CN102120658B - Treatment and Recovery Method of Ammonia Nitrogen in Electrolytic Manganese Production Terminal Wastewater - Google Patents
Treatment and Recovery Method of Ammonia Nitrogen in Electrolytic Manganese Production Terminal Wastewater Download PDFInfo
- Publication number
- CN102120658B CN102120658B CN 201110033536 CN201110033536A CN102120658B CN 102120658 B CN102120658 B CN 102120658B CN 201110033536 CN201110033536 CN 201110033536 CN 201110033536 A CN201110033536 A CN 201110033536A CN 102120658 B CN102120658 B CN 102120658B
- Authority
- CN
- China
- Prior art keywords
- wastewater
- ammonia nitrogen
- electrolytic manganese
- exchange resin
- cation exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 239000002351 wastewater Substances 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 30
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 229910052748 manganese Inorganic materials 0.000 title claims abstract description 28
- 239000011572 manganese Substances 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 238000011084 recovery Methods 0.000 title claims description 17
- 239000003729 cation exchange resin Substances 0.000 claims abstract description 29
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims abstract description 28
- 230000008929 regeneration Effects 0.000 claims abstract description 21
- 238000011069 regeneration method Methods 0.000 claims abstract description 21
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052802 copper Inorganic materials 0.000 claims abstract description 10
- 239000010949 copper Substances 0.000 claims abstract description 10
- 239000011347 resin Substances 0.000 claims abstract description 10
- 229920005989 resin Polymers 0.000 claims abstract description 10
- 230000002378 acidificating effect Effects 0.000 claims abstract description 8
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 5
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000011651 chromium Substances 0.000 claims abstract description 4
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 3
- 238000001914 filtration Methods 0.000 claims abstract description 3
- 238000001179 sorption measurement Methods 0.000 claims description 19
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- 229910001431 copper ion Inorganic materials 0.000 claims description 3
- 238000005342 ion exchange Methods 0.000 claims description 3
- 239000012492 regenerant Substances 0.000 claims description 3
- 229940023913 cation exchange resins Drugs 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- 125000002091 cationic group Chemical group 0.000 claims 1
- 235000011149 sulphuric acid Nutrition 0.000 claims 1
- 238000004064 recycling Methods 0.000 abstract description 5
- 230000007613 environmental effect Effects 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 abstract 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000005868 electrolysis reaction Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 229910001430 chromium ion Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011656 manganese carbonate Substances 0.000 description 1
- 235000006748 manganese carbonate Nutrition 0.000 description 1
- 229940093474 manganese carbonate Drugs 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
本发明提供了一种电解锰生产末端废水中氨氮的处理和回收方法。它是将电解锰生产末端废水经过除铬、除锰、过滤等预处理后调节pH为10左右,使NH4 +转化为NH3•H2O,用自制含铜阳离子交换树脂吸附废水中的NH3;当树脂吸附NH3达到饱和后,用H2SO4作为再生剂,在pH为4左右的弱酸性条件下将吸附饱和的树脂进行脱附再生。利用本发明的方法可以使电解锰生产末端废水经上述处理后,废水中氨氮浓度低于国家规定的排放要求,同时可将废水中的氨氮分离回收,从而实现电解锰行业高浓度氨氮废水的有效治理与资源的回收利用,具有显著的环境、经济及社会效益。The invention provides a method for treating and recovering ammonia nitrogen in the terminal wastewater of electrolytic manganese production. It adjusts the pH to about 10 after pretreatment of electrolytic manganese production terminal wastewater such as chromium removal, manganese removal, and filtration, so that NH 4 + is converted into NH 3 •H 2 O, and the self-made copper-containing cation exchange resin is used to absorb the ions in the wastewater. NH 3 ; when the resin adsorbs NH 3 to saturation, use H 2 SO 4 as a regeneration agent to desorb and regenerate the saturated resin under weakly acidic conditions with a pH of about 4. Utilizing the method of the present invention can make the electrolytic manganese production terminal wastewater undergo the above-mentioned treatment, the concentration of ammonia nitrogen in the wastewater is lower than the discharge requirements stipulated by the state, and at the same time, the ammonia nitrogen in the wastewater can be separated and recovered, thereby realizing the effective treatment of high-concentration ammonia nitrogen wastewater in the electrolytic manganese industry. Governance and resource recycling have significant environmental, economic and social benefits.
Description
技术领域 technical field
本发明涉及电解锰生产末端废水中高浓度氨氮的处理和回收利用技术,具体来说是采用自制的含铜阳离子交换树脂实现对废水中的高浓度NH4 +进行选择性的分离和回收利用。 The invention relates to the treatment and recycling technology of high-concentration ammonia nitrogen in the waste water at the end of electrolytic manganese production. Specifically, the self-made copper-containing cation exchange resin is used to realize the selective separation and recycling of high-concentration NH 4 + in the waste water.
背景技术 Background technique
电解锰是一种重要的工业原料,广泛应用于冶金、化工、轻工、电子材料等部门,“无锰不成钢”,在钢铁工业中,电解锰的用量仅次于铁。目前我国的电解锰生产主要是用碳酸锰矿石加硫酸制取硫酸锰,然后进行电解获得,每生产1吨电解锰,排放废水约4~5吨,其中高浓度的氨氮废水主要来源于压滤、净化、电解等车间、生产辅助用锅炉房和尾矿库渗滤液,浓度约1000~2000mg/L。 Electrolytic manganese is an important industrial raw material. It is widely used in metallurgy, chemical industry, light industry, electronic materials and other departments. "No manganese can't make steel". In the iron and steel industry, the amount of electrolytic manganese is second only to iron. At present, the production of electrolytic manganese in my country is mainly to produce manganese sulfate by adding sulfuric acid to manganese carbonate ore, and then obtain it by electrolysis. For every ton of electrolytic manganese produced, about 4 to 5 tons of wastewater will be discharged, and the high-concentration ammonia nitrogen wastewater is mainly from pressure filtration. , Purification, electrolysis and other workshops, boiler rooms for auxiliary production and tailings pond leachate, the concentration is about 1000-2000mg/L.
目前,国内的电解锰废水大部分采用“还原-中和沉淀法”工艺进行治理,它只针对废水中的铬、锰离子进行去除,对氨氮的去除无任何作用。国内绝大多数的电解锰厂未对氨氮进行处理就直接排放,造成重大的环境污染,随着近几年电解锰行业对环境的污染情况日益加剧,相关标准陆续制定公布,国家已将氨氮列入“十二五”重点控制污染物名录,氨氮的污染控制成为当前非常紧迫的任务。 At present, most of the domestic electrolytic manganese wastewater is treated by the "reduction-neutralization precipitation" process, which only removes chromium and manganese ions in the wastewater, and has no effect on the removal of ammonia nitrogen. The vast majority of electrolytic manganese plants in China directly discharge ammonia nitrogen without treatment, causing major environmental pollution. With the increasing environmental pollution in the electrolytic manganese industry in recent years, relevant standards have been formulated and announced one after another. The country has listed ammonia nitrogen as a Ammonia nitrogen pollution control has become a very urgent task at present.
本发明针对电解锰废水的特点,采用一套废水中高浓度氨氮的去除及回收利用的新技术,在处理废水的同时回收资源。 Aiming at the characteristics of electrolytic manganese wastewater, the invention adopts a set of new technologies for the removal and recycling of high-concentration ammonia nitrogen in wastewater, and recycles resources while treating wastewater.
发明内容 Contents of the invention
本发明的主要目的是提供一种电解锰生产末端废水高浓度氨氮的处理和回收方法,利用本发明方法最终能使电解锰废水中氨氮浓度达到国家规定的排放标准要求,并且可以从中分离回收绝大部分的NH4 +重新回用于电解锰生产,实现废水治理和资源回收利用的有机结合。 The main purpose of the present invention is to provide a method for treating and recovering high-concentration ammonia-nitrogen from electrolytic manganese production end wastewater. Using the method of the present invention, the concentration of ammonia-nitrogen in electrolytic manganese wastewater can finally meet the discharge standard requirements stipulated by the state, and it can be separated and recovered from it. Most of the NH 4 + is reused for electrolytic manganese production, realizing the organic combination of wastewater treatment and resource recovery.
为实现上述目的,本发明采用如下技术方案: To achieve the above object, the present invention adopts the following technical solutions:
一种电解锰生产末端废水中氨氮的处理和回收方法,其步骤如下: A method for treating and recovering ammonia nitrogen in electrolytic manganese production terminal waste water, the steps are as follows:
a. 将电解锰生产末端废水经过常规除铬、除锰、过滤处理后调节pH为9~10,使NH4 +转化为NH3•H2O,在20℃的条件下,采用逐级流态交换吸附方式,利用阳离子交换树脂负载的过渡金属离子吸附废水中的NH3; a. After conventional chromium removal, manganese removal, and filtration treatment, adjust the pH of the electrolytic manganese production terminal wastewater to 9~10, so that NH 4 + can be converted into NH 3 •H 2 O. State-exchange adsorption method, using transition metal ions loaded on cation exchange resin to adsorb NH 3 in wastewater;
b. 当上述阳离子交换树脂在吸附达到饱和后,用H2SO4作为再生剂,在pH为4左右的条件下,对吸附饱和的交换树脂进行脱附再生。 b. When the adsorption of the cation exchange resin reaches saturation, use H 2 SO 4 as a regeneration agent, and desorb and regenerate the saturated exchange resin at a pH of about 4.
上述步骤a中经过吸附的出水可直接达标(GB8978-1996)排放。 The effluent that has been adsorbed in step a above can be discharged directly up to the standard (GB8978-1996).
如上所述的处理和回收方法,其中,步骤a中所述的阳离子交换树脂为自制的含有过渡金属的阳离子交换树脂。 The treatment and recovery method as described above, wherein the cation exchange resin described in step a is a self-made cation exchange resin containing transition metals.
如上所述的处理和回收方法,其中,步骤a中所述的阳离子交换树脂为自制的含铜阳离子交换树脂。 The treatment and recovery method as described above, wherein the cation exchange resin described in step a is a self-made copper-containing cation exchange resin.
如上所述的处理和回收方法,其中,所述的含有铜离子的阳离子交换树脂是将0.5~1.5mol/L的CuSO4流过装有一种弱酸性阳离子交换树脂的离子交换柱使其穿透,从而使其转化成含铜阳离子型交换树脂; The above-mentioned treatment and recovery method, wherein, the cation exchange resin containing copper ions is that 0.5 ~ 1.5mol/L CuSO flows through an ion exchange column equipped with a weakly acidic cation exchange resin to penetrate , so that it is converted into a copper-containing cation exchange resin;
所述的弱酸性阳离子交换树脂是指含有弱酸性交换基团:羧酸基—COOH的阳离子交换树脂。 The weakly acidic cation exchange resin refers to the cation exchange resin containing weakly acidic exchange group: carboxylic acid group—COOH.
如上所述的处理和回收方法,其特征是,所述的弱酸性阳离子交换树脂为大孔型丙烯酸系弱酸性阳离子交换树脂。 The above treatment and recovery method is characterized in that the weakly acidic cation exchange resin is a macroporous acrylic weakly acidic cation exchange resin.
如上所述的处理和回收方法,其中,上述步骤b中所述再生剂H2SO4的浓度为1~2mol/L。 The treatment and recovery method as described above, wherein the concentration of the regenerant H 2 SO 4 in the above step b is 1-2 mol/L.
如上所述的处理和回收方法,其中,上述步骤b中产生的再生液为(NH4)2SO4,可将其回用到电解锰的生产工艺中,氨氮浓度低于3000mg/L的再生液可将其套用于下批含铜阳离子交换树脂的再生步骤。 The above-mentioned treatment and recovery method, wherein, the regeneration solution generated in the above step b is (NH 4 ) 2 SO 4 , which can be reused in the production process of electrolytic manganese, and the regeneration solution with an ammonia nitrogen concentration lower than 3000mg/L The solution can be used in the regeneration step of the next batch of copper-containing cation exchange resins.
如上所述的处理和回收方法,其中,本发明中阳离子交换吸附优选采用“三级流态逐级交换吸附——同步再生”工艺:所述的三级流态逐级交换,即一级吸附出水作为二级吸附进水,二级吸附出水作为三级吸附进水,采用机械搅拌等方式使树脂充分吸附NH3分子至饱和,在某一级进行交换吸附的同时,对其他级已吸附饱和的阳离子交换树脂实施同步再生。如此进行,可以保证整个装置的高效率运行。 In the above-mentioned treatment and recovery method, wherein, the cation exchange adsorption in the present invention preferably adopts the process of "three-stage flow state step-by-step exchange adsorption-synchronous regeneration": the three-stage flow state step-by-step exchange, that is, one-stage adsorption The effluent is used as the secondary adsorption inlet water, and the secondary adsorption effluent is used as the tertiary adsorption inlet water. Mechanical stirring is used to make the resin fully adsorb NH3 molecules to saturation. While performing exchange adsorption at one stage, other stages have been adsorbed and saturated. The cation exchange resin is regenerated synchronously. In this way, the high-efficiency operation of the entire device can be guaranteed.
如上所述的处理和回收方法,其中,所述的三级流态逐级交换工艺为利用在线氨氮检测仪和工业计算机控制所有阀门和流量的自动操作方式。 The above-mentioned treatment and recovery method, wherein, the three-stage flow state step-by-step exchange process is an automatic operation mode that uses an online ammonia nitrogen detector and an industrial computer to control all valves and flow rates.
本发明的有益效果在于: The beneficial effects of the present invention are:
本发明可以使电解锰生产末端废水经上述处理后,出水氨氮浓度达到国家规定的排放标准(GB8978-1996),即氨氮浓度≤15mg/L,去除率≥98%。同时可将废水中的高浓度氨氮分离回收,其回收率≥98%,从而实现了废水的有效治理和资源的回收利用。整个工艺流程可采用工业计算机控制,实现自动化运行,提高了系统运行的稳定性,减少了人力成本,降低了劳动强度。 The invention can make the end wastewater of electrolytic manganese production undergo the above-mentioned treatment, and the concentration of ammonia nitrogen in the effluent reaches the discharge standard stipulated by the state (GB8978-1996), that is, the concentration of ammonia nitrogen is ≤15mg/L, and the removal rate is ≥98%. At the same time, the high-concentration ammonia nitrogen in the wastewater can be separated and recovered, and the recovery rate is ≥98%, thus realizing the effective treatment of wastewater and the recycling of resources. The entire technological process can be controlled by industrial computer to realize automatic operation, which improves the stability of system operation, reduces labor cost and labor intensity.
具体实施方式 Detailed ways
本发明方法的吸附原理如下: The adsorption principle of the inventive method is as follows:
(1)含铜离子的阳离子交换树脂的制备: (1) Preparation of cation exchange resin containing copper ions:
(2)吸附氨氮: (2) Adsorption of ammonia nitrogen:
(3)树脂再生: (3) Resin regeneration:
以下通过实例对依据本发明提供的具体实施方式详述如下。 The specific implementations provided according to the present invention are described in detail below through examples.
实施例Example 11
将出厂的大孔型丙烯酸系弱酸性阳离子交换树脂装入玻璃交换柱中(Ф28×350mm), 使1.5mol/L的CuSO4溶液流过该离子交换柱并将其穿透,从而使其转化成含铜阳离子型交换树脂,树脂颜色变为蓝色。 Put the factory-made macroporous acrylic weakly acidic cation exchange resin into a glass exchange column (Ф28×350mm), let 1.5mol/L CuSO 4 solution flow through the ion exchange column and penetrate it, so that it can convert into a copper-containing cation exchange resin, and the color of the resin turns blue.
实施例Example 22
将干重20.002g的自制含铜阳离子交换树脂装入250mL的锥形瓶中。将150mL电解锰废水用NaOH调节pH为10,使NH4 +转化为NH3•H2O,采用磁力搅拌器进行搅拌使树脂充分吸附,吸附饱和后处理水进入下一级进行交换吸附,原废水中氨氮浓度为1141.07mg/L,经自制的含铜阳离子交换树脂三级交换吸附后,氨氮浓度达到11.17mg/L,低于国家规定的排放标准要求,去除率可达99.02%。 The self-made copper-containing cation exchange resin with a dry weight of 20.002 g was charged into a 250 mL Erlenmeyer flask. Adjust the pH of 150mL electrolytic manganese wastewater to 10 with NaOH to convert NH 4 + into NH 3 •H 2 O, and stir with a magnetic stirrer to fully absorb the resin. After the adsorption is saturated, the treated water enters the next stage for exchange and adsorption. The concentration of ammonia nitrogen in the wastewater is 1141.07mg/L. After the three-stage exchange and adsorption of self-made copper-containing cation exchange resin, the concentration of ammonia nitrogen reaches 11.17mg/L, which is lower than the national emission standard requirements, and the removal rate can reach 99.02%.
实施例Example 33
按照实施例2中所述的操作步骤进行操作。原废水中氨氮的浓度为1100.18mg/L,将进水pH调为9, 经自制的含铜阳离子交换树脂三级交换吸附后,氨氮浓度达到12.88 mg/L,低于国家规定的排放标准要求,去除率可达98.83%,出水可达标排放。 Follow the steps described in Example 2 to operate. The concentration of ammonia nitrogen in the original wastewater was 1100.18mg/L, and the pH of the influent water was adjusted to 9. After the three-stage exchange and adsorption of the self-made copper-containing cation exchange resin, the concentration of ammonia nitrogen reached 12.88 mg/L, which was lower than the national emission standards. , The removal rate can reach 98.83%, and the effluent can reach the standard discharge.
实施例Example 44
阳离子交换树脂吸附饱和后,在pH=4的条件下,用1mol/L的H2SO4作为再生剂进行脱附再生,再生液中氨氮平均浓度可达630mg/L以上;用H2SO4调节再生液到pH=4,作为再生剂对饱和的阳离子交换树脂进行再生,二次再生液氨氮平均浓度可达1430mg/L以上;以同样的方法循环5次,再生液氨氮平均浓度可达4000mg/L以上,可回用到化合或电解等生产工艺中去,实现对氨氮的回收利用,回收率可达99%以上。 After the adsorption and saturation of the cation exchange resin, under the condition of pH=4, use 1mol/L H 2 SO 4 as the regeneration agent for desorption regeneration, and the average concentration of ammonia nitrogen in the regeneration solution can reach more than 630mg/L; use H 2 SO 4 Adjust the regeneration solution to pH = 4, and use it as a regeneration agent to regenerate the saturated cation exchange resin. The average concentration of ammonia nitrogen in the secondary regeneration liquid can reach more than 1430mg/L; cycle 5 times in the same way, and the average concentration of ammonia nitrogen in the regeneration liquid can reach 4000mg /L or more, it can be reused in production processes such as compounding or electrolysis to realize the recovery and utilization of ammonia nitrogen, and the recovery rate can reach more than 99%.
实施例Example 55
按照实施例4中所述的操作步骤进行操作。将再生过程中 1mol/L的H2SO4再生剂浓度改为2mol/L进行脱附再生,再生液氨氮浓度可达800mg/L以上,迭代循环再生6次,再生液氨氮平均浓度可达5000mg/L以上,可回用到化合或电解等生产工艺中去,实现对氨氮的回收利用,回收率可达99%。 Follow the procedure described in Example 4. Change the concentration of 1mol/L H 2 SO 4 regenerant to 2mol/L in the regeneration process for desorption regeneration, the concentration of regenerated liquid ammonia nitrogen can reach more than 800mg/L, iterative cycle regeneration 6 times, the average concentration of regenerated liquid ammonia nitrogen can reach 5000mg /L or more, it can be reused in production processes such as compounding or electrolysis to realize the recovery and utilization of ammonia nitrogen, and the recovery rate can reach 99%.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110033536 CN102120658B (en) | 2011-01-31 | 2011-01-31 | Treatment and Recovery Method of Ammonia Nitrogen in Electrolytic Manganese Production Terminal Wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110033536 CN102120658B (en) | 2011-01-31 | 2011-01-31 | Treatment and Recovery Method of Ammonia Nitrogen in Electrolytic Manganese Production Terminal Wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102120658A CN102120658A (en) | 2011-07-13 |
CN102120658B true CN102120658B (en) | 2013-02-27 |
Family
ID=44249344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110033536 Expired - Fee Related CN102120658B (en) | 2011-01-31 | 2011-01-31 | Treatment and Recovery Method of Ammonia Nitrogen in Electrolytic Manganese Production Terminal Wastewater |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102120658B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102839397B (en) * | 2012-08-17 | 2015-03-25 | 湖南振兴股份有限公司 | Manganese recycling process of electrolytic manganese slag |
CN104030481A (en) * | 2013-03-08 | 2014-09-10 | 深圳中环科环保科技有限公司 | Electrolytic manganese waste water treatment and recycling method and system |
CN103991927B (en) * | 2014-06-06 | 2015-07-29 | 四川恒达环境技术有限公司 | Bivalent manganese and ammonia nitrogen recovery method in electrolytic manganese production technique tail end wastewater |
CN104005050B (en) * | 2014-06-06 | 2016-05-04 | 四川恒达环境技术有限公司 | In Electrolytic Manganese Wastewater, bivalent manganese is processed reuse method |
CN106396056B (en) * | 2016-10-27 | 2019-08-27 | 长沙矿冶研究院有限责任公司 | Handle method magnesium eletrolysis containing manganese manganese waste water and recycle Manganese in Waste Water |
CN108751325A (en) * | 2018-06-07 | 2018-11-06 | 成都恩承科技股份有限公司 | A kind of ammonia nitrogen waste water processing system and ammonia nitrogen waste water treatment method |
CN110980876A (en) * | 2019-11-21 | 2020-04-10 | 武汉百富环保工程有限公司 | Treatment process for recovering copper and recycling chromium from passivation solution |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101607769A (en) * | 2009-07-26 | 2009-12-23 | 江西理工大学 | A kind of treatment process of wastewater containing ammonia nitrogen |
CN101838061A (en) * | 2010-05-17 | 2010-09-22 | 赣州华兴钨制品有限公司 | Method for treating ammonia-nitrogen wastewater and recovering the same into ammonium salt |
-
2011
- 2011-01-31 CN CN 201110033536 patent/CN102120658B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101607769A (en) * | 2009-07-26 | 2009-12-23 | 江西理工大学 | A kind of treatment process of wastewater containing ammonia nitrogen |
CN101838061A (en) * | 2010-05-17 | 2010-09-22 | 赣州华兴钨制品有限公司 | Method for treating ammonia-nitrogen wastewater and recovering the same into ammonium salt |
Non-Patent Citations (1)
Title |
---|
彭佳乐.新型铜基离子交换树脂处理氨氮废水的研究.《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》.2010,第23页、28-33页、第56-58页. * |
Also Published As
Publication number | Publication date |
---|---|
CN102120658A (en) | 2011-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102120658B (en) | Treatment and Recovery Method of Ammonia Nitrogen in Electrolytic Manganese Production Terminal Wastewater | |
US10662075B2 (en) | Method and apparatus for the recovery and deep treatment of polluted acid | |
CN101570372B (en) | Method for purifying electroplating wastewater and comprehensively utilizing resources | |
CN101838065B (en) | Method for recycling hexavalent chromium in electrolytic manganese production tail end wastewater | |
CN103496802B (en) | Chromium and manganese recovery method in electrolytic manganese and chromium wastewater treatment process | |
CN101269871A (en) | A method for treating chromium-containing wastewater | |
CN101838064A (en) | Method for recycling manganese ion in electrolytic manganese production tail end wastewater | |
CN103880113B (en) | Method for recycling heavy metal ion wastewater by using modified fly ash | |
CN104609683B (en) | A kind of regeneration method of heavy metal chromium in chrome tanning sludge | |
CN103011464B (en) | A treatment method for antimony-containing wastewater | |
CN105174556A (en) | High-acidity high-iron heavy metal wastewater quality-divided resource recycling method | |
CN107902855B (en) | Recovery process of waste zinc ions in viscose fiber production | |
CN102260020A (en) | Deep processing method of leather production biochemical tail water with resin adsorption method | |
CN103449623A (en) | Method for preparing metal nanometer material by recovering from industrial waste water | |
CN108218039A (en) | A method of resin adsorption-desorption-diffusion dialysis treatment of VA group element oxygen-anion wastewater | |
CN101746843B (en) | Method for recycling heavy metal ion in water body by utilizing ion chelate fiber | |
CN111499055B (en) | Comprehensive treatment method of lithium rubber synthetic wastewater | |
CN106191440A (en) | A kind of remove the method for fluorion in solution of zinc sulfate | |
CN103498050A (en) | Chromium recovery method in electrolytic manganese chromium wastewater treatment process | |
CN112777774B (en) | Nickel-containing wastewater treatment device and nickel-containing wastewater treatment method | |
CN107354300A (en) | A kind of method of enriching rhenium in spent acid from Copper making | |
CN103754996B (en) | Method for deeply treating cyanided gold extraction waste water by electro-adsorption technology | |
CN104986898A (en) | Method and device for treating heavy metal waste water by ambient-temperature ferrite cycle treatment process | |
CN210764811U (en) | Iron-containing waste acid cooperative recovery system | |
CN103395746B (en) | Method for purifying byproduct hydrochloric acid in 3, 4-dichloronitrobenzene production process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130227 Termination date: 20150131 |
|
EXPY | Termination of patent right or utility model |