[go: up one dir, main page]

CN102104877B - Carrier allocating method and system in TD-SCDMA (time division-synchronous code division multiple access) system - Google Patents

Carrier allocating method and system in TD-SCDMA (time division-synchronous code division multiple access) system Download PDF

Info

Publication number
CN102104877B
CN102104877B CN200910242852.0A CN200910242852A CN102104877B CN 102104877 B CN102104877 B CN 102104877B CN 200910242852 A CN200910242852 A CN 200910242852A CN 102104877 B CN102104877 B CN 102104877B
Authority
CN
China
Prior art keywords
carrier
point information
frequency point
base station
scdma system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200910242852.0A
Other languages
Chinese (zh)
Other versions
CN102104877A (en
Inventor
徐德平
张同须
王晓东
张玉胜
贾东燕
汤利民
赵旭凇
窦志刚
张晟
李通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Mobile Communications Group Co Ltd
China Mobile Group Design Institute Co Ltd
Original Assignee
China Mobile Communications Group Co Ltd
China Mobile Group Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Mobile Communications Group Co Ltd, China Mobile Group Design Institute Co Ltd filed Critical China Mobile Communications Group Co Ltd
Priority to CN200910242852.0A priority Critical patent/CN102104877B/en
Publication of CN102104877A publication Critical patent/CN102104877A/en
Application granted granted Critical
Publication of CN102104877B publication Critical patent/CN102104877B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

The invention discloses a carrier allocating method and system in a time division-synchronous code division multiple access (TD-SCDMA) system, aiming at alleviating the situation that frequency resources in the TD-SCDMA system is insufficient and improving the utilization ratio of frequency spectrum of the TD-SCDMA system. The carrier allocating method in the TD-SCDMA system comprises the following steps of: partitioning carriers on an available frequency band of the TD-SCDMA system based on a carrier spacing at 1.4MHz, and determining frequency point information of each partitioned carrier; and allocating the carrier to each base station in the TD-SCDMA system according to the determined frequency point information of each carrier.

Description

TD-SCDMA系统中的载波配置方法及系统Carrier configuration method and system in TD-SCDMA system

技术领域 technical field

本发明涉及移动通信领域,尤其涉及一种TD-SCDMA(时分同步码分多址)系统中的载波配置方法及系统。The invention relates to the field of mobile communication, in particular to a carrier configuration method and system in a TD-SCDMA (Time Division Synchronous Code Division Multiple Access) system.

背景技术 Background technique

频谱利用率是指单位带宽的传输容量,移动通信系统的频谱利用率一般从以下两个方面进行考虑:移动通信系统的载波间隔和单载波的传输容量。Spectrum utilization refers to the transmission capacity per unit bandwidth. The spectrum utilization of a mobile communication system is generally considered from the following two aspects: the carrier spacing of the mobile communication system and the transmission capacity of a single carrier.

TD-SCDMA(Time Division-Synchronous Code Division Multiple Access,时分同步码分多址)系统作为3G(The 3rd Generation Mobile Communication,第三代移动通信)标准之一,采用CDMA(Code Division Multiple Access,码分多址)技术。在现有标准中规定TD-SCDMA系统可使用的频率资源共35MHz,包括B频段(2010MHz~2025MHz)和A频段(1880MHz~1900MHz),其中B频段是大规模商用频段;A频段尚未规模应用。现有技术中,对于移动通信系统的载波间隔和单载波的传输容量等相关参数,通过标准进行规范和约束,对于TD-SCDMA系统来说,在现有标准中规定TD-SCDMA系统的载波间隔为1.6MHz,同时对各种业务和信道条件下单载波的传输容量给出了推荐的配置。TD-SCDMA (Time Division-Synchronous Code Division Multiple Access) system, as one of the 3G (The 3rd Generation Mobile Communication) standards, adopts CDMA (Code Division Multiple Access, code division multiple access) technology. The existing standard stipulates that TD-SCDMA system can use a total of 35MHz of frequency resources, including B-band (2010MHz-2025MHz) and A-band (1880MHz-1900MHz), of which B-band is a large-scale commercial frequency band; A-band has not yet been applied on a large scale. In the prior art, related parameters such as the carrier spacing of the mobile communication system and the transmission capacity of a single carrier are regulated and constrained by standards. For the TD-SCDMA system, the carrier spacing of the TD-SCDMA system is specified in the existing standard It is 1.6MHz. At the same time, the recommended configuration is given for the transmission capacity of a single carrier under various business and channel conditions.

TD-SCDMA系统中载波间隔设置为1.6MHz,对于2010MHz~2025MHz的B频段,可以将15MHz的频率资源划分为9个载波,TD-SCDMA系统中B频段的频点配置如表1所示,载波示意图如图1所示。其中UARFCN(UMTSAbsolute Radio Frequency Channel Number,频点号)与频点频率具有一一对应关系。In the TD-SCDMA system, the carrier spacing is set to 1.6MHz. For the B-band of 2010MHz to 2025MHz, the frequency resources of 15MHz can be divided into 9 carriers. The frequency point configuration of the B-band in the TD-SCDMA system is shown in Table 1. The carrier The schematic diagram is shown in Figure 1. Among them, UARFCN (UMTS Absolute Radio Frequency Channel Number, frequency point number) has a one-to-one correspondence with the frequency point frequency.

表1Table 1

频点频率(MHz)Frequency point frequency (MHz) 频点编号Frequency number   频点号(UARFCN) Frequency Point Number (UARFCN) 使用场景scenes to be used 备注Remark   2010.0~2010.2 2010.0~2010.2   保护带 protective belt   起始频点2010.0MHz The starting frequency is 2010.0MHz   2011.0 2011.0   F1 F1   10055 10055   室内分布系统 Indoor distribution system   2012.6 2012.6   F2 F2   10063 10063   室内分布系统 Indoor distribution system   2014.2 2014.2   F3 F3   10071 10071   室内分布系统 Indoor distribution system   2015.0~2015.2 2015.0~2015.2   保护带 protective belt   2016.0 2016.0   F4 F4   10080 10080   室外宏基站 Outdoor macro base station   2017.6 2017.6   F5 F5   10088 10088   室外宏基站 Outdoor macro base station   2019.2 2019.2   F6 F6   10096 10096   室外宏基站 Outdoor macro base station   2020.8 2020.8   F7 F7   10104 10104   室外宏基站 Outdoor macro base station   2022.4 2022.4   F8 F8   10112 10112   室外宏基站 Outdoor macro base station   2024.0 2024.0   F9 F9   10120 10120   室外宏基站 Outdoor macro base station   2024.8~2025.0 2024.8~2025.0   保护带 protective belt   结束频点2025.0MHz The end frequency is 2025.0MHz

现有技术中,由于TD-SCDMA系统可使用的频率资源非常有限,极大地限制了系统容量,为了缓解TD-SCDMA系统中频率资源不足的情况,迫切要求提升TD-SCDMA系统的频谱利用率。In the prior art, the available frequency resources of the TD-SCDMA system are very limited, which greatly limits the system capacity. In order to alleviate the shortage of frequency resources in the TD-SCDMA system, it is urgent to improve the spectrum utilization rate of the TD-SCDMA system.

发明内容 Contents of the invention

本发明提供一种TD-SCDMA系统中的载波配置方法及系统,用以缓解TD-SCDMA系统中频率资源不足的情况,提升TD-SCDMA系统的频谱利用率。The invention provides a carrier configuration method and system in a TD-SCDMA system, which are used to alleviate the shortage of frequency resources in the TD-SCDMA system and improve the frequency spectrum utilization rate of the TD-SCDMA system.

本发明提供了一种时分同步码分多址TD-SCDMA系统中的载波配置方法,包括:The invention provides a carrier configuration method in a time division synchronous code division multiple access TD-SCDMA system, comprising:

基于1.4MHz的载波间隔对TD-SCDMA系统的可用频段进行载波划分,确定划分得到的每一个载波的频点信息;Based on the carrier spacing of 1.4MHz, the available frequency band of the TD-SCDMA system is divided into carriers, and the frequency point information of each divided carrier is determined;

根据确定出的每一个载波的频点信息,对TD-SCDMA系统中的各基站进行载波配置。Carrier configuration is performed for each base station in the TD-SCDMA system according to the determined frequency point information of each carrier.

本发明还提供了一种时分同步码分多址TD-SCDMA系统中的载波配置系统,包括:The present invention also provides a carrier configuration system in a Time Division Synchronous Code Division Multiple Access TD-SCDMA system, comprising:

载波划分设备,用于基于1.4MHz的载波间隔对TD-SCDMA系统的可用频段进行载波划分,确定划分得到的每一个载波的频点信息;The carrier division device is used to divide the available frequency band of the TD-SCDMA system into carriers based on the carrier spacing of 1.4MHz, and determine the frequency point information of each divided carrier;

载波配置子系统,用于根据确定出的每一个载波的频点信息对TD-SCDMA系统中的各基站进行载波配置。The carrier configuration subsystem is used to configure the carrier of each base station in the TD-SCDMA system according to the determined frequency point information of each carrier.

本发明提供的TD-SCDMA系统中的载波配置方法及系统,将TD-SCDMA系统的载波间隔从1.6MHz压缩至1.4MHz,基于1.4MHz的载波间隔对TD-SCDMA系统的可用频段进行载波划分,能够在非常有限的频率资源内增加TD-SCDMA系统中的载波数量,再根据确定出的载波对TD-SCDMA系统中的各基站进行载波配置,从而能够提升TD-SCDMA系统的频谱利用率。The carrier configuration method and system in the TD-SCDMA system provided by the present invention compresses the carrier spacing of the TD-SCDMA system from 1.6MHz to 1.4MHz, and divides the available frequency bands of the TD-SCDMA system based on the carrier spacing of 1.4MHz. It is possible to increase the number of carriers in the TD-SCDMA system within very limited frequency resources, and then configure carriers for each base station in the TD-SCDMA system according to the determined carriers, thereby improving the spectrum utilization rate of the TD-SCDMA system.

本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the application. The objectives and other advantages of the application may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.

附图说明 Description of drawings

图1为现有TD-SCDMA系统中B频段的载波示意图;Fig. 1 is the carrier schematic diagram of B frequency band in the existing TD-SCDMA system;

图2a为本发明实施例提供的ACIR的上行链路仿真结果示意图;FIG. 2a is a schematic diagram of an uplink simulation result of ACIR provided by an embodiment of the present invention;

图2b为本发明实施例提供的ACIR的下行链路仿真结果示意图;FIG. 2b is a schematic diagram of a downlink simulation result of ACIR provided by an embodiment of the present invention;

图3a为本发明实施例提供的载波间隔压缩后B频段的第一种载波示意图;FIG. 3a is a schematic diagram of the first type of carrier in the B frequency band after the carrier spacing is compressed according to an embodiment of the present invention;

图3b为本发明实施例提供的载波间隔压缩后B频段的第二种载波示意图;FIG. 3b is a schematic diagram of a second type of carrier in the B frequency band after the carrier spacing is compressed according to an embodiment of the present invention;

图3c为本发明实施例提供的载波间隔压缩后B频段的第三种载波示意图;FIG. 3c is a schematic diagram of a third type of carrier in the B frequency band after the carrier spacing is compressed according to an embodiment of the present invention;

图4为本发明实施例提供的TD-SCDMA系统中的载波配置方法流程图;FIG. 4 is a flowchart of a carrier configuration method in a TD-SCDMA system provided by an embodiment of the present invention;

图5为本发明实施例提供的根据确定出的频点信息进行载波配置的具体流程图;FIG. 5 is a specific flow chart of carrier configuration according to the determined frequency point information provided by the embodiment of the present invention;

图6为现有TD-SCDMA系统中各基站的载波配置示意图;FIG. 6 is a schematic diagram of the carrier configuration of each base station in the existing TD-SCDMA system;

图7为本发明实施例提供的TD-SCDMA系统中各基站的第一种载波配置示意图;FIG. 7 is a schematic diagram of the first carrier configuration of each base station in the TD-SCDMA system provided by the embodiment of the present invention;

图8为本发明实施例提供的TD-SCDMA系统中各基站的第二种载波配置示意图;FIG. 8 is a schematic diagram of the second carrier configuration of each base station in the TD-SCDMA system provided by the embodiment of the present invention;

图9为本发明实施例提供的TD-SCDMA系统中的载波配置系统框图。FIG. 9 is a block diagram of a carrier configuration system in a TD-SCDMA system provided by an embodiment of the present invention.

具体实施方式 Detailed ways

本发明实施例为了缓解TD-SCDMA系统中频率资源不足的情况,旨在提供一种TD-SCDMA系统中的载波配置方法及系统,用以提升TD-SCDMA系统的频谱利用率。以下结合说明书附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明,并且在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。In order to alleviate the shortage of frequency resources in the TD-SCDMA system, the embodiment of the present invention aims to provide a carrier configuration method and system in the TD-SCDMA system, so as to improve the spectrum utilization rate of the TD-SCDMA system. The preferred embodiments of the present invention will be described below in conjunction with the accompanying drawings. It should be understood that the preferred embodiments described here are only used to illustrate and explain the present invention, and are not intended to limit the present invention, and in the absence of conflict, the present invention The embodiments and the features in the embodiments can be combined with each other.

本发明人发现,TD-SCDMA系统按照现有标准中规定的1.6MHz载波间隔进行载波划分,可以保证不同运营商之间的邻道共存。而对于同一运营商来说,不存在不同运营商之间由于基站偏移引起邻道干扰所带来的相关问题,所以对于同一运营商而言,邻道干扰指标可以适当降低;而如果按照现有标准中规定的1.6MHz载波间隔进行载波划分,会使得频谱利用率较低,对宝贵的频率资源造成一定程度的“浪费”。结合现有TD-SCDMA系统的实际运营情况,本发明实施例中提出:通过适当降低邻道干扰指标,相应的压缩TD-SCDMA系统的载波间隔从而增加载波数量,以缓解TD-SCDMA系统中频率资源不足的情况,提升TD-SCDMA系统的频谱利用率。首先澄清两个基本概念:载波间隔和载波占用带宽。载波占用带宽是指信号在频率域上占用的有效带宽,3GPP中定义的载波占用带宽为信号99%的能量所对应的频带宽度。也就是说载波占用带宽是以载波的中心频点为中心,99%的积分功率所对应的频带宽度。基于TD-SCDMA系统中1.28Mcps的码片速率,载波占用带宽大约为1.6MHz。载波间隔是指相邻的两个载波的中心频点的频率间隔。在一个能够配置多个载波的频段内,在配置各载波的中心频点时需要考虑载波间隔。载波间隔和载波占用带宽是相匹配的,通常情况下两者相等,但在某些特定应用场景下,两者也可有一定差别。由载波占用带宽的定义可知,信号部分能量会泄露到载波占用带宽之外,在容许较大邻道干扰的情况下,载波间隔可以小于载波占用带宽;而在对邻道干扰非常敏感的情况下,载波间隔可以大于载波占用带宽。载波间隔的配置可以根据实际应用场景的需要进行调整,标准中给出一种载波间隔的标称值,但将特殊应用场景下的优化调整留给组网时的频率规划。为了便于灵活调整,标准中的载波栅格(TD-SCDMA系统中为200kHz)一般都明显小于载波占用带宽。The inventors found that the TD-SCDMA system performs carrier division according to the 1.6MHz carrier spacing specified in the existing standard, which can ensure the coexistence of adjacent channels among different operators. For the same operator, there is no related problem caused by adjacent channel interference caused by base station offset between different operators, so for the same operator, the adjacent channel interference index can be appropriately reduced; Carrier division with the 1.6MHz carrier spacing stipulated in the standard will make the spectrum utilization rate lower and cause a certain degree of "waste" of precious frequency resources. Combined with the actual operation of the existing TD-SCDMA system, the embodiment of the present invention proposes that by appropriately reducing the adjacent channel interference index, the carrier spacing of the TD-SCDMA system is correspondingly compressed to increase the number of carriers, so as to alleviate the frequency in the TD-SCDMA system. In the case of insufficient resources, the spectrum utilization rate of the TD-SCDMA system is improved. First, clarify two basic concepts: carrier spacing and carrier occupied bandwidth. The carrier occupied bandwidth refers to the effective bandwidth occupied by the signal in the frequency domain. The carrier occupied bandwidth defined in 3GPP is the frequency bandwidth corresponding to 99% of the energy of the signal. That is to say, the bandwidth occupied by the carrier is the frequency bandwidth corresponding to 99% of the integrated power centered on the center frequency point of the carrier. Based on the chip rate of 1.28Mcps in the TD-SCDMA system, the bandwidth occupied by the carrier is about 1.6MHz. The carrier spacing refers to the frequency spacing between the center frequency points of two adjacent carriers. In a frequency band where multiple carriers can be configured, the carrier spacing needs to be considered when configuring the center frequency point of each carrier. Carrier spacing and carrier occupied bandwidth are matched, usually the two are equal, but in some specific application scenarios, there may be a certain difference between the two. From the definition of carrier occupied bandwidth, it can be seen that part of the energy of the signal will leak out of the carrier occupied bandwidth. In the case of allowing large adjacent channel interference, the carrier spacing can be smaller than the carrier occupied bandwidth; and in the case of very sensitive to adjacent channel interference , the carrier spacing can be larger than the carrier occupied bandwidth. The configuration of carrier spacing can be adjusted according to the needs of actual application scenarios. The standard provides a nominal value of carrier spacing, but the optimization and adjustment in special application scenarios is left to the frequency planning during networking. In order to facilitate flexible adjustment, the carrier grid in the standard (200kHz in the TD-SCDMA system) is generally significantly smaller than the bandwidth occupied by the carrier.

本发明实施例中提出TD-SCDMA系统中,载波间隔的压缩应遵循如下原则:Proposed in the embodiment of the present invention in the TD-SCDMA system, the compression of the carrier spacing should follow the following principles:

(1)由于TD-SCDMA系统的码片速率为1.28Mcps,因此载波间隔必须大于1.28MHz;(1) Since the chip rate of the TD-SCDMA system is 1.28Mcps, the carrier spacing must be greater than 1.28MHz;

(2)考虑到与3G标准的兼容性,由于移动终端按照200kHz的频率间隔对基站发送的无线信号进行频点搜索,因此3G系统中载波间隔只能选取为200kHz的整倍数。(2) Considering the compatibility with the 3G standard, since the mobile terminal searches for the frequency point of the wireless signal sent by the base station according to the frequency interval of 200kHz, the carrier interval in the 3G system can only be selected as an integral multiple of 200kHz.

基于上述载波间隔的压缩原则,本发明实施例中,将TD-SCDMA系统的载波间隔从1.6MHz压缩至1.4MHz。将TD-SCDMA系统的载波间隔压缩至1.4MHz之后,针对TD-SCDMA系统中可使用的频率资源(35MHz总带宽)来说,相比1.6MHz的载波间隔可增加3个载波,使得频谱利用率可提升约14%,具体如表2所示:Based on the above compression principle of carrier spacing, in the embodiment of the present invention, the carrier spacing of the TD-SCDMA system is compressed from 1.6 MHz to 1.4 MHz. After compressing the carrier spacing of the TD-SCDMA system to 1.4MHz, for the available frequency resources (35MHz total bandwidth) in the TD-SCDMA system, 3 carriers can be added compared to the carrier spacing of 1.6MHz, making spectrum utilization It can be increased by about 14%, as shown in Table 2:

表2Table 2

频段frequency band 带宽(MHz)Bandwidth (MHz) 载波数量(1.6MHz)Number of Carriers (1.6MHz) 载波数量(1.4MHz)Number of Carriers (1.4MHz)   增加的载波数量 Increased number of carriers   频谱利用率增益 Spectrum utilization gain   B B  15 15   9 9   10 10   1 1   11.1% 11.1%   A A  20 20   12 12   14 14   2 2   16.7% 16.7%   合计 Total  35 35   21 twenty one   24 twenty four   3 3   14.3% 14.3%

载波间隔从1.6MHz压缩至1.4MHz之后,邻道干扰指标虽然有所下降,但是不会对网络性能造成影响,虽然单载波的传输容量会有所减少,但是由于增加了载波数量,使得系统容量增加。对于室外宏基站占用的10MHz频率资源来说,载波数量增加了约17%。After the carrier spacing is compressed from 1.6MHz to 1.4MHz, although the adjacent channel interference index has decreased, it will not affect the network performance. Although the transmission capacity of a single carrier will be reduced, the increase in the number of carriers will increase the system capacity. Increase. For the 10MHz frequency resource occupied by the outdoor macro base station, the number of carriers increases by about 17%.

下面基于邻道干扰指标分析TD-SCDMA系统的载波间隔从1.6MHz压缩至1.4MHz的可行性。Next, analyze the feasibility of compressing the carrier spacing of TD-SCDMA system from 1.6MHz to 1.4MHz based on the adjacent channel interference index.

在同一运营商以及不同运营商两种应用场景下,分别针对不同室外宏基站分布情况,对ACIR(邻道干扰功率比)进行了系统仿真,上行链路仿真结果、以及下行链路仿真结果如图2a、2b所示,其中基站间距D=0对应同一运营商的应用场景,基站间距D=0.866R和1.732R对应不同运营商的应用场景。Under the two application scenarios of the same operator and different operators, the system simulation of ACIR (adjacent channel interference power ratio) was carried out for different outdoor macro base station distributions. The uplink simulation results and downlink simulation results are as follows: As shown in Figs. 2a and 2b, the distance between base stations D=0 corresponds to the application scenario of the same operator, and the distance between base stations D=0.866R and 1.732R corresponds to the application scenarios of different operators.

通过上行链路仿真结果、以及下行链路仿真结果,可以得出如下结论:在同一运营商应用场景下,当ACIR优于25dB时,系统容量没有损失。由此可以得出,同一运营商的TD-SCDMA系统中如果保证ACIR优于25dB,则系统容量没有损失,10MHz频率资源下,系统容量增益可达17%;如果ACIR满足22dB,系统容量损失约5%,10MHz频率资源下,仍可保证约12%(17%-5%=12%)的系统容量增益。Through the uplink simulation results and downlink simulation results, the following conclusions can be drawn: in the same operator application scenario, when the ACIR is better than 25dB, there is no loss in system capacity. It can be concluded that in the TD-SCDMA system of the same operator, if the ACIR is guaranteed to be better than 25dB, the system capacity will not be lost. Under 10MHz frequency resources, the system capacity gain can reach 17%; if the ACIR satisfies 22dB, the system capacity loss will be about Under 5%, 10MHz frequency resources, a system capacity gain of about 12% (17%-5%=12%) can still be guaranteed.

现有标准中规定了TD-SCDMA系统的基本射频以及邻道干扰指标,具体数值如表3所示:The existing standards stipulate the basic radio frequency and adjacent channel interference indicators of the TD-SCDMA system, and the specific values are shown in Table 3:

表3table 3

  项目 project   数值 value   码率(Chip rate) Code rate (Chip rate)   1.28Mcps 1.28Mcps

 项目 project  数值 value  载波间隔(Carrier spacing) Carrier spacing  1.6MHz 1.6MHz  码片调制(Chip modulation) Chip modulation  Raised Cosine=0.22 Raised Cosine=0.22  基站的邻道泄漏比(BS ACLR) Base station adjacent channel leakage ratio (BS ACLR)  40dB 40dB  基站的邻道选择性(BSACS) Base station adjacent channel selectivity (BSACS)  45dB 45dB  用户设备的邻道泄漏比(UE ACLR) User Equipment Adjacent Channel Leakage Ratio (UE ACLR)  33dB 33dB  用户设备的邻道选择性(UE ACS) User Equipment Adjacent Channel Selectivity (UE ACS)  33dB 33dB

根据现有标准中规定的TD-SCDMA系统的ACLR(Adjacent ChannelLeakage Ratio,邻道泄漏比)、ACS(邻道选择性)等邻道干扰指标的数值,按照公式[1]即可计算得到ACIR,即:According to the values of adjacent channel interference indicators such as ACLR (Adjacent Channel Leakage Ratio, Adjacent Channel Leakage Ratio) and ACS (Adjacent Channel Selectivity) of the TD-SCDMA system specified in the existing standards, the ACIR can be calculated according to the formula [1]. Right now:

ACIRACIR == 11 11 // ACLRACLR ++ 11 // ACSACS -- -- -- [[ 11 ]]

其中,ACLR(邻道泄漏比)表示发射功率与落入相邻道道的功率之比。Among them, ACLR (Adjacent Channel Leakage Ratio) indicates the ratio of the transmitted power to the power falling into the adjacent channel.

将表3中各邻道干扰指标的数值带入公式[1],可以得出上行链路和下行链路的ACIR的数值,如表4所示。Putting the values of each adjacent channel interference index in Table 3 into formula [1], the ACIR values of uplink and downlink can be obtained, as shown in Table 4.

表4Table 4

  ACLR(dB) ACLR(dB)  ACS(dB) ACS(dB)   ACIR(dB) ACIR(dB)   下行链路 downlink   40 40  33 33   32.2 32.2   上行链路 uplink   33 33  45 45   32.7 32.7

根据现有标准中规定的邻道干扰指标,1.6MHz的载波间隔实际要求的ACIR(邻道干扰功率比)约为32dB,超过了同一运营商应用场景下对ACIR的要求,说明邻道干扰指标存在进一步降低的空间,TD-SCDMA系统的载波间隔存在进一步压缩的可行性。According to the adjacent channel interference index specified in the existing standard, the ACIR (adjacent channel interference power ratio) actually required by the carrier spacing of 1.6MHz is about 32dB, which exceeds the requirement for ACIR in the application scenario of the same operator, indicating that the adjacent channel interference index There is room for further reduction, and the carrier spacing of TD-SCDMA system is feasible to be further compressed.

在同一运营商应用场景下,对载波间隔进行压缩后,虽然邻道干扰将增加,但是同频干扰下降,并且邻道干扰引起的干扰对于R4和R5业务均不会造成明显影响,即邻道干扰远远小于同频干扰的影响。具体的干扰公式如公式[2]所示:In the application scenario of the same operator, after the carrier spacing is compressed, although the adjacent channel interference will increase, the co-channel interference will decrease, and the interference caused by the adjacent channel interference will not have a significant impact on the R4 and R5 services, that is, the adjacent channel Interference is far less than the impact of co-channel interference. The specific interference formula is shown in formula [2]:

选择AMR12.2kHz话音业务基于10MHz带宽进行配置和系统仿真,综合了邻道干扰和同频干扰,得到如下结果,如表5所示:The AMR12.2kHz voice service was selected for configuration and system simulation based on the 10MHz bandwidth, and the adjacent channel interference and co-channel interference were combined to obtain the following results, as shown in Table 5:

表5table 5

小区半径(m) Cell radius (m)   900 900 六载波平均用户数(DL)ACIR=30dB掉话率(DL) Six carrier average number of users (DL) ACIR = 30dB call drop rate (DL)   4.55% 4.55% 七载波平均用户数(DL)ACIR=20dB掉话率(DL) Seven-carrier average number of users (DL) ACIR = 20dB call drop rate (DL)   2.96% 2.96% 掉话率减少比例 Dropped call rate reduction ratio   1.59% 1.59%

可见:在10MHz带宽条件下,在总用户数相同、同频干扰受限场景下,通过将6载波增加至7载波,通过分散每载波接入的用户数量,可以有效地降低干扰,达到提升网络KPI(Key Performance Indication,关键性能指标)的目的。It can be seen that under the condition of 10MHz bandwidth, in the scenario where the total number of users is the same and the same-channel interference is limited, by increasing the number of 6 carriers to 7 carriers and dispersing the number of users connected to each carrier, the interference can be effectively reduced and the network can be improved. The purpose of KPI (Key Performance Indication, key performance indicators).

基于以上可行性分析,本发明实施例提供了对TD-SCDMA系统中的频率资源进行载波划分的可行方案,具体实施中基于1.4MHz的载波间隔对B频段(2010MHz~2025MHz)进行载波划分,相应的B频段中的载波数量从现有的9个增加至10个。几种较佳的频点配置如表6所示,载波示意图如图3a、3b、3c所示,其它可能的频点配置不再赘述。本发明实施例中,可以将基于1.4MHz的载波间隔进行载波划分的频率资源称为可用频段,所述的可用频段可以灵活选取,按照现有频率资源的使用情况可以选取B频段(2010~2025MHz)为可用频段,当然也可以选取A频段和B频段为可用频段、或者选取A频段为可用频段,均能够保证基于1.4MHz的载波间隔对可用频段进行载波划分得到的载波数量大于基于1.6MHz的载波间隔对可用频段进行载波划分得到的载波数量,从而提升TD-SCDMA系统的频谱利用率。Based on the above feasibility analysis, the embodiment of the present invention provides a feasible scheme for carrier division of the frequency resources in the TD-SCDMA system. In the specific implementation, the B frequency band (2010MHz~2025MHz) is divided into carriers based on the carrier spacing of 1.4MHz. The number of carriers in the B-band has been increased from the existing 9 to 10. Several preferred frequency point configurations are shown in Table 6, and carrier schematic diagrams are shown in Figures 3a, 3b, and 3c, and other possible frequency point configurations will not be repeated here. In the embodiment of the present invention, the frequency resource divided into carriers based on the carrier spacing of 1.4 MHz can be called an available frequency band, and the available frequency band can be flexibly selected, and the B frequency band (2010-2025 MHz) can be selected according to the usage of the existing frequency resources. ) is the available frequency band, of course, you can also select A frequency band and B frequency band as the available frequency band, or select A frequency band as the available frequency band, which can ensure that the number of carriers obtained by dividing the available frequency band based on the carrier spacing of 1.4MHz is greater than that based on 1.6MHz. The carrier interval is the number of carriers obtained by dividing the available frequency band into carriers, so as to improve the spectrum utilization rate of the TD-SCDMA system.

表6Table 6

本发明实施例提供了一种TD-SCDMA系统中的载波配置方法,如图4所示,包括:The embodiment of the present invention provides a carrier configuration method in a TD-SCDMA system, as shown in Figure 4, including:

S401、基于1.4MHz的载波间隔对TD-SCDMA系统的可用频段进行载波划分,确定划分得到的每一个载波的频点信息;S401. Perform carrier division on the available frequency band of the TD-SCDMA system based on the carrier spacing of 1.4MHz, and determine the frequency point information of each carrier obtained by division;

S402、根据确定出的每一个载波的频点信息,对TD-SCDMA系统中的各基站进行载波配置。S402. Perform carrier configuration for each base station in the TD-SCDMA system according to the determined frequency point information of each carrier.

在S401的具体实施中,可以将TD-SCDMA系统中的B频段(2010MHz~2025MHz)作为可用频段,基于1.4MHz的载波间隔对TD-SCDMA系统的B频段进行载波划分,确定出的每一个载波的频点信息请参见表6,由于频点号和频点频率具有一一对应关系,因此所述的频点信息可以是指频点号和频点频率之一或者全部,通常情况下是指频点频率。增加的一个载波可以分配给室内分布系统使用,也可以分配给室外宏基站使用。以表6中1.4MHz方案1为例进行说明,可以将2011MHz、2012.6MHz、2014.2MHz、2015.8MHz对应的载波分配给室内分布系统使用,2017.2MHz、2018.6MHz、2020MHz、2021.4MHz、2022.8MHz、2024.2MHz对应的载波分配给室外宏基站使用;也可以将2011MHz、2012.6MHz、2014.2MHz对应的载波分配给室内分布系统使用,2015.8MHz、2017.2MHz、2018.6MHz、2020MHz、2021.4MHz、2022.8MHz、2024.2MHz对应的载波分配给室外宏基站使用。以表6中1.4MHz方案2为例进行说明,可以将2010.8MHz、2012.4MHz、2014MHz、2015.6MHz对应的载波分配给室内分布系统使用,2017MHz、2018.4MHz、2019.8MHz、2021.2MHz、2022.6MHz、2024.2MHz对应的载波分配给室外宏基站使用;也可以将2010.8MHz、2012.4MHz、2014MHz对应的载波分配给室内分布系统使用,2015.6MHz、2017MHz、2018.4MHz、2019.8MHz、2021.2MHz、2022.6MHz、2024.2MHz对应的载波分配给室外宏基站使用。以表6中1.4MHz方案3为例进行说明,可以将2010.8MHz、2012.4MHz、2014MHz、2015.6MHz对应的载波分配给室内分布系统使用,2017.2MHz、2018.6MHz、2020MHz、2021.4MHz、2022.8MHz、2024.2MHz对应的载波分配给室外宏基站使用;也可以将2010.8MHz、2012.4MHz、2014MHz对应的载波分配给室内分布系统使用,2015.6MHz、2017.2MHz、2018.6MHz、2020MHz、2021.4MHz、2022.8MHz、2024.2MHz对应的载波分配给室外宏基站使用。In the specific implementation of S401, the B frequency band (2010MHz~2025MHz) in the TD-SCDMA system can be used as the available frequency band, and the B frequency band of the TD-SCDMA system is divided into carriers based on the carrier spacing of 1.4MHz, and each determined carrier Please refer to Table 6 for the frequency point information. Since the frequency point number and the frequency point frequency have a one-to-one correspondence, the frequency point information can refer to either or both of the frequency point number and the frequency point frequency. Usually, it refers to frequency. An added carrier can be allocated to the indoor distribution system, and can also be allocated to the outdoor macro base station. Taking the 1.4MHz scheme 1 in Table 6 as an example, the carriers corresponding to 2011MHz, 2012.6MHz, 2014.2MHz, and 2015.8MHz can be allocated to the indoor distribution system, and 2017.2MHz, 2018.6MHz, 2020MHz, 2021.4MHz, The carrier corresponding to MHz is assigned to the outdoor macro base station; the carrier corresponding to 2011MHz, 2012.6MHz, and 2014.2MHz can also be assigned to the indoor distribution system, 2015.8MHz, 2017.2MHz, 2018.6MHz, 2020MHz, 2021.4MHz, 2022.8MHz, 2024.2MHz The corresponding carrier is allocated to the outdoor macro base station. Taking the 1.4MHz scheme 2 in Table 6 as an example, the carriers corresponding to 2010.8MHz, 2012.4MHz, 2014MHz, and 2015.6MHz can be allocated to the indoor distribution system, and 2017MHz, 2018.4MHz, 2019.8MHz, 2021.2MHz, 2022.6MHz, and 2024.2 The carrier corresponding to MHz is allocated to the outdoor macro base station; the carrier corresponding to 2010.8MHz, 2012.4MHz, 2014MHz can also be allocated to the indoor distribution system, 2015.6MHz, 2017MHz, 2018.4MHz, 2019.8MHz, 2021.2MHz, 2022.6MHz, 2024.2MHz The corresponding carrier is allocated to the outdoor macro base station. Taking the 1.4MHz scheme 3 in Table 6 as an example, the carriers corresponding to 2010.8MHz, 2012.4MHz, 2014MHz, and 2015.6MHz can be allocated to the indoor distribution system, and 2017.2MHz, 2018.6MHz, 2020MHz, 2021.4MHz, 2022.8MHz, and 2024.2 The carrier corresponding to MHz is allocated to the outdoor macro base station; the carrier corresponding to 2010.8MHz, 2012.4MHz, and 2014MHz can also be allocated to the indoor distribution system, 2015.6MHz, 2017.2MHz, 2018.6MHz, 2020MHz, 2021.4MHz, 2022.8MHz, 2024.2MHz The corresponding carrier is allocated to the outdoor macro base station.

在S402的具体实施中,如图5所示,包括如下步骤:In the specific implementation of S402, as shown in Figure 5, the following steps are included:

S501、网络规划设备根据确定出的每一个载波的频点信息,为各基站规划可配置的频点信息,并发送给OMC(Operations & Maintenance Center,操作维护中心);S501. The network planning device plans configurable frequency point information for each base station according to the determined frequency point information of each carrier, and sends it to OMC (Operations & Maintenance Center, operation and maintenance center);

S502、OMC将为每一个基站规划的可配置的频点信息下发到管辖该基站的RNC(Radio Network Controller,无线网络控制器)中;S502, the OMC will send the configurable frequency point information planned for each base station to the RNC (Radio Network Controller, radio network controller) in charge of the base station;

S503、RNC将所管辖的各基站的频点信息分发给对应的基站,控制所管辖的各基站在相应的频点上进行无线信号的收发;S503. The RNC distributes the frequency point information of each base station under its jurisdiction to corresponding base stations, and controls each base station under its jurisdiction to transmit and receive wireless signals at corresponding frequency points;

由于移动终端按照200kHz的频率间隔对基站发送的无线信号进行频点搜索,当基站采用新的载波配置方案后,由于进行无线信号收发的频点仍然为200kHz的整数倍,所以无需对现有基于3G标准的移动终端进行任何改造,移动终端便能自动搜索到新配置的频点,并进入正常工作状态。Since the mobile terminal searches for the frequency point of the wireless signal sent by the base station according to the frequency interval of 200kHz, when the base station adopts the new carrier configuration scheme, since the frequency point for transmitting and receiving the wireless signal is still an integer multiple of 200kHz, there is no need to search for the existing wireless signal based on After any modification of the 3G standard mobile terminal, the mobile terminal can automatically search for the newly configured frequency point and enter the normal working state.

具体实施中,基于增加的载波数量,为了进一步提高系统容量,网络规划设备为各基站规划的可配置的频点信息的数量,高于基于1.6MHz的载波间隔为各基站规划的可配置的频点信息的数量。举例进行说明,如图6所示,假设网络规划设备为各基站规划的可配置的频点信息的数量为3即载波数量为3,频点编号分别为(1、2、3),并且各基站同频配置。基于增加的载波数量,如图7所示,网络规划设备为各基站规划的可配置的频点信息的数量增加至4即载波数量为4,频点编号分别为(1、2、3、4),通过为每个基站增加配置的频点信息的数量即载波数量,可以提高每个基站的容量,从而提高了系统容量。In the specific implementation, based on the increased number of carriers, in order to further improve the system capacity, the number of configurable frequency point information planned by the network planning equipment for each base station is higher than the configurable frequency point information planned for each base station based on the carrier spacing of 1.6MHz. The number of point information. For example, as shown in FIG. 6, assume that the number of configurable frequency point information planned by the network planning device for each base station is 3, that is, the number of carriers is 3, and the frequency point numbers are (1, 2, 3) respectively, and each The base station is configured with the same frequency. Based on the increased number of carriers, as shown in Figure 7, the number of configurable frequency point information planned by the network planning equipment for each base station is increased to 4, that is, the number of carriers is 4, and the frequency point numbers are (1, 2, 3, 4 ), the capacity of each base station can be increased by increasing the number of frequency point information configured for each base station, that is, the number of carriers, thereby increasing the system capacity.

具体实施中,基于增加的载波数量,为了进一步降低同频干扰,网络规划设备为相邻基站规划的可配置的频点信息部分或者全部互不相同。举例进行说明,如图6所示,假设网络规划设备为各基站规划的可配置的频点信息的数量为3即载波数量为3,频点编号分别为(1、2、3),并且各基站同频配置。基于增加的载波数量,如图8所示,网络规划设备为相邻基站规划的可配置的频点信息可以部分互不相同,相邻基站的频点编号分别为(1、2、3),(1、3、4),(2、3、4),由于相邻基站之间配置的频点信息互不相同,使得TD-SCDMA系统中的同频干扰降低,业务性能得到改善。In a specific implementation, based on the increased number of carriers, in order to further reduce co-channel interference, part or all of the configurable frequency point information planned by the network planning device for adjacent base stations is different from each other. For example, as shown in FIG. 6, assume that the number of configurable frequency point information planned by the network planning device for each base station is 3, that is, the number of carriers is 3, and the frequency point numbers are (1, 2, 3) respectively, and each The base station is configured with the same frequency. Based on the increased number of carriers, as shown in Figure 8, the configurable frequency point information planned by the network planning device for adjacent base stations may be partially different from each other, and the frequency point numbers of adjacent base stations are (1, 2, 3), (1, 3, 4), (2, 3, 4), because the frequency point information configured between adjacent base stations is different from each other, the same-frequency interference in the TD-SCDMA system is reduced and the service performance is improved.

基于同一技术构思,本发明实施例提供了一种时分同步码分多址TD-SCDMA系统中的载波配置系统,如图9所示,包括:Based on the same technical idea, an embodiment of the present invention provides a carrier configuration system in a Time Division Synchronous Code Division Multiple Access TD-SCDMA system, as shown in FIG. 9 , including:

载波划分设备91,用于基于1.4MHz的载波间隔对TD-SCDMA系统的可用频段进行载波划分,确定划分得到的每一个载波的频点信息;The carrier division device 91 is used to divide the available frequency bands of the TD-SCDMA system into carriers based on the carrier spacing of 1.4MHz, and determine the frequency point information of each carrier obtained by division;

载波配置子系统92,用于根据确定出的每一个载波的频点信息对TD-SCDMA系统中的各基站进行载波配置。The carrier configuration subsystem 92 is configured to perform carrier configuration for each base station in the TD-SCDMA system according to the determined frequency point information of each carrier.

载波配置子系统92具体可以包括网络规划设备921、操作维护中心OMC922和无线网络控制器RNC 923,其中:The carrier configuration subsystem 92 may specifically include a network planning device 921, an operation and maintenance center OMC922, and a radio network controller RNC 923, wherein:

网络规划设备921,用于根据确定出的每一个载波的频点信息,为各基站规划可配置的频点信息,并发送给OMC 922;The network planning device 921 is used to plan configurable frequency point information for each base station according to the determined frequency point information of each carrier, and send it to the OMC 922;

OMC 922,用于将为每一个基站规划的可配置的频点信息下发到管辖该基站的RNC中;OMC 922, used to deliver the configurable frequency point information planned for each base station to the RNC in charge of the base station;

RNC 923,用于将所管辖的各基站的频点信息分发给对应的基站,控制所管辖的各基站在相应的频点上进行无线信号的收发。RNC 923 is used to distribute the frequency point information of each base station under its jurisdiction to corresponding base stations, and control each base station under its jurisdiction to transmit and receive wireless signals on corresponding frequency points.

较佳的,网络规划设备921为各基站规划的可配置的频点信息的数量,高于基于1.6MHz的载波间隔为各基站规划的可配置的频点信息的数量,或者,网络规划设备921为相邻基站规划的可配置的频点信息部分或者全部互不相同。Preferably, the quantity of configurable frequency point information planned by the network planning device 921 for each base station is higher than the quantity of configurable frequency point information planned for each base station based on the carrier spacing of 1.6 MHz, or, the network planning device 921 Part or all of the configurable frequency point information planned for adjacent base stations is different from each other.

本发明实施例提供的TD-SCDMA系统中的载波配置方法及系统,将TD-SCDMA系统的载波间隔从1.6MHz压缩至1.4MHz,基于1.4MHz的载波间隔对TD-SCDMA系统的可用频段进行载波划分,能够在非常有限的频率资源内增加TD-SCDMA系统中的载波数量,再根据确定出的载波对TD-SCDMA系统中的各基站进行载波配置,从而能够提升TD-SCDMA系统的频谱利用率。The carrier configuration method and system in the TD-SCDMA system provided by the embodiment of the present invention compresses the carrier spacing of the TD-SCDMA system from 1.6MHz to 1.4MHz, and carries out carrier waves on the available frequency band of the TD-SCDMA system based on the carrier spacing of 1.4MHz Division can increase the number of carriers in the TD-SCDMA system within very limited frequency resources, and then perform carrier configuration for each base station in the TD-SCDMA system according to the determined carriers, thereby improving the spectrum utilization of the TD-SCDMA system .

本发明不仅通过了理论分析、系统仿真、实验室测试等前期研究,而且在外场测试过程中验证了TD-SCDMA系统中载波间隔压缩的可行性,为了便于说明本发明的技术效果,给出部分实际的外场测试结果,室内场景的KPI测试结果如表7所示,室外场景的KPI测试结果如表8所示,此处仅给出KPI测试结果,其它测试指标不再赘述。The present invention has not only passed preliminary studies such as theoretical analysis, system simulation, and laboratory testing, but also verified the feasibility of carrier spacing compression in the TD-SCDMA system in the field test process. In order to facilitate the description of the technical effects of the present invention, some The actual field test results, the KPI test results of the indoor scene are shown in Table 7, and the KPI test results of the outdoor scene are shown in Table 8. Only the KPI test results are given here, and other test indicators will not be repeated.

表7Table 7

表8Table 8

通过对比室内、外场景的KPI测试结果可以看出,载波间隔压缩至1.4MHz之后网络性能不差于1.6MHz载波间隔下对应的相关性能指标。通过对不同测试场景、不同测试方式、不同测试业务、不同测试角度等各种典型测试用例的实际测试,测试结果证明了TD-SCDMA系统的载波间隔压缩至1.4MHz之后,不会由于邻道干扰的增加而对现网性能指标造成影响,TD-SCDMA系统的载波间隔压缩至1.4MHz在实际应用中是完全可行的,因此,通过压缩载波间隔增加载波数量的方法可以提升TD-SCDMA系统的频谱利用率,效果非常明显。By comparing the KPI test results of indoor and outdoor scenarios, it can be seen that after the carrier spacing is compressed to 1.4MHz, the network performance is no worse than the corresponding related performance indicators under the 1.6MHz carrier spacing. Through the actual tests of various typical test cases such as different test scenarios, different test methods, different test services, and different test angles, the test results prove that after the carrier spacing of the TD-SCDMA system is compressed to 1.4MHz, there will be no interference due to adjacent channels. The increase of the number of carriers will affect the performance index of the existing network. It is completely feasible to compress the carrier spacing of the TD-SCDMA system to 1.4MHz in practical applications. Therefore, the method of increasing the number of carriers by compressing the carrier spacing can improve the frequency spectrum of the TD-SCDMA system Utilization, the effect is very obvious.

显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present invention without departing from the spirit and scope of the present invention. Thus, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalent technologies, the present invention also intends to include these modifications and variations.

Claims (8)

1.一种时分同步码分多址TD-SCDMA系统中的载波配置方法,其特征在于,包括:1. a kind of carrier configuration method in time division synchronous code division multiple access TD-SCDMA system, it is characterized in that, comprising: 针对同一运营商应用场景,在基于邻道干扰指标分析确定TD-SCDMA系统的载波间隔从1.6MHz压缩至1.4MHz的可行性后,基于1.4MHz的载波间隔对TD-SCDMA系统的可用频段进行载波划分,确定划分得到的每一个载波的频点信息;For the application scenario of the same operator, after determining the feasibility of compressing the carrier spacing of the TD-SCDMA system from 1.6MHz to 1.4MHz based on the analysis of the adjacent channel interference index, the available frequency band of the TD-SCDMA system is carried out based on the carrier spacing of 1.4MHz dividing, determining the frequency point information of each carrier obtained by dividing; 根据确定出的每一个载波的频点信息,对TD-SCDMA系统中的各基站进行载波配置;According to the determined frequency point information of each carrier, carry out carrier configuration for each base station in the TD-SCDMA system; 其中,所述可用频段为B频段2010MHz~2025MHz,相应的确定出的B频段中的载波数量从现有的9个增加至10个,并且,增加的一个载波能够分配给室内分布系统使用或分配给室外宏基站使用;Wherein, the available frequency band is B-band 2010MHz-2025MHz, and the correspondingly determined number of carriers in the B-band is increased from the existing 9 to 10, and one additional carrier can be allocated to the indoor distribution system for use or allocation For outdoor macro base stations; 具体地,确定出的每一个载波的频点信息,包括:2011MHz、2012.6MHz、2014.2MHz、2015.8MHz、2017.2MHz、2018.6MHz、2020MHz、2021.4MHz、2022.8MHz、2024.2MHz;Specifically, the determined frequency point information of each carrier includes: 2011MHz, 2012.6MHz, 2014.2MHz, 2015.8MHz, 2017.2MHz, 2018.6MHz, 2020MHz, 2021.4MHz, 2022.8MHz, 2024.2MHz; 或者,or, 2010.8MHz、2012.4MHz、2014MHz、2015.6MHz、2017MHz、2018.4MHz、2019.8MHz、2021.2MHz、2022.6MHz、2024.2MHz;2010.8MHz, 2012.4MHz, 2014MHz, 2015.6MHz, 2017MHz, 2018.4MHz, 2019.8MHz, 2021.2MHz, 2022.6MHz, 2024.2MHz; 或者,or, 2010.8MHz、2012.4MHz、2014MHz、2015.6MHz、2017.2MHz、2018.6MHz、2020MHz、2021.4MHz、2022.8MHz、2024.2MHz。2010.8MHz, 2012.4MHz, 2014MHz, 2015.6MHz, 2017.2MHz, 2018.6MHz, 2020MHz, 2021.4MHz, 2022.8MHz, 2024.2MHz. 2.如权利要求1所述的方法,其特征在于,所述根据确定出的每一个载波的频点信息,对TD-SCDMA系统中的各基站进行载波配置,具体包括:2. The method according to claim 1, characterized in that, according to the frequency point information of each carrier determined, carrier configuration is carried out to each base station in the TD-SCDMA system, specifically comprising: 网络规划设备根据确定出的每一个载波的频点信息,为各基站规划可配置的频点信息,并发送给操作维护中心OMC;According to the determined frequency point information of each carrier, the network planning equipment plans configurable frequency point information for each base station, and sends it to the operation and maintenance center OMC; 操作维护中心OMC将为每一个基站规划的可配置的频点信息下发到管辖该基站的无线网络控制器RNC中;The operation and maintenance center OMC will deliver the configurable frequency point information planned for each base station to the radio network controller RNC in charge of the base station; RNC将所管辖的各基站的频点信息分发给对应的基站,控制所管辖的各基站在相应的频点上进行无线信号的收发。The RNC distributes frequency point information of each base station under its jurisdiction to corresponding base stations, and controls each base station under its jurisdiction to transmit and receive wireless signals on corresponding frequency points. 3.如权利要求2所述的方法,其特征在于,所述网络规划设备为各基站规划的可配置的频点信息的数量,高于基于1.6MHz的载波间隔为各基站规划的可配置的频点信息的数量。3. The method according to claim 2, characterized in that the number of configurable frequency point information planned by the network planning device for each base station is higher than the configurable frequency point information planned for each base station based on the carrier spacing of 1.6MHz The number of frequency point information. 4.如权利要求2所述的方法,其特征在于,所述网络规划设备为相邻基站规划的可配置的频点信息部分或者全部互不相同。4. The method according to claim 2, wherein the configurable frequency point information planned by the network planning device for adjacent base stations is partially or entirely different from each other. 5.一种时分同步码分多址TD-SCDMA系统中的载波配置系统,其特征在于,包括:5. a kind of carrier configuration system in time division synchronous code division multiple access TD-SCDMA system, it is characterized in that, comprising: 载波划分设备,用于针对同一运营商应用场景,在基于邻道干扰指标分析确定TD-SCDMA系统的载波间隔从1.6MHz压缩至1.4MHz的可行性后,基于1.4MHz的载波间隔对TD-SCDMA系统的可用频段进行载波划分,确定划分得到的每一个载波的频点信息;Carrier division equipment is used for the application scenario of the same operator. After analyzing and determining the feasibility of compressing the carrier spacing of the TD-SCDMA system from 1.6MHz to 1.4MHz based on the analysis of the adjacent channel interference index, the TD-SCDMA based on the carrier spacing of 1.4MHz The available frequency band of the system is divided into carriers, and the frequency point information of each carrier obtained by the division is determined; 载波配置子系统,用于根据确定出的每一个载波的频点信息对TD-SCDMA系统中的各基站进行载波配置;The carrier configuration subsystem is used to configure the carrier of each base station in the TD-SCDMA system according to the determined frequency point information of each carrier; 其中,所述可用频段为B频段2010MHz~2025MHz,相应的确定出的B频段中的载波数量从现有的9个增加至10个,并且,增加的一个载波能够分配给室内分布系统使用或分配给室外宏基站使用;Wherein, the available frequency band is B-band 2010MHz-2025MHz, and the correspondingly determined number of carriers in the B-band is increased from the existing 9 to 10, and one additional carrier can be allocated to the indoor distribution system for use or allocation For outdoor macro base stations; 具体地,确定出的每一个载波的频点信息,包括:2011MHz、2012.6MHz、2014.2MHz、2015.8MHz、2017.2MHz、2018.6MHz、2020MHz、2021.4MHz、2022.8MHz、2024.2MHz;Specifically, the determined frequency point information of each carrier includes: 2011MHz, 2012.6MHz, 2014.2MHz, 2015.8MHz, 2017.2MHz, 2018.6MHz, 2020MHz, 2021.4MHz, 2022.8MHz, 2024.2MHz; 或者,or, 2010.8MHz、2012.4MHz、2014MHz、2015.6MHz、2017MHz、2018.4MHz、2019.8MHz、2021.2MHz、2022.6MHz、2024.2MHz;2010.8MHz, 2012.4MHz, 2014MHz, 2015.6MHz, 2017MHz, 2018.4MHz, 2019.8MHz, 2021.2MHz, 2022.6MHz, 2024.2MHz; 或者,or, 2010.8MHz、2012.4MHz、2014MHz、2015.6MHz、2017.2MHz、2018.6MHz、2020MHz、2021.4MHz、2022.8MHz、2024.2MHz。2010.8MHz, 2012.4MHz, 2014MHz, 2015.6MHz, 2017.2MHz, 2018.6MHz, 2020MHz, 2021.4MHz, 2022.8MHz, 2024.2MHz. 6.如权利要求5所述的系统,其特征在于,所述载波配置子系统,具体包括网络规划设备、操作维护中心OMC和无线网络控制器RNC,其中:6. The system according to claim 5, wherein the carrier configuration subsystem specifically includes a network planning device, an operation and maintenance center (OMC) and a radio network controller (RNC), wherein: 所述网络规划设备,用于根据确定出的每一个载波的频点信息,为各基站规划可配置的频点信息,并发送给OMC;The network planning device is configured to plan configurable frequency point information for each base station according to the determined frequency point information of each carrier, and send it to the OMC; 所述操作维护中心OMC,用于将为每一个基站规划的可配置的频点信息下发到管辖该基站的RNC中;The operation and maintenance center OMC is used to deliver the configurable frequency point information planned for each base station to the RNC in charge of the base station; 所述无线网络控制器RNC,用于将所管辖的各基站的频点信息分发给对应的基站,控制所管辖的各基站在相应的频点上进行无线信号的收发。The radio network controller RNC is used for distributing frequency point information of each base station under its jurisdiction to corresponding base stations, and controlling each base station under its jurisdiction to transmit and receive wireless signals at corresponding frequency points. 7.如权利要求6所述的系统,其特征在于,7. The system of claim 6, wherein: 所述网络规划设备为各基站规划的可配置的频点信息的数量,高于基于1.6MHz的载波间隔为各基站规划的可配置的频点信息的数量。The quantity of configurable frequency point information planned by the network planning device for each base station is higher than the quantity of configurable frequency point information planned for each base station based on the carrier spacing of 1.6 MHz. 8.如权利要求6所述的系统,其特征在于,所述网络规划设备为相邻基站规划的可配置的频点信息部分或者全部互不相同。8 . The system according to claim 6 , wherein part or all of the configurable frequency information planned by the network planning device for adjacent base stations is different from each other.
CN200910242852.0A 2009-12-17 2009-12-17 Carrier allocating method and system in TD-SCDMA (time division-synchronous code division multiple access) system Active CN102104877B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910242852.0A CN102104877B (en) 2009-12-17 2009-12-17 Carrier allocating method and system in TD-SCDMA (time division-synchronous code division multiple access) system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910242852.0A CN102104877B (en) 2009-12-17 2009-12-17 Carrier allocating method and system in TD-SCDMA (time division-synchronous code division multiple access) system

Publications (2)

Publication Number Publication Date
CN102104877A CN102104877A (en) 2011-06-22
CN102104877B true CN102104877B (en) 2014-11-05

Family

ID=44157325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910242852.0A Active CN102104877B (en) 2009-12-17 2009-12-17 Carrier allocating method and system in TD-SCDMA (time division-synchronous code division multiple access) system

Country Status (1)

Country Link
CN (1) CN102104877B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105578533B (en) * 2014-10-14 2018-05-22 中国移动通信集团设计院有限公司 A kind of method of adjustment and device of the carrier bandwidths of timesharing Long Term Evolution TD-LTE systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388723A (en) * 2008-10-28 2009-03-18 重庆重邮信科通信技术有限公司 Radio communication timing synchronization method, cell searching method and system
CN101401539A (en) * 2008-11-05 2009-04-08 河南省烟草公司南阳市公司 Base material for floating cultivation of cigarette seedling and preparation method thereof
CN101505485A (en) * 2008-02-05 2009-08-12 三星电子株式会社 Method and apparatus for sending SRS in LTE TDD system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505485A (en) * 2008-02-05 2009-08-12 三星电子株式会社 Method and apparatus for sending SRS in LTE TDD system
CN101388723A (en) * 2008-10-28 2009-03-18 重庆重邮信科通信技术有限公司 Radio communication timing synchronization method, cell searching method and system
CN101401539A (en) * 2008-11-05 2009-04-08 河南省烟草公司南阳市公司 Base material for floating cultivation of cigarette seedling and preparation method thereof

Also Published As

Publication number Publication date
CN102104877A (en) 2011-06-22

Similar Documents

Publication Publication Date Title
Xu et al. Effective interference cancellation scheme for device-to-device communication underlaying cellular networks
CN104144447B (en) A kind of information transferring method and equipment
AU2011270023B2 (en) Method and apparatus for transmitting and receiving uplink data in mobile communication system
KR102197555B1 (en) Apparatus and method in wireless communication system
Zhu et al. QoS-based resource allocation scheme for device-to-device (D2D) radio underlaying cellular networks
CN102625336B (en) Interference management method and device in heterogenous network
EP2083594A3 (en) Method and system for interference mitigation in a wireless communication system formed by multiple radio access networks
CN105391510B (en) A kind of 4G private network method for cell interference coordination towards electric power transmission scene
CN101827370A (en) Frequency reuse control method, system and base station equipment based on OFDM (Orthogonal Frequency Division Multiplexing)
Li et al. Performance and analysis on LTE system under adjacent channel interference of broadcasting system
CN102523590A (en) Planning method of multi-system intelligent configurable wireless network
WO2007128236A1 (en) Method and system for distributing random access resource of wireless network
CN102685753B (en) The using method of LTE guard band and device
CN102238550A (en) Method and device for configuring member carriers for terminal in carrier aggregation system
CN101048003B (en) Method and device for testing interference property of moving communication system and system planning method
Haider et al. Performance analysis of LTE-advanced networks in different spectrum bands
CN102104877B (en) Carrier allocating method and system in TD-SCDMA (time division-synchronous code division multiple access) system
Wang et al. A coexistence analysis method to apply ACLR and ACS between NB-IoT and LTE for stand-alone case
CN111491376B (en) Air interface resource scheduling method and equipment
Salami et al. Nonpool based spectrum sharing for two UMTS operators in the UMTS extension band
CN102316460A (en) Carrier wave networking configuration method and system for time division-synchronization code division multiple access (TD-SCDMA)
Dludla et al. Co-existence study between analog TV (PAL-I) and LTE in digital dividend band: South African case study
CN103096326B (en) It is a kind of to suppress channel arrangement method and system with external leakage interference
CN104168634A (en) Distributed user location awareness cell closing method for LTE-A cellular network
Azhar et al. An enhancement of direct sequence spread spectrum (DSSS) technique in LTE and Wi-Fi coexistence technologies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant