CN102118151A - Clock circuit of integrated circuit - Google Patents
Clock circuit of integrated circuit Download PDFInfo
- Publication number
- CN102118151A CN102118151A CN2009102637121A CN200910263712A CN102118151A CN 102118151 A CN102118151 A CN 102118151A CN 2009102637121 A CN2009102637121 A CN 2009102637121A CN 200910263712 A CN200910263712 A CN 200910263712A CN 102118151 A CN102118151 A CN 102118151A
- Authority
- CN
- China
- Prior art keywords
- circuit
- reference voltage
- output
- temperature
- integrated circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008859 change Effects 0.000 claims description 14
- 239000004065 semiconductor Substances 0.000 claims description 3
- 230000003321 amplification Effects 0.000 claims 2
- 229910044991 metal oxide Inorganic materials 0.000 claims 2
- 150000004706 metal oxides Chemical class 0.000 claims 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 47
- 238000001514 detection method Methods 0.000 description 32
- 239000003990 capacitor Substances 0.000 description 17
- 230000007423 decrease Effects 0.000 description 13
- 230000001419 dependent effect Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 4
- 238000007599 discharging Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Landscapes
- Dram (AREA)
- Logic Circuits (AREA)
Abstract
Description
技术领域technical field
本发明是关于具有时钟电路的集成电路,其可容忍诸如温度、接地噪声、电源噪声等变异。The present invention relates to integrated circuits with clock circuits that are tolerant to variations such as temperature, ground noise, power supply noise, and the like.
背景技术Background technique
集成电路的时钟电路的运作会随温度、接地噪声、电源噪声等因子而有变异。由于这些变异会影响输出时钟信号的最终时序,已有多项研究进行期能针对此一问题,在上述变异存在的情况下,产生较均匀的输出时钟信号。The operation of the clock circuit of an integrated circuit will vary with factors such as temperature, ground noise, and power supply noise. Since these variations will affect the final timing of the output clock signal, a number of studies have been conducted to address this issue and produce a more uniform output clock signal in the presence of the above variations.
举例而言,Gaboury的美国专利第7,142,005号利用增加具有主动负载的缓冲电路、独立偏压电路系统、以及偏压电路系统的方式,来隔离电源波动对时钟信号的影响。为了达成隔离电源波动对时钟信号的影响,这些相对复杂的缓冲电路造成晶粒面积与成本的大幅增加。For example, US Pat. No. 7,142,005 to Gaboury uses a buffer circuit with an active load, independent bias circuitry, and bias circuitry to isolate the clock signal from power fluctuations. In order to isolate the impact of power supply fluctuations on the clock signal, these relatively complex buffer circuits cause a significant increase in die area and cost.
因此产生需求,希望能够解决这些变异问题,但采用较不复杂的结构与较少的成本Hence the need to address these variations, but with a less complex structure and less cost
发明内容Contents of the invention
本发明是提供一种具有时钟集成电路的装置的技术。The present invention is a technique to provide a device with a clock integrated circuit.
此时钟集成电路具有一栓锁器,产生该时钟集成电路的一时钟信号输出。该栓锁器包含交互耦接的逻辑门,如此该栓锁器中的该交互耦接的逻辑门的输出与该栓锁器中的该交互耦接的不同逻辑门的输入耦接。The clock integrated circuit has a latch for generating a clock signal output of the clock integrated circuit. The latch includes cross-coupled logic gates such that an output of the cross-coupled logic gate in the latch is coupled to an input of a different cross-coupled logic gate in the latch.
此时钟集成电路也具有一时序电路与该栓锁器的一输出耦接,该时序电路的一输出在一第一参考信号与一第二参考信号之间切换,该切换的一速率是由一与温度相关的时间常数来决定。该时序电路的该输出决定该时钟信号输出的时序。The clock IC also has a timing circuit coupled to an output of the latch, an output of the timing circuit switches between a first reference signal and a second reference signal at a rate determined by a Determined by the temperature-dependent time constant. The output of the timing circuit determines the timing of the clock signal output.
此时钟集成电路也具有一反相电路,比较该时序电路的一输出与一温度补偿参考值,如此该时钟集成电路的该时钟信号输出的该时序可以抵挡温度变动,该反相电路的一输出与该栓锁器的一输入耦接。The clock integrated circuit also has an inverting circuit for comparing an output of the timing circuit with a temperature compensation reference value, so that the timing of the clock signal output of the clock integrated circuit can withstand temperature fluctuations, and an output of the inverting circuit coupled with an input of the latch.
在某些实施例中,该时间常数是一指数信号。In some embodiments, the time constant is an exponential signal.
在某些实施例中,该第一参考信号是一第一参考电压,该第二参考信号是一第二参考电压,且该时序电路在自该第一参考电压充电至该第二参考电压的状态与自该第二参考电压放电至该第一参考电压的状态之间切换。In some embodiments, the first reference signal is a first reference voltage, the second reference signal is a second reference voltage, and the timing circuit is charged from the first reference voltage to the second reference voltage state and a state of discharging from the second reference voltage to the first reference voltage.
在某些实施例中,该第一参考信号是一第一参考电压,该第二参考信号是一第二参考电压,且该时序电路,响应至该反相电路,在自该第一参考电压充电至该第二参考电压的状态与自该第二参考电压放电至该第一参考电压的状态之间切换。其中该反相电路的该温度补偿触发点是一第三参考电压,其随着温度增加而降低。在一实施例中,该反相电路的该温度补偿触发点是由一温度补偿电源所产生。In some embodiments, the first reference signal is a first reference voltage, the second reference signal is a second reference voltage, and the sequential circuit, in response to the inverting circuit, The state of charging to the second reference voltage is switched between the state of discharging from the second reference voltage to the first reference voltage. Wherein the temperature compensation trigger point of the inverting circuit is a third reference voltage, which decreases with increasing temperature. In one embodiment, the temperature-compensated trigger point of the inverter circuit is generated by a temperature-compensated power supply.
本发明的另一目的为提供一种具有时钟集成电路的装置,将反相器以施密特触发电路取代。Another object of the present invention is to provide a device with a clock integrated circuit in which the inverter is replaced by a Schmitt trigger circuit.
本发明的又一目的为提供一种具有时钟集成电路的装置,将反相器以运算放大器电路取代,且加上一个电流产生器型的参考电路,产生该温度补偿参考值。Another object of the present invention is to provide a device with a clock integrated circuit, the inverter is replaced by an operational amplifier circuit, and a current generator type reference circuit is added to generate the temperature compensation reference value.
在许多不同的实施例中,该电流产生器型的参考电路是一电流产生器及一电阻特性装置,包含一电阻、二极管及一金属氧化半导体晶体管的任一种;且某些其它的装置如一具有CTAT(与温度反比)特性及PTAT(与温度正比)特性至少之一的装置。In many different embodiments, the reference circuit of the current generator type is a current generator and a resistive characteristic device including any of a resistor, a diode, and a metal-oxide-semiconductor transistor; and some other device such as a A device having at least one of CTAT (inversely proportional to temperature) and PTAT (proportional to temperature) characteristics.
本发明的再一目的为提供一种具有时钟集成电路的装置,包含一栓锁器产生该时钟集成电路的一时钟信号输出。该栓锁器包含一第一逻辑门及一第二逻辑门彼此交互耦接。该第一逻辑门的一输出与该第二逻辑门的一第一输入耦接。该第二逻辑门的一输出与该第一逻辑门的一第一输入耦接。该第二逻辑门的该输出与该第一逻辑门的一第二输入经由至少一第一时序电路及一第一反相器耦接。该第一逻辑门的该输出与该第二逻辑门的一第二输入经由至少一第二时序电路及一第二反相器耦接。Another object of the present invention is to provide a device with a clock integrated circuit, including a latch to generate a clock signal output of the clock integrated circuit. The latch includes a first logic gate and a second logic gate mutually coupled to each other. An output of the first logic gate is coupled to a first input of the second logic gate. An output of the second logic gate is coupled to a first input of the first logic gate. The output of the second logic gate is coupled to a second input of the first logic gate through at least one first sequential circuit and a first inverter. The output of the first logic gate is coupled to a second input of the second logic gate via at least a second sequential circuit and a second inverter.
该第一时序电路具有一输出在一第一参考信号与一第二参考信号之间以一第一速率切换,该第一速率是由一与温度相关的第一时间常数来决定。The first sequential circuit has an output that switches between a first reference signal and a second reference signal at a first rate determined by a first temperature-dependent time constant.
该第二时序电路具有一输出在该第一参考信号与该第二参考信号之间以一第二速率切换,该第二速率是由一与温度相关的一第二时间常数来决定。The second timing circuit has an output that switches between the first reference signal and the second reference signal at a second rate determined by a second time constant that is temperature dependent.
该第一时序电路及该第二时序电路的所述输出决定该时钟信号输出的时序。The outputs of the first timing circuit and the second timing circuit determine the timing of the clock signal output.
该第一反相器比较该第一时序电路的一输出与一第一温度补偿参考值,其是该第一反相器的一第一温度补偿触发点。The first inverter compares an output of the first sequential circuit with a first temperature compensation reference value, which is a first temperature compensation trigger point of the first inverter.
该第二反相器比较该第二时序电路的一输出与一第二温度补偿参考值,其是该第二反相器的一第二温度补偿触发点。The second inverter compares an output of the second timing circuit with a second temperature compensation reference value, which is a second temperature compensation trigger point of the second inverter.
在一实施例中,该第一参考信号是一第一参考电压,该第二参考信号是一第二参考电压,且该第一时序电路及该第二时序电路在自该第一参考电压充电至该第二参考电压的状态与自该第二参考电压放电至该第一参考电压的状态之间切换。在一实施例中,所述温度补偿参考值是一第三参考电压,其随着温度增加而降低。In one embodiment, the first reference signal is a first reference voltage, the second reference signal is a second reference voltage, and the first timing circuit and the second timing circuit are charging from the first reference voltage Switching between a state to the second reference voltage and a state of discharging from the second reference voltage to the first reference voltage. In one embodiment, the temperature compensation reference value is a third reference voltage which decreases with increasing temperature.
在一实施例中,该第一及第二时间常数是一指数信号。In one embodiment, the first and second time constants are an exponential signal.
在一实施例中,该第一及第二温度补偿参考值是自一共同参考电路产生。In one embodiment, the first and second temperature compensation reference values are generated from a common reference circuit.
在一实施例中,该第一及第二温度补偿参考值是自不同的参考电路产生。In one embodiment, the first and second temperature compensation reference values are generated from different reference circuits.
本发明的另一目的为提供一种具有时钟集成电路的装置,将数组反相器以数组施密特触发电路取代。Another object of the present invention is to provide a device with a clock integrated circuit in which the array inverter is replaced by an array Schmitt trigger circuit.
本发明的另一目的为提供一种具有时钟集成电路的装置,将数组反相器以数组运算放大器电路取代,且加上一个电流产生器型的参考电路,产生该温度补偿参考值。Another object of the present invention is to provide a device with a clock integrated circuit, in which the array inverter is replaced by an array operational amplifier circuit, and a current generator type reference circuit is added to generate the temperature compensation reference value.
附图说明Description of drawings
本发明的目的、特征和实施例,在下列实施方式的章节中搭配附图被描述,其中:Objects, features and embodiments of the present invention are described in the accompanying drawings in the following embodiments section, in which:
图1显示一具有例如是温度、接地电压或是电源电压变动承受能力的集成电路时钟电路的方块示意图。FIG. 1 shows a schematic block diagram of an integrated circuit clock circuit with tolerance to variations such as temperature, ground voltage, or supply voltage.
图2A和图2B显示一具有对温度变动承受能力的集成电路时钟电路的电路示意图,其包含一反相电路以评估时序电路的输出,其中图2A具有电容性时序电路与地耦接而第2B图具有电容性时序电路与电源耦接。Figure 2A and Figure 2B show a schematic circuit diagram of an integrated circuit clock circuit with the ability to withstand temperature fluctuations, which includes an inverter circuit to evaluate the output of the timing circuit, wherein Figure 2A has a capacitive timing circuit coupled to ground and 2B Figure has a capacitive sequential circuit coupled to a power supply.
图2C显示具有对温度变动承受能力的集成电路时钟电路的电路示意图,其与图2A类似,但是自一PTAT电源接收电源而不是从CTAT电源。Figure 2C shows a schematic circuit diagram of an integrated circuit clock circuit with tolerance to temperature fluctuations, similar to Figure 2A, but receiving power from a PTAT power supply instead of a CTAT power supply.
图2D显示一具有对温度变动承受能力的集成电路时钟电路的电路示意图,其包含一施密特触发电路以评估此时序电路的输出。FIG. 2D shows a schematic circuit diagram of an integrated circuit clock circuit capable of withstanding temperature fluctuations, which includes a Schmitt trigger circuit to evaluate the output of the timing circuit.
图2E显示一施密特触发电路的示意图,例如在图2D中。FIG. 2E shows a schematic diagram of a Schmitt trigger circuit, such as that in FIG. 2D.
图3A和图3B显示一具有对温度变动承受能力的集成电路时钟电路的电路示意图,其包含一运算放大器电路以藉由比较输出与一参考值来执行时序电路输出的准位侦测,其中图3A具有电容性时序电路与地耦接而第3B图具有电容性时序电路与电源耦接。3A and 3B show a schematic circuit diagram of an integrated circuit clock circuit with the ability to withstand temperature fluctuations, which includes an operational amplifier circuit to perform level detection of the output of the timing circuit by comparing the output with a reference value, where the figure 3A has the capacitive timing circuit coupled to ground and FIG. 3B has the capacitive sequential circuit coupled to power.
图4A显示准位侦测电路的参考信号的电路示意图,其包含一具有随着温度的增加而减少电流输出的PTAT电流源。FIG. 4A shows a schematic circuit diagram of a reference signal for a level detection circuit, which includes a PTAT current source with a current output that decreases as temperature increases.
图4B显示准位侦测电路的参考信号的电路示意图,其包含一具有随着温度的增加而增加电流输出的CTAT电流源。FIG. 4B shows a schematic circuit diagram of a reference signal for a level detection circuit, which includes a CTAT current source with an output current that increases with temperature.
图4C显示准位侦测电路的参考信号的电路示意图,其包含一具有随着温度的增加而减少电流输出的PTAT电流源,且更具有一电容器与一电流镜的负载电阻并联。4C shows a schematic circuit diagram of a reference signal of a level detection circuit, which includes a PTAT current source with a current output that decreases as temperature increases, and further has a capacitor connected in parallel with a load resistor of a current mirror.
图4D是一电流发生器的示意图,其根据参考电路自PMOS装置提供PTAT电流。4D is a schematic diagram of a current generator that provides PTAT current from a PMOS device according to a reference circuit.
图4E是一电流发生器的示意图,其根据参考电路自NMOS装置提供PTAT电流。4E is a schematic diagram of a current generator that provides PTAT current from an NMOS device according to a reference circuit.
图4F是一电流发生器的示意图,其根据参考电路自PMOS装置提供CTAT电流。4F is a schematic diagram of a current generator that provides CTAT current from a PMOS device according to a reference circuit.
图4G是一电流发生器的示意图,其根据参考电路自NMOS装置提供CTAT电流。4G is a schematic diagram of a current generator that provides CTAT current from an NMOS device according to a reference circuit.
图5A显示准位侦测电路的参考信号的电路示意图,其包含一具有随着温度的增加而降低电流输出的电流源,及一随着温度的增加而降低的输出。FIG. 5A shows a schematic circuit diagram of a reference signal of a level detection circuit, which includes a current source with a current output that decreases with increasing temperature, and an output that decreases with increasing temperature.
图5B显示准位侦测电路的参考信号的电路示意图,其包含一具有随着温度的增加而增加电流输出的电流源,及一随着温度的增加而增加的输出。FIG. 5B shows a circuit diagram of a reference signal of a level detection circuit, which includes a current source with an output that increases with temperature, and an output that increases with temperature.
图5C显示准位侦测电路的参考信号的电路示意图,其包含一具有随着温度的增加而降低电流输出的电流源,及一随着温度的增加而增加的输出。5C shows a schematic circuit diagram of a reference signal for a level detection circuit, which includes a current source with a current output that decreases as temperature increases, and an output that increases as temperature increases.
图5D显示如同图5C的准位侦测电路的参考信号的电路示意图,但是包含一具有随着温度的增加而增加电流输出的电流源。5D shows a schematic circuit diagram of a reference signal for the level detection circuit of FIG. 5C, but including a current source with a current output that increases with temperature.
图5E是图5C电路的一个变异,其中CTAT_I定电流源526由电阻RES524所取代。FIG. 5E is a variation of the circuit of FIG. 5C in which CTAT_I constant
图6A显示一组时间与上升大小关系的轨迹曲线,其显示此时钟电路是如何具有温度变动承受能力,其产生时钟时序可以随着温度的改变而大幅地改变。FIG. 6A shows a set of trajectory curves of the relationship between time and rise, which shows how the clock circuit has the ability to withstand temperature fluctuations, and the timing of its generated clocks can be greatly changed as the temperature changes.
图6B显示一组时间与上升大小关系的轨迹曲线,其显示此时钟电路是如何具有温度变动承受能力,因为使用图2到5图中所示的电路,其产生时钟时序基本上不随着温度的改变而改变。Figure 6B shows a set of time vs. ramp magnitude traces showing how this clock circuit is tolerant to temperature fluctuations, since using the circuits shown in Figures 2 to 5 produces clock timing that is substantially independent of temperature. Change to change.
图7A显示一组时间与下降大小关系的轨迹曲线,其显示此时钟电路是如何具有温度变动承受能力,其产生时钟时序可以随着温度的改变而大幅地改变。FIG. 7A shows a set of trajectory curves of the relationship between time and drop magnitude, which shows how the clock circuit has the ability to withstand temperature fluctuations, and the timing of its generated clocks can be greatly changed as the temperature changes.
图7B显示一组时间与下降大小关系的轨迹曲线,其显示此时钟电路是如何具有温度变动承受能力,因为使用图2到图5中所示的电路,其产生时钟时序基本上不随着温度的改变而改变。Figure 7B shows a set of time vs. droop magnitude traces showing how this clock circuit is tolerant to temperature fluctuations, since using the circuits shown in Figures 2 to 5, it produces clock timing that does not vary substantially with temperature. Change and change.
图8A和图8B显示一具有对接地噪声变动承受能力的集成电路时钟电路的电路示意图,其包含一晶体管选择性的与接地噪声耦接,以作为此时序电路输出的准位侦测的参考信号的一部分,其中图8A具有电容性时序电路与地耦接而图8B具有电容性时序电路与电源耦接。8A and 8B show a schematic circuit diagram of an integrated circuit clock circuit with the ability to withstand fluctuations in ground noise, which includes a transistor selectively coupled to ground noise as a reference signal for level detection output by the timing circuit A portion of FIG. 8A where FIG. 8A has a capacitive sequential circuit coupled to ground and FIG. 8B has a capacitive sequential circuit coupled to power.
图9为一组电压与时间的关系图,其显示此时钟电路是如何具有对接地噪声变动的承受能力,其产生时钟时序可以对随着时间改变的接地噪声而大幅地改变。FIG. 9 is a set of voltage versus time graphs showing how the clock circuit is tolerant to variations in ground noise, generating clock timings that can vary significantly with respect to ground noise that varies over time.
图10为一组电压与时间的关系图,其显示此时钟电路是如何具有对接地噪声变动的承受能力,其因为图8中的电路而可以在对随着时间改变的接地噪声中产生相对稳定的时钟时序。Figure 10 is a set of voltage versus time graphs showing how this clock circuit is tolerant to variations in ground noise, which because of the circuit in Figure 8 can produce a relatively stable response to ground noise that varies over time clock timing.
图11A和图11B显示一具有对电源噪声变动承受能力的集成电路时钟电路的电路示意图,其包含一晶体管与时序电路电源的电源噪声及时序电路输出的准位侦测的参考信号的电源噪声共同分享的噪声相位,其中图11A具有电容性时序电路与地耦接而图11B具有电容性时序电路与电源耦接。11A and 11B show a schematic circuit diagram of an integrated circuit clock circuit with power supply noise tolerance capability, which includes a transistor and the power supply noise of the sequential circuit power supply and the power supply noise of the reference signal for level detection output by the sequential circuit. Shared noise phase where FIG. 11A has the capacitive timing circuit coupled to ground and FIG. 11B has the capacitive timing circuit coupled to power.
图12显示一电源电路的电路图,其与时序电路电源的电源噪声及时序电路输出的准位侦测的参考信号的电源噪声分享相同的噪声相位。FIG. 12 shows a circuit diagram of a power supply circuit, which shares the same noise phase with the power supply noise of the sequential circuit power supply and the power supply noise of the level detection reference signal output by the sequential circuit.
图13为一组电压与时间的关系图,其显示因为如图11或图12中的电路关系,如何在时序电路电源与使用于时序电路输出的准位侦测的参考信号之间具有相同的噪声相位。FIG. 13 is a set of relationship diagrams of voltage and time, which shows how to have the same relationship between the power supply of the sequential circuit and the reference signal used for the level detection of the output of the sequential circuit because of the circuit relationship in FIG. 11 or FIG. 12 noise phase.
图14为一组电压与时间的关系图,其显示此时钟电路是如何具有对电源噪声变动的承受能力,其可以在对随着时间大幅改变的电源噪声中产生时钟时序。FIG. 14 is a set of voltage versus time graphs showing how the clock circuit is tolerant to power supply noise variations, which can generate clock timing in response to power supply noise that varies greatly over time.
图15为一组电压与时间的关系图,其显示此时钟电路是如何具有对电源噪声变动的承受能力,其因为图11和图12中的电路而可以在对随着时间大幅改变的电源噪声中产生相对稳定的时钟时序。Figure 15 is a set of voltage versus time graphs showing how this clock circuit is tolerant to variations in power supply noise, because the circuits in Figures 11 and 12 can withstand large variations in power supply noise over time produces relatively stable clock timings.
图16A和图16B显示一具有对电源噪声变动承受能力的集成电路时钟电路的电路示意图,其包含一晶体管与时序电路电源的电源噪声及时序电路输出的准位侦测的参考信号的电源噪声共同分享的噪声相位,与图11类似,且增加了切换电路,例如在电源开启时以选择性地绕过此噪声容忍电路。16A and 16B show a schematic circuit diagram of an integrated circuit clock circuit with power supply noise tolerance capability, which includes a transistor and the power supply noise of the sequential circuit power supply and the power supply noise of the reference signal for level detection output by the sequential circuit. Shared noise phase, similar to Figure 11, with the addition of switching circuitry to selectively bypass the noise tolerant circuitry, for example at power-on.
图17是可应用本发明具有改良集成电路时钟电路的一存储电路的方块示意图。FIG. 17 is a schematic block diagram of a memory circuit with an improved integrated circuit clock circuit to which the present invention can be applied.
图18为一电路图,其类似于图16,显示一具有对电源噪声变动承受能力的集成电路时钟电路的电路示意图,且还包含切换电路介于参考产生器及运算放大器之间。FIG. 18 is a circuit diagram, similar to FIG. 16, showing a schematic circuit diagram of an integrated circuit clock circuit with tolerance to power supply noise variations, and also includes switching circuits between the reference generator and the operational amplifier.
具体实施方式Detailed ways
图1显示一具有例如是温度、接地电压或是电源电压变动承受能力的集成电路时钟电路的方块示意图。FIG. 1 shows a schematic block diagram of an integrated circuit clock circuit with tolerance to variations such as temperature, ground voltage, or supply voltage.
此集成电路时钟电路通常是一回路结构,具有时序电路102、准位切换电路104及栓锁电路栓锁电路106。此栓锁电路栓锁电路106产生一自栓锁电路栓锁电路106至时序电路102的回馈信号,及一时钟输出信号110。此时序电路102根据一时间常数在两个参考信号之间切换。此时间常数因此决定了此集成电路时钟电路的时序。一个典型的时间常数范例为一指数时间常数,其将一RC电路或是RL电路的上升及下降时间特征化。此准位切换电路监控时序电路102的输出,且根据此时序电路102是否足够高或低来改变其输出。栓锁电路106的范例为SR栓锁器、SR NAND栓锁器、JK栓锁器、门式SR栓锁器、门式D栓锁器、门式触发栓锁器等。此栓锁电路电路106具有两个稳定状态且在这两个稳定状态之间切换以产生一时钟输出信号110。The integrated circuit clock circuit is usually a one-loop structure with a
时序电路102所依赖的两个参考信号是由电路116所产生,其也会产生准位切换电路104所依赖的准位切换参考信号。由同时为时序电路102产生所依赖的参考信号及为准位切换电路104产生所依赖的准位切换参考信号,电路116可以减少为时序电路102所依赖的参考信号及为准位切换电路104所依赖的准位切换参考信号共享的噪声信号的噪声相位。因为任何噪声相位是很小的,此时序电路102所依赖参考信号中的噪声信号的峰值与谷值是与准位切换电路104所依赖准位切换参考信号中的噪声信号的峰值与谷值同步。The two reference signals that the
准位切换电路104所依赖的准位切换参考信号112,由电路118选取将其与准位切换电路104耦接。在某些实施例中,这会作为一采样而保持住接地噪声,所以相同的接地噪声会由时序电路102所保持住,且会由准位切换电路104所依赖的准位切换参考电路所保持住。The level
虽然此处所示的方块图可以解决温度、接地电压或是电源电压的变动问题,但是本发明不同实施例中的一改良时钟电路仅解决这些变动参数的其中的一而已(例如:仅针对温度噪声、仅针对接地电压噪声或是仅针对电源电压噪声),或是这些变动参数的其中的二而已(例如:仅针对温度和电源电压噪声、仅针对温度和接地电压噪声或是仅针对电源电压和接地电压噪声)。While the block diagrams shown here can account for variations in temperature, ground voltage, or supply voltage, an improved clock circuit in various embodiments of the present invention addresses only one of these variable parameters (eg, only for temperature noise, ground voltage noise only, or supply voltage noise only), or just two of these varying parameters (e.g., temperature and supply voltage noise only, temperature and ground voltage noise only, or supply voltage noise only and ground voltage noise).
图2A和图2B显示一具有对温度变动承受能力的集成电路时钟电路的电路示意图,其包含一反相电路以评估时序电路的输出。2A and 2B show a circuit diagram of an integrated circuit clock circuit capable of withstanding temperature fluctuations, which includes an inverting circuit to evaluate the output of the timing circuit.
图中显示平行放置的时序电路202A和202B,平行放置的反相电路204A和204B,以及一栓锁电路206。此时序电路202A和202B通常是一具有电阻RX或RY的反相器,自电容CX或CY进行充电或放电,以改变OX或OY的输出电压。The figure shows
图2A显示一实施例,其中电容CX或CY是与一共同接地耦接。虽然图中并未明示所有可能的变化,本发明的技术包含所有实施例中具有电容CX或CY的时序电路,其中时序电路可以修改为将电容CX或CY是与一共同接地耦接。FIG. 2A shows an embodiment in which capacitor CX or CY is coupled to a common ground. Although not all possible variations are shown in the figure, the technique of the present invention includes sequential circuits with capacitors CX or CY in all embodiments, wherein the sequential circuits can be modified to couple the capacitors CX or CY to a common ground.
在一实施例中,电容CX或CY实际上是一PMOS晶体管具有相反的端点与反相器的共同接地端解除耦接。In one embodiment, the capacitor CX or CY is actually a PMOS transistor with opposite terminals decoupled from the common ground of the inverter.
图2B显示一实施例,其中电容CX或CY是与一共同电源耦接。虽然图中并未明示所有可能的变化,本发明的技术包含所有实施例中具有电容CX或CY的时序电路,其中时序电路可以修改为将电容CX或CY是与一共同电源耦接。FIG. 2B shows an embodiment in which the capacitor CX or CY is coupled to a common power source. Although not all possible variations are shown in the figure, the technology of the present invention includes the sequential circuit with capacitor CX or CY in all embodiments, wherein the sequential circuit can be modified to couple the capacitor CX or CY to a common power source.
在一实施例中,电容CX或CY实际上是一PMOS晶体管具有相反的端点与反相器的共同电源端解除耦接。In one embodiment, the capacitor CX or CY is actually a PMOS transistor with opposite terminals decoupled from the common power supply terminal of the inverter.
此反相电路204A和204B由一CTAT电源或是一与温度成反比的电源,其会随着温度的增加而降低,来驱动。The inverting
此反相器是与运算放大器版本十分不同。在运算放大器版本中,一Vref与时序电路的输出(如RC电路的上升/下降)进行比较。而在反相器版本中,此反相器的电源是被控制,以改变此反相器的行程且因此侦测时序电路的输出(如RC电路的上升/下降)。在此反相器版本中,一个额外关于电源与反相器行程的温度关系受到重视。This inverter is very different from the op amp version. In the op-amp version, a Vref is compared to the output of a sequential circuit (such as the rise/fall of an RC circuit). And in the inverter version, the power supply of the inverter is controlled to change the stroke of the inverter and thus detect the output of the sequential circuit (such as rising/falling of the RC circuit). In this inverter version, an additional temperature dependence of the power supply versus the inverter trip is taken into account.
此反相器相较于运算放大器版本具有以下的优点:(1)较低的工作电压VDD;(2)较小的电路尺寸(反相器仅有两个金属氧化半导体晶体管而运算放大器具有五个或以上的金属氧化半导体晶体管);(3)较简单的设计;(4)较低的主动电流(反相器具有一个电流路径,而运算放大器具有两个或三个电流路径及包含一个额外的电流镜);及(5)较高的工作速度(反相器具有一个阶段的延迟,而运算放大器具有两个或三个阶段的延迟)。This inverter has the following advantages over the op-amp version: (1) lower operating voltage VDD; (2) smaller circuit size (the inverter has only two MOS transistors while the op-amp has five MOS transistors or more); (3) simpler design; (4) lower active current (inverters have one current path, while op amps have two or three current paths and include an additional current mirror); and (5) higher operating speed (an inverter has a delay of one stage, while an operational amplifier has a delay of two or three stages).
此栓锁电路206是交互耦接的,如此一逻辑门的输出与另一逻辑门的输入耦接。一逻辑门的一输入是直接与另一逻辑门的输出耦接,此一逻辑门的另一输入是直接与另一逻辑门的输出经过时序电路与准位侦测电路而耦接。The
图2C显示时序电路的另一实施例。虽然大部分与图2A类似,在图2C中平行放置的时序电路202A和202B是由一PTAT电源或是一与温度成正比的电源,其会随着温度的增加而增加,来驱动。虽然图中并未明示所有可能的变化,本发明的技术包含所有实施例中具有CTAT电源的时序电路,其中CTAT电源可以由PTAT电源来取代。FIG. 2C shows another embodiment of the sequential circuit. Although largely similar to FIG. 2A,
类似地,虽然图中并未明示所有可能的变化,本发明的技术包含所有实施例中具有PTAT电源的时序电路,其中PTAT电源可以由CTAT电源来取代。Similarly, although not all possible variations are shown in the figure, the technology of the present invention includes sequential circuits with PTAT power in all embodiments, wherein the PTAT power can be replaced by CTAT power.
图2D显示一具有对温度变动承受能力的集成电路时钟电路的电路示意图,其包含一施密特触发电路以评估此时序电路的输出。FIG. 2D shows a schematic circuit diagram of an integrated circuit clock circuit capable of withstanding temperature fluctuations, which includes a Schmitt trigger circuit to evaluate the output of the timing circuit.
虽然图2B类似,在图2D中的准位切换电路210A和210B的施密特触发电路是由一CTAT电源来驱动,且包含具有通过电阻的封闭回路正回馈的运算放大器。Although similar in FIG. 2B , the Schmitt trigger circuits of level switching circuits 210A and 210B in FIG. 2D are driven by a CTAT power supply and include operational amplifiers with closed loop positive feedback through resistors.
图2E显示一施密特触发电路的示意图。FIG. 2E shows a schematic diagram of a Schmitt trigger circuit.
图3显示一具有对温度变动承受能力的集成电路时钟电路的电路示意图,其包含一运算放大器电路以由比较输出与一参考值来执行时序电路输出的准位侦测。FIG. 3 shows a schematic circuit diagram of an integrated circuit clock circuit capable of withstanding temperature fluctuations, which includes an operational amplifier circuit to perform level detection of the output of the timing circuit by comparing the output with a reference value.
图中显示平行放置的时序电路302A和302B,平行放置的准位切换电路304A和304B,以及一栓锁电路306。此准位切换电路304A和304B是一运算放大比较器具有一参考电压CTAT_REF。除此之外,此时钟电路大致与图2A类似。The figure shows
图4A显示准位侦测电路的参考信号的电路示意图,其包含一具有随着温度的增加而增加电流输出的电流源。FIG. 4A shows a schematic circuit diagram of a reference signal of a level detection circuit, which includes a current source with an output current that increases with temperature.
图4A显示出依赖准位侦测电路的CTAT电源信号是如何产生的,在此图中显示为CTAT_REF 428。一个定量输出的PTAT_I电流源426,会自电源调节器422经过电阻RES 424产生与温度成正比的电流,随着温度的增加而增加。此电源调节器422会输出与温度无关的定电压。此调节电源提供一定电源且不会随着VDD及温度改变。举例而言,此调节器的输出具有一能带参考值。此输出结果与温度成反比,因为温度增加时跨越此电阻的压降也是增加,且此压降下端的输出端点的偏移则是减少。此电流源的一个范例显示于图4E。FIG. 4A shows how the CTAT power supply signal, shown as
图4B是图4A电路的一个变异,其中PTAT_I定电流源426由CTAT_I定电流源430所取代,且依赖准位侦测电路的CTAT电源信号的CTAT_REF428由依赖准位侦测电路的PTAT电源信号的PTAT_REF 432所取代。此电流源的一个范例显示于图4G。4B is a variation of the circuit of FIG. 4A, wherein the PTAT_I constant
图4C是图4A电路的一个变异,具有一旁路电容器434与电阻RES 424并联,以减少噪声。此外,此电流源包含一电流镜。此电流源的一个范例显示于图4D。Figure 4C is a variation of the circuit of Figure 4A with a bypass capacitor 434 in parallel with
图4D是一电流发生器的示意图,其根据参考电路自PMOS装置提供PTAT电流。4D is a schematic diagram of a current generator that provides PTAT current from a PMOS device according to a reference circuit.
图4E是一电流发生器的示意图,其根据参考电路自NMOS装置提供PTAT电流。4E is a schematic diagram of a current generator that provides PTAT current from an NMOS device according to a reference circuit.
在图4D与图4E中,此电路使用介于两个具有正比于温度的相同电流NMOS晶体管的delta_Vg。所以delta_Vg/电阻=PTAT_I。在图4D与图4E中,具有圆圈的两个晶体管是相同的。In Figures 4D and 4E, this circuit uses delta_Vg between two NMOS transistors with the same current proportional to temperature. So delta_Vg/resistance = PTAT_I. In Figure 4D and Figure 4E, the two transistors with circles are the same.
图4F是一电流发生器的示意图,其根据参考电路自PMOS装置提供CTAT电流。4F is a schematic diagram of a current generator that provides CTAT current from a PMOS device according to a reference circuit.
图4G是一电流发生器的示意图,其根据参考电路自NMOS装置提供CTAT电流。4G is a schematic diagram of a current generator that provides CTAT current from an NMOS device according to a reference circuit.
此处所描述的一个根据参考电路的电流发生器是较佳地,因为在许多实施例中,单一与温度相关的参数可以被控制,而不是两个与温度相关的材料相关参数,其具有不同的温度关联性。A current generator according to the reference circuit described here is preferred because in many embodiments a single temperature-dependent parameter can be controlled rather than two temperature-dependent material-dependent parameters with different temperature dependence.
图5A显示准位侦测电路的参考信号的电路示意图,其包含一具有随着温度的增加而降低电流输出的电流源。FIG. 5A shows a schematic circuit diagram of a reference signal for a level detection circuit, which includes a current source with a current output that decreases as temperature increases.
图5A显示出依赖准位侦测电路的CTAT电源信号是如何产生的,在此图中显示为CTAT_REF 528。一个定量输出的PTAT_I电流源526,会自电源调节器522经过电阻RES 524产生与温度成反比的电流,随着温度的增加而降低。此输出结果与温度成反比,因为温度增加时跨越此电阻的压降也是减少,且此压降上端的输出端点的偏移也是减少。FIG. 5A shows how the CTAT power signal, shown as
所示电流源的一个例示为一迭接电流源。One example of the current source shown is a cascaded current source.
图5B、图5C、图5D和图5E是产生参考电压信号的其它范例。5B, 5C, 5D and 5E are other examples of generating the reference voltage signal.
图5B是图5A电路的一个变异,其中CTAT_I定电流源526由PTAT_I定电流源530所取代,且依赖准位侦测电路的CTAT电源信号的CTAT_REF528由依赖准位侦测电路的PTAT电源信号的PTAT_REF 532所取代。5B is a variation of the circuit of FIG. 5A, wherein the CTAT_I constant
图5C是图5A电路的一个变异,其中电阻RES 524是由二极管DIO 530所取代。此电流源的一个范例显示于图4F。FIG. 5C is a variation of the circuit of FIG. 5A in which
图5D是图5A电路的一个变异,其中CTAT_I定电流源526由PTAT_I定电流源530所取代,且输出端点的偏移自跨越此定电流源上端的压降移至跨越此定电流源下端的压降。5D is a variation of the circuit of FIG. 5A, wherein CTAT_I constant
图5E是图5图电路的一个变异,其中CTAT_I定电流源526由电阻RES524所取代。FIG. 5E is a variation of the circuit of FIG. 5, wherein CTAT_I constant
图6A显示一组时间与大小关系的轨迹曲线,其显示此时钟电路是如何具有温度变动承受能力,其产生时钟时序可以随着温度的改变而大幅地改变。FIG. 6A shows a set of trace curves of the relationship between time and magnitude, which shows how the clock circuit has the ability to withstand temperature fluctuations, and the timing of its generated clocks can be greatly changed as the temperature changes.
图6A显示一高温、一低温和一中等温度的轨迹区间。温度越低的话,则此时序电路变得越快,且温度越高的话,则此时序电路变得越慢。因为时序电路的共同参考信号,此时序电路在低温时会较在高温时更快抵达参考值。因此,此时钟电路的时序在低温时会较在高温时更快。Figure 6A shows a high temperature, a low temperature and a medium temperature trajectory interval. The lower the temperature, the faster the sequential circuit becomes, and the higher the temperature, the slower the sequential circuit becomes. Due to the common reference signal of the sequential circuit, the sequential circuit will reach the reference value faster at low temperature than at high temperature. Therefore, the timing of this clock circuit will be faster at low temperatures than at high temperatures.
图6B显示一组时间与大小关系的轨迹曲线,其显示此时钟电路是如何具有温度变动承受能力,因为使用图2到图5中所示的电路,其产生时钟时序基本上不随着温度的改变而改变。Figure 6B shows a set of time versus magnitude traces showing how this clock circuit is tolerant to temperature fluctuations, since using the circuits shown in Figures 2 to 5, it produces clock timing that does not substantially change with temperature And change.
图6B显示一高温、一低温和一中等温度的轨迹区间。如图6A所示,温度越低的话,则此时序电路变得越快,且温度越高的话,则此时序电路变得越慢。然而,因为图6B中使用不同的时序电路,是与图6A中所使用的时序电路不同。虽然时序电路在低温时会较在高温时更快抵达参考值,此时序电路的参考值也相对的更高。因此,此时钟电路的时序显示出很小的温度变动,而是导致此时钟电路的速度变动。Figure 6B shows a high temperature, a low temperature and a medium temperature trajectory interval. As shown in FIG. 6A , the lower the temperature, the faster the sequential circuit becomes, and the higher the temperature, the slower the sequential circuit becomes. However, because a different sequential circuit is used in FIG. 6B, it is different from the sequential circuit used in FIG. 6A. Although the sequential circuit reaches the reference value faster at low temperature than at high temperature, the reference value of the sequential circuit is relatively higher. Therefore, the timing of the clock circuit exhibits little temperature variation, but results in a speed variation of the clock circuit.
图7A和图7B是其它的实施例,其显示下降信号而不是图6A和图6B中的上升信号,但是仍显示相同的时间常数。Figures 7A and 7B are other embodiments showing a falling signal instead of the rising signal in Figures 6A and 6B, but still showing the same time constant.
一时钟信号是依赖图6A和图6B中的上升信号或是图7A和图7B中的下降信号,是根据电容CX或CY是与图2A中的地耦接或是与图2B中的电源耦接而定。A clock signal depends on the rising signal in FIGS. 6A and 6B or the falling signal in FIGS. 7A and 7B, and is based on whether the capacitor CX or CY is coupled to the ground in FIG. 2A or to the power supply in FIG. 2B. It depends.
图8A和图8B显示一具有对接地噪声变动承受能力的集成电路时钟电路的电路示意图,其包含一晶体管选择性的与接地噪声耦接,以作为此时序电路输出的准位侦测的参考信号的一部分。8A and 8B show a schematic circuit diagram of an integrated circuit clock circuit with the ability to withstand fluctuations in ground noise, which includes a transistor selectively coupled to ground noise as a reference signal for level detection output by the timing circuit a part of.
图中显示平行放置的时序电路802A和802B,平行放置的准位切换电路804A和804B,以及一栓锁电路806。此准位切换电路804A和804B选择性的与来自准位切换参考电路816A和816B的接地噪声耦接,且储存于电容节点REF X或是REF Y,是各自根据由信号ENX所开启的切换晶体管818A及由信号ENY所开启的切换晶体管818B的切换行为所决定。此会作为一采样而保持住接地噪声,所以相同的接地噪声会由时序电路802A或802B所保持住,且会由准位切换电路104所依赖的准位切换参考电路的节点REF X或是REF Y所保持住。The figure shows
在一实施例中,电容CX或CY实际上是一PMOS晶体管具有相反的端点与共同电源端解除耦接,此共同电源与RX或RY连接。In one embodiment, the capacitor CX or CY is actually a PMOS transistor with opposite terminals decoupled from a common power supply connected to RX or RY.
当ENX为高准位时OX保持接地。之后,ENX变为低准位则关闭NMOS;在此时接地噪声被保持在OX。假如噪声是高准位则预充电速度很快;假如噪声是低准位则预充电速度很慢。此电路使得REFX或REFY在相同时间保持相同的接地噪声。OX remains grounded when ENX is high. Afterwards, ENX goes low to turn off the NMOS; at this time the ground noise is kept at OX. If the noise is high, the precharge is fast; if the noise is low, the precharge is slow. This circuit allows REFX or REFY to maintain the same ground noise at the same time.
在图8A中,此切换参考电路参考节点REFX或REFY,包括电容电路与地耦接。在图8B中,此切换参考电路参考节点REFX或REFY,包括电容电路与电源耦接。In FIG. 8A, the switching reference circuit is referenced to node REFX or REFY, and includes a capacitor circuit coupled to ground. In FIG. 8B, the switching reference circuit is referenced to node REFX or REFY, and includes a capacitor circuit coupled to a power supply.
在不同的实施例中,准位切换参考电路816A和816B可以是两组不同的电路或是同一组电路由平行放置的时序电路及多重准位切换电路804A和804B所分享。In different embodiments, the level switching
图9为一组电压与时间的关系图,其显示此时钟电路是如何具有对接地噪声变动的承受能力,其产生时钟时序可以对随着时间改变的接地噪声而大幅地改变。FIG. 9 is a set of voltage versus time graphs showing how the clock circuit is tolerant to variations in ground noise, generating clock timings that can vary significantly with respect to ground noise that varies over time.
图9显示轨迹OX和OY是如何由接地噪声,在此图中为REF_LO信号所影响的。当接地噪声有一峰值时,则此时序电路会开始自REF_LO进行充电至REF_HI的程序,导致时序电路仅需较少的时间就可以自REF_LO充电至REF_HI。因此,此时钟信号输出910于此时钟周期中具有一较广的变动。Figure 9 shows how traces OX and OY are affected by ground noise, in this case the REF_LO signal. When there is a peak of the ground noise, the timing circuit will start charging from REF_LO to REF_HI, so that the timing circuit only takes less time to charge from REF_LO to REF_HI. Therefore, the
当ENX为高准位时,OX保持接地且电压随着接地噪声而变动。当ENX为低准位,且关闭NMOS,则接地噪声被保持在OX。但是参考准位仍随着接地噪声而变动。最坏的情况是OX保持一高准位的接地噪声且于充电期间此参考电路承受一负的接地准位;则此参考值会远较预期为低。因此一类似取样及保持结构在REFX或REFY保持相同的接地噪声。When ENX is high, OX remains grounded and the voltage varies with ground noise. When ENX is low and NMOS is turned off, the ground noise is kept at OX. But the reference level still fluctuates with ground noise. The worst case is that OX maintains a high level of ground noise and the reference circuit suffers a negative ground level during charging; then the reference value will be much lower than expected. Thus a similar sample and hold structure maintains the same ground noise at REFX or REFY.
图10为一组电压与时间的关系图,其显示此时钟电路是如何具有对接地噪声变动的承受能力,其因为图8中的电路而可以在对随着时间改变的接地噪声中产生相对稳定的时钟时序。Figure 10 is a set of voltage versus time graphs showing how this clock circuit is tolerant to variations in ground noise, which because of the circuit in Figure 8 can produce a relatively stable response to ground noise that varies over time clock timing.
图10显示轨迹OX和OY是如何由接地噪声,在此图中为REF_LO信号所影响的。当接地噪声有一峰值或是其它的改变时,则此峰值或是其它的改变会储存于图8中的电容节点REF X或是REF Y。因为接地噪声对REF_LO信号的影响由取样后保持参考电路来追踪,此准位侦测电路是自准位侦测参考电路与时序电路比较相同的接地噪声。于接地噪声被以此取样后保持的方式后,接地噪声,其会继续改变,自此取样电路中解除耦接。因此,此时序电路自REF_LO进行充电至REF_HI的程序中并没有一提前开始,虽然有着接地噪声,此时序电路仍需要相同的时间自REF_LO充电至REF_HI。因此,导致此时钟信号输出910于一广泛改变的接地噪声下仍具有相同的时钟周期。Figure 10 shows how traces OX and OY are affected by ground noise, in this case the REF_LO signal. When the ground noise has a peak or other change, the peak or other change will be stored at the capacitor node REF X or REF Y in FIG. 8 . Because the influence of ground noise on the REF_LO signal is tracked by the sample-and-hold reference circuit, the level detection circuit is self-level detection reference circuit and the sequential circuit compares the same ground noise. After the ground noise is taken in this sample-and-hold manner, the ground noise, which continues to change, is decoupled from the sampling circuit. Therefore, the timing circuit does not start early in the process of charging from REF_LO to REF_HI. Although there is ground noise, the timing circuit still needs the same time to charge from REF_LO to REF_HI. As a result, the
在另一实施例中,是将接地噪声取样后再于放电时将此接地噪声与取样电路解除耦接,而不是如图9和图10中所示的于充电时将此接地噪声与取样电路解除耦接。此实施例会造成额外的问题因为必须解决自噪声电源调节器所产生的电源噪声问题。In another embodiment, the ground noise is sampled and then decoupled from the sampling circuit during discharge, instead of decoupling the ground noise from the sampling circuit during charging as shown in Figures 9 and 10. Decoupling. This embodiment creates additional problems because the power supply noise generated by the noisy power supply regulator must be addressed.
在另一实施例中(类似图2C),此取样及保持电路会保持电源噪声而不是接地噪声。In another embodiment (similar to FIG. 2C ), the sample and hold circuit would hold power supply noise instead of ground noise.
图11A和图11B显示一具有对电源噪声变动承受能力的集成电路时钟电路的电路示意图,其包含一晶体管与时序电路电源的电源噪声及时序电路输出的准位侦测的参考信号的电源噪声共同分享的噪声相位。11A and 11B show a schematic circuit diagram of an integrated circuit clock circuit with power supply noise tolerance capability, which includes a transistor and the power supply noise of the sequential circuit power supply and the power supply noise of the reference signal for level detection output by the sequential circuit. shared noise phase.
图中显示平行放置的时序电路1102A和1102B,平行放置的准位切换电路1104A和1104B,以及一栓锁电路1106。如图所示也包含时序电源及准位切换参考值产生器1116A和1116B,其会产生与时序电路电源的电源噪声及时序电路输出的准位侦测的参考信号的电源噪声相同的噪声相位。The figure shows
在图11A中,此电容电路CX或CY与地耦接。在图11B中,此电容电路CX或CY与电源1116A或1116B耦接。In FIG. 11A, the capacitive circuit CX or CY is coupled to ground. In FIG. 11B , the capacitive circuit CX or CY is coupled to a
图12显示一电源电路的电路图,其与时序电路电源的电源噪声及时序电路输出的准位侦测的参考信号的电源噪声分享相同的噪声相位。FIG. 12 shows a circuit diagram of a power supply circuit, which shares the same noise phase with the power supply noise of the sequential circuit power supply and the power supply noise of the level detection reference signal output by the sequential circuit.
图12显示一电源1236来驱动一运算放大器1232。此运算放大器在其非反相输入具有一参考信号REF_OP 1234。此REF_OP 1234的一个例示为一能隙参考电路于1.3V。一金属氧化半导体场效晶体管1238具有一逻辑门与运算放大器1232的输出耦接,一汲极与电源1236耦接,及一源极与时序电源输出1246耦接。时序电源输出1246与准位切换参考值1248由电阻R1 1240分隔。准位切换参考值1248与运算放大器1232的负回馈点由电阻R2 1242分隔。最后,电阻R3将此负回馈点与地耦接。FIG. 12 shows a power supply 1236 driving an operational amplifier 1232 . The operational amplifier has a reference signal REF_OP 1234 at its non-inverting input. An example of this REF_OP 1234 is a bandgap reference circuit at 1.3V. A MOSFET 1238 has a logic gate coupled to the output of the operational amplifier 1232 , a drain coupled to the power supply 1236 , and a source coupled to the sequential power output 1246 . The timing power output 1246 and the level switching reference value 1248 are separated by a resistor R1 1240. The level switching reference value 1248 is separated from the negative feedback point of the operational amplifier 1232 by a resistor R2 1242. Finally, resistor R3 couples this negative feedback point to ground.
另一个实施例则使用浮接节点的电容耦合以维持时序电源输出1246与准位切换参考值1248之间相同的噪声相位,其中时序电源输出1246与准位切换参考值1248的一是浮接的。Another embodiment uses capacitive coupling of floating nodes to maintain the same noise phase between timing power output 1246 and level switching reference 1248 , where one of timing power output 1246 and level switching reference 1248 is floating. .
虽然上述的实施例是特别为了维持时序电源输出1246与准位切换参考值1248之间相同的噪声相位所设计的,但是其它的设计中则不是如此。其它的设计中时序电源输出1246与准位切换参考值1248之间为了以下的原因的一或多者而具有不同的噪声相位:(1)因为晶粒的配置使参考电路并不靠近时序电路;(2)调节器中的参考电路具有较VDD电源为佳的电源供应拒绝比例(PSRR);及(3)即使是RC电源具有电源调节器,因为不同的输出负载及转变,一个噪声相位差异仍会维持,且此电源调节器必须支持较大电流及较大的输出转变。While the above embodiments are specifically designed to maintain the same noise phase between the sequential power output 1246 and the level switch reference 1248 , this is not the case in other designs. Other designs have different noise phases between the timing power output 1246 and the level switching reference 1248 for one or more of the following reasons: (1) because the die configuration makes the reference circuit not close to the timing circuit; (2) the reference circuit in the regulator has a better Power Supply Rejection Ratio (PSRR) than the VDD supply; and (3) even with an RC supply with a power regulator, a noise phase difference still remains due to different output loads and transitions. will be maintained, and the power regulator must support larger currents and larger output transitions.
图13为一组电压与时间的关系图,其显示因为如图11或图12中的电路关系,如何在时序电路电源与使用于时序电路输出的准位侦测的参考信号之间具有相同的噪声相位。FIG. 13 is a set of relationship diagrams of voltage and time, which shows how to have the same relationship between the power supply of the sequential circuit and the reference signal used for the level detection of the output of the sequential circuit because of the circuit relationship in FIG. 11 or FIG. 12 noise phase.
图13显示的时序电路电源1301及使用于时序电路输出1302的准位侦测的参考信号之间两者的电源噪声具有相同的噪声相位。将轨迹1303放置于轨迹1301及1302的上可以显示此情况,虽然电源噪声的大小是改变的,而轨迹1301及1302的电源噪声的峰值与谷值是同步的。FIG. 13 shows that the power supply noise between the sequential
图14为一组电压与时间的关系图,其显示此时钟电路是如何具有对电源噪声变动的承受能力,其可以在对随着时间大幅改变的电源噪声中产生时钟时序。FIG. 14 is a set of voltage versus time graphs showing how the clock circuit is tolerant to power supply noise variations, which can generate clock timing in response to power supply noise that varies greatly over time.
图14显示轨迹OX和OY是如何由电源噪声1401所影响的。当电源噪声有一大幅下降时,则此时序电路会开始自REF_LO进行充电至REF_HI的程序,导致时序电路仅需较少的时间就可以自REF_LO充电至REF_HI。类似地,当电源噪声有一峰值时,则此时序电路自REF_LO进行充电至REF_HI的程序会变得较慢,导致时序电路需要更多的时间才可以自REF_LO充电至REF_HI。这些改变是自一稳定(定值)的准位切换参考值之后发生。因此,此时钟信号输出1410于此时钟周期中具有一较广的变动。FIG. 14 shows how traces OX and OY are affected by power supply noise 1401 . When the power supply noise drops sharply, the timing circuit will start charging from REF_LO to REF_HI, so that the timing circuit can charge from REF_LO to REF_HI in less time. Similarly, when the power supply noise has a peak value, the charging process of the timing circuit from REF_LO to REF_HI will become slower, causing the timing circuit to take more time to charge from REF_LO to REF_HI. These changes occur after a stable (fixed) level switching reference. Therefore, the
图15为一组电压与时间的关系图,其显示此时钟电路是如何具有对电源噪声变动的承受能力,其因为图11和图12中的电路而可以在对随着时间大幅改变的电源噪声中产生相对稳定的时钟时序。Figure 15 is a set of voltage versus time graphs showing how this clock circuit is tolerant to variations in power supply noise, because the circuits in Figures 11 and 12 can withstand large variations in power supply noise over time produces relatively stable clock timings.
图15显示轨迹OX和OY是如何由接地噪声1401所影响的。与图14不同的是,当电源噪声1501有一峰值或是其它的变动时,则准位切换参考值会有一同步的峰值或是其它的变动。虽然此峰值或是其它的变动在此准位切换参考值与电源噪声相较会有一个较小的大小,但是介于时序电路电源1501与准位切换参考值的同步特性大幅地减少了时钟信号的变动。因此,此时钟信号输出1510在接地噪声具有较广变动的情况下仍具有一共同的时钟周期。FIG. 15 shows how traces OX and OY are affected by ground noise 1401 . The difference from FIG. 14 is that when the power supply noise 1501 has a peak or other changes, the level switching reference value has a synchronous peak or other changes. Although the peak or other variation in the level switching reference will have a small magnitude compared to the power supply noise, the synchronous nature between the sequential circuit power supply 1501 and the level switching reference greatly reduces the clock signal changes. Therefore, the
图16A和图16B显示一具有对电源噪声变动承受能力的集成电路时钟电路的电路示意图,以切换此时钟的电源。当电源开启时,若是尚未达到稳定电源且需要此VDD电源以产生给逻辑电路的时钟。逻辑电路会等待稳定电源的设置时间。当达到稳定电源后,则此时钟切换至一稳定时钟。16A and 16B show a schematic circuit diagram of an integrated circuit clock circuit with the ability to withstand power supply noise fluctuations to switch the power supply of the clock. When the power supply is turned on, if it has not yet reached a stable power supply and needs this VDD power supply to generate a clock for the logic circuit. The logic circuit waits for a settling time for a stable power supply. When a stable power supply is reached, the clock is switched to a stable clock.
图中显示平行放置的时序电路1602A和1602B,平行放置的准位切换电路1604A和1604B,以及一栓锁电路1606。如图所示也包含时序电源及准位切换参考值产生器1616A和1616B,其会产生与时序电路电源的电源噪声及时序电路输出的准位侦测的参考信号的电源噪声相同的噪声相位。图标中也包含介于VDD与时序电源及准位切换参考值产生器1616A之间的切换开关1620A,介于VDD与时序电源及准位切换参考值产生器1616B之间的切换开关1620B,介于准位切换电路1604A与栓锁电路1606之间的切换开关1620C,及介于准位切换电路1604B与栓锁电路1606之间的切换开关1620D。The figure shows
在图16A中,此电容电路CX或CY与地耦接。在图16B中,此电容电路CX或CY与电源1616A或1616B耦接。In FIG. 16A, this capacitive circuit CX or CY is coupled to ground. In FIG. 16B, the capacitive circuit CX or CY is coupled to a
图17是可应用本发明具有改良集成电路时钟电路的一存储电路的方块示意图。FIG. 17 is a schematic block diagram of a memory circuit with an improved integrated circuit clock circuit to which the present invention can be applied.
图17是包含一存储器数组1712的集成电路1700的简要方块示意图。一字符线/区块选取解码器及驱动器1714是耦接至,且与其有着电性沟通,多条字符线1716及字符串选择线,其间是沿着存储单元数组1712的列方向排列。一位线(行)解码器1718是耦接至多条沿着存储器数组1712的行排列的位线1720,且与其有着电性沟通,以自读取资料,或是写入资料至,存储单元数组1712的存储单元中。地址是通过总线1722提供至字符线和区块选择解码器1714及位线解码器1718。方块1724中的感应放大器与资料输入结构,包含作为读取、程序化和抹除模式的电流源,是通过总线1726耦接至位线解码器1718。资料是由集成电路1710上的输入/输出端口通过资料输入线1728传送至方块1724的资料输入结构。在此例示的实施例中,其它电路1730也包括在此集成电路1710内,例如通用目的处理器或特殊用途电路,或是由此记忆数组所支持的组合模块以提供单芯片系统功能。资料是由方块1724中的感应放大器,通过资料输出线1732,传送至集成电路1700上的输入/输出端口或其它集成电路1700内或外的资料目的地。状态机构及改良时钟电路(如此处所讨论的)是于电路1734中。FIG. 17 is a simplified block diagram of an
图18为一电路图,其类似于图16,显示一具有对电源噪声变动承受能力的集成电路时钟电路的电路示意图,且还包含切换电路介于参考产生器及运算放大器之间。如同图8所示,切换晶体管818A由信号ENX所开启而切换晶体管818B由信号ENY所开启。类似于图8,来自时序电源及准位切换产生器1616A和1616B的接地噪声是储存于电容性节点REFX或REFY之中。FIG. 18 is a circuit diagram, similar to FIG. 16, showing a schematic circuit diagram of an integrated circuit clock circuit with tolerance to power supply noise variations, and also includes switching circuits between the reference generator and the operational amplifier. As shown in FIG. 8, the switching
虽然本发明是已参照实施例来加以描述,然本发明创作并未受限于其详细描述内容。替换方式及修改样式是已于先前描述中所建议,且其它替换方式及修改样式将为熟习此项技术的人士所思及。特别是,所有具有实质上相同于本发明的构件结合而达成与本发明实质上相同结果者,皆不脱离本发明的精神范畴。因此,所有此等替换方式及修改样式是意欲落在本发明的权利要求范围及其均等物所界定的范畴之中。Although the present invention has been described with reference to the embodiments, the inventive concept is not limited by the detailed description. Alternatives and modifications have been suggested in the preceding description, and other alternatives and modifications will occur to those skilled in the art. In particular, all combinations of components that are substantially the same as those of the present invention to achieve substantially the same results as the present invention do not depart from the scope of the present invention. Therefore, all such alternatives and modifications are intended to fall within the category defined by the claims of the present invention and their equivalents.
Claims (38)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102637121A CN102118151A (en) | 2009-12-30 | 2009-12-30 | Clock circuit of integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102637121A CN102118151A (en) | 2009-12-30 | 2009-12-30 | Clock circuit of integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102118151A true CN102118151A (en) | 2011-07-06 |
Family
ID=44216775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009102637121A Pending CN102118151A (en) | 2009-12-30 | 2009-12-30 | Clock circuit of integrated circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102118151A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103078607A (en) * | 2011-10-25 | 2013-05-01 | 旺宏电子股份有限公司 | Clock integrated circuit |
CN103188177A (en) * | 2011-12-30 | 2013-07-03 | 意法半导体研发(上海)有限公司 | Method for effectively reducing electromagnetic emission in local interconnection network (LIN) driver |
CN106155164A (en) * | 2015-04-20 | 2016-11-23 | 扬智科技股份有限公司 | Electronic device and integrated circuit thereof |
-
2009
- 2009-12-30 CN CN2009102637121A patent/CN102118151A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103078607A (en) * | 2011-10-25 | 2013-05-01 | 旺宏电子股份有限公司 | Clock integrated circuit |
CN103078607B (en) * | 2011-10-25 | 2015-02-18 | 旺宏电子股份有限公司 | Clock integrated circuit |
CN103188177A (en) * | 2011-12-30 | 2013-07-03 | 意法半导体研发(上海)有限公司 | Method for effectively reducing electromagnetic emission in local interconnection network (LIN) driver |
CN103188177B (en) * | 2011-12-30 | 2016-09-07 | 意法半导体研发(上海)有限公司 | The method effectively reduced of the Electromagnetic Launching in LIN driver |
CN106155164A (en) * | 2015-04-20 | 2016-11-23 | 扬智科技股份有限公司 | Electronic device and integrated circuit thereof |
US9710007B2 (en) | 2015-04-20 | 2017-07-18 | Ali Corporation | Integrated circuit capable of providing a stable reference current and an electronic device with the same |
CN106155164B (en) * | 2015-04-20 | 2017-11-28 | 扬智科技股份有限公司 | Electronic device and integrated circuit thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7961027B1 (en) | Clock integrated circuit | |
TWI400884B (en) | Clock integrated circuit | |
CN108063610B (en) | Power-on reset pulse generation circuit | |
US10637476B2 (en) | Clock integrated circuit | |
TWI542153B (en) | Relaxation oscillator | |
TW201603043A (en) | Sense amplifier | |
US20100283759A1 (en) | Touch sensor system and microcomputer | |
JPH0554650A (en) | Semiconductor integrated circuit | |
CN102118151A (en) | Clock circuit of integrated circuit | |
US8245074B2 (en) | Clock integrated circuit | |
CN102098037A (en) | Clock circuit of integrated circuit | |
CN102664616B (en) | IC clock circuit | |
CN100561864C (en) | Self-starting current biasing circuit | |
CN102664615B (en) | Clock circuit of integrated circuit | |
CN102111140A (en) | Clock circuit of integrated circuit | |
US6870433B2 (en) | Oscillator circuit | |
TWI388126B (en) | Clock integrated circuit | |
TWI393348B (en) | Clock integrated circuit | |
TWI506395B (en) | Clock integrated circuit | |
CN102315836B (en) | Clock integrated circuit | |
US11164616B2 (en) | Bias generation circuitry | |
CN103078607B (en) | Clock integrated circuit | |
KR100380158B1 (en) | Delay circuit | |
JP2603925B2 (en) | Semiconductor integrated circuit | |
Muralidharan et al. | An Integrated Switching Technique for Minimizing Power Consumption Using MDFSD in Domino Logic System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110706 |