CN102117922A - Flat plate type fuel cell module and flow field plate thereof - Google Patents
Flat plate type fuel cell module and flow field plate thereof Download PDFInfo
- Publication number
- CN102117922A CN102117922A CN2010101740541A CN201010174054A CN102117922A CN 102117922 A CN102117922 A CN 102117922A CN 2010101740541 A CN2010101740541 A CN 2010101740541A CN 201010174054 A CN201010174054 A CN 201010174054A CN 102117922 A CN102117922 A CN 102117922A
- Authority
- CN
- China
- Prior art keywords
- field plate
- flow
- divergent
- runners
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 37
- 239000012530 fluid Substances 0.000 claims abstract description 24
- 238000009792 diffusion process Methods 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 abstract description 19
- 239000012528 membrane Substances 0.000 description 13
- 238000007789 sealing Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 238000003487 electrochemical reaction Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
本发明提供了一种平板式燃料电池模块及其流场板,所述流场板设置在一燃料电池模块中,包括至少两个流道、一第一歧道以及一第二歧道。所述至少两个流道分别形成于流场板的相反侧,所述第一、第二歧道形成于流场板内部,其中第一、第二歧道与所述至少两个流道相通。反应流体自第一歧道进入流场板,并经过所述至少两个流道后汇入第二歧道,接着由第二歧道排出流场板。
The present invention provides a flat fuel cell module and a flow field plate thereof, wherein the flow field plate is arranged in a fuel cell module and includes at least two flow channels, a first manifold and a second manifold. The at least two flow channels are formed on opposite sides of the flow field plate, respectively, and the first and second manifolds are formed inside the flow field plate, wherein the first and second manifolds are connected to the at least two flow channels. The reaction fluid enters the flow field plate from the first manifold, and after passing through the at least two flow channels, it converges into the second manifold, and then is discharged from the flow field plate from the second manifold.
Description
技术领域technical field
本发明有关于一种流场板,特别是有关于一种设置在平板式燃料电池模块中的流场板。The present invention relates to a flow field plate, in particular to a flow field plate arranged in a flat fuel cell module.
背景技术Background technique
首先请参阅图1,已知的质子交换膜燃料电池(Proton Exchange MembraneFuel Cell,PEMFC)的单电池结构(single cell)400主要包括一膜电极组410(membrane electrode assembly,MEA)、两个气体扩散层405、406(gas diffusionlayer,GDL)以及两个流场板401、402(fluid flow plate)。所述两个流场板401、402的内侧表面分别形成有各自独立的流道(flow channel)403、404,可用以进行反应流体的输送,所述膜电极组410主要包括一质子交换膜409、阳极(anode)触媒层407及阴极(cathode)触媒层408,其中触媒层407、408通常具有铂或铂合金等成份,以利于燃料电池进行电化学反应(electrochemicalreactions)并提供电力输出。First please refer to Fig. 1, the single cell structure (single cell) 400 of the known proton exchange membrane fuel cell (Proton Exchange Membrane Fuel Cell, PEMFC) mainly includes a membrane electrode assembly 410 (membrane electrode assembly, MEA), two gas diffusion Layers 405, 406 (gas diffusion layer, GDL) and two flow field plates 401, 402 (fluid flow plate). The inner surfaces of the two flow field plates 401, 402 are respectively formed with independent flow channels (flow channels) 403, 404, which can be used to transport the reaction fluid. The membrane electrode group 410 mainly includes a proton exchange membrane 409 1. Anode (anode) catalyst layer 407 and cathode (cathode) catalyst layer 408, wherein the catalyst layers 407, 408 usually have platinum or platinum alloy and other components to facilitate the fuel cell to perform electrochemical reactions (electrochemical reactions) and provide power output.
在一般小型燃料电池的流场板中,其流道与歧道的尺寸通常比大型燃料电池更为细小,故反应流体的流阻相对提高,如此将会导致反应流体在流场板上的浓度分布不均匀,进而影响燃料电池的效能。有鉴于此,如何改善已知流场板上流道与歧道结构设计,使反应流体可均匀地输送至流场板上的每个区域,进而提升燃料电池的整体效能开始成为燃料电池小型化的重要课题。In the flow field plate of a general small fuel cell, the size of the flow channel and manifold is usually smaller than that of a large fuel cell, so the flow resistance of the reaction fluid is relatively increased, which will lead to the concentration of the reaction fluid on the flow field plate Uneven distribution affects the performance of the fuel cell. In view of this, how to improve the structure design of the flow channels and manifolds on the known flow field plate, so that the reaction fluid can be evenly delivered to each area on the flow field plate, and thus improve the overall performance of the fuel cell has become the focus of the miniaturization of the fuel cell. important topic.
发明内容Contents of the invention
本发明所要解决的技术问题在于提供一种使反应流体可均匀地输送至流场板上的每个区域,进而提升燃料电池的整体效能的平板式燃料电池模块及其流场板。The technical problem to be solved by the present invention is to provide a flat fuel cell module and its flow field plate which can uniformly transport the reaction fluid to each area of the flow field plate, thereby improving the overall performance of the fuel cell.
本发明的一实施例提供一种流场板,设置在一燃料电池模块中,包括至少两个流道、一第一歧道以及一第二歧道,其中所述至少两个流道分别形成于流场板的相反侧。所述第一、第二歧道形成于流场板内部,并且大致平行于流场板的一中心轴方向,其中第一、第二歧道与所述至少两个流道相通。反应流体自第一歧道进入流场板,并经过所述至少两个流道后汇入第二歧道,接着由第二歧道排出流场板。An embodiment of the present invention provides a flow field plate, which is arranged in a fuel cell module and includes at least two flow channels, a first branch channel and a second branch channel, wherein the at least two flow channels respectively form on the opposite side of the flow field plate. The first and second manifolds are formed inside the flow field plate and are approximately parallel to a central axis of the flow field plate, wherein the first and second manifolds communicate with the at least two flow channels. The reaction fluid enters the flow field plate from the first manifold, flows into the second manifold after passing through the at least two flow channels, and then exits the flow field plate from the second manifold.
在一实施例中,所述第一歧道具有两个缺口,分别与所述至少两个流道相通,其中每一缺口相对于第一歧道的一截面几何中心位置所对应的角度介于0°~90°之间。In one embodiment, the first manifold has two notches, respectively communicated with the at least two flow channels, wherein the angle corresponding to each notch relative to a geometric center position of a section of the first manifold is between Between 0° and 90°.
在一实施例中,所述第二歧道具有至少两个缺口,分别与所述至少两个流道相通,且每一缺口相对于第二歧道的一截面几何中心位置所对应的角度介于0°~90°之间。In one embodiment, the second manifold has at least two notches, respectively communicated with the at least two flow channels, and each notch is at an angle corresponding to a geometric center position of a section of the second manifold. between 0° and 90°.
在一实施例中,所述第一歧道具有四个缺口,分别与所述至少两个流道相通并且对称于第一歧道,其中每一缺口相对于第一歧道的一截面几何中心位置所对应的角度分别介于0°~90°之间。In one embodiment, the first branch channel has four notches, which communicate with the at least two flow channels respectively and are symmetrical to the first branch channel, wherein each notch is relative to a section geometric center of the first branch channel Angles corresponding to the positions are respectively between 0° and 90°.
在一实施例中,所述流场板还包括两个第二歧道,其中第一歧道位于中心轴上,两个第二歧道则分别位于第一歧道的相反侧。In an embodiment, the flow field plate further includes two second manifolds, wherein the first manifold is located on the central axis, and the two second manifolds are respectively located on opposite sides of the first manifold.
在一实施例中,所述至少两个流道以阵列方式配置于流场板的相反侧。In one embodiment, the at least two flow channels are arranged in an array on opposite sides of the flow field plate.
在一实施例中,所述至少两个流道沿流场板的中心轴方向排列。In one embodiment, the at least two flow channels are arranged along the direction of the central axis of the flow field plate.
本发明一实施例还提供一种平板式燃料电池模块,除了具有上述结构和特点的流场板外,还包括两个核心单元以及两个密封元件,其中流场板设置在所述两个核心单元之间,且每一个核心单元包括一膜电极组、两个气体扩散层以及多个集电元件,所述两个气体扩散层以及多个集电元件设置在膜电极组的两侧,所述两个密封元件则分别设置在所述两个核心单元的外侧,并且分别与所述两个核心单元相互连接。An embodiment of the present invention also provides a flat fuel cell module, which includes two core units and two sealing elements in addition to the flow field plate with the above structure and characteristics, wherein the flow field plate is arranged on the two cores between the units, and each core unit includes a membrane electrode group, two gas diffusion layers and a plurality of collector elements, the two gas diffusion layers and a plurality of collector elements are arranged on both sides of the membrane electrode group, so The two sealing elements are respectively arranged on the outer sides of the two core units, and are respectively connected with the two core units.
根据本发明的平板式燃料电池模块及其流场板,由于在流场板内部设有第一、第二歧道,此外在流场板两侧分别形成有至少一个流道,其中反应流体可由流场板的第一端部进入第一歧道,并经过所述流道后汇入第二歧道,接着再由流场板的第二端部排出。因为所述第一、第二歧道形成于流场板内部,借此能降低流阻,使得反应流体能迅速且有效地输送到流场板的各个区域,同时可避免反应流体在流场板内的浓度分布不均,进而提升燃料电池的整体效能。According to the flat fuel cell module and its flow field plate of the present invention, since the first and second manifolds are arranged inside the flow field plate, at least one flow channel is respectively formed on both sides of the flow field plate, wherein the reaction fluid can be obtained by The first end of the flow field plate enters the first branch channel, passes through the flow channel and enters the second branch channel, and then is discharged from the second end of the flow field plate. Because the first and second manifolds are formed inside the flow field plate, the flow resistance can be reduced, so that the reaction fluid can be quickly and effectively delivered to each area of the flow field plate, and at the same time, the reaction fluid can be prevented from being trapped in the flow field plate. The uneven concentration distribution in the fuel cell improves the overall performance of the fuel cell.
附图说明Description of drawings
为使本发明的上述目的、特征及优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下:In order to make the above-mentioned purposes, features and advantages of the present invention more obvious and understandable, the preferred embodiments are specifically cited below, together with the accompanying drawings, and are described in detail as follows:
图1表示已知的质子交换膜燃料电池的单电池结构示意图;Fig. 1 shows the schematic diagram of the unit cell structure of known proton exchange membrane fuel cell;
图2表示本发明一实施例的平板式燃料电池模块示意图;Figure 2 shows a schematic diagram of a flat fuel cell module according to an embodiment of the present invention;
图3A表示本发明一实施例的流场板示意图;FIG. 3A shows a schematic diagram of a flow field plate according to an embodiment of the present invention;
图3B表示图3A中的流场板剖视图;Figure 3B shows a cross-sectional view of the flow field plate in Figure 3A;
图4A表示本发明另一实施例的流场板示意图;FIG. 4A shows a schematic diagram of a flow field plate according to another embodiment of the present invention;
图4B表示图4A中的流场板剖视图;Figure 4B shows a cross-sectional view of the flow field plate in Figure 4A;
图5A表示本发明另一实施例的流场板示意图;FIG. 5A shows a schematic diagram of a flow field plate according to another embodiment of the present invention;
图5B表示图5A中的流场板剖视图;以及Figure 5B shows a cross-sectional view of the flow field plate in Figure 5A; and
图5C表示图5B中沿X1-X2的剖视图。Fig. 5C shows a cross-sectional view along X1-X2 in Fig. 5B.
【主要附图标记说明】[Description of main reference signs]
流场板10
第一端部101
第二端部102
第一歧道11
缺口110Notch 110
第二歧道12
密封元件20
核心单元30Core
集电元件31
单电池结构400Single cell structure 400
流场板401、402Flow field plates 401, 402
流道403、404Runner 403, 404
气体扩散层405、406Gas diffusion layers 405, 406
触媒层407、408Catalyst layers 407, 408
质子交换膜409PEM 409
膜电极组410MEA 410
中心轴ACentral axis A
流道CRunner C
空隙GGap G
连接件RConnector R
第一侧S1First side S1
第二侧S2Second side S2
角度θAngle θ
具体实施方式Detailed ways
请参阅图2,本发明一实施例的平板式燃料电池模块主要包括一流场板10、两个密封元件20(sealing member)以及两个核心单元30,所述每一核心单元30由一膜电极组、两个气体扩散层以及多个集电元件31所组成,其中膜电极组和气体扩散层的结构可参考图1所示的膜电极组410以及气体扩散层405、406。在本实施例的核心单元30中,气体扩散层和集电元件31设置在膜电极组的两侧(阳极侧和阴极侧),且集电元件31显露在核心单元30表面,以利于进行燃料电池模块内部的电化学反应。Please refer to FIG. 2 , a flat-plate fuel cell module according to an embodiment of the present invention mainly includes a
如图2所示,所述流场板10夹设在两个核心单元30之间的空隙G内,其中在流场板10的第一侧S1以及第二侧S2分别形成有至少一流道C,此外两个核心单元30还可透过一连接件R相互连接,密封元件20则是设置在两个核心单元30的外侧,并且分别结合于核心单元30表面,以此可组成一具有多层结构的平板式燃料电池模块。As shown in FIG. 2, the
接着请参阅图3A,在本实施例中的流场板10大致呈一矩形结构,所述流道C沿着流场板10的一中心轴A方向排列,并且分别显露在流场板10的第一、第二侧S1、S2。此外,在流场板10内部另形成有一第一歧道11以及一第二歧道12,所述第一、第二歧道11、12大致平行于中心轴A,并且分别与流场板10两侧的各个流道C相通。Next please refer to FIG. 3A , the
应了解的是,反应流体(reactant fluid)可由流场板10的第一端部101进入第一歧道11,接着经过所述流道C后汇入第二歧道12,最后再由流场板10的第二端部102排出(如图3A中箭头方向所示)。因为本实施例中的第一、第二歧道11、12形成于流场板10的内部,并且顺着流场板10的中心轴A方向延伸,借此能降低流阻,使得反应流体迅速且有效地输送到流场板10的各个区域,并可避免反应流体在流场板10内的浓度分布不均,进而可提升燃料电池的效能。It should be understood that the reactive fluid (reactant fluid) can enter the
再请参阅图3B,本实施例中的第一歧道11具有一圆形截面,特别地是在第一歧道11的左下侧以及右下侧分别形成有缺口110,所述缺口110分别与第一、第二侧S1、S2的流道C相通。由图3B中可以看出,每一缺口110相对于第一歧道11的截面几何中心位置所对应的角度θ约介于0°~90°之间。此外,第二歧道12也可形成与所述缺口110类似的结构,其中第二歧道12的缺口相对于其截面几何中心位置所对应的角度同样介于0°~90°之间。Referring to FIG. 3B again, the
接着请同时参阅图4A、4B,本发明另一实施例的流场板10同样是在第一、第二侧S1、S2都形成有流道C,此外在流场板10内部另形成有一第一歧道11以及两个第二歧道12。如图4A、4B所示,所述第一歧道11位于流场板10的中心轴A上,两个第二歧道12则分别位在第一歧道11的上、下两侧,其中第一、第二歧道11、12与第一、第二侧S1、S2的各个流道C相通,借此可降低流阻,并使反应流体迅速且有效地传送到流场板10的各个区域。4A and 4B at the same time, the
再请同时参阅图5A、5B,本发明另一实施例的流场板10同样是在第一、第二侧S1、S2都形成有流道C,只是在本实施例中的流道C是以二维阵列方式配置于流场板10的两侧。应了解的是,所述第一、第二歧道11、12形成于流场板10内部并且与第一、第二侧S1、S2的各个流道C相通,借此可降低流阻,并使反应流体迅速且有效地传送到流场板10的各个区域。Please refer to Fig. 5A and 5B at the same time. The
如图5A、5B中的箭头方向所示,反应流体可由流场板10的第一端部101进入第一歧道11,然后经过所述流道C后汇入第二歧道12,接着再由流场板10的第二端部102排出。相反地,也可以使反应流体由流场板10的第二端部102进入第二歧道12,并经过所述流道C汇入第一歧道11后,接着再由流场板10的第一端部101排出流场板10,所述两种运动方式都能使反应流体迅速且有效地传送到流场板10的各个区域,以利于进行燃料电池内部的电化学反应。As shown in the direction of the arrow in Figures 5A and 5B, the reaction fluid can enter the
接着请参阅图5C,在本实施例中的第一歧道11具有一圆形截面,特别地是在第一歧道11的左上、左下、右上以及右下侧分别形成有缺口110,透过所述缺口110可使第一歧道11与位于第一、第二侧S1、S2的流道C相通。如图5C所示,所述缺口110以对称的方式形成于第一歧道11上,其中每一缺口110相对于第一歧道11的截面几何中心位置所对应的角度θ约介于0°~90°之间。Next, please refer to FIG. 5C. In this embodiment, the
综上所述,本发明提供一种平板式燃料电池模块及其流场板,其中在流场板内部设有第一、第二歧道,此外在流场板两侧分别形成有至少一个流道,其中反应流体可由流场板的第一端部进入第一歧道,并经过所述至少一个流道后汇入第二歧道,接着再由流场板的第二端部排出。因为所述第一、第二歧道形成于流场板内部,借此能降低流阻,使得反应流体能迅速且有效地输送到流场板的各个区域,同时可避免反应流体在流场板内的浓度分布不均,进而提升燃料电池的整体效能。To sum up, the present invention provides a flat fuel cell module and its flow field plate, wherein first and second manifolds are arranged inside the flow field plate, and at least one flow channel is formed on both sides of the flow field plate respectively. channels, wherein the reaction fluid can enter the first manifold from the first end of the flow field plate, and enter the second manifold after passing through the at least one flow channel, and then be discharged from the second end of the flow field plate. Because the first and second manifolds are formed inside the flow field plate, the flow resistance can be reduced, so that the reaction fluid can be quickly and effectively delivered to each area of the flow field plate, and at the same time, the reaction fluid can be prevented from being trapped in the flow field plate. The uneven concentration distribution in the fuel cell improves the overall performance of the fuel cell.
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何熟悉此技术的人员,在不脱离本发明的精神和范围内,当可作更动与润饰,因此本发明的保护范围当视权利要求书所界定的范围为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person familiar with this technology can make changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection should depend on the scope defined by the claims.
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US26738709P | 2009-12-07 | 2009-12-07 | |
US61/267,387 | 2009-12-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102117922A true CN102117922A (en) | 2011-07-06 |
Family
ID=44216574
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101740698A Withdrawn CN102255094A (en) | 2009-12-07 | 2010-05-06 | Fuel cell device and fuel cell module thereof |
CN2010101740541A Withdrawn CN102117922A (en) | 2009-12-07 | 2010-05-06 | Flat plate type fuel cell module and flow field plate thereof |
CN201010174058XA Withdrawn CN102255093A (en) | 2009-12-07 | 2010-05-06 | Fuel cell device and fuel cell module thereof |
CN2010101740503A Withdrawn CN102117921A (en) | 2009-12-07 | 2010-05-06 | Flow field plate |
CN2010105854838A Pending CN102255088A (en) | 2009-12-07 | 2010-12-07 | Fuel cell module |
CN201010585433XA Pending CN102117923A (en) | 2009-12-07 | 2010-12-07 | Fluid flow field plate assembly and fuel cell system |
CN201010585446.7A Expired - Fee Related CN102117924B (en) | 2009-12-07 | 2010-12-07 | Fluid flow field plate assembly |
CN201310215726.2A Expired - Fee Related CN103354292B (en) | 2009-12-07 | 2010-12-07 | Fuel cell system |
CN2010105855671A Pending CN102255099A (en) | 2009-12-07 | 2010-12-07 | Fuel cell system and fuel cell module thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101740698A Withdrawn CN102255094A (en) | 2009-12-07 | 2010-05-06 | Fuel cell device and fuel cell module thereof |
Family Applications After (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010174058XA Withdrawn CN102255093A (en) | 2009-12-07 | 2010-05-06 | Fuel cell device and fuel cell module thereof |
CN2010101740503A Withdrawn CN102117921A (en) | 2009-12-07 | 2010-05-06 | Flow field plate |
CN2010105854838A Pending CN102255088A (en) | 2009-12-07 | 2010-12-07 | Fuel cell module |
CN201010585433XA Pending CN102117923A (en) | 2009-12-07 | 2010-12-07 | Fluid flow field plate assembly and fuel cell system |
CN201010585446.7A Expired - Fee Related CN102117924B (en) | 2009-12-07 | 2010-12-07 | Fluid flow field plate assembly |
CN201310215726.2A Expired - Fee Related CN103354292B (en) | 2009-12-07 | 2010-12-07 | Fuel cell system |
CN2010105855671A Pending CN102255099A (en) | 2009-12-07 | 2010-12-07 | Fuel cell system and fuel cell module thereof |
Country Status (1)
Country | Link |
---|---|
CN (9) | CN102255094A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104871353A (en) * | 2013-01-07 | 2015-08-26 | 宝马股份公司 | Fuel cell having at least one active surface layer |
CN114571643A (en) * | 2022-03-23 | 2022-06-03 | 武汉众宇动力系统科技有限公司 | Glue injection device for injecting glue to flow field plate of fuel cell |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2818176C (en) * | 2013-02-08 | 2015-11-24 | Veolia Water Solutions & Technologies North America, Inc. | Method of recovering oil and producing produced water that is concentrated and dried by a double drum dryer |
CN104681830B (en) * | 2013-12-03 | 2017-12-26 | 航天新长征电动汽车技术有限公司 | A kind of fuel cell module packaging body |
KR102483895B1 (en) * | 2016-01-21 | 2022-12-30 | 삼성전자주식회사 | Electrochemical cell, battery module comprising the same, and battery pack comprising the same |
CN109461949B (en) * | 2018-09-20 | 2022-04-12 | 中国北方车辆研究所 | Cathode flow field plate for fuel cell and processing method thereof |
DE102018216099A1 (en) * | 2018-09-21 | 2020-03-26 | Robert Bosch Gmbh | Electrode support device for a fuel cell and / or electrolyzer unit |
CN111048799B (en) * | 2019-11-22 | 2021-08-03 | 中国第一汽车股份有限公司 | Fuel cell structure |
CN111697257B (en) * | 2020-05-15 | 2022-02-22 | 西安交通大学 | Integrated on-site hydrolysis hydrogen production and hydrogen fuel cell power generation device and method |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7261798B2 (en) * | 2004-01-28 | 2007-08-28 | Hamilton Sundstrand Corporation | Assembly for maintaining compression for electrical contact of the active area of an electrochemical cell |
US7323270B2 (en) * | 2004-08-11 | 2008-01-29 | Fuelcell Energy, Inc. | Modular fuel-cell stack assembly |
JP3847311B2 (en) * | 2004-09-16 | 2006-11-22 | 日東電工株式会社 | Fuel cell manufacturing method and manufacturing equipment |
US8039168B2 (en) * | 2004-10-05 | 2011-10-18 | Dai Nippon Printing Co., Ltd. | Separator for flat-type polymer electrolyte fuel cells |
US7763393B2 (en) * | 2005-05-13 | 2010-07-27 | Hitachi Cable, Ltd. | Fuel cell having electrode channel member with comb-teeth shape |
US20070292740A1 (en) * | 2006-06-19 | 2007-12-20 | Hsi-Ming Shu | Fuel flow board for fuel cell |
CN100517835C (en) * | 2006-08-25 | 2009-07-22 | 上海神力科技有限公司 | A Piping Design to Fully Utilize the Space of an Integrated Fuel Cell Stack |
US7638235B2 (en) * | 2006-09-22 | 2009-12-29 | Gm Global Technology Operations, Inc. | Internal proton exchange membrane humidification and cooling with automotive coolant |
KR100908973B1 (en) * | 2007-09-13 | 2009-07-22 | 삼성에스디아이 주식회사 | Fuel cell system |
WO2009073453A2 (en) * | 2007-11-30 | 2009-06-11 | Bdf Ip Holdings Ltd. | Electrode supports in fluid distribution plenums in fuel cells |
-
2010
- 2010-05-06 CN CN2010101740698A patent/CN102255094A/en not_active Withdrawn
- 2010-05-06 CN CN2010101740541A patent/CN102117922A/en not_active Withdrawn
- 2010-05-06 CN CN201010174058XA patent/CN102255093A/en not_active Withdrawn
- 2010-05-06 CN CN2010101740503A patent/CN102117921A/en not_active Withdrawn
- 2010-12-07 CN CN2010105854838A patent/CN102255088A/en active Pending
- 2010-12-07 CN CN201010585433XA patent/CN102117923A/en active Pending
- 2010-12-07 CN CN201010585446.7A patent/CN102117924B/en not_active Expired - Fee Related
- 2010-12-07 CN CN201310215726.2A patent/CN103354292B/en not_active Expired - Fee Related
- 2010-12-07 CN CN2010105855671A patent/CN102255099A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104871353A (en) * | 2013-01-07 | 2015-08-26 | 宝马股份公司 | Fuel cell having at least one active surface layer |
CN104871353B (en) * | 2013-01-07 | 2017-12-29 | 宝马股份公司 | Fuel cell with least one active surface layer |
US10090535B2 (en) | 2013-01-07 | 2018-10-02 | Bayerische Motoren Werke Aktiengesellschaft | Fuel cell having at least one active surface layer |
CN114571643A (en) * | 2022-03-23 | 2022-06-03 | 武汉众宇动力系统科技有限公司 | Glue injection device for injecting glue to flow field plate of fuel cell |
CN114571643B (en) * | 2022-03-23 | 2022-12-06 | 武汉众宇动力系统科技有限公司 | Glue injection device for injecting glue to flow field plate of fuel cell |
Also Published As
Publication number | Publication date |
---|---|
CN102117923A (en) | 2011-07-06 |
CN103354292B (en) | 2015-08-12 |
CN102255094A (en) | 2011-11-23 |
CN102255093A (en) | 2011-11-23 |
CN102117921A (en) | 2011-07-06 |
CN102255088A (en) | 2011-11-23 |
CN102255099A (en) | 2011-11-23 |
CN102117924B (en) | 2014-03-19 |
CN103354292A (en) | 2013-10-16 |
CN102117924A (en) | 2011-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102117922A (en) | Flat plate type fuel cell module and flow field plate thereof | |
US9905880B2 (en) | Fuel cell stack | |
CN100405645C (en) | Stamped Fuel Cell Bipolar Plates | |
CN108695524A (en) | Dual polar plates of proton exchange membrane fuel cell | |
TWI513090B (en) | Flat type solid oxide fuel cell stack unit and flat type solid oxide fuel cell stack module | |
JPH10308227A (en) | Solid polymer electrolyte fuel cell | |
CN108123146A (en) | Bipolar plate structure with optimized gas flow channels and fuel cell | |
CN103563144B (en) | Fuel cell | |
EP2337131B1 (en) | Two-sided fluid flow plate assembly having parallel flow channels | |
CN102983337B (en) | Polar plate, polar plate group and fuel cell | |
CN102544544B (en) | Flow field plate for fuel cell device, flow field plate assembly and fuel cell device | |
JP6228984B2 (en) | Fuel cell | |
JP5180946B2 (en) | Fuel cell | |
TWI338408B (en) | ||
CN111788730B (en) | Fuel cell, cell unit thereof, and stack structure | |
CN116845271A (en) | Bipolar plate for proton exchange film fuel cell | |
JP5249177B2 (en) | Fuel cell system | |
WO2018044236A1 (en) | Flow frame for electrochemical cells | |
CN116072944B (en) | A single-stack megawatt fuel cell | |
KR101162667B1 (en) | Seperator for fuel cell | |
TWI476986B (en) | Fuel cell stack and its separator | |
JP5665900B2 (en) | Fuel cell separator | |
CN101847730A (en) | Fuel cell flow field plate with flow guiding pad | |
CN118352557A (en) | Bionic flow channel structure of hydrogen fuel cell | |
KR101672087B1 (en) | bipolar plates for fuel cells and manufacturing method of stack using thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C04 | Withdrawal of patent application after publication (patent law 2001) | ||
WW01 | Invention patent application withdrawn after publication |
Open date: 20110706 |