CN102081249B - Image display method of stereoscopic display - Google Patents
Image display method of stereoscopic display Download PDFInfo
- Publication number
- CN102081249B CN102081249B CN201010537358XA CN201010537358A CN102081249B CN 102081249 B CN102081249 B CN 102081249B CN 201010537358X A CN201010537358X A CN 201010537358XA CN 201010537358 A CN201010537358 A CN 201010537358A CN 102081249 B CN102081249 B CN 102081249B
- Authority
- CN
- China
- Prior art keywords
- sub
- pixel unit
- viewing
- image
- pixel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000000737 periodic effect Effects 0.000 claims abstract description 15
- 239000004973 liquid crystal related substance Substances 0.000 claims description 10
- 230000003287 optical effect Effects 0.000 abstract description 20
- 230000002194 synthesizing effect Effects 0.000 abstract description 4
- 230000000007 visual effect Effects 0.000 abstract 5
- 238000005516 engineering process Methods 0.000 description 10
- 239000011521 glass Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000011368 organic material Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Landscapes
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种图像显示方法,尤其涉及一种立体显示器的图像显示方法。The invention relates to an image display method, in particular to an image display method for a stereoscopic display.
背景技术 Background technique
随着科技的进步与发达,人们对于物质生活以及精神层面的享受一向都只有增加而从未减少。以精神层面而言,在这科技日新月异的年代,人们希望能够借由立体显示器来实现天马行空的想象力,以达到身历其境的效果;因此,如何使立体显示器呈现立体的图像或图像,便成为现今立体显示器技术极欲达到的目标。With the advancement and development of science and technology, people's enjoyment of material life and spiritual level has always only increased but never decreased. On a spiritual level, in this era of rapid technological change, people hope to realize their wild imagination through stereoscopic displays, so as to achieve immersive effects; therefore, how to make stereoscopic displays present stereoscopic images or images has become a Today's stereoscopic display technology desperately wants to achieve the goal.
在目前的显示技术而言,立体显示技术可大致分成观察者需戴特殊设计眼镜观看的戴眼镜式(stereoscopic)以及直接裸眼观看的裸眼式(auto-stereoscopic)。其中戴眼镜式立体显示技术已经发展成熟,并广泛用到如军事模拟或大型娱乐等某些特殊用途上,但戴眼镜式立体显示技术因其方便性与舒适性不佳,使得此类技术不易普及。因此,裸眼式立体显示技术已逐渐发展并成为新潮流。In terms of current display technologies, stereoscopic display technologies can be broadly classified into stereoscopic, in which viewers need to wear specially designed glasses to watch, and auto-stereoscopic, in which viewers directly watch with naked eyes. Among them, the glasses-wearing stereoscopic display technology has matured and is widely used in some special purposes such as military simulation or large-scale entertainment, but the glasses-wearing stereoscopic display technology is not easy because of its poor convenience and comfort. universal. Therefore, the naked-eye stereoscopic display technology has gradually developed and become a new trend.
裸眼式立体显示技术目前已经发展至多重观看角度(multi-view)的立体显示技术。多重观看角度的立体显示技术的优点是可以提供观赏者更大的观赏空间或观赏自由度。但是,对于传统裸眼式立体显示器来说,观赏者与立体显示器之间的观赏距离必须一开始就抵定,以维持观赏者所看到的显示品质。然而,此一限制对观赏者而言却造成了很大的不方便。除此之外,传统裸眼式立体显示器对于其光学元件与显示器之间的对位(alignment)要求非常严格,对于制作来说,更是一大挑战。The naked-eye stereoscopic display technology has been developed into a multi-view stereoscopic display technology. The advantage of the stereoscopic display technology with multiple viewing angles is that it can provide viewers with greater viewing space or viewing freedom. However, for the traditional naked-eye stereoscopic display, the viewing distance between the viewer and the stereoscopic display must be fixed at the beginning, so as to maintain the display quality seen by the viewer. However, this restriction causes great inconvenience to viewers. In addition, traditional glasses-free stereoscopic displays have very strict requirements on the alignment between the optical elements and the display, which is a big challenge for production.
发明内容 Contents of the invention
本发明提供一种立体显示器的图像显示方法,可供观赏者自由调整观赏距离,并维持良好显示品质,增加光学元件与显示器的对位精准的误差容忍度。The invention provides an image display method of a three-dimensional display, which allows the viewer to freely adjust the viewing distance, maintains good display quality, and increases the error tolerance of the precise alignment between the optical element and the display.
本发明提供一种立体显示器的图像显示方法。所述图像显示方法包括如下步骤。提供一立体显示器,其可提供一观赏者有N个观看视区(multi-view)。其中,立体显示器包括至少一周期性结构及至少一像素平面。依据N值,在空间中划分出N个视区(view zone)。借由周期性结构,在像素平面(pixel plane)上形成各视区所对应的投影区域。其中,各投影区域对应像素平面上至少一子像素单元。依据各视区所对应的子像素单元,获得各视区的图像信息。合成各视区的图像信息,以显示一立体图像画面。The invention provides an image display method of a stereoscopic display. The image display method includes the following steps. A stereoscopic display is provided, which can provide a viewer with N multi-views. Wherein, the stereoscopic display includes at least one periodic structure and at least one pixel plane. According to the N value, N view zones are divided in the space. By means of the periodic structure, the projection area corresponding to each viewing area is formed on the pixel plane. Wherein, each projection area corresponds to at least one sub-pixel unit on the pixel plane. The image information of each viewing area is obtained according to the sub-pixel unit corresponding to each viewing area. The image information of each viewing area is synthesized to display a stereoscopic image frame.
在本发明的一实施例中,上述的各视区为一维空间的线段或二维空间的平面。In an embodiment of the present invention, each of the aforementioned viewing areas is a line segment in a one-dimensional space or a plane in a two-dimensional space.
在本发明的一实施例中,上述的周期性结构的周期数为T。在像素平面上形成各投影区域的步骤中,各视区在像素平面上形成T个投影区域。In an embodiment of the present invention, the period number of the above-mentioned periodic structure is T. In the step of forming each projection area on the pixel plane, each viewing area forms T projection areas on the pixel plane.
在本发明的一实施例中,上述的图像显示方法还包括如下步骤。比较各子像素单元是否对应到两个以上的视区。In an embodiment of the present invention, the above image display method further includes the following steps. It is compared whether each sub-pixel unit corresponds to more than two viewing areas.
在本发明的一实施例中,若各子像素单元并未对应到两个以上的视区,在获得各视区的图像信息的步骤中,将各子像素单元的图像信息视为对应的视区的图像信息。In an embodiment of the present invention, if each sub-pixel unit does not correspond to more than two viewing areas, in the step of obtaining image information of each viewing area, the image information of each sub-pixel unit is regarded as the corresponding viewing area area image information.
在本发明的一实施例中,若各子像素单元对应到两个以上的视区,在获得各视区的图像信息的步骤中,各子像素单元的图像信息叠加方式为各视区所对应的投影区域的投影量的函数,以获得各视区的图像信息。In an embodiment of the present invention, if each sub-pixel unit corresponds to more than two viewing areas, in the step of obtaining image information of each viewing area, the image information superposition method of each sub-pixel unit is corresponding to each viewing area The function of the projection amount of the projection area to obtain the image information of each viewing area.
在本发明的一实施例中,上述的图像显示方法还包括如下步骤。在周期性结构上定义多个参考点。依据各视区与其对应的参考点,获得各视区所对应的投影区域在像素平面上的位置信息。依据各投影区域的位置信息,决定各视区所对应的子像素单元。In an embodiment of the present invention, the above image display method further includes the following steps. Define multiple reference points on a periodic structure. According to each viewing area and its corresponding reference point, position information on the pixel plane of the projection area corresponding to each viewing area is obtained. According to the position information of each projection area, the sub-pixel unit corresponding to each viewing area is determined.
在本发明的一实施例中,上述的参考点以一阵列方式沿一第一方向及一第二方向排列。定义参考点的步骤包括如下步骤。依据观赏者与立体显示器的距离,调整参考点在第一方向上的间距。依据观赏者与立体显示器的距离,调整第二方向与第一方向的夹角。In an embodiment of the present invention, the aforementioned reference points are arranged in an array along a first direction and a second direction. The step of defining a reference point includes the following steps. The distance between the reference points in the first direction is adjusted according to the distance between the viewer and the stereoscopic display. The angle between the second direction and the first direction is adjusted according to the distance between the viewer and the stereoscopic display.
在本发明的一实施例中,上述的周期性结构包括柱状透镜(lenticularlens)、液晶透镜(liquid crystal lens)、狭缝式光栅(barrier)或棱镜(prism)。In an embodiment of the present invention, the periodic structure includes a lenticular lens, a liquid crystal lens, a slit barrier or a prism.
在本发明的一实施例中,上述的子像素单元包括红色子像素单元、绿色子像素单元以及蓝色子像素单元。In an embodiment of the present invention, the above sub-pixel units include red sub-pixel units, green sub-pixel units and blue sub-pixel units.
基于上述,在本发明的范例实施例中,立体显示器的图像显示方法能够针对不同的观赏距离作显示内容的调配,以增加使用的便利性及光学元件与显示器之间的对位精准的误差容忍度。Based on the above, in the exemplary embodiment of the present invention, the image display method of the stereoscopic display can adjust the displayed content for different viewing distances, so as to increase the convenience of use and the error tolerance of the precise alignment between the optical element and the display. Spend.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.
附图说明 Description of drawings
图1为本发明一实施例的立体显示器的示意图。FIG. 1 is a schematic diagram of a stereoscopic display according to an embodiment of the present invention.
图2为图1的立体显示器的结构示意图。FIG. 2 is a schematic structural diagram of the stereoscopic display in FIG. 1 .
图3为图2的立体显示器的俯视示意图。FIG. 3 is a schematic top view of the stereoscopic display in FIG. 2 .
图4示出图1中其中一视区在像素平面上所对应的位置信息。FIG. 4 shows the position information corresponding to one of the viewing areas in FIG. 1 on the pixel plane.
图5A及图5B示出合成立体图像画面前,各子像素单元在不同角度的图片中所占的权重。FIG. 5A and FIG. 5B show the weights of each sub-pixel unit in pictures of different angles before synthesizing stereoscopic image frames.
图6为本发明一实施例的图像显示方法的步骤流程图。FIG. 6 is a flowchart of steps of an image display method according to an embodiment of the present invention.
图7为图1的立体显示器的简化示意图。FIG. 7 is a simplified schematic diagram of the stereoscopic display of FIG. 1 .
图8A及图8B示出本发明一实施例的不同观赏距离的示意图。8A and 8B are schematic diagrams showing different viewing distances according to an embodiment of the present invention.
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
100:立体显示器100: stereoscopic display
110:液晶显示器面板110: LCD panel
111:彩色滤光层111: Color filter layer
112:基底面板112: base panel
113:偏光层113: Polarizing layer
114a:下玻璃层114a: lower glass layer
114b:上玻璃层114b: upper glass layer
116:有机材料层116: Organic material layer
118:空气间隙118: air gap
120:光学元件120: optical element
130、VZ1、VZ2:视区130, VZ1, VZ2: view zone
D、D1、D2:观赏距离D, D1, D2: viewing distance
O、V1~V8:视区的端点O, V1~V8: endpoints of the viewport
W:视区的宽度W: the width of the viewport
Wp:子像素单元的宽度Wp: the width of the sub-pixel unit
p:柱状透镜的间距p: Pitch of lenticular lenses
P:参考点在x方向上的间距P: the spacing of the reference point in the x direction
PJ1、PJ2、PJ3:投影区域PJ1, PJ2, PJ3: projection area
k:柱状透镜与y方向的夹角k: the angle between the lenticular lens and the y direction
K:第二方向与y方向的夹角K: the angle between the second direction and the y direction
Pr、Pr1、Pr2:参考点Pr, Pr1, Pr2: Reference point
Px1:端点相对于参考点在像素平面上的坐标点Px1: The coordinate point of the endpoint relative to the reference point on the pixel plane
I1、I2:图片I1, I2: pictures
S600、S602、S604、S606、S608:图像显示方法的步骤S600, S602, S604, S606, S608: steps of the image display method
具体实施方式 Detailed ways
在本发明的范例实施例中,立体显示器的图像显示方法能够针对不同的观赏距离作显示内容的调配,其调配包括水平方向及垂直方向,以使观赏距离不再被限制在一特定距离,进而增加立体显示器使用的便利性。此外,由于显示内容可调整,因此光学元件与显示器之间的对位精准度可容忍的误差较大,可降低制作的困难度及其成本。In an exemplary embodiment of the present invention, the image display method of the stereoscopic display can be configured for different viewing distances, and the deployment includes horizontal and vertical directions, so that the viewing distance is no longer limited to a specific distance, and then Increase the convenience of using stereoscopic displays. In addition, since the display content can be adjusted, the tolerable error of the alignment accuracy between the optical element and the display is large, which can reduce the difficulty and cost of manufacturing.
图1为本发明一实施例的立体显示器的示意图。请参考图1,在本实施例中,立体显示器100包括一液晶显示器面板110及一光学元件120,其中液晶显示器面板110包括一像素平面,而光学元件120例如是一周期性结构。FIG. 1 is a schematic diagram of a stereoscopic display according to an embodiment of the present invention. Please refer to FIG. 1 , in this embodiment, a
在本实施例中,立体显示器100例如为一多重观看角度(multi-view)的立体显示器,其可提供一观赏者有N个观看角度。对多重观看角度的立体显示器100而言,数值N代表有N张图片的图像信息作为立体图像画面内容的来源。In this embodiment, the
是以,本实施例的图像显示方法依据该N值,在空间中划分出N个宽度为W的视区130(view zone)。在此,N值例如是以8为例,如图1所示。但是,本实施例的视区数目也可为异于8的数值,而8个视区代表有8张自同一物体取8个不同角度的图片,以合成该物体的立体图像画面。Therefore, the image display method of this embodiment divides N view zones 130 (view zones) with a width of W in space according to the N value. Here, the value of N is, for example, 8, as shown in FIG. 1 . However, the number of viewing zones in this embodiment can also be a value other than 8, and 8 viewing zones represent 8 pictures taken from 8 different angles of the same object to synthesize a stereoscopic image of the object.
在本实施例中,所述视区位于一个与立体显示器100平行的平面上,但本发明不限于此。所述视区的形式,诸如宽度、位置、排列方式及与立体显示器的距离仅用以例示说明,其排列方式只要连续即可,不限制为一直线或圆弧。每一视区为一维空间的线段或二维空间的平面,在此以一维空间的线段为例。须特别说明的是,所述视区与立体显示器的距离D可代表一观赏者与立体显示器100的观赏距离。In this embodiment, the viewing area is located on a plane parallel to the
图2为图1的立体显示器的结构示意图。请参考图1及图2,在本实施例中,光学元件120可以直接贴合或机械组装的方式配置于液晶显示器面板110上,且光学元件120至少在一个方向上具有周期性结构。在此,光学元件120例如是柱状透镜(lenticular lens),但本发明不限于此。在其他实施例中,光学元件120可为液晶透镜(liquid crystal lens)、狭缝式光栅(barrier)或棱镜(prism)。FIG. 2 is a schematic structural diagram of the stereoscopic display in FIG. 1 . Please refer to FIG. 1 and FIG. 2 , in this embodiment, the
在本实施例中,液晶显示器面板110包括一基底面板112、下玻璃层114a、上玻璃层114b及一有机材料层116。其中,基底面板112包括一偏光层113及一彩色滤光层111,而下玻璃层114a及上玻璃层114b之间具有一空气间隙118。In this embodiment, the
在本实施例中,有机材料层116的材料例如是聚乙烯对苯二甲酸酯(polyethylene terephthalate,PET)。彩色滤光层111包括红色(R)、绿色(G)及蓝色(B)等颜色的子像素单元,以作为一像素平面,提供合成立体图像画面的图像信息。在此,每一子像素单元的宽度为Wp。In this embodiment, the material of the
以65英寸(65”)的公共信息显示器(public information display,PID)为例,其子像素单元的宽度为0.248毫米(mm)、高度为0.744mm,解析度为1920×1080。因此,在本实施例中,若设计立体显示器100的中央观赏距离为3公尺,且预设为8个视区的话,则每一柱状透镜的曲率半径(curvatureradius)例如是7mm。Taking a 65-inch (65”) public information display (PID) as an example, its sub-pixel unit has a width of 0.248 millimeters (mm), a height of 0.744 mm, and a resolution of 1920×1080. Therefore, in this In the embodiment, if the central viewing distance of the
在本实施例中,液晶显示器面板110的各层厚度及折射率如下表(一)所例示:In this embodiment, the thickness and refractive index of each layer of the liquid
表(一)Table I)
厚度(mm) 折射率
有机材料层116 0.188 1.5
上玻璃层114b 4 1.5
空气间隙118 4.6 1
下玻璃层114a 6 1.5
偏光层113 0.2 1.33
彩色滤光层111 0.7 1.5
须特别说明的是,本实施例的每一视区的宽度必须根据对应的显示器的结构来计算,不论显示器的结构为何,视区宽度W、观赏距离D及子像素单元的宽度Wp符合底下关系式(1):It should be noted that the width of each viewing area in this embodiment must be calculated according to the structure of the corresponding display. Regardless of the structure of the display, the viewing area width W, the viewing distance D, and the width Wp of the sub-pixel unit conform to the following relationship Formula 1):
W/D=Wp/Dop 关系式(1)W/D=Wp/Dop Relational formula (1)
其中,光程(optical distance)Dop代表光束在液晶显示器面板110内传递时的光路径长(optical path length)。由上述关系式(1)可知,当立体显示器制作完成后,子像素单元的宽度Wp及光程Dop即告确定,因此在本实施例的图像显示方法中,当观赏者与立体显示器100的观赏距离D改变时,视区宽度W也可随之改变。换句话说,本实施例的图像显示方法能够针对不同的观赏距离作显示内容的调配,以增加使用的便利性。Wherein, the optical distance Dop represents the optical path length (optical path length) when the light beam transmits in the liquid
详细而言,以本实施例的立体显示器的结构(65”PID)为例,请参照图1及图2,假设观赏者与立体显示器100的观赏距离D=2.5米(meters),且空间中划分出8个视区的话,考虑液晶显示器面板110各层状结构对光程Dop的影响,依据表(一)所例示的各项参数,其计算结果为:In detail, taking the structure of the stereoscopic display (65 "PID) of the present embodiment as an example, please refer to Fig. 1 and Fig. 2, assuming that the viewing distance D between the viewer and the
Dop=0188×1.5+4×1.5+4.6×1+6×1.5+0.2×1.33+0.7×1.5Dop=0188×1.5+4×1.5+4.6×1+6×1.5+0.2×1.33+0.7×1.5
=12.01mm=12.01mm
是以,将参数D=2.5m、Dop=12.01mm、Wp=0.248mm代入关系式(1),可得W=51.58mm。也就是说,在本实施例中,观赏距离D改变时,视区宽度W也会随之改变。Therefore, substituting the parameters D=2.5m, Dop=12.01mm, and Wp=0.248mm into the relational formula (1), W=51.58mm can be obtained. That is to say, in this embodiment, when the viewing distance D changes, the viewing area width W will also change accordingly.
图3为图2的立体显示器的俯视示意图。请参照图2及图3,在本实施例中,光学元件120例如为多个沿x方向排列且周期数为T的柱状透镜(即个数为T)所形成,其制作后的间距为p,而贴附于液晶显示器面板110后与y方向的夹角为k。FIG. 3 is a schematic top view of the stereoscopic display in FIG. 2 . Please refer to FIG. 2 and FIG. 3 , in this embodiment, the
在本实施例的图像显示方法中,为了维持良好显示品质,在柱状透镜(周期性结构)上定义了多个参考点Pr用以在后续进行演算之用。在本实施例中,参考点Pr以一阵列方式沿一第一方向及一第二方向排列,其中第一方向例如是x方向,而第二方向例如是与y方向之间具有一倾斜的夹角K。此外,本实施例的各参考点Pr在x方向上的间距为P。In the image display method of this embodiment, in order to maintain good display quality, a plurality of reference points Pr are defined on the lenticular lens (periodic structure) for subsequent calculation. In this embodiment, the reference points Pr are arranged in an array along a first direction and a second direction, wherein the first direction is, for example, the x direction, and the second direction, for example, has an inclined interval with the y direction. Angle K. In addition, the pitch of each reference point Pr in the x direction is P in this embodiment.
一般而言,如果柱状透镜制作的完美无缺,且与液晶显示器面板的贴附角度也精准如设计一般,以及观赏者的观赏距离与其双眼的宽度也和柱状透镜的设计所规划的数值一样时,则P=p且K=k。然而,因为目前制作及对位的精准度,上述的完美条件将难以达成。此外,观赏者的所在的位置也可能不是预设的观赏距离,所以相对应的显示内容也需要调整。Generally speaking, if the lenticular lens is perfectly made, and the angle of attachment to the LCD panel is as accurate as the design, and the viewing distance of the viewer and the width of the eyes are also the same as the value planned by the design of the lenticular lens, Then P=p and K=k. However, due to the current production and alignment accuracy, the above perfect conditions will be difficult to achieve. In addition, the position of the viewer may not be the preset viewing distance, so the corresponding display content also needs to be adjusted.
因此,在本实施例的图像显示方法中,间距P即为一可调的参数,用以调整x方向的显示内容,而倾斜角度K也为一可调的参数,用以调整y方向的显示内容。须特别说明的是,调整倾斜角度K,即调整该第二方向与该第一方向的夹角。Therefore, in the image display method of this embodiment, the pitch P is an adjustable parameter for adjusting the display content in the x direction, and the tilt angle K is also an adjustable parameter for adjusting the display in the y direction content. It should be particularly noted that adjusting the inclination angle K means adjusting the included angle between the second direction and the first direction.
当观赏者站定位置后(即观赏距离D固定),其可用遥控器或其他任何的输入方式,调整参数P、K,直到所看到的立体图像画面满意为止。换句话说,显示内容可依据观赏者与立体显示器的距离来调整参数P、K,因此观赏者调整后所得到的参数P、K可视为一个校正后的结果。在之后立体图像播放时,立体显示器100即根据参数P、K对所欲播放的画面进行图像处理。After the viewer stands at a fixed position (that is, the viewing distance D is fixed), he can adjust the parameters P and K with a remote control or any other input method until the stereoscopic image he sees is satisfactory. In other words, the displayed content can adjust the parameters P and K according to the distance between the viewer and the stereoscopic display, so the adjusted parameters P and K obtained by the viewer can be regarded as a corrected result. When the stereoscopic image is played later, the
是以,由于显示内容可作调整,因此光学元件与显示器之间的对位精准度可容忍的误差较大,可降低制作的困难度及其成本。Therefore, since the display content can be adjusted, the tolerable error of the alignment accuracy between the optical element and the display is larger, which can reduce the difficulty and cost of manufacturing.
图4示出图1中其中一视区在像素平面上所对应的位置信息。请参考图1及图4,在本实施例中,以视区VZ1的两端点V1、V2及参考点Pr1、Pr2为例,经过参考点Pr1传递至端点V1的光束可利用光束觅迹原理(ray tracing)及司乃耳定律(Snell’s law),追踪出该光束是对应于像素平面上的哪一个坐标点。在图4中,t为柱状透镜在参考点Pr1的切线,而n为柱状透镜在参考点Pr1的法线。FIG. 4 shows the position information corresponding to one of the viewing areas in FIG. 1 on the pixel plane. Please refer to FIG. 1 and FIG. 4. In this embodiment, taking the two ends V1, V2 and the reference points Pr1, Pr2 of the viewing zone VZ1 as an example, the light beam transmitted to the end point V1 through the reference point Pr1 can use the beam tracing principle ( ray tracing) and Snell's law (Snell's law), to track which coordinate point on the pixel plane the beam corresponds to. In FIG. 4, t is the tangent line of the lenticular lens at the reference point Pr1, and n is the normal line of the lenticular lens at the reference point Pr1.
具体而言,利用光束觅迹原理及司乃耳定律例如可计算出端点V1相对于参考点Pr1在像素平面上的坐标点为(Px1,Py1)。类似地,利用上述方式,可计算出端点V1相对于参考点Pr2在像素平面上的坐标点为(Px2,Py2),以及端点V2分别相对于参考点Pr1、Pr2在像素平面上的坐标点为(Px3,Py3)、(Px4,Py4)。Specifically, the coordinate point of the endpoint V1 relative to the reference point Pr1 on the pixel plane can be calculated as (Px1, Py1) by using the principle of beam tracing and Seinell's law, for example. Similarly, using the above method, the coordinate point of the endpoint V1 relative to the reference point Pr2 on the pixel plane can be calculated as (Px2, Py2), and the coordinate point of the endpoint V2 relative to the reference point Pr1, Pr2 on the pixel plane is (Px3, Py3), (Px4, Py4).
换句话说,在本实施例的图像显示方法中,依据各视区与其对应的参考点,可获得各视区所对应的投影区域在像素平面上的位置信息。进而,依据各投影区域的位置信息,决定各视区所对应的子像素单元。在本实施例中,各视区在像素平面上所对应的投影区域可能包括一个以上的子像素单元。In other words, in the image display method of this embodiment, according to each viewing area and its corresponding reference point, the position information of the projection area corresponding to each viewing area on the pixel plane can be obtained. Furthermore, according to the position information of each projection area, the sub-pixel unit corresponding to each viewing area is determined. In this embodiment, the projection area corresponding to each viewing area on the pixel plane may include more than one sub-pixel unit.
从另一观点来看,特定的子像素单元可能只对应到一个视区,此时定义该子像素单元对于该视区的特定图像画面的权重(weighting factor)为1。因此,在本实施例中,图像显示方法还包括比较各子像素单元是否对应到两个以上的视区,进而计算特定子像素单元对于特定视区的特定图像画面的权重。在本实施例中,空间中被划分为8个视区,代表有8张自同一物体取8个不同角度的图片,以合成该物体的立体图像画面。From another point of view, a specific sub-pixel unit may only correspond to one viewing area, and at this time, it is defined that the weighting factor (weighting factor) of the sub-pixel unit for the specific image frame of the viewing area is 1. Therefore, in this embodiment, the image display method further includes comparing whether each sub-pixel unit corresponds to more than two viewing areas, and then calculating the weight of a specific sub-pixel unit for a specific image frame of a specific viewing area. In this embodiment, the space is divided into 8 viewing zones, which means that there are 8 pictures taken from 8 different angles of the same object to synthesize a stereoscopic image of the object.
图5A及图5B示出合成立体图像画面前,各子像素单元在不同角度的图片中所占的权重。请参考图5A及图5B,在图5A及图5B中,图片I1、I2分别被划分为多个区块,每一区块对应于像素平面上的多个子像素单元。若区块中各子像素单元并未对应到两个以上的视区,则各子像素单元的图像信息将被视为对应的视区的图像信息。例如,在图5A及图5B中,标示为1的区块,即代表该区块的子像素单元只对应到一个特定的视区。FIG. 5A and FIG. 5B show the weights of each sub-pixel unit in pictures of different angles before synthesizing stereoscopic image frames. Please refer to FIG. 5A and FIG. 5B . In FIG. 5A and FIG. 5B , the pictures I1 and I2 are respectively divided into a plurality of blocks, and each block corresponds to a plurality of sub-pixel units on the pixel plane. If each sub-pixel unit in the block does not correspond to more than two viewing areas, the image information of each sub-pixel unit will be regarded as the image information of the corresponding viewing area. For example, in FIG. 5A and FIG. 5B , the block marked as 1 means that the sub-pixel unit of the block only corresponds to a specific viewing area.
若各子像素单元对应到两个以上的视区,依据各视区所对应的投影区域的投影量,各子像素单元的图像信息将被叠加,以获得各视区的图像信息。例如,在图5A及图5B中,标示为0.1、0.2、0.8及0.9的区块,即代表该区块的子像素单元对应到两个以上的视区,其中区块内的表示值即代表该区块对应的权重。须特别说明的是,在本实施例中,各子像素单元对应不同的图像画面所占的权重例如是和各视区所对应的投影区域的投影量(例如投影面积)比例相关,亦即其权重为投影区域投影量的函数。换句话说,各子像素单元的图像信息叠加方式为各视区所对应的投影区域的投影量的函数,以获得各视区的图像信息。If each sub-pixel unit corresponds to more than two viewing areas, the image information of each sub-pixel unit will be superimposed according to the projection amount of the projection area corresponding to each viewing area, so as to obtain the image information of each viewing area. For example, in FIG. 5A and FIG. 5B, the blocks marked as 0.1, 0.2, 0.8, and 0.9 represent that the sub-pixel units of the block correspond to more than two viewing areas, and the representation values in the block represent The corresponding weight of the block. It should be noted that, in this embodiment, the weights of each sub-pixel unit corresponding to different image frames are, for example, related to the ratio of the projection amount (such as the projection area) of the projection area corresponding to each viewing area, that is, its The weight is a function of the projection amount of the projection area. In other words, the image information superposition method of each sub-pixel unit is a function of the projection amount of the projection area corresponding to each viewing area, so as to obtain the image information of each viewing area.
应注意的是,图5A及图5B仅示出合成立体图像画面的其中两张图片I1、I2中各区块的子像素单元的权重分布,在本实施例中,合成一个立体图像画面需要有8张图片的图像信息。It should be noted that FIG. 5A and FIG. 5B only show the weight distribution of the sub-pixel units in the two pictures I1 and I2 of the synthesized stereoscopic image frame. In this embodiment, 8 pixels are required to synthesize a stereoscopic image frame. Image information for a picture.
因此,在本实施例的图像显示方法中,借由调整参数P、K即可达到调整各子像素单元对于每张图片的权重,进而改变输入至各子像素单元的图像信息,以达到依据观赏者与立体显示器的距离来调整图像内容的目的。Therefore, in the image display method of this embodiment, by adjusting the parameters P and K, the weight of each sub-pixel unit for each picture can be adjusted, and then the image information input to each sub-pixel unit can be changed, so as to achieve The purpose of adjusting the image content according to the distance between the user and the stereoscopic display.
图6为本发明一实施例的图像显示方法的步骤流程图。图7为图1的立体显示器的简化示意图。请同时参照图6及图7,在本实施例中,柱状透镜120的周期数为T,且空间中被划分为8个视区130,而图7中仅示出部分的柱状透镜及视区,以简化附图。本实施例的图像显示方法包括如下步骤。FIG. 6 is a flowchart of steps of an image display method according to an embodiment of the present invention. FIG. 7 is a simplified schematic diagram of the stereoscopic display of FIG. 1 . Please refer to FIG. 6 and FIG. 7 at the same time. In this embodiment, the cycle number of the
首先,在步骤S600中,提供一立体显示器100。First, in step S600, a
接着,在步骤S602中,依据所需要的N值,在空间中划分出N个视区,其中每个视区有其对应的图片的图像信息。由于柱状透镜的周期数为T,因此每个视区均在像素平面111上形成T个投影区域PJ1、PJ2、PJ3、...、PJT(未示出)。Next, in step S602, according to the required N value, N viewing areas are divided in space, and each viewing area has image information of its corresponding picture. Since the period number of the lenticular lens is T, each view zone forms T projection areas PJ1 , PJ2 , PJ3 , . . . , PJT (not shown) on the
也即,在步骤S604中,借由柱状透镜120,在像素平面111上形成各视区所对应的投影区域。由各视区在像素平面111上的投影量(例如投影区域所覆盖的面积)可知,各视区所对应的子像素单元的数量。进而,依据各视区所对应的子像素单元的数量(一个或数个),可得知各子像素单元的图像信息为其对应的视区的图像信息。That is, in step S604 , the projection areas corresponding to the viewing areas are formed on the
因此,在步骤S606中,依据各视区所对应的子像素单元,获得各视区的图像信息。若对应的子像素单元对应于两个以上的视区,则将两个视区对应的图像信息作叠加。举例而言,若特定的子像素单元对应于视区VZ1、VZ2,且视区VZ1、VZ2在该子像素单元的投影量分别为Pj 1、Pj2,对应的图片的图像信息分别为i1、i2,则该子像素单元的图像信号为f×i1+g×i2,其中f、g为投影量Pj 1、Pj2的函数。Therefore, in step S606, the image information of each viewing area is obtained according to the sub-pixel unit corresponding to each viewing area. If the corresponding sub-pixel unit corresponds to more than two viewing areas, the image information corresponding to the two viewing areas is superimposed. For example, if a specific sub-pixel unit corresponds to viewing zones VZ1 and VZ2, and the projection amounts of viewing zones VZ1 and VZ2 on the sub-pixel unit are respectively Pj 1 and Pj2, the image information of the corresponding picture is respectively i1 and i2 , then the image signal of the sub-pixel unit is f×i1+g×i2, where f and g are functions of projection quantities Pj 1 and Pj2.
最后,在步骤S608中,合成各视区的图像信息,以显示一立体图像画面。Finally, in step S608, the image information of each viewing area is synthesized to display a stereoscopic image frame.
另外,本发明的实施例的图像显示方法可以由图1~图5实施例的叙述中获致足够的教示、建议与实施说明,因此不再赘述。In addition, the image display method of the embodiment of the present invention can obtain sufficient teachings, suggestions and implementation descriptions from the descriptions of the embodiments in FIGS. 1-5 , so details are not repeated here.
从另一观点来看,图8A及图8B示出本发明一实施例的不同观赏距离的示意图。请参考图8,在本实施例中,以光束觅迹原理及司乃耳定律来计算其每个视区对应的子像素单元,进而决定各子像素单元给予对应的视区所需的图像信息。From another point of view, FIG. 8A and FIG. 8B show schematic diagrams of different viewing distances according to an embodiment of the present invention. Please refer to FIG. 8. In this embodiment, the sub-pixel units corresponding to each viewing area are calculated based on the principle of beam tracing and Seinell's law, and then it is determined that each sub-pixel unit gives the required image information to the corresponding viewing area. .
观赏者在不同位置时(例如图8A或图8B),其可用遥控器或其他任何的输入方式,调整参数P、K,直到所看到的立体图像画面满意为止。至于调整参数P、K的依据,例如是观赏者利用其左眼及一确认图样(check pattern)进行图像调整。之后,观赏者再利用其右眼及另一不同的确认图样进行图像调整,直到所看到的立体图像画面满意为止。When the viewer is in a different position (such as FIG. 8A or FIG. 8B ), he can use a remote controller or any other input method to adjust the parameters P and K until the stereoscopic image he sees is satisfactory. As for the basis for adjusting the parameters P and K, for example, the viewer uses his left eye and a check pattern to adjust the image. Afterwards, the viewer uses his right eye and another different confirmation pattern to adjust the image until the stereoscopic image he sees is satisfactory.
综上所述,在本发明的范例实施例中,立体显示器的图像显示方法能够针对不同的观赏距离作显示内容的调配,以增加使用的便利性及光学元件与显示器之间的对位精准的误差容忍度。。To sum up, in the exemplary embodiment of the present invention, the image display method of the stereoscopic display can adjust the displayed content for different viewing distances, so as to increase the convenience of use and the precise alignment between the optical elements and the display. error tolerance. .
虽然本发明已以实施例揭示如上,然其并非用以限定本发明,任何本领域普通技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视所附的权利要求所界定的范围为准。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Anyone skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection should be subject to the scope defined by the appended claims.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010537358XA CN102081249B (en) | 2010-11-05 | 2010-11-05 | Image display method of stereoscopic display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010537358XA CN102081249B (en) | 2010-11-05 | 2010-11-05 | Image display method of stereoscopic display |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102081249A CN102081249A (en) | 2011-06-01 |
CN102081249B true CN102081249B (en) | 2012-05-23 |
Family
ID=44087302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010537358XA Active CN102081249B (en) | 2010-11-05 | 2010-11-05 | Image display method of stereoscopic display |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102081249B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105911712B (en) * | 2016-06-30 | 2018-12-04 | 北京邮电大学 | A kind of multiple views liquid crystal display LCD naked eye 3D display method and device |
US10511831B2 (en) | 2017-01-04 | 2019-12-17 | Innolux Corporation | Display device and method for displaying |
TWI807713B (en) * | 2022-03-22 | 2023-07-01 | 友達光電股份有限公司 | Stereoscopic display system and method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1525212A (en) * | 2003-02-28 | 2004-09-01 | �ձ�������ʽ���� | Image display device, portable terminal device, display panel and image display method |
CN1708995A (en) * | 2002-11-07 | 2005-12-14 | 三洋电机株式会社 | Three-dimensional video processing method and three-dimensional video display |
CN101738735A (en) * | 2010-01-12 | 2010-06-16 | 友达光电股份有限公司 | Method for improving image quality of stereoscopic display |
CN101836459A (en) * | 2007-09-20 | 2010-09-15 | 维斯莫申有限公司 | Method for shortening or lengthening an observation distance between an observer and an arrangement for the spatially perceptible representation |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060050016A1 (en) * | 2002-10-23 | 2006-03-09 | Pioneer Corporation | Image display and method for displaying image |
US7561217B2 (en) * | 2004-09-09 | 2009-07-14 | Au Optronics Corporation | Liquid crystal display apparatus and method for improving precision 2D/3D viewing with an adjustable backlight unit |
US20090219432A1 (en) * | 2008-02-29 | 2009-09-03 | Palum Russell J | Sensor with multi-perspective image capture |
-
2010
- 2010-11-05 CN CN201010537358XA patent/CN102081249B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1708995A (en) * | 2002-11-07 | 2005-12-14 | 三洋电机株式会社 | Three-dimensional video processing method and three-dimensional video display |
CN1525212A (en) * | 2003-02-28 | 2004-09-01 | �ձ�������ʽ���� | Image display device, portable terminal device, display panel and image display method |
CN101836459A (en) * | 2007-09-20 | 2010-09-15 | 维斯莫申有限公司 | Method for shortening or lengthening an observation distance between an observer and an arrangement for the spatially perceptible representation |
CN101738735A (en) * | 2010-01-12 | 2010-06-16 | 友达光电股份有限公司 | Method for improving image quality of stereoscopic display |
Also Published As
Publication number | Publication date |
---|---|
CN102081249A (en) | 2011-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130182083A1 (en) | Calibration of an autostereoscopic display system | |
US20160261858A1 (en) | Device for generation of colored virtual three-dimensional images | |
US8982460B2 (en) | Autostereoscopic display apparatus | |
JP6374506B2 (en) | 3D display method | |
US20120075434A1 (en) | Three dimensional image display | |
WO2013061734A1 (en) | 3d display device | |
JP2013102434A (en) | Three-dimensional image display method | |
WO2015180401A1 (en) | Naked eye 3d display control method, apparatus and system | |
CN103686133A (en) | Image compensation device and method for naked-eye stereoscopic display | |
KR20130023029A (en) | Three-dimensional image display apparatus | |
WO2015180402A1 (en) | Display control method, apparatus and system | |
WO2013094211A1 (en) | Display device | |
CN208257981U (en) | A kind of LED naked-eye 3D display device based on sub-pixel | |
CN105158915B (en) | One kind being based on three-in-one LED naked-eye 3D display device and preparation method | |
Qi et al. | An autostereoscopic 3D projection display based on a lenticular sheet and a parallax barrier | |
CN102081249B (en) | Image display method of stereoscopic display | |
JP6588107B2 (en) | Autostereoscopic system | |
TWI462568B (en) | Image display method of stereo display apparatus | |
CN103676174B (en) | Light-emitting diode display 3D display packing | |
US20130147932A1 (en) | Stereoscopic video display apparatus and stereoscopic video display method | |
CN111552094A (en) | Multi-mode stereoscopic display device | |
TWI526717B (en) | Naked eye stereoscopic display device and method for arranging pixel thereof | |
CN102692207A (en) | Measuring method and measuring device | |
JP5365726B2 (en) | Color stereoscopic display device | |
CN114286076A (en) | Image generation method, testing method and system for naked-eye 3D display screen with lenticular grating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |