE010

对于机器人的姿态,我们用欧拉角度按偏转(

Figure 173704DEST_PATH_IMAGE009
),俯仰(),滚动(
Figure 729636DEST_PATH_IMAGE007
)的顺序来描述, 则对应的姿态矩阵为:For the pose of the robot, we use Euler angles in terms of deflection (
Figure 173704DEST_PATH_IMAGE009
), pitch ( ),scroll(
Figure 729636DEST_PATH_IMAGE007
), the corresponding attitude matrix is:

Figure 822882DEST_PATH_IMAGE012
Figure 822882DEST_PATH_IMAGE012

对该旋转矩阵求导:Take the derivative of this rotation matrix:

Figure 66781DEST_PATH_IMAGE013
Figure 66781DEST_PATH_IMAGE013

写为两个矩阵的组合,

Figure 484173DEST_PATH_IMAGE015
,其中,在时间间隔
Figure 112601DEST_PATH_IMAGE016
中,绕轴K的微量旋转为
Figure 148690DEST_PATH_IMAGE017
,则上式可以改写为:Bundle Written as a combination of two matrices,
Figure 484173DEST_PATH_IMAGE015
, where, in the time interval
Figure 112601DEST_PATH_IMAGE016
In , the micro-rotation around the axis K is
Figure 148690DEST_PATH_IMAGE017
, then the above formula can be rewritten as:

Figure 837160DEST_PATH_IMAGE018
Figure 837160DEST_PATH_IMAGE018

对上式进行角度微分变换得,The angle differential transformation of the above formula is obtained,

Figure 21017DEST_PATH_IMAGE019
Figure 21017DEST_PATH_IMAGE019

所以so

Figure 390818DEST_PATH_IMAGE020
Figure 390818DEST_PATH_IMAGE020

安装在机器人髋部中心点的三轴加速度计和三轴陀螺仪,能够实时测量机器人髋部中心点沿自身坐标系的加速度和相应的角速度。当机器人静止的时候,加速度计测量的加速度为重力加速度。当机器人运动的时候,地面的摩擦力提供机器人前进的动力,机器人受到的加速度由合外力提供(见图2)。The three-axis accelerometer and the three-axis gyroscope installed at the center of the robot's hip can measure the acceleration and corresponding angular velocity of the center of the robot's hip along its own coordinate system in real time. When the robot is stationary, the acceleration measured by the accelerometer is the acceleration due to gravity. When the robot moves, the frictional force of the ground provides the driving force for the robot to move forward, and the acceleration received by the robot is provided by the resultant external force (see Figure 2).

假设机器人的脚板与地面完全接触,并且机器人是刚性的。我们以地面为世界坐标系的原点,建立笛卡尔右手坐标系,x轴的正方向为机器人的前进方向,z轴的正方先垂直地面向上。并且机器人髋部的加速度计和姿态传感器的初始姿态与世界坐标系的姿态相同。机器人足部受到的合外力f,在机器人髋部的加速度计上引起的加速度为a,此时机器人的姿态为R,则:Assume that the robot's feet are in full contact with the ground and that the robot is rigid. We take the ground as the origin of the world coordinate system and establish a Cartesian right-handed coordinate system. The positive direction of the x-axis is the forward direction of the robot, and the positive direction of the z-axis is first vertical to the ground. And the initial pose of the accelerometer and attitude sensor of the robot hip is the same as that of the world coordinate system. The resultant external force f received by the robot’s foot causes the acceleration on the accelerometer of the robot’s hip to be a, and the posture of the robot is R at this time, then:

a = R*(f/M)a = R*(f/M)

考虑到姿态R的状态转移方程,则机器人姿态的运动学模型为:Considering the state transition equation of attitude R, the kinematics model of robot attitude is:

Figure 609310DEST_PATH_IMAGE021
Figure 609310DEST_PATH_IMAGE021

其中,M为机器人的质量,

Figure 406365DEST_PATH_IMAGE022
,是两个六维力/力矩传感器测量的合力,表示机器人足部收到的合外力在坐标系的各个分量,
Figure 77518DEST_PATH_IMAGE023
是3×1的向量,表示三轴陀螺仪测量的三轴角速度数据,分别用,
Figure 55499DEST_PATH_IMAGE025
,
Figure 85772DEST_PATH_IMAGE026
表示。R是3×3的矩阵,表示机器人的姿态矩阵;
Figure 244221DEST_PATH_IMAGE027
,表示三轴加速度计测量的加速度值。Among them, M is the mass of the robot,
Figure 406365DEST_PATH_IMAGE022
, is the resultant force measured by two six-dimensional force/torque sensors, and represents the components of the resultant external force received by the robot’s foot in the coordinate system,
Figure 77518DEST_PATH_IMAGE023
is a 3×1 vector, representing the three-axis angular velocity data measured by the three-axis gyroscope, respectively ,
Figure 55499DEST_PATH_IMAGE025
,
Figure 85772DEST_PATH_IMAGE026
express. R is a 3×3 matrix, representing the attitude matrix of the robot;
Figure 244221DEST_PATH_IMAGE027
, indicating the acceleration value measured by the three-axis accelerometer.

第三步,根据机器人姿态的运动学模型,建立带噪声的线性离散随机系统模型,The third step is to establish a linear discrete random system model with noise based on the kinematics model of the robot attitude, 再利用卡尔曼滤波的相应方法,基于三轴加速度计的加速度数据,三轴陀螺仪的角速度数据和六维力/力矩传感器三维力数据估计机器人的姿态状态。Then use the corresponding method of Kalman filter to estimate the attitude state of the robot based on the acceleration data of the three-axis accelerometer, the angular velocity data of the three-axis gyroscope and the three-dimensional force data of the six-dimensional force/torque sensor.

考虑到R为3×3的矩阵,测量的加速度a和合外力f为3×1向量,对姿态矩阵按行拉直,同时假设传感器测量的噪声白噪声,则系统模型可重构为:Considering that R is a 3×3 matrix, the measured acceleration a and the resultant external force f are 3×1 vectors, the attitude matrix is straightened by rows, and assuming that the noise measured by the sensor is white noise, the system model can be reconstructed as:

Figure 955825DEST_PATH_IMAGE028
Figure 955825DEST_PATH_IMAGE028

式中状态变量

Figure 148909DEST_PATH_IMAGE029
Figure 350083DEST_PATH_IMAGE030
为模型噪声,方差为
Figure 667932DEST_PATH_IMAGE031
Figure 245544DEST_PATH_IMAGE032
为观测噪声,方差为
Figure 293134DEST_PATH_IMAGE033
为三轴加速度,where the state variable
Figure 148909DEST_PATH_IMAGE029
,
Figure 350083DEST_PATH_IMAGE030
is the model noise, and the variance is
Figure 667932DEST_PATH_IMAGE031
,
Figure 245544DEST_PATH_IMAGE032
is the observation noise, and the variance is
Figure 293134DEST_PATH_IMAGE033
, is the three-axis acceleration,

Figure 470355DEST_PATH_IMAGE035
Figure 470355DEST_PATH_IMAGE035

对该模型状态的估计采用离散化的Kalman滤波方程,则以Ts为离散时间间隔,该模型的离散化方程为:The discretized Kalman filter equation is used to estimate the state of the model, and Ts is used as the discrete time interval. The discretized equation of the model is:

Figure 589008DEST_PATH_IMAGE036
Figure 589008DEST_PATH_IMAGE036

其中,

Figure 428788DEST_PATH_IMAGE037
in,
Figure 428788DEST_PATH_IMAGE037

Figure 971765DEST_PATH_IMAGE038
Figure 529785DEST_PATH_IMAGE039
是9×1的向量,表示系统的模型噪声,
Figure 183620DEST_PATH_IMAGE040
是3×1的向量,表示系统的观测噪声。
Figure 205803DEST_PATH_IMAGE041
是9×1的向量,表示系统的状态变量。
Figure 971765DEST_PATH_IMAGE038
Figure 529785DEST_PATH_IMAGE039
is a 9×1 vector representing the model noise of the system,
Figure 183620DEST_PATH_IMAGE040
is a 3×1 vector representing the observation noise of the system.
Figure 205803DEST_PATH_IMAGE041
is a 9×1 vector representing the state variables of the system.

以状态的提前一步预报量

Figure 857364DEST_PATH_IMAGE042
为递推的基本变量,可写出Kalman滤波递推公式为:one-step-ahead forecast
Figure 857364DEST_PATH_IMAGE042
As the basic variable of recursion, the recursive formula of Kalman filter can be written as:

Figure 699418DEST_PATH_IMAGE043
Figure 699418DEST_PATH_IMAGE043

Figure 156945DEST_PATH_IMAGE044
是k时刻的三轴加速度计的加速度值
Figure 156945DEST_PATH_IMAGE044
is the acceleration value of the three-axis accelerometer at time k

Kalman预报增益矩阵为:Kalman forecast gain matrix for:

Figure 856096DEST_PATH_IMAGE046
Figure 856096DEST_PATH_IMAGE046

Figure 123129DEST_PATH_IMAGE047
为预报误差的协方差矩阵:
Figure 123129DEST_PATH_IMAGE047
is the covariance matrix of the forecast error:

Figure 384346DEST_PATH_IMAGE048
Figure 384346DEST_PATH_IMAGE048

Figure 112612DEST_PATH_IMAGE049
是9×9的矩阵,表示模型噪声的方差,
Figure 168293DEST_PATH_IMAGE050
是3×3的矩阵,表示观测噪声的方差。
Figure 112612DEST_PATH_IMAGE049
is a 9×9 matrix representing the variance of the model noise,
Figure 168293DEST_PATH_IMAGE050
is a 3×3 matrix representing the variance of the observation noise.

第四步,根据估计后的机器人姿态信息,得到机器人实际的姿态角度。The fourth step is to obtain the actual attitude angle of the robot according to the estimated attitude information of the robot.

利用kalman滤波算法,在线估算

Figure 922623DEST_PATH_IMAGE051
,根据估算的姿态矩阵,计算俯仰和滚动的姿态角度:Using kalman filter algorithm, online estimation
Figure 922623DEST_PATH_IMAGE051
, according to the estimated attitude matrix, calculate the attitude angle of pitch and roll:

Figure 987530DEST_PATH_IMAGE052
 
Figure 987530DEST_PATH_IMAGE052
 

式中

Figure 510916DEST_PATH_IMAGE053
分别表示状态向量
Figure 737498DEST_PATH_IMAGE054
第7,8,9行的元素In the formula
Figure 510916DEST_PATH_IMAGE053
respectively represent the state vector
Figure 737498DEST_PATH_IMAGE054
Elements of lines 7, 8, and 9

第五步,根据得到的机器人姿态俯仰和滚动角度,矫正机器人当前的姿态。The fifth step is to correct the current attitude of the robot according to the obtained robot attitude pitch and roll angles.

为了保持机器人的稳定运行,机器人运行过程的设定的滚动和俯仰角度为0,通过控制机器人髋部关节的俯仰和滚动的关节角度,利用PID调整方式,实现机器人身体姿态的稳定控制。In order to maintain the stable operation of the robot, the rolling and pitching angles of the robot are set to 0 during the running process. By controlling the pitching and rolling joint angles of the robot's hip joints, the stable control of the robot's body posture is realized by using the PID adjustment method.

实施例1Example 1

图3和图4示出了在仿人机器人上应用本发明的方法和现有积分方法的的不同之处,设定机器人的步行速度为0.8km/h,由图3可以看出,由于机器人髋部刚性的不足,机器人在行走过程中,滚动角度存在周期性变化,该数据反映了机器人运动过程中的滚动角度变化。由于机器人摆放的初始位置或者零位的偏差,导致滚动角度并不为零。从与积分方法的对比可以看出,该方法有效地克服了角速度积分的漂移问题。由图4可以看出,当机器人运动结束后,俯仰角度的数据始终保持稳定。综上所述,该方法能有效克服角速度积分的漂移问题,反映机器人运动过程中俯仰和滚动姿态角度的变化,实现机器人俯仰和滚动姿态角度的有效测量。Fig. 3 and Fig. 4 show the difference of applying the method of the present invention and the existing integration method on the humanoid robot, the walking speed of setting robot is 0.8km/h, as can be seen from Fig. 3, because robot The rigidity of the hip is insufficient, and the rolling angle of the robot changes periodically during walking, and this data reflects the change of the rolling angle during the movement of the robot. Due to the deviation of the initial position or zero position of the robot, the roll angle is not zero. From the comparison with the integral method, it can be seen that this method effectively overcomes the drift problem of angular velocity integration. It can be seen from Figure 4 that when the robot motion is over, the data of the pitch angle remains stable all the time. In summary, this method can effectively overcome the drift problem of the angular velocity integral, reflect the changes in the pitch and roll attitude angles of the robot during motion, and realize the effective measurement of the robot pitch and roll attitude angles.

Claims (4)

1.一种仿人机器人身体姿态角度实时估计方法,仿人机器人姿态估计系统包括三轴陀螺仪、三轴加速度计、kalman滤波器和两个六维力/力矩传感器,其中,三轴陀螺仪、三轴加速度计、和两个六维力/力矩传感器分别与kalman滤波器相连;其特征在于,该方法包括以下几个步骤:1. A method for estimating the body attitude angle of a humanoid robot in real time. The attitude estimation system of the humanoid robot comprises a three-axis gyroscope, a three-axis accelerometer, a kalman filter and two six-dimensional force/torque sensors, wherein the three-axis gyroscope , a three-axis accelerometer, and two six-dimensional force/torque sensors are respectively connected with a kalman filter; it is characterized in that the method comprises the following steps: (1)安装六维力/力矩传感器及三轴陀螺仪和三轴加速度计;其中,两个六维力/力矩传感器分别安装在机器人的两个踝关节上,三轴加速度计和三轴陀螺仪安装在机器人的髋部中心点;(1) Install six-dimensional force/torque sensors, three-axis gyroscopes and three-axis accelerometers; among them, two six-dimensional force/torque sensors are installed on the two ankle joints of the robot, three-axis accelerometers and three-axis gyroscopes The instrument is installed at the hip center of the robot; (2)建立机器人姿态的运动学模型;(2) Establish the kinematics model of the robot attitude; (3)根据机器人姿态的运动学模型,建立带噪声的线性离散随机系统模型,利用卡尔曼滤波的相应方法,基于三轴加速度计的加速度数据,三轴陀螺仪的角速度数据和六维力/力矩传感器三维力数据估计机器人的姿态状态;(3) According to the kinematics model of the robot attitude, a linear discrete random system model with noise is established, using the corresponding method of Kalman filter, based on the acceleration data of the three-axis accelerometer, the angular velocity data of the three-axis gyroscope and the six-dimensional force/ The three-dimensional force data of the torque sensor estimates the attitude state of the robot; (4)根据估计的机器人姿态信息,得到机器人实际的姿态角度;(4) Obtain the actual attitude angle of the robot according to the estimated attitude information of the robot; (5)根据得到的机器人实际的姿态角度,矫正机器人当前的姿态 (5) Correct the current posture of the robot according to the obtained actual posture angle of the robot . 2.根据权利要求1所述仿人机器人身体姿态角度实时估计方法,其特征在于,所述步骤(2)建立的运动学模型为:2. The method for estimating the body posture angle of a humanoid robot in real time according to claim 1, wherein the kinematics model established in the step (2) is:
Figure 576370DEST_PATH_IMAGE001
Figure 576370DEST_PATH_IMAGE001
其中,M为机器人的质量,
Figure 664411DEST_PATH_IMAGE002
,是两个六维力/力矩传感器测量的合力,表示机器人足部收到的合外力在坐标系的各个分量,
Figure 993762DEST_PATH_IMAGE003
是3×1的向量,表示三轴陀螺仪测量的三轴角速度数据,分别用,
Figure 658278DEST_PATH_IMAGE005
,
Figure 979538DEST_PATH_IMAGE006
表示;R是3×3的矩阵,表示机器人的姿态矩阵;
Figure 530605DEST_PATH_IMAGE007
,表示三轴加速度计测量的加速度值。
Among them, M is the mass of the robot,
Figure 664411DEST_PATH_IMAGE002
, is the resultant force measured by two six-dimensional force/torque sensors, and represents the components of the resultant external force received by the robot’s foot in the coordinate system,
Figure 993762DEST_PATH_IMAGE003
is a 3×1 vector, representing the three-axis angular velocity data measured by the three-axis gyroscope, respectively ,
Figure 658278DEST_PATH_IMAGE005
,
Figure 979538DEST_PATH_IMAGE006
Represents; R is a 3×3 matrix, representing the attitude matrix of the robot;
Figure 530605DEST_PATH_IMAGE007
, indicating the acceleration value measured by the three-axis accelerometer.
3.根据权利要求1所述仿人机器人身体姿态角度实时估计方法,其特征在于,所述步骤(2)建立的线性离散随机系统模型为:3. The method for estimating the body posture angle of a humanoid robot in real time according to claim 1, wherein the linear discrete random system model established in step (2) is:
Figure 533196DEST_PATH_IMAGE008
Figure 533196DEST_PATH_IMAGE008
其中,状态变量
Figure 118898DEST_PATH_IMAGE009
Figure 342551DEST_PATH_IMAGE010
为模型噪声,方差为
Figure 584176DEST_PATH_IMAGE011
Figure 187196DEST_PATH_IMAGE012
为观测噪声,方差为
Figure 627404DEST_PATH_IMAGE013
, 
Figure 228150DEST_PATH_IMAGE014
为三轴加速度:
Among them, the state variable
Figure 118898DEST_PATH_IMAGE009
,
Figure 342551DEST_PATH_IMAGE010
is the model noise, and the variance is
Figure 584176DEST_PATH_IMAGE011
,
Figure 187196DEST_PATH_IMAGE012
is the observation noise, and the variance is
Figure 627404DEST_PATH_IMAGE013
,
Figure 228150DEST_PATH_IMAGE014
is the three-axis acceleration:
Figure 753809DEST_PATH_IMAGE015
Figure 753809DEST_PATH_IMAGE015
.
4.根据权利要求1所述仿人机器人身体姿态角度实时估计方法,其特征在于,所述步骤(4)得到的机器人实际的姿态角度为:4. The method for estimating the body posture angle of a humanoid robot in real time according to claim 1, wherein the actual posture angle of the robot obtained in the step (4) is:
Figure 347471DEST_PATH_IMAGE016
 
Figure 347471DEST_PATH_IMAGE016
 
其中,
Figure 910695DEST_PATH_IMAGE017
分别表示状态向量
Figure 416762DEST_PATH_IMAGE018
第7,8,9行的元素。
in,
Figure 910695DEST_PATH_IMAGE017
respectively represent the state vector
Figure 416762DEST_PATH_IMAGE018
Elements of lines 7, 8, and 9.
CN 201010597601 2010-12-21 2010-12-21 Method for estimating body posture angle of humanoid robot in real time Expired - Fee Related CN102121828B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010597601 CN102121828B (en) 2010-12-21 2010-12-21 Method for estimating body posture angle of humanoid robot in real time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010597601 CN102121828B (en) 2010-12-21 2010-12-21 Method for estimating body posture angle of humanoid robot in real time

Publications (2)

Publication Number Publication Date
CN102121828A true CN102121828A (en) 2011-07-13
CN102121828B CN102121828B (en) 2012-12-19

Family

ID=44250435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010597601 Expired - Fee Related CN102121828B (en) 2010-12-21 2010-12-21 Method for estimating body posture angle of humanoid robot in real time

Country Status (1)

Country Link
CN (1) CN102121828B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102670217A (en) * 2012-05-04 2012-09-19 嘉兴市制衡精仪有限公司 Wearable sensor measuring device and method for lower limb joint acting force and moment
CN103808322A (en) * 2014-03-04 2014-05-21 韩涛 Compound type six degrees of freedom input method and system in inertia measurement LED (light-emitting diode) detection
CN104570732A (en) * 2014-12-15 2015-04-29 浙江大学 Online generation method for walking mode of humanoid robot
CN105956617A (en) * 2016-04-27 2016-09-21 西北工业大学 Joint estimation method for people and bike attitude in bike-like sport activity
CN106492439A (en) * 2016-10-08 2017-03-15 武汉新英赛健康科技有限公司 A kind of work-break exercises methods of marking
CN106650591A (en) * 2016-10-08 2017-05-10 武汉新英赛健康科技有限公司 Work-break exercise scoring system
CN107456173A (en) * 2016-06-06 2017-12-12 北京小米移动软件有限公司 Obstacle crossing method and device
CN107728635A (en) * 2017-11-13 2018-02-23 北京赛曙科技有限公司 A kind of automatic balancing arrangement and method of motor cycle type robot
CN107883951A (en) * 2017-10-19 2018-04-06 福建海图智能科技有限公司 A method and terminal for calculating three-dimensional attitude of an underwater robot
CN108345211A (en) * 2017-01-23 2018-07-31 深圳市祈飞科技有限公司 Biped anthropomorphic robot and its non-linear gait planning method and control method
CN108646733A (en) * 2018-04-27 2018-10-12 杭州艾豆智能科技有限公司 A kind of mobile robot and its antidote of automatic straightening
CN108897220A (en) * 2018-07-12 2018-11-27 上海硅族智能科技有限公司 A kind of adaptive stabilizing balance control method and system and biped anthropomorphic robot
CN109645960A (en) * 2019-01-15 2019-04-19 浙江大学 Physiological parameter generating device and method for humanoid robot
CN109991989A (en) * 2017-12-29 2019-07-09 深圳市优必选科技有限公司 Dynamic balance method and device of robot in idle state and storage medium
CN111956449A (en) * 2020-08-10 2020-11-20 河海大学常州校区 Exoskeleton rehabilitation treatment device for shoulder-elbow joint injury and control system thereof
CN112617811A (en) * 2021-01-04 2021-04-09 杭州风行医疗器械有限公司 Joint biomechanics measurement and evaluation device and method
CN112631277A (en) * 2020-12-08 2021-04-09 中山大学 Balance control method and system for four-legged robot standing posture conversion
WO2022199058A1 (en) * 2021-03-22 2022-09-29 深圳市优必选科技股份有限公司 Processing method and apparatus for robot stride length, robot control device, and storage medium
CN119526430A (en) * 2025-01-22 2025-02-28 北京信通泰克科技有限公司 Robot-based operation falling monitoring and early warning method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09273938A (en) * 1996-04-04 1997-10-21 Takao Yamaguchi Hybrid inertial navigation apparatus
WO1999020980A1 (en) * 1997-10-20 1999-04-29 Churyo Engineering Co., Ltd. Position measurement method for mobile station
CN101100059A (en) * 2007-07-27 2008-01-09 北京工业大学 Attitude detection method of flexible two-wheeled self-balancing robot
CN101403619A (en) * 2008-10-21 2009-04-08 北京理工大学 Foot gesture real-time detection system and method for human-imitated robot
CN101672650A (en) * 2009-09-29 2010-03-17 北京航空航天大学 Orienting and locating navigation system in circumstance of electromagnetic interference

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09273938A (en) * 1996-04-04 1997-10-21 Takao Yamaguchi Hybrid inertial navigation apparatus
WO1999020980A1 (en) * 1997-10-20 1999-04-29 Churyo Engineering Co., Ltd. Position measurement method for mobile station
CN101100059A (en) * 2007-07-27 2008-01-09 北京工业大学 Attitude detection method of flexible two-wheeled self-balancing robot
CN101403619A (en) * 2008-10-21 2009-04-08 北京理工大学 Foot gesture real-time detection system and method for human-imitated robot
CN101672650A (en) * 2009-09-29 2010-03-17 北京航空航天大学 Orienting and locating navigation system in circumstance of electromagnetic interference

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102670217A (en) * 2012-05-04 2012-09-19 嘉兴市制衡精仪有限公司 Wearable sensor measuring device and method for lower limb joint acting force and moment
CN103808322A (en) * 2014-03-04 2014-05-21 韩涛 Compound type six degrees of freedom input method and system in inertia measurement LED (light-emitting diode) detection
CN104570732A (en) * 2014-12-15 2015-04-29 浙江大学 Online generation method for walking mode of humanoid robot
CN104570732B (en) * 2014-12-15 2017-02-08 浙江大学 Online generation method for walking mode of humanoid robot
CN105956617A (en) * 2016-04-27 2016-09-21 西北工业大学 Joint estimation method for people and bike attitude in bike-like sport activity
CN105956617B (en) * 2016-04-27 2019-05-17 西北工业大学 A kind of people's vehicle posture combined estimation method for class cycling
CN107456173B (en) * 2016-06-06 2020-12-04 北京小米移动软件有限公司 Obstacle crossing method and device
CN107456173A (en) * 2016-06-06 2017-12-12 北京小米移动软件有限公司 Obstacle crossing method and device
CN106650591A (en) * 2016-10-08 2017-05-10 武汉新英赛健康科技有限公司 Work-break exercise scoring system
CN106492439A (en) * 2016-10-08 2017-03-15 武汉新英赛健康科技有限公司 A kind of work-break exercises methods of marking
CN106650591B (en) * 2016-10-08 2019-12-31 温胜洁 Workshop operation scoring system
CN108345211A (en) * 2017-01-23 2018-07-31 深圳市祈飞科技有限公司 Biped anthropomorphic robot and its non-linear gait planning method and control method
CN107883951A (en) * 2017-10-19 2018-04-06 福建海图智能科技有限公司 A method and terminal for calculating three-dimensional attitude of an underwater robot
CN107728635B (en) * 2017-11-13 2020-10-09 北京赛曙科技有限公司 Automatic balancing device and method for motorcycle type robot
CN107728635A (en) * 2017-11-13 2018-02-23 北京赛曙科技有限公司 A kind of automatic balancing arrangement and method of motor cycle type robot
CN109991989A (en) * 2017-12-29 2019-07-09 深圳市优必选科技有限公司 Dynamic balance method and device of robot in idle state and storage medium
CN108646733A (en) * 2018-04-27 2018-10-12 杭州艾豆智能科技有限公司 A kind of mobile robot and its antidote of automatic straightening
CN108897220A (en) * 2018-07-12 2018-11-27 上海硅族智能科技有限公司 A kind of adaptive stabilizing balance control method and system and biped anthropomorphic robot
CN108897220B (en) * 2018-07-12 2020-09-29 上海硅族智能科技有限公司 Self-adaptive stable balance control method and system and biped humanoid robot
CN109645960A (en) * 2019-01-15 2019-04-19 浙江大学 Physiological parameter generating device and method for humanoid robot
CN109645960B (en) * 2019-01-15 2023-05-23 浙江大学 Device and method for generating physiological parameters of humanoid robot
CN111956449A (en) * 2020-08-10 2020-11-20 河海大学常州校区 Exoskeleton rehabilitation treatment device for shoulder-elbow joint injury and control system thereof
CN112631277A (en) * 2020-12-08 2021-04-09 中山大学 Balance control method and system for four-legged robot standing posture conversion
CN112617811A (en) * 2021-01-04 2021-04-09 杭州风行医疗器械有限公司 Joint biomechanics measurement and evaluation device and method
WO2022199058A1 (en) * 2021-03-22 2022-09-29 深圳市优必选科技股份有限公司 Processing method and apparatus for robot stride length, robot control device, and storage medium
CN119526430A (en) * 2025-01-22 2025-02-28 北京信通泰克科技有限公司 Robot-based operation falling monitoring and early warning method and system

Also Published As

Publication number Publication date
CN102121828B (en) 2012-12-19

Similar Documents

Publication Publication Date Title
CN102121828B (en) Method for estimating body posture angle of humanoid robot in real time
CN108621161B (en) State estimation method of footed robot body based on multi-sensor information fusion
WO2020253854A1 (en) Mobile robot posture angle calculation method
US7145305B2 (en) System for estimating attitude of leg type moving robot itself
US8873831B2 (en) Walking robot and simultaneous localization and mapping method thereof
US7561941B2 (en) Ambulatory robot and method for controlling the same
CN111290272B (en) Attitude stationarity adjusting method based on multi-legged robot
US20120303162A1 (en) Mobile object controller and floor surface estimator
US12263597B2 (en) Robot localization using variance sampling
CN107560613A (en) Trajectory Tracking System and method in robot chamber based on nine axle inertial sensors
CN113843799B (en) A quadruped robot posture reset control method, device and storage medium
CN111949929B (en) A design method of quadruped robot motion odometry based on multi-sensor fusion
CN115540860A (en) Multi-sensor fusion pose estimation algorithm
CN114966629A (en) Vehicle body laser radar external reference calibration method based on EKF algorithm framework
CN111189443B (en) A pedestrian navigation method with online calibration step size, correction of motion deviation angle and adaptive energy management
Bai et al. Graph-optimisation-based self-calibration method for IMU/odometer using preintegration theory
Masuya et al. Com motion estimation of a humanoid robot based on a fusion of dynamics and kinematics information
CN118913286A (en) Submarine crawling combination navigation method and navigation system of amphibious robot
Ma et al. Legged odometry based on fusion of leg kinematics and IMU information in a humanoid robot
Liu et al. State estimation of a heavy-duty hexapod robot with passive compliant ankles based on the leg kinematics and IMU data fusion
CN211012986U (en) An unmanned autonomous cruise vehicle navigation system based on inertial navigation technology
KR100953431B1 (en) Balance Control Technique of Biped Robots through Estimation of GM Condition
CN111947685A (en) Coarse alignment method for movable base of polar region grid coordinate system
Feng et al. Measurement of mobile manipulator chassis pose change caused by suspension deformation and end-effector accuracy improvement based on multi-sensor fusion
CN113358121A (en) Electrically-driven insect configuration foot type robot foot-to-ground slip estimation method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20110713

Assignee: ZHEJIANG GUOZI ROBOT TECHNOLOGY Co.,Ltd.

Assignor: Zhejiang University

Contract record no.: 2013330000081

Denomination of invention: Method for estimating body posture angle of humanoid robot in real time

Granted publication date: 20121219

License type: Exclusive License

Record date: 20130422

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121219

Termination date: 20211221

CF01 Termination of patent right due to non-payment of annual fee