CN102114917B - Processing method for enhancing control precision of magnetic torquer - Google Patents
Processing method for enhancing control precision of magnetic torquer Download PDFInfo
- Publication number
- CN102114917B CN102114917B CN200910216909XA CN200910216909A CN102114917B CN 102114917 B CN102114917 B CN 102114917B CN 200910216909X A CN200910216909X A CN 200910216909XA CN 200910216909 A CN200910216909 A CN 200910216909A CN 102114917 B CN102114917 B CN 102114917B
- Authority
- CN
- China
- Prior art keywords
- magnetic
- formula
- unit
- satellite
- torque device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明提供一种提高磁力矩器控制精度的处理方法,其卫星在轨正常运行时采用脉宽调制的方式进行磁控;具体步骤为:(a)计算得出磁力矩器输出磁矩Mi(i=x,y,z);(b)然后计算得出磁力矩器工作脉宽Wmi(i=x,y,z);(c)计算获得补偿后的分别安装于卫星三个轴上的磁力矩器工作脉宽Wmi′,i=x,y,z。本发明对磁力矩器输出进行补偿,能够提高磁力矩器实际输出效率,从而提高系统控制精度。
The present invention provides a kind of processing method that improves the control precision of magnetic torque device, adopts the mode of pulse width modulation to carry out magnetic control when its satellite is in orbit normal operation; Concrete steps are: (a) calculate and obtain magnetic torque device output magnetic moment M i (i=x, y, z); (b) Then calculate the working pulse width W mi of the magnetic torque device (i=x, y, z); (c) calculate and obtain the compensation and install them on the three axes of the satellite respectively The working pulse width of the magnetic torque device W mi ′, i=x, y, z. The invention compensates the output of the magnetic torque device, can improve the actual output efficiency of the magnetic torque device, thereby improving the control precision of the system.
Description
技术领域 technical field
本发明涉及航天自动控制技术,具体涉及一种提高磁力矩器控制精度的处理方法。The invention relates to aerospace automatic control technology, in particular to a processing method for improving the control precision of a magnetic torque device.
背景技术 Background technique
卫星的姿轨控分系统一般由敏感器、执行机构和控制器组成。控制器通过敏感器采集的空间环境信息计算控制量,将控制信号发送给执行机构完成对卫星姿态和轨道的闭环控制。The satellite's attitude and orbit control subsystem generally consists of sensors, actuators and controllers. The controller calculates the control amount through the space environment information collected by the sensor, and sends the control signal to the actuator to complete the closed-loop control of the satellite attitude and orbit.
磁力矩器是卫星主要执行机构之一,由绕有线圈的磁棒及其驱动电路组成,如图1所示。控制器给出控制电压,磁力矩器线路转换成线圈电流Im,电流的方向不同,产生不同方向的磁矩。磁矩与地磁场相互作用产生力矩,对动量轮进行卸载并进行姿态控制,即The magnetic torque device is one of the main actuators of the satellite, which is composed of a magnetic bar wound with a coil and its drive circuit, as shown in Figure 1. The controller gives the control voltage, and the magnetic torque device circuit is converted into the coil current Im, and the direction of the current is different, and the magnetic moments in different directions are generated. The interaction between the magnetic moment and the geomagnetic field produces a moment, which unloads the momentum wheel and performs attitude control, that is,
上式中:In the above formula:
为力矩,单位为“牛顿·米·秒”,即Nms; is the torque, and the unit is "Newton meter second", that is, Nms;
为磁力矩器产生的磁矩,单位为“安培·米2”,即A·m2; is the magnetic moment generated by the magnetic torque device, and the unit is "ampere m2 ", that is, A m2 ;
为地磁场,单位为“特斯拉”,即T; is the geomagnetic field, and the unit is "Tesla", that is, T;
Bi(i=x,y,z)为地磁场在卫星本体坐标坐标系(xb,yb,zb)上的分量;B i (i=x, y, z) is the component of the geomagnetic field on the satellite body coordinate system (x b , y b , z b );
Mi(i=x,y,z)为磁力矩器输出磁矩在卫星本体坐标坐标系(xb,yb,zb)的分量。M i (i=x, y, z) is the component of the output magnetic moment of the magnetic torque device in the coordinate system (x b , y b , z b ) of the satellite body.
控制系统一般采用三个磁力矩器,安装方式如图2所示,磁力矩器产生正磁矩的方向分别与卫星的三个惯性主轴平行。The control system generally uses three magnetic torque devices, and the installation method is shown in Figure 2. The directions of the positive magnetic moments generated by the magnetic torque devices are respectively parallel to the three inertial axes of the satellite.
卫星在轨正常运行时通常采用脉宽调制的方式进行磁控。磁矩与工作脉宽的关系如公式(2)When the satellite is in normal operation in orbit, it usually adopts pulse width modulation for magnetic control. The relationship between magnetic moment and working pulse width is shown in formula (2)
式(2) Formula (2)
上式中:In the above formula:
Mmax为磁力矩器所能输出的最大磁矩,单位A·m2;M max is the maximum magnetic moment that the magnetic torque device can output, unit A·m 2 ;
姿态控制周期:设计的卫星进行姿态计算及控制的离散步长,单位:秒;Attitude control cycle: the discrete step length of the designed satellite for attitude calculation and control, unit: second;
Wmi,i=x,y,z:分别安装于卫星三个轴上的磁力矩器工作脉宽,单位:秒。W mi , i=x, y, z: the working pulse width of the magnetic torquer installed on the three axes of the satellite, unit: second.
控制系统通过空间环境信息计算出所需的控制力矩后,对磁力矩器所需脉宽进行计算,并给出相应宽度的控制电压,磁力矩器线路根据此电压给出相应的线圈电流。理想的磁力矩器输出的磁矩M与控制电压的关系如图3所示。但由于磁力矩器线圈电感的存在,实际输出的磁矩如图4所示。实际的工作脉宽由于上升延迟时间和下降延迟时间而变窄,使得输出磁矩与地球磁场作用产生的力矩与控制器计算所需要的力矩有很大偏差,影响了卫星的控制效率。After the control system calculates the required control torque through the space environment information, it calculates the required pulse width of the magnetic torque device, and gives the control voltage of the corresponding width, and the magnetic torque device circuit gives the corresponding coil current according to this voltage. The relationship between the magnetic moment M output by an ideal magnetic torque device and the control voltage is shown in Figure 3. However, due to the existence of the coil inductance of the magnetic torque device, the actual output magnetic moment is shown in Figure 4. The actual working pulse width is narrowed due to the rising delay time and falling delay time, so that the torque generated by the interaction between the output magnetic moment and the earth's magnetic field has a large deviation from the torque required by the controller calculation, which affects the control efficiency of the satellite.
发明内容 Contents of the invention
本发明的目的在于提供一种提高磁力矩器控制精度的处理方法,其对磁力矩器输出进行补偿,提高磁力矩器实际输出效率,从而提高系统控制精度。The purpose of the present invention is to provide a processing method for improving the control precision of the magnetic torque device, which compensates the output of the magnetic torque device, improves the actual output efficiency of the magnetic torque device, and thereby improves the system control precision.
实现本发明目的的技术方案:一种提高磁力矩器控制精度的处理方法,其卫星在轨正常运行时采用脉宽调制的方式进行磁控;该方法按如下步骤进行:The technical scheme that realizes the object of the present invention: a kind of processing method that improves the control precision of magnetic torque device, adopts the mode of pulse width modulation to carry out magnetic control when its satellite is in orbit normal operation; The method is carried out as follows:
(a)根据公式(1)计算得出磁力矩器输出磁矩Mi(i=x,y,z)(a) According to the formula (1), the output magnetic moment M i (i=x, y, z) of the magnetic torque device is calculated
式中:In the formula:
为力矩,单位为“牛顿·米·秒”,通过敏感器采集数据及姿态动力学计算得出; is the moment, and the unit is "Newton meter second", It is obtained by collecting data from sensors and calculating attitude dynamics;
为磁力矩器产生的磁矩,单位为“安培·米2”; is the magnetic moment generated by the magnetic torque device, and the unit is "ampere m2 ";
为地磁场,单位为“特斯拉”; is the geomagnetic field, and the unit is "Tesla";
Bi(i=x,y,z)为地磁场在卫星本体坐标坐标系(xb,yb,zb)上的分量;B i (i=x, y, z) is the component of the geomagnetic field on the satellite body coordinate system (x b , y b , z b );
Bi(i=x,y,z)由卫星轨道计算得出;B i (i=x, y, z) is calculated from the satellite orbit;
Mi(i=x,y,z)为磁力矩器输出磁矩在卫星本体坐标坐标系(xb,yb,zb)的分量;M i (i=x, y, z) is the component of the magnetic torque output magnetic moment in the satellite body coordinate system (x b , y b , z b );
(b)然后根据公式(2)计算得出磁力矩器工作脉宽Wmi(i=x,y,z)(b) Then calculate the working pulse width W mi (i=x, y, z) of the magnetic torque device according to the formula (2)
式(2) Formula (2)
式中:In the formula:
Mmax为磁力矩器所能输出的最大磁矩,单位为“安培·米2”;M max is the maximum magnetic moment that the magnetic torquer can output, and the unit is "ampere m2 ";
姿态控制周期为设计的卫星进行姿态计算及控制的离散步长,单位为“秒”;The attitude control period is the discrete step length of the designed satellite for attitude calculation and control, and the unit is "second";
Wmi,i=x,y,z为分别安装于卫星三个轴上的磁力矩器工作脉宽,单位为“秒”;W mi , i=x, y, z is the working pulse width of the magnetic torque device installed on the three axes of the satellite respectively, and the unit is "second";
(c)采用公式(3)计算获得补偿后的分别安装于卫星三个轴上的磁力矩器工作脉宽Wmi′,i=x,y,z(c) Using formula (3) to calculate the working pulse width W mi ′ of the magnetic torque device installed on the three axes of the satellite after compensation, i=x, y, z
式中:In the formula:
τ:上升时间常数,单位为“秒”;τ: rising time constant, the unit is "second";
k:下降最大延时常数,单位为“秒”。k: The maximum delay constant for falling, the unit is "second".
如上所述的一种提高磁力矩器控制精度的处理方法,其所述的常数τ和k由磁力矩器线圈及驱动线路特性决定,通过实际测量后拟合得到;即在没有磁力矩器补偿情况下,给定某工作脉宽,用示波器测量上升时间和下降最大延时时间。A processing method for improving the control accuracy of the magnetic torque device as described above, the constants τ and k are determined by the magnetic torque device coil and the characteristics of the drive line, and are obtained by fitting after actual measurement; that is, without the magnetic torque device compensation In the case of a given working pulse width, measure the rise time and fall maximum delay time with an oscilloscope.
本发明的效果在于:本发明所述的一种提高磁力矩器控制精度的处理方法,其获得补偿后的卫星三个轴上的磁力矩器工作脉宽,对磁力矩器输出进行补偿,能够提高磁力矩器实际输出效率,从而提高系统控制精度。The effect of the present invention is: a kind of processing method that improves the control precision of magnetic torque device described in the present invention, it obtains the working pulse width of magnetic torque device on the three axes of the satellite after compensation, and the magnetic torque device output is compensated, can Improve the actual output efficiency of the magnetic torque device, thereby improving the system control accuracy.
附图说明 Description of drawings
图1为磁力矩器组成及原理图;Figure 1 is the composition and schematic diagram of the magnetic torque device;
图2为磁力矩器安装方式图;Figure 2 is a diagram of the installation method of the magnetic torque device;
图3为理想状态下磁力矩器输出磁矩图;Fig. 3 is the output magnetic moment diagram of the magnetic torque device under the ideal state;
图4为实际的磁矩输出图;Figure 4 is the actual magnetic moment output diagram;
图5为加入补偿前的磁力矩器脉宽与控制电压关系图;Fig. 5 is a diagram of the relationship between the pulse width of the magnetic torque device and the control voltage before adding compensation;
图6为磁力矩器输出脉宽与补偿时间关系图。Fig. 6 is a graph showing the relationship between the output pulse width of the magnetic torque device and the compensation time.
具体实施方式 Detailed ways
本发明所述的一种提高磁力矩器控制精度的处理方法,其卫星在轨正常运行时采用脉宽调制的方式进行磁控;具体按如下步骤进行:A kind of processing method of improving the control precision of magnetic torque device described in the present invention, its satellite adopts the mode of pulse width modulation to carry out magnetic control when it is in orbit normal operation; Specifically carry out according to the following steps:
(a)根据公式(1)计算得出磁力矩器输出磁矩Mi(i=x,y,z)(a) According to the formula (1), the output magnetic moment M i (i=x, y, z) of the magnetic torque device is calculated
式中:In the formula:
为力矩,单位为“牛顿·米·秒”,通过敏感器采集数据及姿态动力学计算得出; is the moment, and the unit is "Newton meter second", It is obtained by collecting data from sensors and calculating attitude dynamics;
为磁力矩器产生的磁矩,单位为“安培·米2”; is the magnetic moment generated by the magnetic torque device, and the unit is "ampere m2 ";
为地磁场,单位为“特斯拉”; is the geomagnetic field, and the unit is "Tesla";
Bi(i=x,y,z)为地磁场在卫星本体坐标坐标系(xb,yb,zb)上的分量;B i (i=x, y, z) is the component of the geomagnetic field on the satellite body coordinate system (x b , y b , z b );
Bi(i=x,y,z)由卫星轨道计算得出;B i (i=x, y, z) is calculated from the satellite orbit;
Mi(i=x,y,z)为磁力矩器输出磁矩在卫星本体坐标坐标系(xb,yb,zb)的分量;M i (i=x, y, z) is the component of the magnetic torque output magnetic moment in the satellite body coordinate system (x b , y b , z b );
(b)根据公式(2)计算得出磁力矩器工作脉宽Wmi(i=x,y,z)(b) According to the formula (2), the working pulse width W mi of the magnetic torque device is calculated (i=x, y, z)
式(2) Formula (2)
式中:In the formula:
Mmax为磁力矩器所能输出的最大磁矩,单位为“安培·米2”;M max is the maximum magnetic moment that the magnetic torquer can output, and the unit is "ampere m2 ";
姿态控制周期为设计的卫星进行姿态计算及控制的离散步长,单位为“秒”;The attitude control period is the discrete step length of the designed satellite for attitude calculation and control, and the unit is "second";
Wmi,i=x,y,z为分别安装于卫星三个轴上的磁力矩器工作脉宽,单位为“秒”;W mi , i=x, y, z is the working pulse width of the magnetic torque device installed on the three axes of the satellite respectively, and the unit is "second";
(c)采用公式(3)进行补偿部分的磁距计算,获得补偿后的分别安装于卫星三个轴上的磁力矩器工作脉宽Wmi′,i=x,y,z(c) Use the formula (3) to calculate the magnetic distance of the compensation part, and obtain the working pulse width W mi ′ of the magnetic torque device installed on the three axes of the satellite after compensation, i=x, y, z
式中:In the formula:
τ:上升时间常数,单位为“秒”;τ: rising time constant, the unit is "second";
k:下降最大延时常数,单位为“秒”;k: The maximum delay constant for falling, the unit is "second";
以上常数τ和k由磁力矩器线圈及驱动线路特性决定,通过实际测量后拟合得到;即在没有磁力矩器补偿情况下,给定某工作脉宽,用示波器测量上升时间和下降最大延时时间。The above constants τ and k are determined by the characteristics of the magnetic torque device coil and the drive line, and are obtained by fitting after actual measurement; that is, in the absence of magnetic torque device compensation, given a certain working pulse width, use an oscilloscope to measure the rise time and the maximum delay of the fall time.
下面结合附图和具体实施例对本发明所述的一种提高磁力矩器控制精度的处理方法作进一步描述。本实例是在本发明技术方案下进行,但本发明的范围不限于该实例。A processing method for improving the control precision of the magnetic torque device according to the present invention will be further described below in conjunction with the accompanying drawings and specific embodiments. This example is carried out under the technical solution of the present invention, but the scope of the present invention is not limited to this example.
某卫星姿态控制周期为1s,采用50Am2磁力矩器(即Mmax=50Am2),进行磁力矩器脉宽补偿前,由现有方法计算出的工作脉宽与控制电压的关系曲线如图5,其中横轴为计算得出的磁力矩器工作脉宽Wmi,纵轴为控制电压V,由图5可以看出,脉宽为0.4秒时上升时间约为0.35秒。由公式(2)可知,按照所需控制力矩推算出控制所需的磁矩应为:The attitude control period of a satellite is 1s, and a 50Am 2 magnetic torquer is used (ie M max = 50Am 2 ). Before the magnetic torquer pulse width compensation, the relationship between the working pulse width and the control voltage calculated by the existing method is shown in the figure 5. The horizontal axis is the calculated working pulse width W mi of the magnetic torque device, and the vertical axis is the control voltage V. It can be seen from Figure 5 that the rise time is about 0.35 seconds when the pulse width is 0.4 seconds. From the formula (2), it can be seen that the magnetic moment required for control is calculated according to the required control torque:
而实际上磁矩输出并未在0.4秒内全部输出最大磁矩,经拟合计算实际输出磁矩仅为所需磁矩的76%。In fact, the magnetic moment output does not output all the maximum magnetic moment within 0.4 seconds, and the actual output magnetic moment is only 76% of the required magnetic moment through fitting calculation.
当τ=10.25ms,k=40ms,得到的补偿前后的脉宽如图6所示。其中横轴为现有方法计算出的补偿前脉宽,纵轴为公式(3)得到的补偿计算后的脉冲宽度。由图可知在补偿前的0.4秒脉宽,补偿后约为0.477秒。When τ=10.25ms, k=40ms, the obtained pulse width before and after compensation is shown in Figure 6. The horizontal axis is the pulse width before compensation calculated by the existing method, and the vertical axis is the pulse width after compensation calculated by the formula (3). It can be seen from the figure that the pulse width of 0.4 seconds before compensation is about 0.477 seconds after compensation.
按照上述方法进行磁力矩器脉宽补偿后,实际输出磁矩与理论计算所需磁矩相当。After the pulse width compensation of the magnetic torque device is carried out according to the above method, the actual output magnetic moment is equivalent to the magnetic moment required by the theoretical calculation.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910216909XA CN102114917B (en) | 2009-12-31 | 2009-12-31 | Processing method for enhancing control precision of magnetic torquer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910216909XA CN102114917B (en) | 2009-12-31 | 2009-12-31 | Processing method for enhancing control precision of magnetic torquer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102114917A CN102114917A (en) | 2011-07-06 |
CN102114917B true CN102114917B (en) | 2012-11-21 |
Family
ID=44213870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910216909XA Active CN102114917B (en) | 2009-12-31 | 2009-12-31 | Processing method for enhancing control precision of magnetic torquer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102114917B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103738507B (en) * | 2014-01-16 | 2016-01-20 | 西北工业大学 | The method of designing of high energy efficiency hollow magnetic torquer and manufacture craft |
CN105253326B (en) * | 2015-10-27 | 2017-12-05 | 上海微小卫星工程中心 | A kind of microsatellite switch magnetic moment time series control method |
CN106218923B (en) * | 2016-07-27 | 2018-10-26 | 中国科学院长春光学精密机械与物理研究所 | A kind of control method of magnetic torquer |
CN108750145B (en) * | 2018-04-10 | 2021-07-13 | 西北工业大学 | A method for on-orbit detection of magnetic torquer polarity |
CN112526416B (en) * | 2020-11-13 | 2023-04-14 | 航天东方红卫星有限公司 | Magnetic polarity testing method and device |
CN113212811B (en) * | 2021-06-24 | 2023-03-24 | 中国科学院微小卫星创新研究院 | Thermal control system compatible with dynamic magnetic compensation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5130931A (en) * | 1990-07-13 | 1992-07-14 | General Electric Company | Spacecraft attitude and velocity control system |
CN101402398A (en) * | 2008-11-18 | 2009-04-08 | 航天东方红卫星有限公司 | Quick retrieval method for satellite attitude |
-
2009
- 2009-12-31 CN CN200910216909XA patent/CN102114917B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5130931A (en) * | 1990-07-13 | 1992-07-14 | General Electric Company | Spacecraft attitude and velocity control system |
CN101402398A (en) * | 2008-11-18 | 2009-04-08 | 航天东方红卫星有限公司 | Quick retrieval method for satellite attitude |
Non-Patent Citations (7)
Title |
---|
JP平3-16900A 1991.01.24 |
JP特开2000-25698A 2000.01.25 |
JP特开2001-270499A 2001.10.02 |
一种精确、自适应的磁力矩器脉宽采集方法;吕高见等;《2009第二十二届全国空问探测学术讨论会论文》;20090801;127-134 * |
吕高见等.一种精确、自适应的磁力矩器脉宽采集方法.《2009第二十二届全国空问探测学术讨论会论文》.2009,127-134. |
李太玉等.根据线性迭加理论实现微小卫星姿态磁控制.《上海航天》.2006,(第1期),1-7. |
根据线性迭加理论实现微小卫星姿态磁控制;李太玉等;《上海航天》;20060228(第1期);1-7 * |
Also Published As
Publication number | Publication date |
---|---|
CN102114917A (en) | 2011-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102114917B (en) | Processing method for enhancing control precision of magnetic torquer | |
CN103940431B (en) | On-orbit calibration method of circular orbit with tangential small thrust based on GNSS precise orbit determination | |
CN101934863B (en) | Satellite posture all-round controlling method based on magnetic moment device and flywheel | |
CN106218923B (en) | A kind of control method of magnetic torquer | |
CN103522912B (en) | The magnetic flux feedback suspension control method of EMS type low speed aerotrain and device | |
CN103081351A (en) | Motor control apparatus, motor control method, control system, and position estimation method to be used in control system | |
CN103472730B (en) | Double-frame control moment gyro high-precision frame rate servo system based on harmonic reducer torsional rigidity hysteresis model | |
CN106458226B (en) | Method and system for the efficiency for improving rolling stock | |
CN101944878A (en) | Induction motor parameter identification | |
CN104635738B (en) | The Exact trajectory tracking method for optimally controlling of uncertain rehabilitation ambulation training robot | |
CN104477048B (en) | A kind of electromagnetic type is often led the suspension control method of low-speed maglev train | |
CN105227019A (en) | Motor temperature variable effect minimizes device and method | |
CN103708045B (en) | The on-line parameter discrimination method that a kind of lunar exploration airship great-jump-forward reenters | |
CN103676941A (en) | Satellite control system fault diagnosis method based on kinematics and dynamics model | |
CN102141484B (en) | Multi-functional portable electric servo control loading device and loading method thereof | |
CN103676918A (en) | Unknown input observer based satellite actuating mechanism fault diagnosis method | |
CN202735388U (en) | Current sensor control device | |
CN107490763A (en) | The load simulation experimental rig and method of a kind of low-speed big permanent-magnet drive system | |
CN105067282A (en) | Dumper traction and braking performance testing system | |
Beloiu | Dynamic determination of DC motor parameters-Simulation and testing | |
CN105128872A (en) | Adhesion control method of motor train unit | |
CN102582850A (en) | Method for improving magnetic control precision of satellite | |
Lee et al. | Model-based fault detection and isolation for electric power steering system | |
CN103825520A (en) | Method for controlling optimal slip frequency of asynchronous motor | |
CN109986494B (en) | Electric torque wrench for tower bolts and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |