CN102078623B - Amorphous state iron-based nano magnetic resonance contrast agent material and preparation method thereof - Google Patents
Amorphous state iron-based nano magnetic resonance contrast agent material and preparation method thereof Download PDFInfo
- Publication number
- CN102078623B CN102078623B CN2010106146174A CN201010614617A CN102078623B CN 102078623 B CN102078623 B CN 102078623B CN 2010106146174 A CN2010106146174 A CN 2010106146174A CN 201010614617 A CN201010614617 A CN 201010614617A CN 102078623 B CN102078623 B CN 102078623B
- Authority
- CN
- China
- Prior art keywords
- magnetic resonance
- contrast agent
- resonance contrast
- agent material
- amorphous state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 98
- 239000000463 material Substances 0.000 title claims abstract description 52
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 47
- 239000002405 nuclear magnetic resonance imaging agent Substances 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title abstract description 15
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000011248 coating agent Substances 0.000 claims abstract description 9
- 150000002815 nickel Chemical class 0.000 claims abstract description 8
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 31
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 9
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 9
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 229920001661 Chitosan Polymers 0.000 claims description 7
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 150000002505 iron Chemical class 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000001681 protective effect Effects 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 229910001453 nickel ion Inorganic materials 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- 229960002089 ferrous chloride Drugs 0.000 claims description 3
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- 239000012279 sodium borohydride Substances 0.000 claims description 3
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 3
- 229910021380 Manganese Chloride Inorganic materials 0.000 claims description 2
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 claims description 2
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 2
- 239000011790 ferrous sulphate Substances 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 2
- 235000002867 manganese chloride Nutrition 0.000 claims description 2
- 239000011565 manganese chloride Substances 0.000 claims description 2
- 229940099607 manganese chloride Drugs 0.000 claims description 2
- 229940099596 manganese sulfate Drugs 0.000 claims description 2
- 235000007079 manganese sulphate Nutrition 0.000 claims description 2
- 239000011702 manganese sulphate Substances 0.000 claims description 2
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 claims description 2
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical group [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims description 2
- 229910052754 neon Inorganic materials 0.000 claims description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical group [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 2
- 229910001448 ferrous ion Inorganic materials 0.000 claims 3
- 229920001503 Glucan Polymers 0.000 claims 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical group B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 claims 2
- 229910010277 boron hydride Inorganic materials 0.000 claims 2
- TWNIBLMWSKIRAT-VFUOTHLCSA-N levoglucosan Chemical group O[C@@H]1[C@@H](O)[C@H](O)[C@H]2CO[C@@H]1O2 TWNIBLMWSKIRAT-VFUOTHLCSA-N 0.000 claims 2
- 230000008021 deposition Effects 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 9
- 231100000053 low toxicity Toxicity 0.000 abstract description 4
- 150000002696 manganese Chemical class 0.000 abstract description 4
- 239000002994 raw material Substances 0.000 abstract description 3
- 239000006227 byproduct Substances 0.000 abstract description 2
- 239000002244 precipitate Substances 0.000 abstract description 2
- 238000009210 therapy by ultrasound Methods 0.000 abstract 1
- 239000002105 nanoparticle Substances 0.000 description 55
- 229920002307 Dextran Polymers 0.000 description 34
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 16
- 239000000243 solution Substances 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000002086 nanomaterial Substances 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000003384 imaging method Methods 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 239000002122 magnetic nanoparticle Substances 0.000 description 5
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 4
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 4
- 239000007853 buffer solution Substances 0.000 description 4
- 239000002872 contrast media Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000004098 selected area electron diffraction Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000002411 thermogravimetry Methods 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 239000008393 encapsulating agent Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- GZPBVLUEICLBOA-UHFFFAOYSA-N 4-(dimethylamino)-3,5-dimethylphenol Chemical compound CN(C)C1=C(C)C=C(O)C=C1C GZPBVLUEICLBOA-UHFFFAOYSA-N 0.000 description 2
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000002524 electron diffraction data Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- -1 iron ions Chemical class 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910001437 manganese ion Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000820 toxicity test Toxicity 0.000 description 2
- 241001156002 Anthonomus pomorum Species 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- JYVHOGDBFNJNMR-UHFFFAOYSA-N hexane;hydrate Chemical compound O.CCCCCC JYVHOGDBFNJNMR-UHFFFAOYSA-N 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 238000006197 hydroboration reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000593 microemulsion method Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Landscapes
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
本发明涉及非晶态纳米材料领域,公开了一种非晶态铁基纳米磁共振造影剂材料的制备方法。技术方案为:(1)将二价铁盐、二价锰盐或二价镍盐、包裹剂溶解后配成溶液I;(2)在无氧条件下向溶液I中滴加还原剂溶液,超声处理10~60分钟;取沉淀,得到非晶态铁基纳米磁共振造影剂材料,平均粒径为5~15nm,饱和磁化率较高,具有超顺磁性;分散性好,毒性小,具有很好的水溶性和生物兼容性。制备方法对实验操作和设备的要求很低,所需原料价格低廉,操作简单方便,副产物无公害。
The invention relates to the field of amorphous nanometer materials, and discloses a preparation method of an amorphous iron-based nanometer magnetic resonance contrast agent material. The technical scheme is: (1) dissolving the ferrous salt, the divalent manganese salt or the divalent nickel salt, and the coating agent to form solution I; (2) adding the reducing agent solution dropwise to the solution I under anaerobic conditions, Ultrasonic treatment for 10-60 minutes; take the precipitate to obtain amorphous iron-based nano-magnetic resonance contrast agent material, with an average particle size of 5-15nm, high saturation magnetic susceptibility, and superparamagnetic properties; good dispersibility, low toxicity, and Very good water solubility and biocompatibility. The preparation method has very low requirements on experimental operation and equipment, the required raw materials are cheap, the operation is simple and convenient, and the by-products are pollution-free.
Description
技术领域 technical field
本发明涉及非晶态纳米材料领域,具体是一种非晶态铁基纳米磁共振造影剂材料及制备方法。The invention relates to the field of amorphous nanometer materials, in particular to an amorphous iron-based nanometer magnetic resonance contrast agent material and a preparation method thereof.
背景技术 Background technique
非晶态合金(Amorphous Alloy)是由美国标准计量局的Brenner等,在1947年用电解和化学镀法首次制备,1960年Dwuez等通过熔融骤冷的方法首次制备出Au-S非晶态合金,日后非晶态合金迅速发展成一门新的学科。Amorphous Alloy (Amorphous Alloy) was first prepared by Brenner of the American Bureau of Standards and Measures in 1947 by electrolysis and electroless plating. In 1960, Dwuez et al. prepared Au-S amorphous alloy for the first time by melting and quenching. , In the future, amorphous alloys will develop into a new discipline rapidly.
非晶态合金由于结构上不同于晶态金属,并且在热力学上处于不稳或亚稳态,具有一般合金所不具备的特性,如高强度、耐腐蚀性、超导电性等优良的力学、磁学、电学及其它化学性质,且可广泛应用于国民经济的各个方面。Amorphous alloys are different from crystalline metals in structure and are in an unstable or metastable state in thermodynamics. They have characteristics that general alloys do not have, such as high strength, corrosion resistance, superconductivity and other excellent mechanical properties. Magnetic, electrical and other chemical properties, and can be widely used in various aspects of the national economy.
非晶态合金纳米粒子由于其长程无序而短程有序的独特非晶态结构,导致其优良的催化活性、选择性,特别是在制备过程中的环境污染少,催化效率高的特点,以及修饰之后具有非常好的生物相容性使其越来越引起人们的重视。尽管对非晶态合金材料的研究时间不长,但是大量的实验数据已经表明其具有良好的工业化和生物医学领域应用前景。非晶态纳米粒子由于具有超顺磁性的特点,可以构建核磁共振造影剂。在实验制备过程中使非晶态纳米材料表面包裹有葡聚糖大分子,大大提高了材料的生物相容性以及材料在生物体内的存留时间,得这一类磁性材料在核磁共振造影剂材料领域中成为了研究的主要方面。目前非晶态磁性纳米粒子的制备方法主要有共沉淀法、物理球磨法、水热乳液法等,但这些方法得到的纳米粒子大多是粒径不均一、生物兼容性不好、分散性不好或团聚。Due to its unique amorphous structure of long-range disorder and short-range order, amorphous alloy nanoparticles lead to excellent catalytic activity and selectivity, especially the characteristics of less environmental pollution and high catalytic efficiency during the preparation process, and The very good biocompatibility after modification has attracted more and more people's attention. Although the research on amorphous alloy materials is not long, a large number of experimental data have shown that it has good application prospects in industrialization and biomedicine. Amorphous nanoparticles can be used to construct NMR contrast agents due to their superparamagnetic properties. In the experimental preparation process, the surface of the amorphous nanomaterials is coated with dextran macromolecules, which greatly improves the biocompatibility of the materials and the retention time of the materials in the living body. has become a major aspect of research in the field. At present, the preparation methods of amorphous magnetic nanoparticles mainly include co-precipitation method, physical ball milling method, hydrothermal emulsion method, etc., but most of the nanoparticles obtained by these methods have uneven particle size, poor biocompatibility, and poor dispersion. or reunion.
非晶态合金纳米材料的制备方法很多,其中气相蒸发凝聚法由于所制得的产品纯度高、活性高且可实现连续化生产,尽管成本昂贵,仍是目前工业批量制备非晶态合金纳米材料的主要方法。液相化学还原法、反相微乳液法和电化学法具有工艺简单、成本较低、纯度易控制、易于在工业生产中推广等优点,是目前研究最多、很有应用前景的制备非晶态合金纳米粒子的方法。There are many preparation methods for amorphous alloy nanomaterials. Among them, the gas phase evaporation and condensation method is still the current method for industrial batch preparation of amorphous alloy nanomaterials because of its high purity, high activity and continuous production. main method. Liquid-phase chemical reduction method, inverse microemulsion method and electrochemical method have the advantages of simple process, low cost, easy control of purity, and easy promotion in industrial production. They are currently the most researched and promising methods for preparing amorphous Methods for Alloying Nanoparticles.
七十年代后,非晶态合金的制备技术与工艺不断提高,各种气相或者液相的快速冷凝技术被广泛应用于制备非晶态合金,且制备出了各种非晶态合金,并实现了工业化生产,取得了令人瞩目的成就。Smiht在第七届国际催化会议上发表了第一篇使用非晶态合金作为催化剂的论文,展示了这种新型催化材料的美好前景,引起了各国材料和催化科学界的广泛重视及兴趣,80年代以来有关非晶态合金的催化性能得到了国内外广泛的研究。目前制备非晶态合金纳米粒子的方法主要是气相蒸发凝聚法和化学还原学,化学还原法具有设备要求简单,操作方便等特点,被越来越多的人使用,引起了国内外的重视.After the 1970s, the preparation technology and process of amorphous alloys continued to improve, and various rapid condensation techniques in gas phase or liquid phase were widely used in the preparation of amorphous alloys, and various amorphous alloys were prepared, and realized It has achieved remarkable success in industrialized production. Smiht published the first paper on the use of amorphous alloys as catalysts at the Seventh International Conference on Catalysis, showing the bright prospects of this new type of catalytic material, which has aroused widespread attention and interest in materials and catalytic science circles in various countries. 80 Since the 1990s, the catalytic properties of amorphous alloys have been widely studied at home and abroad. At present, the methods for preparing amorphous alloy nanoparticles are mainly gas-phase evaporation condensation method and chemical reduction. The chemical reduction method has the characteristics of simple equipment requirements and convenient operation. It is used by more and more people and has attracted attention at home and abroad.
在分子影像和生物医学领域中,非晶态磁性纳米粒子必须是单分散的、水溶性且稳定性好的,才能有很好的重现性、很高的饱和磁化率和好的生物相容性。In the fields of molecular imaging and biomedicine, amorphous magnetic nanoparticles must be monodisperse, water-soluble and stable in order to have good reproducibility, high saturation magnetic susceptibility and good biocompatibility sex.
尽管非晶态合金纳米粒子的制备及应用已取得很大进展,但仍存在许多有待研究的问题。如颗粒易团聚、表面易氧化、如何表面功能化、使用过程中活性下降等问题均未能得到有效的解决。如何在不降低非晶态合金磁性的条件下对其进行表面功能化,解决其毒性大和易团聚的问题,是当前研究的热点之一。应用到催化和生物医学领域中,磁性纳米粒子必须是单分散的、和水溶性的,才能在生物条件下有很好的重现性和好的生物相容性。Although great progress has been made in the preparation and application of amorphous alloy nanoparticles, there are still many problems to be studied. Problems such as easy aggregation of particles, easy oxidation of the surface, how to functionalize the surface, and decreased activity during use have not been effectively resolved. How to functionalize the surface of amorphous alloys without reducing their magnetic properties and solve the problems of high toxicity and easy agglomeration is one of the current research hotspots. When applied to the fields of catalysis and biomedicine, magnetic nanoparticles must be monodisperse and water-soluble in order to have good reproducibility and good biocompatibility under biological conditions.
发明内容 Contents of the invention
本发明旨在提供一种非晶态铁基纳米磁共振造影剂材料。The invention aims to provide an amorphous iron-based nano magnetic resonance contrast agent material.
本发明还提供了上述造影剂材料的制备方法。The present invention also provides a preparation method of the above-mentioned contrast agent material.
其技术方案为:Its technical solution is:
(1)将二价铁盐、二价镍盐或二价锰盐(均为可溶性盐)、包裹剂溶解于水配成溶液I,(1) ferrous salt, divalent nickel salt or divalent manganese salt (all soluble salts), coating agent are dissolved in water and made into solution I,
(2)在无氧条件下向溶液I中滴加还原剂溶液,同时搅拌;然后超声处理10~60分钟;取沉淀,得到非晶态铁基纳米磁共振造影剂材料;(2) Add a reducing agent solution dropwise to solution I under anaerobic conditions, while stirring; then ultrasonically treat for 10 to 60 minutes; take the precipitate to obtain an amorphous iron-based nano-magnetic resonance contrast agent material;
二价铁离子与二价镍离子或二价锰离子的摩尔比为1∶0.95~2.5,优选为1∶1~2;The molar ratio of divalent iron ions to divalent nickel ions or divalent manganese ions is 1: 0.95 to 2.5, preferably 1: 1 to 2;
二价铁离子与还原剂的摩尔比为1∶0.2~0.5;The molar ratio of divalent iron ion and reducing agent is 1: 0.2~0.5;
包裹剂与Fe2+的用量比为0.5~2.5g/mmol;The dosage ratio of coating agent and Fe 2+ is 0.5~2.5g/mmol;
包裹剂可选用葡聚糖、壳聚糖或聚乙烯基吡咯烷酮(PVP);The encapsulating agent can be selected from dextran, chitosan or polyvinylpyrrolidone (PVP);
还原剂为硼氢化物,可以是硼氢化钾或硼氢化钠;The reducing agent is borohydride, which can be potassium borohydride or sodium borohydride;
所用的二价铁盐为硫酸亚铁、硝酸亚铁或氯化亚铁;所用的二价镍盐为硫酸镍、硝酸镍或氯化镍,所用的二价锰盐为硫酸锰、硝酸锰或氯化锰。The divalent iron salt used is ferrous sulfate, ferrous nitrate or ferrous chloride; the divalent nickel salt used is nickel sulfate, nickel nitrate or nickel chloride, and the divalent manganese salt used is manganese sulfate, manganese nitrate or manganese chloride.
葡聚糖、壳聚糖或聚乙烯基吡咯烷酮的分子量为10000~30000。The molecular weight of dextran, chitosan or polyvinylpyrrolidone is 10000-30000.
溶液I中Fe2+的浓度为0.005~0.02M。The concentration of Fe 2+ in solution I is 0.005-0.02M.
步骤(2)中还原剂溶液的浓度为5~20mM。The concentration of the reducing agent solution in step (2) is 5-20 mM.
步骤(1)中,将溶液I加热到60~98℃并搅拌,使二价铁盐、二价镍盐或二价锰、包裹剂溶解充分。In step (1), the solution I is heated to 60-98° C. and stirred to fully dissolve the ferrous salt, nickel salt or manganese, and the encapsulating agent.
步骤(2)中,用氮气、氦气、氖气或氩气等惰性气体作为保护气体,排除反应体系中的氧气。In step (2), an inert gas such as nitrogen, helium, neon or argon is used as a protective gas to exclude oxygen in the reaction system.
通过上述方法得到的非晶态铁基纳米磁共振造影剂材料,平均粒径为5~15nm,饱和磁化率较高,具有超顺磁性;分散性好,毒性小,具有很好的水溶性和生物兼容性。The amorphous iron-based nano magnetic resonance contrast agent material obtained by the above method has an average particle size of 5-15 nm, a high saturation magnetic susceptibility, and superparamagnetic properties; good dispersion, low toxicity, good water solubility and Biocompatibility.
本发明首先将常见的可溶性二价铁盐和二价锰盐或二价镍盐为原料,水作为溶剂,与葡聚糖、壳聚糖或PVP在水中搅拌溶解,然后加入强还原剂硼氢化物在超声条件下直接得到单分散的、非晶态、水溶性和生物兼容性好的磁性纳米共振造影剂。葡聚糖、壳聚糖或PVP作为包裹剂,搅拌溶解后逐滴加入新鲜的强化原剂,硼氢化物亚铁离子、二价锰离子或镍离子还原到单质,得到非晶态铁基纳米磁共振造影剂材料;由于包裹剂上的羟基和金属的弱配位作用以及在超声条件下包裹剂有机高分子与纳米粒子之间非化学键的包裹作用,可以制备出非晶态的分散性很好的磁性纳米粒子。因为外面包裹有葡聚糖等物质,所以纳米粒子具有很好的水溶性和生物兼容性。In the present invention, common soluble ferrous salts, manganese salts or nickel salts are used as raw materials, water is used as a solvent, and dextran, chitosan or PVP are stirred and dissolved in water, and then a strong reducing agent is added for hydroboration The monodisperse, amorphous, water-soluble and biocompatible magnetic nano-resonance contrast agent can be directly obtained under ultrasonic conditions. Dextran, chitosan or PVP is used as the encapsulating agent. After stirring and dissolving, fresh strengthening agent is added dropwise, and ferrous borohydride ions, divalent manganese ions or nickel ions are reduced to simple substances to obtain amorphous iron-based nanoparticles. Magnetic resonance contrast agent material; due to the weak coordination between the hydroxyl group on the wrapping agent and the metal and the wrapping effect of the non-chemical bond between the organic polymer and the nano-particles of the wrapping agent under ultrasonic conditions, an amorphous state with good dispersion can be prepared. Good magnetic nanoparticles. Because the outside is coated with substances such as dextran, the nanoparticles have good water solubility and biocompatibility.
本发明在简单及普通的实验装置条件下,简单超声条件下即可制备分散性好、粒径均匀、水溶性和生物相容性很好的非晶态合金纳米粒子,大大减小了纳米材料的毒性。这种制备方法对实验操作和设备的要求较低,反应时间短,所需原材料常见易得,价格低廉。操作过程简单方便,副产物无公害。本发明为研究非晶态合金纳米粒子的合成制备提供了一种经济与使用的新方法,并为研究非晶态纳米粒子在催化和生物医学领域提供了一个很好的平台。The present invention can prepare amorphous alloy nanoparticles with good dispersion, uniform particle size, good water solubility and biocompatibility under simple and common experimental device conditions and simple ultrasonic conditions, greatly reducing the number of nanomaterials toxicity. This preparation method has relatively low requirements on experimental operation and equipment, short reaction time, common and easily available raw materials, and low price. The operation process is simple and convenient, and the by-products are pollution-free. The invention provides an economical and usable new method for studying the synthesis and preparation of amorphous alloy nanoparticles, and provides a good platform for studying amorphous nanoparticles in the field of catalysis and biomedicine.
附图说明 Description of drawings
图1是实施例1非晶态铁基纳米磁共振造影剂材料(Fe-Ni-B纳米粒子)的透射电子显微镜(TEM)照片。从该图中可以看出该纳米粒子尺寸比较均一,且具有很好的单分散性。Fig. 1 is a transmission electron microscope (TEM) photo of the amorphous iron-based nano-magnetic resonance contrast agent material (Fe-Ni-B nanoparticles) in Example 1. It can be seen from the figure that the size of the nanoparticles is relatively uniform and has good monodispersity.
图2是实施例1非晶态铁基纳米磁共振造影剂材料(Fe-Ni-B纳米粒子)的粒径分布图。从该图中可以看出该纳米粒子平均尺寸大约是10nm。Fig. 2 is a particle size distribution diagram of the amorphous iron-based nano-magnetic resonance contrast agent material (Fe-Ni-B nanoparticles) in Example 1. It can be seen from the figure that the average size of the nanoparticles is about 10 nm.
图3是实施例1非晶态铁基纳米磁共振造影剂材料(Fe-Ni-B纳米粒子)的EDS能谱图。从能谱图中可以看出纳米粒子的铁元素和镍元素以及表面葡聚糖的存在。Fig. 3 is an EDS energy spectrum diagram of the amorphous iron-based nano-magnetic resonance contrast agent material (Fe-Ni-B nanoparticles) in Example 1. From the energy spectrum, it can be seen that the iron and nickel elements of the nanoparticles and the presence of dextran on the surface.
图4是实施例1非晶态铁基纳米磁共振造影剂材料(Fe-Ni-B纳米粒子)的高分辨透射电子显微镜(HR-TEM)照片。从该图中可以看出合成得到的Fe-Ni-B纳米粒子是非晶态纳米粒子。Fig. 4 is a high-resolution transmission electron microscope (HR-TEM) photo of the amorphous iron-based nano-magnetic resonance contrast agent material (Fe-Ni-B nanoparticles) in Example 1. It can be seen from the figure that the synthesized Fe-Ni-B nanoparticles are amorphous nanoparticles.
图5是实施例1非晶态铁基纳米磁共振造影剂材料(Fe-Ni-B纳米粒子)的选区电子衍射(SAED)照片。该图和图1、图4都是由。从该图中可以证明合成得到的Fe-Ni-B纳米粒子是非晶态纳米粒子。Fig. 5 is a selected area electron diffraction (SAED) photo of the amorphous iron-based nano-magnetic resonance contrast agent material (Fe-Ni-B nanoparticles) in Example 1. This figure and Figures 1 and 4 are all from. From this figure, it can be proved that the synthesized Fe-Ni-B nanoparticles are amorphous nanoparticles.
图6是实施例1非晶态铁基纳米磁共振造影剂材料(Fe-Ni-B纳米粒子)X-射线电子衍射图(XRD)。是由DMAX 2000X-射线衍射仪测试得到,该衍射仪为Cu/Kα-辐射(λ=0.15405nm)(40kV,40mA)。该图进一步说明了合成得到的非晶态合金纳米材料Fe-Ni-B为非晶态。Fig. 6 is an X-ray electron diffraction pattern (XRD) of the amorphous iron-based nano-magnetic resonance contrast agent material (Fe-Ni-B nanoparticles) in Example 1. It is obtained by
图7是实施例1非晶态铁基纳米磁共振造影剂材料(Fe-Ni-B纳米粒子)在常温下的磁滞回线。是在常温条件下测得的Fe-Ni-B非晶态合金纳米材料的磁感应强度和磁场强度的变化关系,横坐标为磁场,纵坐标为磁感应强度。从该图可以看出该材料具有超顺磁性,饱和磁化率为21emu/g。Fig. 7 is the hysteresis loop of the amorphous iron-based nano-magnetic resonance contrast agent material (Fe-Ni-B nanoparticles) in Example 1 at room temperature. It is the change relationship between the magnetic induction intensity and the magnetic field intensity of Fe-Ni-B amorphous alloy nanomaterials measured under normal temperature conditions, the abscissa is the magnetic field, and the ordinate is the magnetic induction intensity. It can be seen from the figure that the material has superparamagnetism, and the saturation magnetic susceptibility is 21emu/g.
图8是实施例1非晶态铁基纳米磁共振造影剂材料(Fe-Ni-B纳米粒子)和纯的葡聚糖的傅里叶-红外(FT-IR)图,从图中明显看出,Fe-Ni-B纳米粒子和纯的葡聚糖在1028cm-1处都有出峰,这是葡聚糖上的C-O-C的出峰位置,从FT-IR图中可以证明纳米粒子表面是包裹葡聚糖的。Fig. 8 is the Fourier transform-infrared (FT-IR) figure of
图9是实施例1非晶态铁基纳米磁共振造影剂材料(Fe-Ni-B纳米粒子)热重分析(TGA)图,从图中可观察到,在200℃到400℃有明显的失重,这是葡聚糖的失重峰,说明Fe-Ni-B纳米粒子表面包裹了葡聚糖。Fig. 9 is the thermal gravimetric analysis (TGA) figure of the amorphous iron-based nano-magnetic resonance contrast agent material (Fe-Ni-B nanoparticles) of Example 1. It can be observed from the figure that there is an obvious gradient at 200°C to 400°C. Weight loss, this is the weight loss peak of dextran, indicating that the surface of Fe-Ni-B nanoparticles is coated with dextran.
图10是实施例1非晶态铁基纳米磁共振造影剂材料(Fe-Ni-B纳米粒子)在水溶液、PBS缓冲液、乙醇溶液、以及水和环己烷混合溶液中的溶解性和分散性照片,从图中可看出Fe-Ni-B纳米粒子不溶于有机溶剂而在水溶液、PBS缓冲溶液、乙醇溶液中很稳定且有很好的分散性。Fig. 10 is the solubility and dispersion of Example 1 amorphous iron-based nano magnetic resonance contrast agent material (Fe-Ni-B nanoparticles) in aqueous solution, PBS buffer solution, ethanol solution, and water and cyclohexane mixed solution From the photo, it can be seen that Fe-Ni-B nanoparticles are insoluble in organic solvents and are very stable and well dispersed in aqueous solution, PBS buffer solution and ethanol solution.
图11是表面包裹葡聚糖的非晶态铁基纳米磁共振造影剂材料(Fe-Ni-B纳米粒子)在浓度为0μg/mL到100μg/mL浓度时对HeLa细胞的毒性测试。Figure 11 shows the toxicity test of the amorphous iron-based nano-magnetic resonance contrast agent material (Fe-Ni-B nanoparticles) coated with dextran on HeLa cells at a concentration of 0 μg/mL to 100 μg/mL.
图12是表面包裹葡聚糖的非晶态铁基纳米磁共振造影剂材料(Fe-Ni-B纳米粒子)在不同浓度下的MRI加权成像图。Fig. 12 is an MRI weighted imaging image of amorphous iron-based nano-magnetic resonance contrast agent material (Fe-Ni-B nanoparticles) coated with dextran on the surface at different concentrations.
图13是实施例1中表面包裹葡聚糖的非晶态铁基纳米磁共振造影剂材料(Fe-Ni-B纳米粒子)r2的拟合直线。Fig. 13 is a fitting straight line of the amorphous iron-based nano-magnetic resonance contrast agent material (Fe-Ni-B nanoparticles) r 2 coated with dextran in Example 1.
图14是实施例2非晶态铁基纳米磁共振造影剂材料(Fe-Mn-B纳米粒子)在常温下的磁滞回线。Fig. 14 is the hysteresis loop of the amorphous iron-based nano-magnetic resonance contrast agent material (Fe-Mn-B nanoparticles) in Example 2 at room temperature.
具体实施方式 Detailed ways
实施例1Example 1
称取NiCl2·6H2O(0.2377g,1mmol)、FeSO4·7H2O(0.2780g,1mmol)溶解在100ml水中,然后再加入1.000g葡聚糖(分子量20000,英文名称为dextran,中国国药集团化学试剂有限公司生产,纯度大于97.0%的固体白色粉末),在90℃条件下磁力搅拌20min使葡聚糖完全溶解;Weigh NiCl 2 6H 2 O (0.2377g, 1mmol), FeSO 4 7H 2 O (0.2780g, 1mmol) and dissolve in 100ml water, then add 1.000g dextran (molecular weight 20000, English name is dextran, China Produced by Sinopharm Chemical Reagent Co., Ltd., solid white powder with a purity greater than 97.0%), magnetically stirred at 90°C for 20 minutes to completely dissolve the dextran;
然后用氮气排除反应体系的氧气,在无氧条件下,以氮气为保护气体,再逐滴加入新鲜的NaBH4(40mL,10mM)水溶液,最后在超声条件下超声分散30min,离心分离后即可得到非晶态铁基纳米磁共振造影剂材料(Fe-Ni-B纳米粒子)。Then use nitrogen to remove oxygen from the reaction system. Under anaerobic conditions, use nitrogen as a protective gas, then add fresh NaBH 4 (40mL, 10mM) aqueous solution drop by drop, and finally ultrasonically disperse for 30min under ultrasonic conditions, and then centrifuge. The amorphous iron-based nano magnetic resonance contrast agent material (Fe-Ni-B nanoparticle) is obtained.
透射电子显微镜(TEM)照片如图1,从该图中可以看出该纳米粒子尺寸比较均一,且具有很好的单分散性。The transmission electron microscope (TEM) photo is shown in Figure 1, and it can be seen from the figure that the size of the nanoparticles is relatively uniform and has good monodispersity.
图2为粒径分布图。从该图中可以看出该纳米粒子平均尺寸大约是10nm。Figure 2 is a particle size distribution diagram. It can be seen from the figure that the average size of the nanoparticles is about 10 nm.
图3为EDS能谱图,可以看出纳米粒子的铁元素和镍元素以及表面葡聚糖的存在。Fig. 3 is an EDS energy spectrum, and it can be seen that the iron and nickel elements of the nanoparticles and the presence of dextran on the surface.
图4为高分辨透射电子显微镜(HR-TEM)照片,可以看出合成得到的Fe-Ni-B纳米粒子是非晶态纳米粒子。Figure 4 is a high-resolution transmission electron microscope (HR-TEM) photo, it can be seen that the synthesized Fe-Ni-B nanoparticles are amorphous nanoparticles.
图5为选区电子衍射(SAED)照片,可以证明合成得到的Fe-Ni-B纳米粒子是非晶态纳米粒子。图1、4、5均JEOL JEM-2100高分辨率透射电子显微镜测试得到的。Figure 5 is a selected area electron diffraction (SAED) photo, which can prove that the synthesized Fe-Ni-B nanoparticles are amorphous nanoparticles. Figures 1, 4, and 5 are obtained by JEOL JEM-2100 high-resolution transmission electron microscope.
图6为X-射线电子衍射图(XRD),用DMAX 2000X-射线衍射仪测试,该衍射仪为Cu/Kα-辐射(λ=0.15405nm)(40kV,40mA)。进一步说明了合成得到的非晶态合金纳米材料Fe-Ni-B为非晶态。Fig. 6 is X-ray electron diffraction pattern (XRD), tests with
图7为在常温下的磁滞回线。是在常温条件下测得的Fe-Ni-B非晶态合金纳米材料的磁感应强度和磁场强度的变化关系,横坐标为磁场,纵坐标为磁感应强度。从该图可以看出该材料具有超顺磁性,饱和磁化率为21emu/g。Figure 7 is the hysteresis loop at room temperature. It is the change relationship between the magnetic induction intensity and the magnetic field intensity of Fe-Ni-B amorphous alloy nanomaterials measured under normal temperature conditions, the abscissa is the magnetic field, and the ordinate is the magnetic induction intensity. It can be seen from the figure that the material has superparamagnetism, and the saturation magnetic susceptibility is 21emu/g.
图8为傅立叶-红外(FT-IR)图,可明显看出,Fe-Ni-B纳米粒子和纯的葡聚糖在1028cm-1处都有出峰,这是葡聚糖上的C-O-C的出峰位置,从FT-IR图中可以证明纳米粒子表面是包裹葡聚糖的。Figure 8 is a Fourier transform-infrared (FT-IR) figure. It can be clearly seen that both Fe-Ni-B nanoparticles and pure dextran have a peak at 1028cm -1 , which is the peak of the COC on the dextran. From the peak position, it can be proved from the FT-IR image that the surface of the nanoparticles is coated with dextran.
图9为热重分析(TGA)图,从图中可观察到,在200℃到400℃有明显的失重,这是葡聚糖的失重峰,说明Fe-Ni-B纳米粒子表面包裹了葡聚糖。Figure 9 is a thermogravimetric analysis (TGA) figure. It can be observed from the figure that there is an obvious weight loss between 200°C and 400°C. polysaccharides.
如图10所示,这种造影剂材料不溶于环己烷,在水溶液、PBS缓冲液、乙醇溶液中有很好的分散性且能稳定存在。As shown in FIG. 10 , this contrast agent material is insoluble in cyclohexane, has good dispersibility and can exist stably in aqueous solution, PBS buffer solution, and ethanol solution.
图11为MTT法毒性测试结果图,可明显看出Fe-Ni-B纳米粒子在浓度为0μg/mL到100μg/mL浓度时对HeLa细胞的毒性非常小。Fig. 11 is a diagram of the toxicity test results of the MTT method. It can be clearly seen that Fe-Ni-B nanoparticles have very little toxicity to HeLa cells at a concentration of 0 μg/mL to 100 μg/mL.
图12为表面包裹葡聚糖的非晶态铁基纳米磁共振造影剂材料(Fe-Ni-B纳米粒子)在不同浓度下MRI加权成像图,从结果来看,铁基纳米材料的T2加权成像效果非常好。Figure 12 is an MRI weighted imaging image of amorphous iron-based nano-magnetic resonance contrast agent material (Fe-Ni-B nanoparticles) coated with dextran on the surface at different concentrations. From the results, the T2 weighted Imaging is very good.
图13为实施例1中表面包裹葡聚糖的非晶态铁基纳米磁共振造影剂材料(Fe-Ni-B纳米粒子)r2的拟合直线,即磁性纳米粒子在PBS缓冲溶液中的T2驰豫率(1/T2)相对于Fe元素浓度拟合的直线。横坐标为铁基纳米磁共振材料中的Fe元素浓度,纵坐标为T2驰豫率(1/T2),斜率即为横向驰豫率r2。从该图可看出铁基纳米磁共振材料具有较强的弛豫能力,横向驰豫率r2=16.21mM-1s-1。Fig. 13 is the fitting straight line of the amorphous iron-based nano-magnetic resonance contrast agent material (Fe-Ni-B nanoparticle) r2 of surface wrapping dextran in
七水合硫酸亚铁可用等摩尔量的四水合氯化亚铁代替,结果相同。Ferrous sulfate heptahydrate can be replaced by an equimolar amount of ferrous chloride tetrahydrate with the same result.
硼氢化钠可用等摩尔量硼氢化钾代替,效果相同。Sodium borohydride can be replaced by equimolar amount of potassium borohydride with the same effect.
葡聚糖可用分子量10000~30000的壳聚糖或聚乙烯基吡咯烷酮(PVP)代替,效果相同。Dextran can be replaced by chitosan or polyvinylpyrrolidone (PVP) with a molecular weight of 10,000 to 30,000, and the effect is the same.
实施例2Example 2
称取NiCl2·6H2O(0.2377g,1mmol)、FeSO4·7H2O(0.1390g,0.5mmol)溶解在100ml水中,然后再加入0.800g葡聚糖,在90℃条件下磁力搅拌20min使葡聚糖完全溶解;Weigh NiCl 2 6H 2 O (0.2377g, 1mmol), FeSO 4 7H 2 O (0.1390g, 0.5mmol) and dissolve them in 100ml of water, then add 0.800g of dextran, and stir magnetically at 90°C for 20min Completely dissolve dextran;
然后用氮气排除反应体系的氧气,在无氧条件下,以氮气为保护气体,再逐滴加入新鲜的NaBH4(40mL,10mM)水溶液,最后在超声条件下超声分散30min,离心分离后即可得到非晶态铁基纳米磁共振造影剂材料(Fe-Ni-B纳米粒子)。Then use nitrogen to remove oxygen from the reaction system. Under anaerobic conditions, use nitrogen as a protective gas, then add fresh NaBH 4 (40mL, 10mM) aqueous solution drop by drop, and finally ultrasonically disperse for 30min under ultrasonic conditions, and then centrifuge. The amorphous iron-based nano magnetic resonance contrast agent material (Fe-Ni-B nanoparticle) is obtained.
经检测,该纳米粒子为非晶态,尺寸比较均一,粒径分布在10nm左右,且具有很好的单分散性;其表面包裹葡聚糖;EDS能谱分析,表明含有铁元素、镍元素和葡聚糖;具有超顺磁性,T2加权成像效果好;不溶于环己烷,在水溶液、PBS缓冲液、乙醇溶液中有很好的分散性且能稳定存在。在浓度为0μg/mL到100μg/mL浓度时对HeLa细胞的毒性低。After testing, the nanoparticles are amorphous, the size is relatively uniform, the particle size distribution is about 10nm, and it has good monodispersity; its surface is coated with dextran; EDS energy spectrum analysis shows that it contains iron and nickel elements and dextran; with superparamagnetism, good T2-weighted imaging effect; insoluble in cyclohexane, good dispersion and stable existence in aqueous solution, PBS buffer and ethanol solution. Low toxicity to HeLa cells at concentrations of 0 μg/mL to 100 μg/mL.
实施例3Example 3
称取MnCl2·4H2O(0.1979g,1mmol),、FeSO4·7H2O(0.2780g,1mmol)溶解在100ml水中,然后再加入1.000g葡聚糖,在90℃条件下磁力搅拌20min使葡聚糖完全溶解;Weigh MnCl 2 4H 2 O (0.1979g, 1mmol), FeSO 4 7H 2 O (0.2780g, 1mmol) and dissolve them in 100ml of water, then add 1.000g of dextran, and stir magnetically at 90°C for 20min Completely dissolve dextran;
然后用氮气排除反应体系的氧气,在无氧条件下,以氮气为保护气体,再逐滴加入新鲜的NaBH4(40mL,10mM)水溶液,最后在超声条件下超声分散30min,离心分离后即可得到非晶态铁基纳米磁共振造影剂材料(Fe-Mn-B纳米粒子)。Then use nitrogen to remove oxygen from the reaction system. Under anaerobic conditions, use nitrogen as a protective gas, then add fresh NaBH 4 (40mL, 10mM) aqueous solution drop by drop, and finally ultrasonically disperse for 30min under ultrasonic conditions, and then centrifuge. The amorphous iron-based nano magnetic resonance contrast agent material (Fe-Mn-B nanoparticle) is obtained.
图14是实施例3非晶态铁基纳米磁共振造影剂材料(Fe-Mn-B纳米粒子)在常温下的磁滞回线。是在常温条件下测得的Fe-Mn-B非晶态合金纳米材料的磁感应强度和磁场强度的变化关系,横坐标为磁场,纵坐标为磁感应强度。从该图可以看出该材料具有超顺磁性,饱和磁化率为86emu/g。Fig. 14 is the hysteresis loop of the amorphous iron-based nano-magnetic resonance contrast agent material (Fe-Mn-B nanoparticles) in Example 3 at room temperature. It is the change relationship between the magnetic induction intensity and the magnetic field intensity of Fe-Mn-B amorphous alloy nanomaterials measured under normal temperature conditions, the abscissa is the magnetic field, and the ordinate is the magnetic induction intensity. It can be seen from the figure that the material has superparamagnetism, and the saturation magnetic susceptibility is 86emu/g.
经检测,该纳米粒子为非晶态,尺寸比较均一,粒径分布在10nm左右,且具有很好的单分散性;其表面包裹葡聚糖;EDS能谱分析,表明含有铁元素、锰元素和葡聚糖;具有超顺磁性,T2加权成像效果好;不溶于环己烷,在水溶液、PBS缓冲液、乙醇溶液中有很好的分散性且能稳定存在。在浓度为0μg/mL到100μg/mL浓度时对HeLa细胞的毒性低。After testing, the nanoparticles are amorphous, relatively uniform in size, particle size distribution is about 10nm, and have good monodispersity; the surface is coated with dextran; EDS energy spectrum analysis shows that it contains iron and manganese and dextran; with superparamagnetism, good T2-weighted imaging effect; insoluble in cyclohexane, good dispersion and stable existence in aqueous solution, PBS buffer and ethanol solution. Low toxicity to HeLa cells at concentrations of 0 μg/mL to 100 μg/mL.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010106146174A CN102078623B (en) | 2010-12-30 | 2010-12-30 | Amorphous state iron-based nano magnetic resonance contrast agent material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010106146174A CN102078623B (en) | 2010-12-30 | 2010-12-30 | Amorphous state iron-based nano magnetic resonance contrast agent material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102078623A CN102078623A (en) | 2011-06-01 |
CN102078623B true CN102078623B (en) | 2012-11-07 |
Family
ID=44084945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010106146174A Expired - Fee Related CN102078623B (en) | 2010-12-30 | 2010-12-30 | Amorphous state iron-based nano magnetic resonance contrast agent material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102078623B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106880847B (en) * | 2015-12-14 | 2019-08-16 | 中国科学院上海硅酸盐研究所 | Multifunctional amorphous ferrum nano material and its preparation method and application |
CN114394603B (en) * | 2021-12-31 | 2023-04-07 | 山东大学 | Amorphous nickel-iron-based boride nano material and preparation method and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003097074A1 (en) * | 2002-05-22 | 2003-11-27 | Eucro European Contract Research Gmbh & Co. Kg | Contrast medium for using in image-producing methods |
-
2010
- 2010-12-30 CN CN2010106146174A patent/CN102078623B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003097074A1 (en) * | 2002-05-22 | 2003-11-27 | Eucro European Contract Research Gmbh & Co. Kg | Contrast medium for using in image-producing methods |
Also Published As
Publication number | Publication date |
---|---|
CN102078623A (en) | 2011-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles | |
Zhang et al. | Synthesis of PVP-coated ultra-small Fe 3 O 4 nanoparticles as a MRI contrast agent | |
Shen et al. | Facile one-pot preparation, surface functionalization, and toxicity assay of APTS-coated iron oxide nanoparticles | |
Shete et al. | Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications | |
Ye et al. | Iron carbides and nitrides: Ancient materials with novel prospects | |
Zhang et al. | Leucine-coated cobalt ferrite nanoparticles: Synthesis, characterization and potential biomedical applications for drug delivery | |
US20060177660A1 (en) | Core-shell nanostructures and microstructures | |
Yan et al. | Facile synthesis of bifunctional Fe3O4/Au nanocomposite and their application in catalytic reduction of 4-nitrophenol | |
Maboudi et al. | Synthesis and characterization of multilayered nanobiohybrid magnetic particles for biomedical applications | |
Lu et al. | Precise synthesis of discrete and dispersible carbon-protected magnetic nanoparticles for efficient magnetic resonance imaging and photothermal therapy | |
CN101525157B (en) | A kind of preparation method of water-soluble ferrite nanoparticles | |
Ardelean et al. | Development of stabilized magnetite nanoparticles for medical applications | |
Wang et al. | One-pot solvothermal synthesis of Fe 3 O 4–PEI composite and its further modification with Au nanoparticles | |
CN102125699A (en) | Fe3O4 composite TiO2 nanoparticles and its preparation method and application in magnetic resonance imaging contrast agent | |
Kumar et al. | Hydrophilic polymer coated monodispersed Fe3O4 nanostructures and their cytotoxicity | |
Das et al. | Highly biocompatible and water-dispersible, amine functionalized magnetite nanoparticles, prepared by a low temperature, air-assisted polyol process: a new platform forbio-separation and diagnostics | |
Gheorghe et al. | Gold-silver alloy nanoshells: a new candidate for nanotherapeutics and diagnostics | |
Xu et al. | In situ synthesis and catalytic application of reduced graphene oxide supported cobalt nanowires | |
CN101138792B (en) | Novel process for preparing simple substance Fe nanometer particles at normal temperature and pressure in liquid phase original station | |
Ye et al. | Direct continuous synthesis of oleic acid-modified Fe3O4 nanoparticles in a microflow system | |
Carla et al. | Electrochemical characterization of core@ shell CoFe 2 O 4/Au composite | |
CN102078623B (en) | Amorphous state iron-based nano magnetic resonance contrast agent material and preparation method thereof | |
Zhao et al. | Enhancement of electric conductivity by incorporation of Ag into core/shell structure of Fe3O4/Ag/PPy NPs | |
Chu et al. | Growth and characterization of highly branched nanostructures of magnetic nanoparticles | |
CN101298102A (en) | Preparation of nano cobalt granule |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121107 Termination date: 20201230 |
|
CF01 | Termination of patent right due to non-payment of annual fee |