CN102104090B - Crystal-bonding method for light-emitting diode chip, crystal-bonded light-emitting diode and chip structure - Google Patents
Crystal-bonding method for light-emitting diode chip, crystal-bonded light-emitting diode and chip structure Download PDFInfo
- Publication number
- CN102104090B CN102104090B CN201010504210.6A CN201010504210A CN102104090B CN 102104090 B CN102104090 B CN 102104090B CN 201010504210 A CN201010504210 A CN 201010504210A CN 102104090 B CN102104090 B CN 102104090B
- Authority
- CN
- China
- Prior art keywords
- layer
- metal
- chip
- material layer
- jie
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 88
- 239000000463 material Substances 0.000 claims abstract description 176
- 229910052751 metal Inorganic materials 0.000 claims abstract description 153
- 239000002184 metal Substances 0.000 claims abstract description 153
- 239000000758 substrate Substances 0.000 claims abstract description 86
- 238000006243 chemical reaction Methods 0.000 claims abstract description 62
- 239000007787 solid Substances 0.000 claims abstract description 52
- 239000010409 thin film Substances 0.000 claims abstract description 51
- 239000010408 film Substances 0.000 claims abstract description 25
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 39
- 239000010931 gold Substances 0.000 claims description 30
- 239000004065 semiconductor Substances 0.000 claims description 28
- 239000010949 copper Substances 0.000 claims description 25
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 25
- 229910052737 gold Inorganic materials 0.000 claims description 25
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 24
- 229910052709 silver Inorganic materials 0.000 claims description 22
- 239000004332 silver Substances 0.000 claims description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 19
- 229910052802 copper Inorganic materials 0.000 claims description 19
- 229910052759 nickel Inorganic materials 0.000 claims description 15
- 229910045601 alloy Inorganic materials 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 14
- MPZNMEBSWMRGFG-UHFFFAOYSA-N bismuth indium Chemical compound [In].[Bi] MPZNMEBSWMRGFG-UHFFFAOYSA-N 0.000 claims description 13
- PSMFTUMUGZHOOU-UHFFFAOYSA-N [In].[Sn].[Bi] Chemical compound [In].[Sn].[Bi] PSMFTUMUGZHOOU-UHFFFAOYSA-N 0.000 claims description 12
- 229910052738 indium Inorganic materials 0.000 claims description 11
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 11
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 8
- NDXSUDIGSOJBLQ-UHFFFAOYSA-N [In][Bi][Zn][Sn] Chemical compound [In][Bi][Zn][Sn] NDXSUDIGSOJBLQ-UHFFFAOYSA-N 0.000 claims description 8
- MXCODEAYRFLVOQ-UHFFFAOYSA-N [Zn].[Bi].[In] Chemical compound [Zn].[Bi].[In] MXCODEAYRFLVOQ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052718 tin Inorganic materials 0.000 claims description 8
- 229910052797 bismuth Inorganic materials 0.000 claims description 7
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 7
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 6
- 229910052594 sapphire Inorganic materials 0.000 claims description 6
- 239000010980 sapphire Substances 0.000 claims description 6
- 239000011701 zinc Substances 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 5
- QHSFHBRFVUUBJK-UHFFFAOYSA-N [Cu].[Zn].[In] Chemical compound [Cu].[Zn].[In] QHSFHBRFVUUBJK-UHFFFAOYSA-N 0.000 claims description 5
- XXAVENSISFXAGP-UHFFFAOYSA-N [Zn].[In].[Ni] Chemical compound [Zn].[In].[Ni] XXAVENSISFXAGP-UHFFFAOYSA-N 0.000 claims description 5
- LGRDPUAPARTXMG-UHFFFAOYSA-N bismuth nickel Chemical compound [Ni].[Bi] LGRDPUAPARTXMG-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 claims description 4
- 229910002601 GaN Inorganic materials 0.000 claims description 4
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 229910017083 AlN Inorganic materials 0.000 claims 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims 1
- 238000005275 alloying Methods 0.000 claims 1
- 238000002844 melting Methods 0.000 abstract description 47
- 230000008018 melting Effects 0.000 abstract description 46
- 238000010438 heat treatment Methods 0.000 abstract description 24
- 239000010410 layer Substances 0.000 description 254
- 238000007711 solidification Methods 0.000 description 25
- 230000008023 solidification Effects 0.000 description 25
- 239000013078 crystal Substances 0.000 description 20
- 238000001723 curing Methods 0.000 description 16
- 230000008646 thermal stress Effects 0.000 description 16
- 239000000853 adhesive Substances 0.000 description 11
- 230000001070 adhesive effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 230000005496 eutectics Effects 0.000 description 10
- 229910000765 intermetallic Inorganic materials 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- AJZRPMVVFWWBIW-UHFFFAOYSA-N [Au].[Bi] Chemical compound [Au].[Bi] AJZRPMVVFWWBIW-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000009713 electroplating Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000007769 metal material Substances 0.000 description 6
- 238000005476 soldering Methods 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 5
- YZASAXHKAQYPEH-UHFFFAOYSA-N indium silver Chemical compound [Ag].[In] YZASAXHKAQYPEH-UHFFFAOYSA-N 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 229910017980 Ag—Sn Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 239000003292 glue Substances 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- -1 Gallium Indium Phosphorus Nitride Chemical class 0.000 description 3
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- GPYPVKIFOKLUGD-UHFFFAOYSA-N gold indium Chemical compound [In].[Au] GPYPVKIFOKLUGD-UHFFFAOYSA-N 0.000 description 3
- 238000004093 laser heating Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- BSWGGJHLVUUXTL-UHFFFAOYSA-N silver zinc Chemical compound [Zn].[Ag] BSWGGJHLVUUXTL-UHFFFAOYSA-N 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 229910005540 GaP Inorganic materials 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QCEUXSAXTBNJGO-UHFFFAOYSA-N [Ag].[Sn] Chemical compound [Ag].[Sn] QCEUXSAXTBNJGO-UHFFFAOYSA-N 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 2
- JVPLOXQKFGYFMN-UHFFFAOYSA-N gold tin Chemical compound [Sn].[Au] JVPLOXQKFGYFMN-UHFFFAOYSA-N 0.000 description 2
- 238000004021 metal welding Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910007116 SnPb Inorganic materials 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/83801—Soldering or alloying
- H01L2224/8381—Soldering or alloying involving forming an intermetallic compound at the bonding interface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/83801—Soldering or alloying
- H01L2224/8382—Diffusion bonding
- H01L2224/83825—Solid-liquid interdiffusion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种发光二极管芯片(chip)的固晶方法(bonding method)及发光二极管以及芯片结构,尤其涉及一种能低温固晶并得到高温的介金属层的固晶方法及具有此固晶结构的发光二极管以及芯片结构。The present invention relates to a bonding method (bonding method) of a light-emitting diode chip (chip), a light-emitting diode and a chip structure, in particular to a bonding method capable of low-temperature bonding and obtaining a high-temperature intermetallic layer, and a bonding method with the bonding method. structure of light-emitting diodes and chip structures.
背景技术 Background technique
将发光二极管(LED,Light Emitting Diode)芯片粘着于导线架上的技术已发展多年,依固晶材质的不同,大致上分为二类。第一类为高分子导电胶材,第二类为金属焊接材料。The technology of attaching light emitting diode (LED, Light Emitting Diode) chips to the lead frame has been developed for many years, and it can be roughly divided into two types according to the different die bonding materials. The first type is polymer conductive adhesive material, and the second type is metal welding material.
前述第一类可见于中国台湾公告第463394号专利“芯片式发光二极管及其制造方法”。其主要是于一金属基板表面镀银,经蚀刻后形成多个线架,该线架于一端粘晶,并通过打线连接至相对另端,经进行封胶后并进行切割即构成一芯片式发光二极管,其裸露于底部的线架即构成电气接点。此种做法,若在接合过程中未能均匀涂胶,将使得晶粒无法被固定在预定的位置,进而影响发光效率。其次,此类固晶方式,由于此高分子材料耐热性极差,在高温环境下操作时,银胶接合层将较易劣化。再者,此高分子材料导热不佳,LED晶粒也将因其难以导热(银胶热导系数仅1W/M-K)而无法得到良好的散热效果。LED晶粒的寿命与光电较换效率也随之下降。The aforementioned first category can be found in Taiwan Patent No. 463394 "Chip-Type Light-Emitting Diode and Its Manufacturing Method". It is mainly to plate silver on the surface of a metal substrate, and form a plurality of wire frames after etching. The wire frames are bonded to one end and connected to the opposite end by wire bonding. After sealing and cutting, a chip is formed. Type light-emitting diode, the wire frame exposed at the bottom constitutes the electrical contact. In this way, if the glue is not uniformly applied during the bonding process, the crystal grains cannot be fixed at a predetermined position, thereby affecting the luminous efficiency. Secondly, due to the extremely poor heat resistance of this type of crystal bonding method, the silver adhesive bonding layer will be easily deteriorated when operating in a high temperature environment. Furthermore, the polymer material has poor thermal conductivity, and the LED grains will not be able to obtain a good heat dissipation effect because of the difficulty in thermal conductivity (the thermal conductivity of silver glue is only 1W/M-K). The lifespan and photoelectric conversion efficiency of LED grains also decrease accordingly.
前述第二类可见于中国台湾公开第200840079号专利申请案“发光二极管封装的固晶材料与方法”。该专利申请案所采用的固晶方法主要是利用基板的金属材质而采用共晶接合。在封装结构的金属基座的上表面首先涂布一层适当范围的共晶接着材料。接着,将发光二极管晶粒设置于基座的共晶接着材料上。完成的成品再经由热板、烤箱或隧道炉提供适当温度而完成共晶接合。此技术采用共晶接着材料,其所形成的接合层为金属材料,故在散热性及耐热性都较银胶为佳。此专利技术所采用的部分共晶接着材料的熔点较高,使得在接合时容易在LED晶粒残留热应力,而损坏晶粒。而另一部分的共晶接着材料虽为低熔点合金,此类接着材料在接合完成后,若LED使用于70-80度的环境时,接合层将产生软化现象,其接点可靠度大打折扣。The aforementioned second category can be found in Taiwan Patent Application Publication No. 200840079 "Die Bonding Material and Method for Light Emitting Diode Packaging". The die-bonding method adopted in this patent application mainly utilizes the metal material of the substrate to adopt eutectic bonding. A layer of eutectic bonding material in an appropriate range is first coated on the upper surface of the metal base of the packaging structure. Next, disposing the LED die on the eutectic bonding material of the base. The finished product is then passed through a hot plate, oven or tunnel furnace to provide an appropriate temperature to complete the eutectic bonding. This technology uses eutectic bonding material, and the bonding layer formed by it is a metal material, so it is better than silver glue in terms of heat dissipation and heat resistance. Part of the eutectic bonding material used in this patented technology has a high melting point, which makes it easy to leave thermal stress on the LED die during bonding and damage the die. Although the other part of the eutectic bonding material is a low-melting point alloy, after the bonding of this type of bonding material is completed, if the LED is used in an environment of 70-80 degrees, the bonding layer will soften, and the reliability of the contact will be greatly reduced.
除了上述技术外,美国公开第2007/0141749号专利申请案提出了在固晶工艺中,导入超音波,以超音波使接合表面离子化,借以降低加热温度,减少热应力。此方式的需增加超音波设备,制造成本提升,同时,若超音波动操作不当,可能直接震动到LED晶粒,造成晶粒裂片。In addition to the above-mentioned technologies, US Patent Application Publication No. 2007/0141749 proposes introducing ultrasonic waves into the die bonding process to ionize the joint surface with ultrasonic waves, thereby reducing heating temperature and reducing thermal stress. In this method, ultrasonic equipment needs to be added, and the manufacturing cost is increased. At the same time, if the ultrasonic wave is not properly operated, it may directly vibrate the LED die, causing the die to split.
现有将芯片结构结合于导线架或印刷电路板等基体的固晶技术已发展多年,目前常用的固晶方式大致上分为两类,其中一类是以高分子导电胶材(例如银胶)将芯片结构黏着于基体上,之后再送入空气炉内进行热固化烘烤,使高分子导电胶材产生固化,进而使芯片结构固定于基体。然而,这种以高分子导电胶材进行固晶的方式,若在接合过程中未能均匀涂胶,将使芯片结构无法被固定在预定的位置,进而影响固晶后成品的良率。此外,由于高分子导电胶材的耐热性差,当芯片结构在高温环境下操作时,高分子导电胶材容易产生劣化,导致芯片结构不适于在高温环境下使用。再者,由于高分子导电胶材的导热性不佳,使芯片结构无法得到良好的散热效果,进而造成芯片结构的使用效能下降,并大幅缩短芯片结构的使用寿命。The existing die-bonding technology that combines the chip structure with substrates such as lead frames or printed circuit boards has been developed for many years. Currently, the commonly used die-bonding methods are roughly divided into two categories, one of which is polymer conductive adhesive (such as silver glue) ) stick the chip structure on the substrate, and then put it into the air furnace for thermal curing and baking, so that the polymer conductive adhesive material is cured, and then the chip structure is fixed on the substrate. However, in this method of die bonding with polymer conductive adhesive, if the adhesive is not uniformly applied during the bonding process, the chip structure cannot be fixed at the predetermined position, thereby affecting the yield rate of the finished product after die bonding. In addition, due to the poor heat resistance of the polymer conductive adhesive, when the chip structure is operated in a high temperature environment, the polymer conductive adhesive is prone to deterioration, making the chip structure unsuitable for use in a high temperature environment. Furthermore, due to the poor thermal conductivity of the polymer conductive adhesive material, the chip structure cannot obtain a good heat dissipation effect, which further reduces the efficiency of the chip structure and greatly shortens the service life of the chip structure.
另一类固晶方式则是以金属焊接材料替换高分子导电胶材的使用。采用金属焊接材料的固晶方式,是在基体或芯片结构表面预先设置如锡(Sn)、金锡(AuSn)、锡铅(SnPb)等金属焊接材料,并提供适当的助焊剂(flux)。接着,将芯片结构设置于基体上,再经由热板、烤箱或隧道提供烘烤温度(约为摄氏300度(℃)的高温),使芯片结构借由金属焊接材料共晶接合于基体上。由于此技术是采用金属材料做为芯片结构及基体之间的接合介质,因此在散热性及耐热性都较高分子导电胶材为佳。然而,由于金属焊接材料具有较高的熔点,容易在共晶接合的过程中于芯片结构上残留热应力,而损坏芯片结构。Another type of die-bonding method is to replace the use of polymer conductive adhesives with metal soldering materials. The crystal bonding method using metal soldering materials is to pre-set metal soldering materials such as tin (Sn), gold tin (AuSn), tin-lead (SnPb) on the surface of the substrate or chip structure, and provide appropriate flux (flux). Next, the chip structure is placed on the substrate, and then a baking temperature (about 300 degrees Celsius (°C) high temperature) is provided through a hot plate, an oven or a tunnel, so that the chip structure is eutectically bonded to the substrate by the metal solder material. Because this technology uses metal materials as the bonding medium between the chip structure and the substrate, it is better than molecular conductive adhesives in terms of heat dissipation and heat resistance. However, due to the high melting point of the metal soldering material, it is easy to leave thermal stress on the chip structure during the eutectic bonding process and damage the chip structure.
为了解决残留热应力的问题,有业者在固晶工艺中导入超音波设备,借由超音波将芯片结构与基体之间的接合表面离子化,借以降低加热温度及热应力。惟此方式需增加超音波设备,导致制造成本增加。同时,在共晶接合的过程中若操作不当,将使超音波直接震动到芯片结构,而造成芯片结构碎裂。虽然另可工艺使用具有低熔点特性的金属焊接材料来克服上述残留热应力的问题。然而,当芯片结构于70~80℃的环境中操作时,这种低熔点金属焊接材料容易产生软化现象,进而造成芯片结构与基体之间接点的可靠度大打折扣。In order to solve the problem of residual thermal stress, some manufacturers have introduced ultrasonic equipment into the die-bonding process to ionize the joint surface between the chip structure and the substrate by ultrasonic waves, thereby reducing the heating temperature and thermal stress. However, this method needs to increase ultrasonic equipment, resulting in increased manufacturing costs. At the same time, if the operation is not done properly during the eutectic bonding process, the ultrasonic wave will directly vibrate the chip structure, causing the chip structure to break. Although another process can use metal soldering materials with low melting point characteristics to overcome the above-mentioned problem of residual thermal stress. However, when the chip structure is operated in an environment of 70-80° C., the low-melting-point metal solder material is prone to softening, which further reduces the reliability of the joint between the chip structure and the substrate.
发明内容 Contents of the invention
基于上述问题,本发明所要解决的技术问题在于提出一种发光二极管芯片的固晶方法及应用此固晶方法的发光二极管,本发明的固晶方法可以在110度的低温下完成固晶,并使固晶完成的接合合金具有高于200度的熔点,因此,得以解决上述各种方法的缺点及问题。Based on the above problems, the technical problem to be solved by the present invention is to propose a method for bonding light-emitting diode chips and a light-emitting diode using the method. The bonding alloy completed with crystal bonding has a melting point higher than 200 degrees, so the shortcomings and problems of the above-mentioned various methods can be solved.
鉴于以上的问题,本发明所要解决的技术问题还在于提供一种芯片结构,借以改进现有芯片结构在接合于基体后,由于高分子导电胶材的耐热性及导热性差,造成芯片结构的效能降低及使用寿命缩短的问题;以及金属焊接材料的使用,所导致芯片结构在固晶过程中容易残留热应力以及固晶接合后,芯片结构及基体之间接点可靠度降低的问题。In view of the above problems, the technical problem to be solved by the present invention is to provide a chip structure, so as to improve the existing chip structure. The problem of reduced performance and shortened service life; and the use of metal soldering materials, resulting in the residual thermal stress of the chip structure during the die bonding process and the problem of reduced reliability of the contact between the chip structure and the substrate after the die bonded.
为实现上述目的,本发明提供一种发光二极管芯片的固晶方法,依据发光二极管(LED)芯片的固晶方法的一实施例,此固晶方法适于结合LED芯片及基体。LED芯片具有第一金属薄膜层,固晶方法包含:形成第二金属薄膜层于基体的表面;形成固晶材料层于第二金属薄膜层,固晶材料的熔点低于摄氏110度;置放LED芯片于固晶材料层上,使第一金属薄膜层接触固晶材料;以一液固反应温度加热固晶材料层一预固时间,以于该第一金属薄膜层及该固晶材料层之间形成一第一介金属层,并于该固晶材料层及该第二金薄膜层之间形成一第二介金属层;以及以一固固反应温度加热固晶材料层一固化时间,以进行一固固反应,固固反应后的第一介金属层及第二介金属层的熔点高于200度。To achieve the above object, the present invention provides a method for bonding LED chips. According to an embodiment of the method for bonding LED chips, the method for bonding LED chips is suitable for bonding LED chips and substrates. The LED chip has a first metal thin film layer, and the crystal bonding method includes: forming a second metal thin film layer on the surface of the substrate; forming a solid crystal material layer on the second metal thin film layer, and the melting point of the solid crystal material is lower than 110 degrees Celsius; The LED chip is placed on the crystal-bonding material layer, so that the first metal thin film layer contacts the crystal-bonding material; the crystal-bonding material layer is heated at a liquid-solid reaction temperature for a pre-curing time, so that the first metal film layer and the crystal-bonding material layer Forming a first intermetallic layer therebetween, and forming a second intermetallic layer between the crystal-bonding material layer and the second gold film layer; and heating the crystal-bonding material layer with a solid-solid reaction temperature for a solidification time, A solid-solid reaction is performed, and the melting points of the first intermetallic layer and the second intermetallic layer after the solid-solid reaction are higher than 200°C.
依据一实施例,前述的液固反应温度等于或高于该固晶材料熔点。固固反应温度低于该固晶材料熔点。前述第一金属薄膜层的材料及第二金属薄膜层的材料可为金(Au)、银(Ag)、铜(Cu)或镍(Ni)。固晶材料层的材料可为铋铟、铋铟锌、铋铟锡及铋铟锡锌。第一介金属层及第二介金属层的材料可选自于由铜铟锌(Cu-In-Sn)介金属、镍铟锌(Ni-In-Sn)介金属、镍铋(Ni-Bi)介金属、金铟(Au-In)介金属、银铟(Ag-In)介金属、银锌(Ag-Sn)介金属及金铋(Au-Bi)介金属所构成的群组。According to an embodiment, the aforementioned liquid-solid reaction temperature is equal to or higher than the melting point of the crystal-bonding material. The solid-solid reaction temperature is lower than the melting point of the crystal-bonding material. The material of the first metal thin film layer and the second metal thin film layer can be gold (Au), silver (Ag), copper (Cu) or nickel (Ni). The material of the die-bonding material layer can be bismuth indium, bismuth indium zinc, bismuth indium tin and bismuth indium tin zinc. The material of the first intermetallic layer and the second intermetallic layer can be selected from copper indium zinc (Cu-In-Sn) intermetallic, nickel indium zinc (Ni-In-Sn) intermetallic, nickel bismuth (Ni-Bi ) intermetal, gold-indium (Au-In) intermetal, silver-indium (Ag-In) intermetal, silver-zinc (Ag-Sn) intermetal and gold-bismuth (Au-Bi) intermetal.
其中,以该固固反应温度加热该固晶材料层,以进行该固固反应的步骤为:以该固固反应温度加热该固晶材料层,以进行该固固反应,直到该固晶材料与该第一金属薄膜层及该第二金薄膜层的该固固反应完毕。Wherein, the step of heating the crystal-bonding material layer at the solid-solid reaction temperature to perform the solid-solid reaction is: heating the crystal-bonding material layer at the solid-solid reaction temperature to perform the solid-solid reaction until the crystal-bonding material The solid reaction with the first metal thin film layer and the second gold thin film layer is completed.
其中,该液固反应温度为摄氏85度,该预固时间为0.1秒到1秒。Wherein, the liquid-solid reaction temperature is 85 degrees centigrade, and the pre-solidification time is 0.1 second to 1 second.
其中,该固固反应温度为摄氏40度到80度,该固化时间为30分钟到3小时。Wherein, the curing reaction temperature is 40°C to 80°C, and the curing time is 30 minutes to 3 hours.
为了实现上述目的,本发明还提供一种发光二极管,依据发光二极管的一实施例,发光二极管包含依序迭置的基体、第二金属薄膜层、第二介金属层、第一介金属层、第一金属薄膜层及发光二极管芯片。第一金属薄膜层的材料及第二金属薄膜层的材料可为金(Au)、银(Ag)、铜(Cu)或镍(Ni)。介金属层的材质可以铜铟锌(Cu-In-Sn)、镍铟锌(Ni-In-Sn)、镍铋(Ni-Bi)、金铟(Au-In)、银铟(Ag-In)、银锌(Ag-Sn)或金铋(Au-Bi)介金属。In order to achieve the above object, the present invention also provides a light-emitting diode. According to an embodiment of the light-emitting diode, the light-emitting diode includes a substrate, a second metal thin film layer, a second intermetallic layer, a first intermetallic layer, The first metal thin film layer and the LED chip. The material of the first metal thin film layer and the second metal thin film layer can be gold (Au), silver (Ag), copper (Cu) or nickel (Ni). The material of the interlayer metal layer can be copper indium zinc (Cu-In-Sn), nickel indium zinc (Ni-In-Sn), nickel bismuth (Ni-Bi), gold indium (Au-In), silver indium (Ag-In ), silver-zinc (Ag-Sn) or gold-bismuth (Au-Bi) intermetallics.
其中,上述发光二极管还包含一中介层,被夹置于该第一介金属层与该第二介金属层之间,该中介层的材料选自于由锡、铋、铟及锌所组成的群组。Wherein, the above-mentioned light-emitting diode also includes an intermediary layer sandwiched between the first intermetallic layer and the second intermetallic layer, and the material of the intermediary layer is selected from tin, bismuth, indium and zinc. group.
依据上述固晶方法的实施例,可以将LED芯片在低于110度的温度先行预固化(液固反应)约0.1至1秒。其后,再于低于80度的温度进行约30分钟到3小时的固固反应,以完成将LED芯片及基体固晶的程序。由于所有固晶程序均在低温下进行,故无热应力产生于LED芯片中。其次,借此固晶方法完成的发光二极管,在LED芯片与基体间的接合材质为金属材质,其导热与散热效果佳。再者,因所生成的介金属化合物具有高于200度的熔点温度,因此,此发光二极管即便工作在70到80度的环境下,也不致会有接合合金软化的问题。According to the embodiment of the above crystal bonding method, the LED chip can be pre-cured (liquid-solid reaction) at a temperature lower than 110 degrees for about 0.1 to 1 second. Thereafter, a solidification reaction is performed at a temperature lower than 80 degrees for about 30 minutes to 3 hours to complete the process of solidifying the LED chip and the substrate. Since all die-bonding procedures are performed at low temperature, no thermal stress occurs in the LED chip. Secondly, in the light-emitting diode completed by this die-bonding method, the bonding material between the LED chip and the substrate is made of metal, which has good heat conduction and heat dissipation effects. Furthermore, since the generated intermetallic compound has a melting point higher than 200°C, even if the light-emitting diode operates in an environment of 70 to 80°C, it will not have the problem of joint alloy softening.
为了实现上述目的,本发明还提供一种芯片结构,其包括有一芯片及一固晶材料层,固晶材料层设置于芯片的一表面,且固晶材料层的组成材料是选自于由铋铟(Bi-In)、铋铟锌(Bi-In-Zn)、铋铟锡(Bi-In-Sn)及铋铟锌锡(Bi-In-Zn-Sn)所组成的群组中至少其中之一。In order to achieve the above object, the present invention also provides a chip structure, which includes a chip and a crystal-bonding material layer, the crystal-bonding material layer is arranged on a surface of the chip, and the composition material of the crystal-bonding material layer is selected from bismuth At least one of the group consisting of indium (Bi-In), bismuth indium zinc (Bi-In-Zn), bismuth indium tin (Bi-In-Sn) and bismuth indium zinc tin (Bi-In-Zn-Sn) one.
本发明的功效在于,依据上述固晶方法的实施例及固晶后的LED结构可知,在固晶工艺时,可以用低温及短的时间将LED芯片预固于基体,且不致有对位偏移的问题。其后再用更低的温度进行固固反应。反应后的第一介金属层及第二介金属层具有高熔点(大于200度)。因此,固晶后的LED即便长时间被操作于80度以上的温度时,仍不致使第一介金属层及第二介金属层软化,进而影响其对位精确度。再者,由于工艺中所使用的温度均低于100度,故在固晶过程,LED芯片及其它零组件(如基体、塑料反射杯等)不会有热应力残留或集中问题。得到具有良好可靠度的LED。最后,由于预固程序可采用激光加热方式进行,因此预固时间缩短相当多。再加上固固时间则可采批量作业。使得本固晶方法可以有相对于现有技术高出许多的产出(Throughput)。The efficacy of the present invention lies in that, according to the embodiment of the above-mentioned die-bonding method and the LED structure after die-bonding, it can be seen that during the die-bonding process, the LED chip can be pre-solidified on the substrate at a low temperature and in a short time without misalignment. shifting problem. Thereafter, the solid-solid reaction was carried out at a lower temperature. The reacted first intermetallic layer and the second intermetallic layer have high melting points (greater than 200 degrees). Therefore, even if the LED after die bonding is operated at a temperature above 80 degrees for a long time, the first intermetallic layer and the second intermetallic layer will not be softened, thereby affecting the alignment accuracy. Furthermore, since the temperature used in the process is lower than 100 degrees, there will be no thermal stress residue or concentration problem in the LED chip and other components (such as substrate, plastic reflective cup, etc.) during the die bonding process. LEDs with good reliability are obtained. Finally, since the pre-curing process can be carried out by means of laser heating, the pre-curing time is considerably shortened. Coupled with the solid time, batch operations can be adopted. This enables the crystal bonding method to have a much higher throughput than the prior art.
依据上述芯片结构的实施例,将芯片结构固晶于导线架或印刷电路板等基体的过程中,借由固晶材料层所具有的低熔点特性,让芯片结构可在低温环境下与基体接合,可避免芯片结构在固晶过程中产生热应力集中或是在固晶完成后残留热应力,所导致芯片结构破裂损坏的情形发生。并且,在固晶程序完成后,借由固晶材料层于芯片结构与基板之间所产生的高熔点介金属层,使芯片结构与基体之间具有良好的接点可靠度,并且在高温环境中长时间的使用下,仍能维持良好的运作效能。According to the above-mentioned embodiment of the chip structure, during the process of bonding the chip structure to a substrate such as a lead frame or a printed circuit board, the chip structure can be bonded to the substrate in a low-temperature environment by virtue of the low melting point characteristic of the die-bonding material layer. , can avoid the thermal stress concentration of the chip structure during the die-bonding process or the residual thermal stress after the die-bonding is completed, resulting in cracking and damage to the chip structure. Moreover, after the die-bonding process is completed, the high-melting-point interlayer metal layer produced by the die-bonding material layer between the chip structure and the substrate makes the connection between the chip structure and the substrate have good reliability, and it can be used in a high-temperature environment. Under long-term use, it can still maintain good operating performance.
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments, but not as a limitation of the present invention.
附图说明 Description of drawings
图1为本发明的发光二极管(LED)芯片的固晶方法一实施例的流程示意图;Fig. 1 is the schematic flow sheet of one embodiment of the solid crystal method of light-emitting diode (LED) chip of the present invention;
图2A为本发明的固晶方法一实施例的LED芯片的结构示意图;FIG. 2A is a schematic structural diagram of an LED chip in an embodiment of the crystal bonding method of the present invention;
图2B为本发明的固晶方法一实施例的基体的结构示意图;2B is a schematic structural view of a substrate of an embodiment of the crystal bonding method of the present invention;
图2C为本发明的固晶方法一实施例的进行步骤S52的基体的结构示意图;FIG. 2C is a schematic structural view of the substrate performing step S52 in an embodiment of the crystal bonding method of the present invention;
图2D为本发明的固晶方法一实施例的步骤S54的结构示意图;2D is a schematic structural diagram of step S54 of an embodiment of the crystal bonding method of the present invention;
图2E为本发明的固晶方法一实施例的步骤S56的LED结构示意图;2E is a schematic diagram of the LED structure in step S56 of an embodiment of the crystal bonding method of the present invention;
图2F为本发明的固晶方法一实施例的步骤S58的LED结构示意图;2F is a schematic diagram of the LED structure in step S58 of an embodiment of the crystal bonding method of the present invention;
图2G为本发明的固晶方法一实施例的步骤S58的另一LED结构示意图;2G is a schematic diagram of another LED structure in step S58 of an embodiment of the crystal bonding method of the present invention;
图3为依据本发明的固晶方法一实施例中的固晶材料层与第一金属薄膜层接合的合金分析图;3 is an alloy analysis diagram of the bonding of the crystal-bonding material layer and the first metal thin film layer in an embodiment of the crystal-bonding method according to the present invention;
图4为本发明芯片结构的第一实施例的剖面示意图;4 is a schematic cross-sectional view of the first embodiment of the chip structure of the present invention;
图5为本发明芯片结构的第一实施例的设置于基体的剖面示意图;5 is a schematic cross-sectional view of the first embodiment of the chip structure of the present invention disposed on the substrate;
图6为本发明芯片结构的第一实施例的共晶接合于基体的剖面示意图;6 is a schematic cross-sectional view of eutectic bonding to a substrate of the first embodiment of the chip structure of the present invention;
图7为本发明芯片结构的第二实施例的剖面示意图;7 is a schematic cross-sectional view of a second embodiment of the chip structure of the present invention;
图8为本发明芯片结构的第三实施例的剖面示意图;以及8 is a schematic cross-sectional view of a third embodiment of the chip structure of the present invention; and
图9为本发明芯片结构的第四实施例的剖面示意图。FIG. 9 is a schematic cross-sectional view of a fourth embodiment of the chip structure of the present invention.
其中,附图标记:Among them, reference signs:
10 LED芯片10 LED chips
12 第一金属薄膜层12 The first metal film layer
20 基体20 matrix
22 第二金属薄膜层22 Second metal film layer
30 固晶材料层30 layers of die-bonding material
32,32’ 第一介金属层32, 32' first interlayer metal layer
34,34’ 第二介金属层34, 34' second intermetallic layer
36 中介层36 Interposer
100 芯片100 chips
110 基板110 Substrate
120 金属层120 metal layers
130 半导体结构130 semiconductor structure
131 N型半导体层131 N-type semiconductor layer
132 发光材料层132 luminescent material layer
133 P型半导体层133 P-type semiconductor layer
140 金属凸块140 metal bumps
200 固晶材料层200 layers of die-bonding material
300 基体300 Substrate
310 金属层310 metal layer
400 第一介金属层400 first intermetallic layer
500 第二介金属层500 Second intermetallic layer
具体实施方式 Detailed ways
下面结合附图对本发明的结构原理和工作原理作具体的描述:Below in conjunction with accompanying drawing, structural principle and working principle of the present invention are specifically described:
首先,请参阅图1、图2A及图2B。图1为依据本发明的发光二极管(LED)芯片的固晶方法一实施例的流程示意图。图2A为依据本发明的固晶方法一实施例的LED芯片的结构示意图。图2B为依据本发明的固晶方法一实施例的基体的结构示意图。First, please refer to FIG. 1 , FIG. 2A and FIG. 2B . FIG. 1 is a schematic flowchart of an embodiment of a method for bonding a light-emitting diode (LED) chip according to the present invention. FIG. 2A is a schematic structural diagram of an LED chip according to an embodiment of the die bonding method of the present invention. FIG. 2B is a schematic structural diagram of a substrate according to an embodiment of the crystal bonding method of the present invention.
此LED芯片的固晶方法适于结合LED芯片10及基体20。LED芯片10可以是具有p-i-n结构的LED,例如但不限于氮化镓(GaN)、氮化镓铟(GaInN)、磷化铝铟镓(AlInGaP)与氮化铝铟镓(AlInGaN)、氮化铝(AlN)、氮化铟(InN)、氮化镓铟砷(GaInAsN)、磷氮化镓铟(GaInPN)或其任意组合。This LED chip bonding method is suitable for combining the
LED芯片10所发出的光线的光谱可以是任何可见光光谱(380nm(纳米)到760nm),或其它光谱。LED芯片10型态可为水平式结构(Saphhire base)、垂直式结构(Thin-GaN LED)与覆晶(Flip-Chip)型态。The spectrum of the light emitted by the
LED芯片10具有第一金属薄膜层12。第一金属薄膜层12的材料可以是金、银、铜与镍。第一金属薄膜层12可藉由电镀、溅镀或蒸镀等方式镀于LED芯片10的表面。第一金属薄膜层12的厚度可以是但不限于0.2um(微米)到2.0微米。例如厚度为0.5um(微米)到1.0微米。The
前述具有第一金属薄膜层12的LED芯片10通常并非是直接在切割好的芯片上镀第一金属薄膜层12,而是先在LED芯片背面,以上述电镀等方式镀上第一金属薄膜层12后,接着再将芯片经过切割、分光等步骤而完成的。The
前述的基体20可以是导线架、印刷电路板、具有塑料反射杯的基材、或陶瓷基板。基体20的材质可以是铜(Cu)、铝(Al)、铁(Fe)、镍(Ni)的纯元素或添加少量其它元素的合金。基体20的材质也可以是硅(Si)、氮化铝(AlN)或低温共烧多层陶瓷(LTCC,Low-Temperature Cofired Ceramics)。The
关于LED芯片10的固晶方法请再参照图1并搭配图2B、图2C、图2D、图2E、图2F、阅览之。从图中可以见悉,LED芯片10固晶方法包含:Regarding the die-bonding method of the
步骤S50:形成第二金属薄膜层22于基体20的表面;(请见于图2B)Step S50: forming a second metal
步骤S52:形成固晶材料层30于第二金属薄膜层22,固晶材料层30的熔点低于摄氏100度;(请见于图2C)Step S52: forming a crystal-
步骤S54:置放LED芯片10于固晶材料层30上,使第一金属薄膜层12接触固晶材料层30;(请见于图2D)Step S54: placing the
步骤S56:以一液固反应温度加热固晶材料层30一预固时间,以于第一金属薄膜层12及该固晶材料层30之间形成第一介金属层32,及于该固晶材料层30及第二金薄膜层22之间形成第二介金属层34;以及(请见于图2E)Step S56: heating the crystal-
步骤S58:以一固固反应温度加热固晶材料层30一固化时间,以进行一固固反应,固固反应后的第一介金属层32’及第二介金属层34’的熔点高于200度(请见于图2F)。Step S58: heating the crystal-
关于步骤S50,请见于图2B。其中,第二金属薄膜层22可采用电镀、溅镀或蒸镀等工艺而被形成于基体20上。第二金属薄膜层22的材料可以是金(Au)、银(Ag)、铜(Cu)或镍(Ni)。第二金属薄膜层22的厚度可以是但不限于0.2um(微米)到2.0um。例如厚度为0.5um到1.0um。Regarding step S50, please refer to FIG. 2B. Wherein, the second metal
接续步骤S50之后,请参见图2C,步骤S52可藉由电镀、蒸镀或溅镀的方式于第二金属薄膜层22上形成一固晶材料层30。此固晶材料层30的材质可以是铋铟(Bi-In)、铋铟锡(Bi-In-Sn)、铋铟锡锌(Bi-In-Sn-Zn)与铋铟锌(Bi-In-Zn)。其中,Bi-In(铋铟)的熔点约为110度、Bi-25In-18Sn(铋铟锡)的熔点约为82度,Bi-20In-30Sn-3Zn(铋铟锡锌)的熔点约为90度,Bi-33In-0.5Zn(铋铟锌)的熔点约为110度。固晶材料层30的厚度可以是但不限于0.2um(微米)到2.0um。例如厚度为0.5um到1.0um。其中,需要说明的是:Bi-25In-18Sn表示原子数的比,即Bi-In-Sn原子数比值为1∶25∶18,并且本申请中其它合金的类似表示方法表示相同的含义。After step S50 , please refer to FIG. 2C , step S52 may form a die-
其次,请参考图2D。步骤S54是将LED芯片10置放于固晶材料层30上,并使第一金属薄膜层12接触固晶材料层30。即如图2D所示。Second, please refer to Figure 2D. Step S54 is to place the
接着,则进行步骤S56的以一液固反应温度加热固晶材料层30一预固时间,以分别于第一金属薄膜层12、固晶材料层30及第二金薄膜层22之间形成第一介金属层32及第二介金属层34(请见于图2E)。其中,此液固反应温度可以是等于或高于固晶材料层30的熔化温度。若固晶材料层30的材质为铋铟锡,则液固反应温度可以是82度或以上。加热的方式可以采用激光加热、热风加热、红外线加热、热压接合、或超声波辅助热压接合。Then, proceed to step S56 of heating the crystal-
加热的位置则可以是直接将环境温度提高到液固反应温度,也可以直接加热于固晶材料层30或直接加热于基体20再热传导至固晶材料层30。例如但不限于以激光直接加热于基体20底部(即加热于图2E示的基体20的下方)。The heating position can be directly raising the ambient temperature to the liquid-solid reaction temperature, or directly heating the crystal-
加热的时间(预固时间)则可以是但不限于0.1秒到2秒,例如0.2秒到1秒。此加热的时间可视液固反应情形而适当调整。加热时间可以是当第一金属薄膜层12、固晶材料层30及第二金薄膜层22之间分别形成了第一介金属层32及第二介金属层34时所花的时间。此被形成的第一介金属层32及第二介金属层34的厚度可以是在非常薄的状态下即视为完成了步骤S56的动作。意即,只要在第一金属薄膜层12、固晶材料层30及第二金薄膜层22之间有形成了第一介金属层32及第二介金属层34即具有接合的效果,即可停止步骤S56而继续进行下一步骤(S58)。当然,若在工艺中,增加预固时间,使更多的第一介金属层32及第二介金属层34被形成,也属可实施的方式。The heating time (pre-curing time) may be but not limited to 0.1 second to 2 seconds, for example, 0.2 second to 1 second. The heating time can be appropriately adjusted depending on the liquid-solid reaction situation. The heating time may be the time spent when the
步骤S56的加热动作也可称为是预固程序。其目的在于将LED芯片10与基体20依当前的对位关系(Alignment)进行预先固定,以利后续工艺的进行。由于此预固程序的温度可以是等于或略高于固晶材料层30的熔点,且预固的时间可以相当短,故前述对位关系将能有效被维持,且不会对LED芯片10产生有任何类似热应力的影响。The heating action in step S56 can also be referred to as a pre-fixing procedure. The purpose is to pre-fix the
关于所形成的第一介金属层32及第二介金属层34的材质与第一金属薄膜层12及第二金薄膜层22有关,请容后详述。The materials of the
最后,进行步骤S58的以一固固反应温度加热固晶材料层30一固化时间,以进行一固固反应。此固固反应温度可低于固晶材料层30的熔点,可以是但不限于40度到80度。前述固化时间可以依固固反应温度而调整。例如,当固固反应温度较高时,固化时间可以较短。当固固反应温度较低时,固化时间可以较长。固化时间可以是30分钟到3小时。Finally, proceed to step S58 of heating the
固固反应的目的在于让固晶材料层30的合金元素与第一金属薄膜层12及第二金属薄膜层22的元素相互扩散。固固反应时间的决定可以是让大部分的固晶材料层30中的合金元素完成扩散所需的时间。The purpose of the solidification reaction is to allow the alloy elements of the die-
步骤S58的执行,在实际应用阶段,可以采用批次作业的方式进行。意即,集合完成了步骤S56的多个半成品,统一以热风式、烤箱、红外线加热或热板加热方式进行步骤S58。The execution of step S58 can be carried out in the form of batch operation in the actual application stage. That is, a plurality of semi-finished products that have completed step S56 are assembled, and step S58 is performed uniformly by means of hot air, oven, infrared heating or hot plate heating.
由于步骤S58的固固反应温度低于固晶材料层30的熔点,故对于步骤S56已完成的对位关系,并不致会有影响。Since the solidification reaction temperature in step S58 is lower than the melting point of the die-
步骤S58后所形成的发光二极管的结构,有几种可能。第一种发光二极管的结构请见于图2F。从图中可以见悉,发光二极管包含依序迭置的基体20、第二金属薄膜层22、第二介金属层34’、第一介金属层32’、第一金属薄膜层12以及LED芯片10。其中第一金属薄膜层12及第二金属薄膜层22的材料选自于由金(Au)、银(Ag)、铜(Cu)及镍(Ni)所构成群组。前述二个介金属层32’,34’的材质包含Cu-In-Sn(铜铟锌)介金属(熔点至少400℃以上)、Ni-In-Sn(镍铟锌)介金属(熔点约700℃以上)、Ni-Bi(镍铋)介金属(熔点至少400℃以上)、Au-In(金铟)介金属(熔点至少400℃以上)、Ag-In(银铟)介金属(熔点至少250℃以上)、Ag-Sn(银锌)介金属(熔点至少450℃以上)与Au-Bi(金铋)介金属(熔点至少350℃以上)。There are several possibilities for the structure of the light emitting diode formed after step S58. The structure of the first light-emitting diode is shown in FIG. 2F. It can be seen from the figure that the light-emitting diode includes a
其次,必须说明的是在预固程序所形成的第一介金属层32及第二介金属层34(即图2E所示)与固固反应后的第一介金属层32’及第二介金属层34’的材质可能并不相同。在预固程序时,虽然液固反应温度有达到固晶材料层30的熔点,但是由于步骤S56所执行的时间仅需在第一介金属层32及第二介金属层34形成后即可停止,因此,固晶材料层30中的部分合金元素并未产生扩散。举例来说,通常固晶材料层30中若含有铟,则铟较容易在液固反应时先扩散而形成介金属层。Secondly, it must be explained that the
以下兹列出三个例子显示图2E所示的LED在固晶程序中步骤S54、S56到S58的第二金属薄膜层22、第二介金属层34’、第一介金属层32’、及第一金属薄膜层12的材质。Listed below are three examples showing the second metal
[图2ELED结构实施例一][Figure 2ELED structure embodiment one]
[图2ELED结构实施例二][Figure 2ELED structure embodiment two]
[图2ELED结构实施例三][Figure 2ELED structure embodiment three]
以前述图2ELED结构实施例一中的第一介金属层32’与第二介金属层34’的熔点均高于200度以上。即便LED未来长时间被操作在80度以上的温度,接合介质也无软化的问题,而能持续维持工艺中的对位关系,得到良好的出光效率。The melting points of the first intermetallic layer 32' and the second intermetallic layer 34' in the first embodiment of the ELED structure in FIG. 2 are both higher than 200 degrees. Even if the LED is operated at a temperature above 80 degrees for a long time in the future, there will be no problem of softening of the bonding medium, and the alignment relationship in the process can be continuously maintained to obtain good light extraction efficiency.
关于步骤S58后所形成的发光二极管的另一种结构请见于图2G。从图中可以见悉,发光二极管包含依序迭置的基体20、第二金属薄膜层22、第二介金属层34’、中介层36、第一介金属层32’、第一金属薄膜层12以及LED芯片10。该中介层36的材料选自于由锡、铋、铟及锌所组成的群组。并且,中介层36的材质与固晶材料层30、第二介金属层34’、及第一介金属层32’的材质有关。若固晶材料层30的材质为铋铟锡,则中介层36的材质即可能为锡(Sn)。也就是在固固反应后,固晶材料层30仅留下锡(Sn)。Another structure of the LED formed after step S58 is shown in FIG. 2G . It can be seen from the figure that the light-emitting diode includes a
由于锡(Sn)的熔点约为230度,也高于200度,能够达到上述不会于LED使用中软化的目的。也就是说,固晶材料层30在经过固固反应之后,有可能会被反应而消失,也有可能会残留而形成中介层36。关于铋铟锡与银的结合状态,请参阅图3。图3为依据本发明的固晶方法一实施例中的固晶材料层30与第一金属薄膜层12接合的合金分析图。此实验是将Bi-25In-18Sn的铋铟锡合金设置于银板上,施以85度的温度一段时间后,再进行合金分析所得到的合金分析图。图中可以看出,铋铟锡与银板间形成了Ag2In的接合层。借此可以得知,本发明所使用的固晶材料层30可与银在低温形成接合层。Since the melting point of tin (Sn) is about 230°C, which is also higher than 200°C, the above purpose of not softening during the use of the LED can be achieved. That is to say, after the solidification reaction, the crystal-
依据上述固晶方法的实施例及固晶后的LED结构可知,在固晶工艺时,可以用低温及短的时间将LED芯片10预固于基体20,且不致有对位偏移的问题。其后再用更低的温度进行固固反应。反应后的第一介金属层32’及第二介金属层34’具有高熔点(大于200度)。因此,固晶后的LED即便长时间被操作于80度以上的温度时,仍不致使第一介金属层32’及第二介金属层34’软化,进而影响其对位精确度。再者,由于工艺中所使用的温度均低于100度,故在固晶过程,LED芯片10及其它零组件(如基体20、塑料反射杯等)不会有热应力残留或集中问题。得到具有良好可靠度的LED。最后,由于预固程序可采用激光加热方式进行,因此预固时间缩短相当多。再加上固固时间则可采批量作业。使得本固晶方法可以有相对于现有技术高出许多的产出(Throughput)。According to the embodiment of the above-mentioned die-bonding method and the LED structure after die-bonding, it can be seen that during the die-bonding process, the
请参阅图4所示,为本发明提供的芯片结构的第一实施例的剖面示意图,其包括有一芯片100及一固晶材料层200。芯片100具有一基板110、一金属层120及一半导体结构130。基板110的组成材料可以是但不局限于蓝宝石(sapphire)、金(Au)、银(Ag)、钼(Mo)、镍(Ni)、硅(Si)、碳化硅(SiC)、铜(Cu)、氮化铝(AlN)、砷化镓(GaAs)或氮化镓(GaN)等,在本实施例中是以蓝宝石基板做为举例说明,但并不以此为限。金属层120及半导体结构130分别设置于基板110的相对二侧面,金属层120的组成材料可以是但不局限于金、银、铜、镍及上述金属的合金等金属材料,半导体结构130具有一N型半导体层131、一发光材料层132及一P型半导体层133,发光材料层132介于N型半导体层131及P型半导体层133之间,而构成P-I-N形式的半导体结构130,且半导体结构130以N型半导体层131接触于基板110,使芯片100构成一具有蓝宝石基板的发光二极管(LED,light emitting diode)芯片。Please refer to FIG. 4 , which is a schematic cross-sectional view of the first embodiment of the chip structure provided by the present invention, which includes a
其中,N型半导体层131及P型半导体层133可以是但不局限于N型及P型的氮化镓(GaN)、氮化镓铟(GaInN)、磷化铝铟镓(AlInGaP)与氮化铝铟镓(AlInGaN)、氮化铝(AlN)、氮化铟(InN)、氮化镓铟砷(GaInAsN)、磷氮化镓铟(GaInPN)或其组合。Wherein, the N-
固晶材料层200设置于金属层120相对基板110的另一侧表面,固晶材料层200的组成材料是选自于由铋铟(Bi-In)、铋铟锌(Bi-In-Zn)、铋铟锡(Bi-In-Sn)及铋铟锌锡(Bi-In-Zn-Sn)等具有低熔点特性的金属材料所组成的群组中至少其中之一。例如铋铟以及铋-33铟-0.5锌(Bi-33In-0.5Zn)的熔点约为110℃、铋-25铟-18锡(Bi-25In-18Sn)的熔点约为82℃以及铋-20铟-30锌-3锡(Bi-20In-30Zn-3Sn)的熔点约为90℃。固晶材料层200可借由电镀、溅镀或蒸镀等方式镀于金属层120表面,而在金属层120表面形成厚度介于0.2~5.0微米(μm)的固晶材料层200。在另一实施例中,其固晶材料层200的厚度介于2.0~3.5微米(μm)。The crystal-
因此,在芯片结构固晶于导线架或印刷电路板等基体的操作过程中,可借由固晶材料层200在低于120℃的环境下结合于基体上,而不会在芯片结构中残留热应力,并可避免芯片结构产生结构崩解而毁坏。Therefore, during the operation process of die-bonding the chip structure on a substrate such as a lead frame or a printed circuit board, the die-
请参阅图5所示,在固晶程序中,芯片结构是以固晶材料层200接触于基体300上,基体300可以是导线架、印刷电路板、具有塑料反射杯的基座等。基体300的材质可以是铜、铝、铁(Fe)、镍(Ni)的纯元素或添加少量其它元素的合金。此外,基体300的材质也可以是硅、氮化铝或低温共烧多层陶瓷(LTCC,Low-Temperature Cofired Ceramics)等。并且,在基体300表面具有另一金属层310,金属层310的组成材料可以是但不局限于金、银、铜及镍等容易与铋、铟、锡等元素形成高熔点介金属化合物的金属。因此,当基体300由金、银、铜或镍所组成时,可省略金属层310的设置。Please refer to FIG. 5 , in the die-bonding process, the chip structure is contacted with the die-
请同时参阅图5和图6,当芯片结构以固晶材料层200接触于基体300的金属层310后,在一预定时间内提供一适当的液固反应温度。此液固反应温度可以是等于或高于固晶材料层200的熔化温度,例如82℃或以上,使固晶材料层200与芯片100的金属层120以及基体300的金属层310之间产生介金属化合物,而预固于基体300上,可避免芯片结构在基体300上产生对位偏移的问题。之后,再于一固化时间内提供一固固反应温度,此固固反应温度可低于固晶材料层200的熔化温度,例如介于40~80℃之间,使固晶材料层200分别与二金属层120、310之间形成一第一介金属层400及一第二介金属层500。Please refer to FIG. 5 and FIG. 6 at the same time. After the chip structure contacts the
举例而言,当二金属层120、310的组成材料分别为银和金时,在固晶材料层200与金属层120之间,即形成由银-铟(Ag-In)及银-锡(Ag-Sn)等高熔点介金属化合物所组成的第一介金属层400;以及在固晶材料层200与金属层310之间,形成由金-铋(Au-Bi)及金-锡(Au-Sn)等高熔点介金属化合物所组成的第二介金属层500。其中,银-铟介金属化合物的熔点至少约250℃以上,银-锡介金属化合物的熔点至少约450℃以上,金-铋介金属化合物的熔点至少约350℃以上,而金-锡介金属化合物的熔点则至少约250℃以上。For example, when the constituent materials of the two
并且,在固晶程序完成后,固晶材料层200可能部分残留于第一介金属层400及第二介金属层500之间,或者是被完全反应而消失,使芯片结构借由第一介金属层400及第二介金属层500稳固的结合于基体300上。同时,由于所形成的第一介金属层400及第二介金属层500具有高熔点(至少大于200℃)的特性,让芯片结构即便于在高温环境中使用,例如芯片结构长时间在80℃的操作温度下运作,第一介金属层400及第二介金属层500也不会出现软化的现象,可确保芯片结构与基体300之间维持稳定的对位关系及接点可靠度,而得到良好的运作效能。Moreover, after the die-bonding process is completed, the die-
若进一步将本发明所揭露的芯片结构与现有使用高分子导电胶材以及金属焊接材料进行固晶程序的芯片结构进行比较,如下表四及表五所示,表四是在电流700毫安(mA)、功率2.5瓦(W)的条件下测试芯片结构的使用寿命;表五则是比较不同芯片结构的固晶温度、固晶强度、耐热温度以及使用寿命。If the chip structure disclosed in the present invention is further compared with the existing chip structure using polymer conductive adhesive material and metal welding material for die-bonding process, as shown in Table 4 and Table 5 below, Table 4 is at a current of 700 mA (mA) and power 2.5 watts (W) to test the service life of the chip structure; Table 5 compares the die-bonding temperature, die-bonding strength, heat-resistant temperature and service life of different chip structures.
表四Table four
表五Table five
由上表四及表五所呈现的结果可发现,相较于现有芯片结构,本发明所揭露的芯片结构同时具有低固晶温度、高固晶强度、高耐热度以及高使用寿命等特性,使本发明所揭露的芯片结构可在低温环境下与基体接合,以避免芯片结构因残留热应力的问题而损坏,同时在接合过程中无需添加任何的助焊剂,并且在长时间的高温环境下使用,亦能维持良好的可靠度及使用寿命。From the results presented in Table 4 and Table 5 above, it can be found that compared with the existing chip structure, the chip structure disclosed in the present invention has the characteristics of low die-bonding temperature, high die-bonding strength, high heat resistance and long service life. , so that the chip structure disclosed in the present invention can be bonded to the substrate in a low-temperature environment to avoid damage to the chip structure due to the problem of residual thermal stress. It can also maintain good reliability and service life when used under high conditions.
此外,在本发明所揭露的芯片结构中,固晶材料层除了如第一实施例设置于具有蓝宝石基板的发光二极管芯片外,在本发明的其它实例中,亦可应用于不同类型的芯片上。例如图7所示,在本发明第二实施例所揭露的芯片结构中,其所使用的芯片100为集成电路(IC,integrated circuit)芯片,并于芯片100中具有一接触于固晶材料层200的金属层120;或者是如图8所示,为本发明第三实施例所揭露的芯片结构,其芯片100的基板110以硅、碳化硅或铜等材料所组成,且半导体结构130是以P型半导体层133接触于基板110,而构成垂直式发光二极管芯片(Vertical LED)。同时,当芯片100的基板110为铜基板时,固晶材料层200可以电镀、溅镀或蒸镀等方式直接设置于基板110表面,而省略金属层120的设置。In addition, in the chip structure disclosed in the present invention, the crystal-bonding material layer is not only disposed on the light-emitting diode chip with the sapphire substrate as in the first embodiment, but also can be applied to different types of chips in other examples of the present invention. . For example, as shown in FIG. 7, in the chip structure disclosed in the second embodiment of the present invention, the
例如图9所示,为本发明第四实施例所揭露的芯片结构,其芯片100中以二金属凸块(bump)140设置于金属材质的基板110上,使半导体结构130悬置于基板110上方,而构成覆晶式发光二极管(Flip-Chip LED)。并由于基板110为金属材料所组成,因此可选择性的在基板110上设置金属层120,或者是省略金属层120的设置,使固晶材料层200直接设置于基板110相对于半导体结构130的另一侧面上。此仅为基板110、金属层120与固晶材料层200之间所采用的设置方式不同,但并非用以限制本发明。For example, as shown in FIG. 9 , it is the chip structure disclosed in the fourth embodiment of the present invention. In the
本发明芯片结构的功效在于,芯片结构中设置有铋-铟、铋-铟-锡、铋-铟-锌或铋-铟-锡-锌等材料所组成的固晶材料层,使芯片结构可在低温环境下将芯片结合于导线架或印刷电路板等基体上,可避免芯片结构在固晶完成后残留热应力,而造成芯片结构破裂损坏。同时,在固晶完成后,借由固晶材料层于芯片结构及基体之间所产生的高熔点介金属层,让芯片结构可长时间在高温环境下运作,并能维持良好的接点可靠度及运作效能。The effect of the chip structure of the present invention is that the chip structure is provided with a crystal-bonding material layer composed of materials such as bismuth-indium, bismuth-indium-tin, bismuth-indium-zinc or bismuth-indium-tin-zinc, so that the chip structure can Bonding the chip to a substrate such as a lead frame or a printed circuit board in a low-temperature environment can prevent the chip structure from remaining thermal stress after the die-bonding is completed, resulting in cracking and damage to the chip structure. At the same time, after the die-bonding is completed, the high-melting-point metal layer formed between the die-bonding material layer and the substrate allows the chip structure to operate in a high-temperature environment for a long time and maintain good contact reliability. and operational efficiency.
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。Certainly, the present invention also can have other multiple embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding Changes and deformations should belong to the scope of protection of the appended claims of the present invention.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010504210.6A CN102104090B (en) | 2009-12-22 | 2010-10-08 | Crystal-bonding method for light-emitting diode chip, crystal-bonded light-emitting diode and chip structure |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910265930 | 2009-12-22 | ||
CN200910265930.9 | 2009-12-22 | ||
CN201010504210.6A CN102104090B (en) | 2009-12-22 | 2010-10-08 | Crystal-bonding method for light-emitting diode chip, crystal-bonded light-emitting diode and chip structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102104090A CN102104090A (en) | 2011-06-22 |
CN102104090B true CN102104090B (en) | 2014-03-19 |
Family
ID=44156732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010504210.6A Active CN102104090B (en) | 2009-12-22 | 2010-10-08 | Crystal-bonding method for light-emitting diode chip, crystal-bonded light-emitting diode and chip structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102104090B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2363373A1 (en) * | 2010-03-02 | 2011-09-07 | SensoNor Technologies AS | Bonding process for sensitive micro-and nano-systems |
TWI446577B (en) * | 2010-12-23 | 2014-07-21 | Ind Tech Res Inst | Method for bonding led wafer, method for manufacturing led chip and structure bonding led wafer and substrate |
TWI426630B (en) * | 2011-10-17 | 2014-02-11 | Ind Tech Res Inst | A packaging method for light emitting die and structure thereof |
CN103378044A (en) * | 2012-04-25 | 2013-10-30 | 鸿富锦精密工业(深圳)有限公司 | Chip assembly structure and chip assembly method |
TW201427113A (en) * | 2012-12-21 | 2014-07-01 | Ind Tech Res Inst | Solid crystal method and solid crystal structure of light emitting diode package |
DE102013103081A1 (en) * | 2013-03-26 | 2014-10-02 | Osram Opto Semiconductors Gmbh | Method for connecting joining partners and arrangement of joining partners |
CN103441082B (en) * | 2013-08-12 | 2016-06-08 | 王功杰 | A kind of brand-new technique of integrated circuit packaging |
CN104659168B (en) * | 2015-02-12 | 2017-07-14 | 矽照光电(厦门)有限公司 | LED die-bonding method and the manufacture method of high-powered LED lamp |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101110400A (en) * | 2006-07-21 | 2008-01-23 | 日月光半导体制造股份有限公司 | wafer structure |
CN101355066A (en) * | 2008-05-26 | 2009-01-28 | 晶方半导体科技(苏州)有限公司 | Package structure and manufacturing method thereof |
CN101621101A (en) * | 2008-06-30 | 2010-01-06 | 展晶科技(深圳)有限公司 | LED and production method thereof |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6791119B2 (en) * | 2001-02-01 | 2004-09-14 | Cree, Inc. | Light emitting diodes including modifications for light extraction |
JP4262672B2 (en) * | 2004-12-24 | 2009-05-13 | 株式会社ルネサステクノロジ | Semiconductor device and manufacturing method thereof |
DE102005029246B4 (en) * | 2005-03-31 | 2023-06-22 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Semiconductor chip with a solder layer sequence and method for soldering a semiconductor chip |
DE602005015103D1 (en) * | 2005-07-28 | 2009-08-06 | Infineon Technologies Ag | A connection structure for mounting a semiconductor chip on a metal substrate, semiconductor chip, and electronic device having the connection structure, and methods of manufacturing the connection structure |
KR20070039195A (en) * | 2005-10-07 | 2007-04-11 | 주식회사 엘지화학 | Semiconductor device with improved thermal stability and manufacturing method thereof |
US7910945B2 (en) * | 2006-06-30 | 2011-03-22 | Cree, Inc. | Nickel tin bonding system with barrier layer for semiconductor wafers and devices |
US8643195B2 (en) * | 2006-06-30 | 2014-02-04 | Cree, Inc. | Nickel tin bonding system for semiconductor wafers and devices |
CN100585887C (en) * | 2006-09-19 | 2010-01-27 | 亿光电子工业股份有限公司 | Flip chip packaging structure of light emitting diode |
TW200820455A (en) * | 2006-10-18 | 2008-05-01 | Young Lighting Technology Corp | LED package and manufacture method thereof |
US7869480B2 (en) * | 2007-05-24 | 2011-01-11 | Sanyo Electric Co., Ltd. | Semiconductor laser device |
US8211752B2 (en) * | 2007-11-26 | 2012-07-03 | Infineon Technologies Ag | Device and method including a soldering process |
TW200945506A (en) * | 2008-04-18 | 2009-11-01 | Quan-Cheng Du | Method for combining semiconductor structure and substrate, and high luminous efficiency device manufactured by using the method |
-
2010
- 2010-10-08 CN CN201010504210.6A patent/CN102104090B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101110400A (en) * | 2006-07-21 | 2008-01-23 | 日月光半导体制造股份有限公司 | wafer structure |
CN101355066A (en) * | 2008-05-26 | 2009-01-28 | 晶方半导体科技(苏州)有限公司 | Package structure and manufacturing method thereof |
CN101621101A (en) * | 2008-06-30 | 2010-01-06 | 展晶科技(深圳)有限公司 | LED and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102104090A (en) | 2011-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI401825B (en) | Solid crystal method of light-emitting diode wafer and light-emitting diode completed by solid crystal | |
CN102104090B (en) | Crystal-bonding method for light-emitting diode chip, crystal-bonded light-emitting diode and chip structure | |
TWI653694B (en) | Micro light-emitting element array manufacturing method, transfer carrier plate and micro light-emitting element array | |
TWI395313B (en) | Stud bump structure and method for forming the same | |
TW201131828A (en) | LED flip-chip package structure with dummy bumps | |
US20140175495A1 (en) | Die bonding method and die bonding structure of light emitting diode package | |
CN101632160A (en) | Be used for metal structure under solder bump/salient point that high temperature uses | |
US9755121B2 (en) | Method of detaching sealing member of light emitting device | |
CN103647012A (en) | Chip transfer method for LED (light-emitting diode) wafer level package | |
JP2022023798A (en) | Display device, light emitting diode board, and manufacturing method of display device | |
WO2013108706A1 (en) | Semiconductor device and fabrication method for semiconductor device | |
CN106663732A (en) | Flip chip led package | |
US20130334561A1 (en) | Method for bonding led wafer, method for manufacturing led chip and bonding structure | |
WO2007119571A1 (en) | Solder layer, substrate for device junction utilizing the same, and process for manufacturing the substrate | |
US20120007117A1 (en) | Submount for Electronic Die Attach with Controlled Voids and Methods of Attaching an Electronic Die to a Submount Including Engineered Voids | |
TWI407536B (en) | Heat sink for semiconductor component manufacturing method | |
JP2000216439A (en) | Chip-type light emitting element and its manufacture | |
TWI446577B (en) | Method for bonding led wafer, method for manufacturing led chip and structure bonding led wafer and substrate | |
CN101950782B (en) | Method for Forming Reflective Light Emitting Diode Die Bonding Structure at Low Temperature | |
CN103165782A (en) | Flip-chip light emitting diode and manufacturing method and application thereof | |
TWI489596B (en) | Chip structure | |
TWI381562B (en) | Method for manufacturing reflective led die bonding structure at low temperature | |
CN1913181B (en) | Die bonding method and structure of light emitting diode chip | |
JP2006286666A (en) | Method of manufacturing semiconductor device | |
EP2677557A1 (en) | Method for bonding LED wafer, method for manufacturing LED chip and bonding structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |