[go: up one dir, main page]

CN102074582B - Integrated circuit structure and method of forming the same - Google Patents

Integrated circuit structure and method of forming the same Download PDF

Info

Publication number
CN102074582B
CN102074582B CN 201010553964 CN201010553964A CN102074582B CN 102074582 B CN102074582 B CN 102074582B CN 201010553964 CN201010553964 CN 201010553964 CN 201010553964 A CN201010553964 A CN 201010553964A CN 102074582 B CN102074582 B CN 102074582B
Authority
CN
China
Prior art keywords
fin
region
semiconductor
trench isolation
shallow trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201010553964
Other languages
Chinese (zh)
Other versions
CN102074582A (en
Inventor
李宗霖
叶致锴
张长昀
袁锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/871,655 external-priority patent/US8941153B2/en
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN102074582A publication Critical patent/CN102074582A/en
Application granted granted Critical
Publication of CN102074582B publication Critical patent/CN102074582B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

The invention provides an integrated circuit structure and a forming method thereof. The first semiconductor fin is on the semiconductor substrate and has a first fin height. The second semiconductor fin is on the semiconductor substrate and has a second fin height. The first fin height is greater than the second fin height. The invention has a positive impact on reducing current crowding of the source and drain regions. The increased volume of the stressed source and drain regions also increases the tensile and compressive stress on the channel region of the finfet.

Description

集成电路结构及其形成方法Integrated circuit structure and method of forming the same

技术领域 technical field

本发明涉及集成电路,且尤其涉及一种半导体鳍板及鳍式场效应晶体管(Fin field-effect transistor;FinFet)及其形成方法。The present invention relates to integrated circuits, and in particular to a semiconductor fin plate, a fin field-effect transistor (Fin field-effect transistor; FinFet) and a forming method thereof.

背景技术 Background technique

随着集成电路持续微小化(down-scaling)及对集成电路的高速要求的增加,随着尺寸不断减小的同时,晶体管必须具有更高的驱动电流。为了配合上述需求,因而发展出鳍式场效应晶体管。由于鳍式场效应晶体管的沟道除了包括鳍板的顶表面之外,还有额外的侧壁部分,故沟道宽度增加。由于晶体管的驱动电流与沟道宽成比例,鳍式场效应晶体管的驱动电流因而大于平面晶体管。With the continuous down-scaling of integrated circuits and the increase of high-speed requirements for integrated circuits, transistors must have higher driving currents while the size is continuously reduced. In order to meet the above requirements, FinFETs have been developed. Since the channel of the FinFET has an extra sidewall portion besides the top surface of the fin plate, the channel width increases. Since the driving current of the transistor is proportional to the channel width, the driving current of the FinFET is larger than that of the planar transistor.

发明内容 Contents of the invention

为克服上述现有技术的缺陷,根据本发明的一实施例,集成电路结构包括半导体基板包括半导体基板包括在第一元件区的第一部分,以及在第二元件区的第二部分。第一半导体鳍板在半导体基板上,且具有第一鳍板高度。第二半导体鳍板在半导体基板上,且具有第二鳍板高度。第一鳍板高度大于第二鳍板高度。In order to overcome the above disadvantages of the prior art, according to an embodiment of the present invention, the integrated circuit structure includes a semiconductor substrate including a first portion of the semiconductor substrate in the first element region, and a second portion in the second element region. The first semiconductor fin is on the semiconductor substrate and has a first fin height. The second semiconductor fin is on the semiconductor substrate and has a second fin height. The first fin height is greater than the second fin height.

根据本发明的一实施例,集成电路结构的形成方法包括:提供一半导体基板,包括在一第一元件区的一第一部分,以及在一第二元件区的一第二部分;在该半导体基板上形成一第一半导体鳍板,且具有一第一鳍板高度;以及在该半导体基板上形成一第二半导体鳍板,且具有一第二鳍板高度,其中该第一鳍板高度大于该第二鳍板高度。According to an embodiment of the present invention, a method for forming an integrated circuit structure includes: providing a semiconductor substrate, including a first part in a first element region and a second part in a second element region; A first semiconductor fin plate is formed on the semiconductor substrate and has a first fin plate height; and a second semiconductor fin plate is formed on the semiconductor substrate and has a second fin plate height, wherein the first fin plate height is greater than the Second fin height.

本发明也包括其他实施例。The invention also includes other embodiments.

本发明对于减少源极及漏极区的电流拥挤有正面影响。由于应力源极及漏极区的体积增加,也增加了鳍式场效应晶体管的沟道区上的张力及压缩应力。此外,也降低了硅化物区的电流拥挤效应。The invention has a positive effect on reducing current crowding in the source and drain regions. Due to the increased volume of the stressed source and drain regions, the tensile and compressive stresses on the channel region of the FinFET are also increased. In addition, the current crowding effect of the silicide region is also reduced.

为让本发明的上述和其他目的、特征、和优点能更明显易懂,下文特举出优选实施例,并配合附图,作详细说明如下:In order to make the above-mentioned and other objects, features, and advantages of the present invention more clearly understood, the preferred embodiments are specifically listed below, together with the accompanying drawings, and are described in detail as follows:

附图说明 Description of drawings

图1-图10为根据一实施例,制造具有不同鳍板高度的半导体鳍板的中间阶段的剖面图。1-10 are cross-sectional views of intermediate stages in the fabrication of semiconductor fins with different fin heights, according to one embodiment.

图11A、图11B、图12、图13、图14A、图14B、图15A-图15C、图16A及图16B为根据另一实施例,制造鳍式场效应晶体管的中间阶段的剖面图及透视图。11A, 11B, 12, 13, 14A, 14B, 15A-15C, 16A, and 16B are cross-sectional views and perspectives of intermediate stages of manufacturing fin field effect transistors according to another embodiment picture.

图17显示在半导体晶片中的元件区。Fig. 17 shows a device area in a semiconductor wafer.

图18显示静态随机存取存储器包括具有不同鳍板高度的鳍板的二鳍式场效应晶体管。FIG. 18 shows a SRAM comprising two FinFETs with fins having different fin heights.

其中,附图标记说明如下:Wherein, the reference signs are explained as follows:

20~基板20~substrate

100、200~元件区100, 200~component area

22~垫层22~cushion

24、317~掩模层24. 317~mask layer

30、30_1、30_2~浅沟槽隔离区30, 30_1, 30_2~shallow trench isolation area

134、234~光致抗蚀剂134, 234~photoresist

136、236~凹陷136, 236 ~ depression

138、238、310~鳍板138, 238, 310~fins

Hfin1、Hfin2、Hfin’~鳍板高度H fin1 , H fin2 , H fin '~fin height

160、260~鳍式场效应晶体管160, 260~fin field effect transistor

150、250、314~栅极介电质150, 250, 314 ~ gate dielectric

152、252、316~栅极电极152, 252, 316 ~ grid electrode

318~细间隙物318~fine interstitial objects

320~栅极间隙物320~Gate spacers

324~外延半导体层324~Epitaxial semiconductor layer

T~厚度T~Thickness

328~虚线328~dotted line

327、329~线Line 327, 329~

330、332~硅化物区330, 332~silicide area

具体实施方式 Detailed ways

因本发明的不同特征而提供数个不同的实施例。本发明中特定的元件及安排是为了简化,但本发明并不以这些实施例为限。举例而言,于第二元件上形成第一元件的描述可包括第一元件与第二元件直接接触的实施例,亦包括具有额外的元件形成在第一元件与第二元件之间、使得第一元件与第二元件并未直接接触的实施例。Several different embodiments are provided due to different features of the invention. The specific elements and arrangements in the present invention are for simplicity, but the present invention is not limited to these embodiments. For example, a description of forming a first element on a second element may include embodiments in which the first element is in direct contact with the second element, as well as embodiments having additional elements formed between the first element and the second element such that the second element An embodiment in which one element is not in direct contact with a second element.

本发明提供一种新颖的方法以形成具有不同鳍板高度度的半导体鳍板以及鳍式场效应晶体管。本发明说明制造实施例的中间步骤,并讨论各种实施例。在各实施例的图示及说明中,以类似的元件符号表示类似的元件。The present invention provides a novel method to form semiconductor fins and FinFETs with different fin heights. This disclosure illustrates intermediate steps in the manufacture of embodiments and discusses various embodiments. In the illustrations and descriptions of the respective embodiments, similar elements are denoted by similar reference numerals.

参照图1,提供半导体基板20。在一实施例中,半导体基板20包括硅。在半导体基板中也可包括其他常用的材料如碳、锗、镓、砷、铟、及/或磷等。Referring to FIG. 1 , a semiconductor substrate 20 is provided. In one embodiment, the semiconductor substrate 20 includes silicon. Other commonly used materials such as carbon, germanium, gallium, arsenic, indium, and/or phosphorus may also be included in the semiconductor substrate.

半导体基板20包括在元件区100的一部分及在元件区200的一部分。在一实施例中,元件区100及200为不同区域,包括逻辑核心(logic core)区、存储区(例如为嵌入静态随机存取存储器区)、模拟(analog)区、输入/输出(IO,也称为周边(peripheral))区、虚设区(以形成虚设图案)等。上述参考元件区域显示于图17中。在一实施例中,元件区100为逻辑核心区,而元件区200为输入/输出区。在另一实施例中,元件区100为p型鳍式场效应晶体管区,而元件区200为n型鳍式场效应晶体管区。The semiconductor substrate 20 includes a part in the device region 100 and a part in the device region 200 . In one embodiment, the device areas 100 and 200 are different areas, including a logic core (logic core) area, a storage area (such as an embedded static random access memory area), an analog (analog) area, an input/output (IO, It is also called a peripheral (peripheral) area, a dummy area (to form a dummy pattern), and the like. The above-mentioned reference device area is shown in FIG. 17 . In one embodiment, the device area 100 is a logic core area, and the device area 200 is an input/output area. In another embodiment, the device region 100 is a p-type FinFET region, and the device region 200 is an n-type FinFET region.

在半导体基板20上可形成垫层22及掩模层24。垫层22可为薄膜包括例如利用热氧化工艺所形成的氧化硅。垫层22可作为半导体基板20与掩模层24间的粘着层。垫层22也可作为蚀刻掩模层24的蚀刻停止层。在一实施例中,掩模层24由氮化硅形成,例如利用低压化学气相沉积(LPCVD)。在另一实施例中,掩模层24的形成是借硅的热氮化(thermal nitridation ofsilicon),或等离子体阳极氮化(plasma anodic nitridation)。掩模层24在后续光微影工艺中作为硬掩模。A pad layer 22 and a mask layer 24 may be formed on the semiconductor substrate 20 . The pad layer 22 may be a thin film including, for example, silicon oxide formed by a thermal oxidation process. The pad layer 22 can serve as an adhesive layer between the semiconductor substrate 20 and the mask layer 24 . Pad layer 22 may also serve as an etch stop layer for etch mask layer 24 . In one embodiment, masking layer 24 is formed of silicon nitride, such as by low pressure chemical vapor deposition (LPCVD). In another embodiment, the mask layer 24 is formed by thermal nitridation of silicon or plasma anodic nitridation. The mask layer 24 serves as a hard mask in the subsequent photolithography process.

在基板20中形成浅沟槽隔离区30(标示为30_1及30_2)。浅沟槽隔离区30的深度可介于约100纳米至约250纳米,但也可使用其他不同深度。然而,应了解本发明所述尺寸仅为举例之用,其可依所使用的形成技术不同而改变。可利用已知方法形成浅沟槽隔离区30,因此其工艺细节在此不详述。STI regions 30 (indicated as 30_1 and 30_2 ) are formed in the substrate 20 . The depth of STI region 30 may be between about 100 nm and about 250 nm, but other depths may also be used. However, it should be understood that the dimensions described herein are for example only, and may vary depending on the formation techniques used. The shallow trench isolation region 30 can be formed by a known method, so its process details will not be detailed here.

参照图2,元件区100以光致抗蚀剂134为掩模,而暴露出元件区200。而后暴露出的浅沟槽隔离区30_2在蚀刻步骤中形成凹陷,而得到基板20中的凹陷236。所得结构如图3所示。半导体基板20在凹陷236间的部分因而形成鳍板238,其鳍板高度表示为Hfin2。在一实施例中,鳍板高度Hfin2介于15纳米至约30纳米,但其也可更大或更小。而后移除光致抗蚀剂134。Referring to FIG. 2 , the device region 100 is exposed using the photoresist 134 as a mask to expose the device region 200 . Then, the exposed STI region 30_2 is recessed in the etching step to obtain the recess 236 in the substrate 20 . The resulting structure is shown in Figure 3. The portion of the semiconductor substrate 20 between the recesses 236 thus forms a fin 238 whose fin height is denoted as H fin2 . In one embodiment, the fin height H fin2 is between 15 nm and about 30 nm, but it can be larger or smaller. The photoresist 134 is then removed.

参照图4,元件区200以光致抗蚀剂234为掩模,而暴露出元件区100。暴露出的浅沟槽隔离区30_1在蚀刻步骤中形成凹陷,而得到凹陷136,如图5所示。半导体基板20在凹陷136间的部分因而形成鳍板138,其鳍板高度表示为Hfin1。在一实施例中,鳍板高度Hfin1介于25纳米至约40纳米,但其也可更大或更小。鳍板高度Hfin1及Hfin2彼此不同。鳍板高度的差异(Hfin1-Hfin2)的绝对值可大于约5纳米,更或大于约10纳米。并且,Hfin1/Hfin2的比例可大于约1.25,更或大于约1.33。Referring to FIG. 4 , the device region 200 is exposed using the photoresist 234 as a mask to expose the device region 100 . The exposed STI region 30_1 is recessed in the etching step to obtain a recess 136 , as shown in FIG. 5 . The portion of the semiconductor substrate 20 between the recesses 136 thus forms a fin 138 whose fin height is denoted as H fin1 . In one embodiment, the fin height H fin1 is between 25 nm and about 40 nm, but it can be larger or smaller. The fin heights H fin1 and H fin2 are different from each other. The absolute value of the difference in fin height (H fin1 -H fin2 ) may be greater than about 5 nm, more or greater than about 10 nm. Also, the ratio of H fin1 /H fin2 may be greater than about 1.25, more or greater than about 1.33.

而后,如图6所示,移除掩模层24及垫层22。若掩模层24是以氮化硅所形成,则可利用热磷酸湿蚀刻移除,而若垫层22是以氧化硅形成,则可利用稀氢氟酸移除。应注意如图6所示,在浅沟槽隔离区30底部下的基板20的部分可视为半导体基板,而鳍板138及238可视为在半导体基板上。Then, as shown in FIG. 6 , the mask layer 24 and pad layer 22 are removed. If the mask layer 24 is formed of silicon nitride, it can be removed by hot phosphoric acid wet etching, and if the pad layer 22 is formed of silicon oxide, it can be removed by dilute hydrofluoric acid. It should be noted that as shown in FIG. 6 , the portion of the substrate 20 below the bottom of the STI region 30 can be regarded as a semiconductor substrate, and the fins 138 and 238 can be regarded as being on the semiconductor substrate.

图7说明分别在元件区100及元件区200中形成鳍式场效应晶体管160及260。首先,以例如注入的方式,使良好的掺质(well dopants)导入暴露出的鳍板138及238中。在一实施例中,元件区100为p形鳍式场效应晶体管区,元件区200为n形鳍式场效应晶体管区,在鳍板138中进行n型不纯物注入以掺杂n型不纯物如磷,且在鳍板238中进行p型不纯物注入以掺杂p型不纯物如硼。分别形成栅极介电质150及250以覆盖鳍板138及238的顶表面及侧壁。可借由热氧化形成栅极介电质150及250,因此可包括热氧化硅(thermal silicon oxidation)。而后分别在栅极介电质150及250上形成栅极电极152及252。在一实施例中,各栅极电极152及252覆盖多于一个的鳍板138及238,使得所得到的各鳍式场效应晶体管160及260分别包括多于一个的鳍板138及238。在另一实施例中,各鳍板138及238可用以形成一个鳍式场效应晶体管。而后形成鳍式场效应晶体管剩余的元件,包括源极及漏极区以及源极及漏极硅化物(未显示)。形成这些元件的工艺为习知,故在此不重复叙述。FIG. 7 illustrates the formation of FinFETs 160 and 260 in device region 100 and device region 200 , respectively. First, well dopants are introduced into the exposed fins 138 and 238 by, for example, implantation. In one embodiment, the device region 100 is a p-type fin field effect transistor region, the device region 200 is an n-type fin field effect transistor region, and the n-type impurity implantation is performed in the fin plate 138 to dope the n-type impurity. a p-type impurity such as phosphorus, and a p-type impurity implant is performed in the fin 238 to dope the p-type impurity such as boron. Gate dielectrics 150 and 250 are formed to cover the top surfaces and sidewalls of fins 138 and 238 , respectively. Gate dielectrics 150 and 250 may be formed by thermal oxidation and thus may include thermal silicon oxidation. Gate electrodes 152 and 252 are then formed on gate dielectrics 150 and 250, respectively. In one embodiment, each gate electrode 152 and 252 covers more than one fin 138 and 238 , such that each resulting FinFET 160 and 260 includes more than one fin 138 and 238 , respectively. In another embodiment, each fin 138 and 238 may be used to form a FinFET. The remaining components of the FinFET are then formed, including source and drain regions and source and drain silicides (not shown). The processes for forming these components are well known, so they will not be repeated here.

图8至图10显示另一实施例。在此实施例中的初始结构与图1中的类似。而后,参照图8,在元件区200形成光致抗蚀剂234后,以第一剂量进行第一注入以在浅沟槽隔离区30_1中掺杂第一不纯物。所得浅沟槽隔离区具有第一不纯物浓度。接下来,如图9所示,移除光致抗蚀剂234,而形成光致抗蚀剂134。以第二剂量进行第二注入以在浅沟槽隔离区30_2中掺杂第二不纯物。所得浅沟槽隔离区具有第二不纯物浓度。在一实施例中,第一不纯物包括磷,而第二不纯物包括硼。8 to 10 show another embodiment. The initial structure in this embodiment is similar to that in FIG. 1 . Then, referring to FIG. 8 , after forming the photoresist 234 in the device region 200 , a first implantation is performed with a first dose to dope the first impurity in the shallow trench isolation region 30_1 . The resulting shallow trench isolation region has a first impurity concentration. Next, as shown in FIG. 9 , the photoresist 234 is removed to form the photoresist 134 . A second implant is performed with a second dose to dope the second impurity in the STI region 30_2. The resulting shallow trench isolation region has a second impurity concentration. In one embodiment, the first impurity includes phosphorus and the second impurity includes boron.

而后,如图10所示,移除光致抗蚀剂134,而例如利用湿蚀刻或其他方法使浅沟槽隔离区30形成凹陷。由于浅沟槽隔离区30_1及30_2的掺杂浓度不同,造成浅沟槽隔离区30_1及30_2的蚀刻速率不同,因此所形成的鳍板高度Hfin1及Hfin2不同。借由使浅沟槽隔离区30_1的图案化密度与浅沟槽隔离区30_2的图案化密度不同以导入图案负载效应(pattern loading effect),可增加鳍板高度Hfin1及Hfin2的差异,使得浅沟槽隔离区30_1及30_2蚀刻速率的差异更为增加。在另一实施例中,没有进行如图8及图9所示的浅沟槽隔离的掺杂。然而,浅沟槽隔离区30_1的图案化密度与浅沟槽隔离区30_2的图案化密度不同,且利用图案负载效应造成鳍板高度的差异。Then, as shown in FIG. 10 , the photoresist 134 is removed, and the shallow trench isolation region 30 is recessed, for example, by wet etching or other methods. Due to the different doping concentration of the shallow trench isolation regions 30_1 and 30_2 , the etching rates of the shallow trench isolation regions 30_1 and 30_2 are different, and thus the formed fin heights H fin1 and H fin2 are different. By making the patterning density of the STI region 30_1 different from that of the STI region 30_2 to introduce a pattern loading effect, the difference between the fin heights H fin1 and H fin2 can be increased, so that The difference between the etch rates of the STI regions 30_1 and 30_2 increases even more. In another embodiment, the doping of the shallow trench isolation as shown in FIG. 8 and FIG. 9 is not performed. However, the patterning density of the STI region 30_1 is different from the patterning density of the STI region 30_2 , and the difference in fin height is caused by the pattern loading effect.

在后续步骤中,移除硬掩模24及垫层22,而形成如图6所示结构。如图7所示,继续工艺以形成鳍式场效应晶体管160及260。In subsequent steps, the hard mask 24 and pad layer 22 are removed to form the structure shown in FIG. 6 . As shown in FIG. 7 , the process continues to form FinFETs 160 and 260 .

借由不同元件区的不同鳍板高度,可增加结宽裕度(junction window)增加,亦即在不同元件区的鳍式场效应晶体管的鳍板高度不再视为一体(tiedtogether)。在不同元件区具有不同鳍板高度,可使元件区的性能调控更为容易。此外,在一实施例中,鳍式场效应晶体管160(图7)在元件区100为p型鳍式场效应晶体管,而鳍式场效应晶体管260在元件区200为n型鳍式场效应晶体管,所形成在p型鳍式场效应晶体管160的鳍板高度大于在n型鳍式场效应晶体管260的鳍板高度。据此,p型鳍式场效应晶体管160及n型鳍式场效应晶体管260可应用于同一静态随机存取存储器元件(图18)。例如,p型鳍式场效应晶体管160可为上拉(pull-up)晶体管,而n型鳍式场效应晶体管260可为下拉(pull-down)晶体管。相较于具有较高的电子流动性的n型鳍式场效应晶体管260,p型鳍式场效应晶体管160较大的鳍板高度可弥补其较低的电洞流动性。p型鳍式场效应晶体管160的性能及n型鳍式场效应晶体管260的性能可因而平衡。By means of different fin heights in different device regions, the junction window can be increased, that is, the fin heights of FinFETs in different device regions are no longer considered as one (tiedtogether). There are different heights of the fins in different device regions, which can make the performance regulation of the device regions easier. In addition, in one embodiment, the FinFET 160 ( FIG. 7 ) is a p-type FinFET in the device region 100 , and the FinFET 260 is an n-type FinFET in the device region 200 , the height of the fin formed on the p-type FinFET 160 is greater than the height of the fin on the n-type FinFET 260 . Accordingly, the p-type FinFET 160 and the n-type FinFET 260 can be applied to the same SRAM device ( FIG. 18 ). For example, the p-type FinFET 160 may be a pull-up transistor, and the n-type FinFET 260 may be a pull-down transistor. Compared with the n-type FinFET 260 which has higher electron mobility, the larger fin height of the p-type FinFET 160 can compensate for its lower hole mobility. The performance of the p-type FinFET 160 and the performance of the n-type FinFET 260 can thus be balanced.

图11A至图16B显示根据另一实施例制造鳍式场效应晶体管的中间阶段,其中在单一鳍式场效应晶体管中浅沟槽隔离区30具有不同的凹陷深度。首先,参照图11A及图11B,形成半导体鳍板310,其可为与下方基板20相同材料所形成的硅鳍板。半导体鳍板310的形成可大体与图2至图6中鳍板138及238的形成相同。图11A显示纵向剖面图,其中虚线表示鳍板310与基板20由半导体带(semiconductor strip)连接。图11B显示横向剖面图。半导体鳍板310的鳍板高度为Hfin,鳍板310的鳍板宽为WfinFIGS. 11A-16B show intermediate stages of manufacturing a FinFET according to another embodiment, wherein the STI region 30 has different recess depths in a single FinFET. First, referring to FIG. 11A and FIG. 11B , a semiconductor fin 310 is formed, which may be a silicon fin made of the same material as the underlying substrate 20 . The formation of the semiconductor fin 310 may be substantially the same as the formation of the fins 138 and 238 in FIGS. 2-6 . FIG. 11A shows a longitudinal cross-sectional view, where the dotted line indicates that the fin plate 310 is connected to the substrate 20 by a semiconductor strip. Figure 1 IB shows a transverse cross-sectional view. The fin height of the semiconductor fin 310 is H fin , and the fin width of the fin 310 is W fin .

而后,如图12所示透视图,形成栅极介电质314及栅极电极316。栅极介电质314形成在鳍板310的顶表面及侧壁。栅极电极形成在栅极介电质314上。而后可对半导体鳍板310进行注入,而形成浅掺杂源极及漏极(LDD)区。在一实施例中,如图13所示,可在栅极介电质314及栅极电极316的侧壁形成细间隙物318,其中浅掺杂源极及漏极区的形成可在细间隙物318的形成之前或之后。可视需要,形成掩模层317,其可为氮化物。图13也显示掩模层317。Then, as shown in perspective view in FIG. 12 , a gate dielectric 314 and a gate electrode 316 are formed. A gate dielectric 314 is formed on the top surface and sidewalls of the fin 310 . A gate electrode is formed on the gate dielectric 314 . The semiconductor fin 310 may then be implanted to form lightly doped source and drain (LDD) regions. In one embodiment, as shown in FIG. 13 , fine spacers 318 can be formed on the sidewalls of the gate dielectric 314 and the gate electrode 316, wherein the shallowly doped source and drain regions can be formed in the fine gaps. before or after the formation of object 318. Optionally, a masking layer 317 is formed, which may be nitride. FIG. 13 also shows masking layer 317 .

接着,如图14A所示,形成栅极间隙物320。栅极间隙物320可包括之前形成的细间隙物318。应了解栅极间隙物320可有许多不同的变化。例如,如图14A所示,各栅极间隙物320可具有氮化物-氧化物-氮化物-氧化物(NONO结构)。在另一实施例中,各栅极间隙物320可只含一层氮化物层在氧化物层上(称为NO结构)。在半导体鳍板310的相对侧壁的浅沟槽隔离区30暴露出来的部分形成凹陷,此部分没有被栅极电极316覆盖。图14A的结构的透视图如图14B所示。为了更清楚的说明而没有显示鳍板310的高度及栅极间隙物320。所得结构的鳍板310具有二高度。鳍板310(也包括所形成鳍式场效应晶体管的沟道区)由栅极间隙物320及栅极电极316所覆盖的部分具有鳍板高度Hfin,此鳍板高度与图11B所示相同。由于浅沟槽隔离区30的凹陷,半导体鳍板310未被覆盖的部分具有增加的鳍板高度Hfin’。在一实施例中,Hfin’较鳍板高度Hfin大约2纳米,更或大于约10纳米。或者,Hfin’/Hfin的比例可大于约1.05,更或可大于约1.08,或介于约1.05至约1.5。Next, as shown in FIG. 14A , gate spacers 320 are formed. The gate spacers 320 may include the previously formed fine spacers 318 . It should be understood that the gate spacer 320 can have many different variations. For example, as shown in FIG. 14A , each gate spacer 320 may have a nitride-oxide-nitride-oxide (NONO structure). In another embodiment, each gate spacer 320 may only include a nitride layer on an oxide layer (referred to as an NO structure). A recess is formed on the exposed portion of the STI region 30 on the opposite sidewall of the semiconductor fin 310 , which portion is not covered by the gate electrode 316 . A perspective view of the structure of Figure 14A is shown in Figure 14B. The height of the fin 310 and the gate spacer 320 are not shown for clarity. The fin 310 of the resulting structure has two heights. The portion of the fin 310 (also including the channel region of the formed FinFET) covered by the gate spacer 320 and the gate electrode 316 has a fin height H fin which is the same as that shown in FIG. 11B . Due to the recess of the STI region 30 , the uncovered portion of the semiconductor fin 310 has an increased fin height H fin ′. In one embodiment, H fin ′ is about 2 nm, or greater than about 10 nm, greater than the fin height H fin . Alternatively, the ratio of H fin '/H fin can be greater than about 1.05, more alternatively can be greater than about 1.08, or between about 1.05 and about 1.5.

而后,如图15A所示,在半导体鳍板310暴露部分外延成长而形成外延半导体层324。外延半导体层324可包括硅、锗、碳、及/或其他已知半导体材料。在一实施例中,所得鳍式场效应晶体管为p型,外延半导体层324可包括硅且可还包括锗。在另一实施例中,其中所得鳍式场效应晶体管为n型,外延半导体层234可包括硅且可还包括碳。外延成长半导体层的厚度T可大于约10纳米。Then, as shown in FIG. 15A , the exposed portion of the semiconductor fin 310 is epitaxially grown to form an epitaxial semiconductor layer 324 . The epitaxial semiconductor layer 324 may include silicon, germanium, carbon, and/or other known semiconductor materials. In one embodiment, the resulting FinFET is p-type, and the epitaxial semiconductor layer 324 may include silicon and may further include germanium. In another embodiment, where the resulting FinFET is n-type, the epitaxial semiconductor layer 234 may include silicon and may further include carbon. The thickness T of the epitaxially grown semiconductor layer may be greater than about 10 nanometers.

图15B显示图15A所示结构的另一剖面图,其中此剖面图是在图15A中通过垂直平面的穿越线15B-15B而得。鳍板高度Hfin标示于图15B中。图15C显示图15A结构的另一剖面图,其中此剖面图是在图15A中通过垂直平面的穿越线15C-15C而得。鳍板高度Hfin’标示于图15C中。相较于图15B及15C图,可发现由于鳍板高度Hfin的增加,外延半导体层234的体积增加。若半导体鳍板的鳍板高度没有由Hfin值增加至Hfin’值,则外延半导体层234只限于在虚线328的区域间。在图15B及15C图,虽然没有明显可见的底部,半导体鳍板310被视为其底部与在鳍板310相对边的浅沟槽隔离区的上表面齐平。据此,如图15B所示,半导体鳍板310的底部直接在栅极电极316之下,如线327所示。并且,在图15C中,半导体鳍板310的底部没有被栅极电极316及栅极间隙物320所覆盖,如线329所示。线(底部)329低于线(底部)327。FIG. 15B shows another cross-sectional view of the structure shown in FIG. 15A, wherein the cross-sectional view is taken through the vertical plane crossing line 15B-15B in FIG. 15A. The fin height Hfin is indicated in Figure 15B. Figure 15C shows another cross-sectional view of the structure of Figure 15A, where the cross-sectional view is taken through the vertical plane crossing line 15C-15C in Figure 15A. The fin height Hfin ' is indicated in Figure 15C. Compared with FIGS. 15B and 15C , it can be found that the volume of the epitaxial semiconductor layer 234 increases due to the increase of the fin height H fin . If the fin height of the semiconductor fin does not increase from the value H fin to the value H fin ′, the epitaxial semiconductor layer 234 is only limited within the region of the dotted line 328 . In FIGS. 15B and 15C , the bottom of semiconductor fin 310 is considered to be flush with the upper surface of the STI region on the opposite side of fin 310 , although there is no clearly visible bottom. Accordingly, as shown in FIG. 15B , the bottom of semiconductor fin 310 is directly under gate electrode 316 , as indicated by line 327 . Also, in FIG. 15C , the bottom of semiconductor fin 310 is not covered by gate electrode 316 and gate spacer 320 , as indicated by line 329 . Line (bottom) 329 is below line (bottom) 327 .

参照图16A,进行注入以在半导体鳍板310及外延半导体层324中形成源极及漏极区。移除掩模层(硬掩模)317,而在外延半导体层324形成源极/漏极硅化物区330及栅极硅化物区332。源极/漏极硅化物区及栅极硅化物区332的形成可利用已知方法。在形成硅化物区330及332后,可完全或部分消耗外延半导体层324。在所形成的结构中,硅化物区330由外延半导体层剩余的部分而与半导体鳍板310隔开,或是以鳍板310直接接触。Referring to FIG. 16A , implantation is performed to form source and drain regions in the semiconductor fin 310 and the epitaxial semiconductor layer 324 . The mask layer (hard mask) 317 is removed, and a source/drain silicide region 330 and a gate silicide region 332 are formed on the epitaxial semiconductor layer 324 . The source/drain silicide region and the gate silicide region 332 can be formed using known methods. After the silicide regions 330 and 332 are formed, the epitaxial semiconductor layer 324 may be completely or partially consumed. In the resulting structure, the silicide region 330 is separated from the semiconductor fin 310 by the remainder of the epitaxial semiconductor layer, or is in direct contact with the fin 310 .

图16B显示图16A所示结构的另一剖面图,其中此剖面图是在图16A中通过垂直平面的穿越线16B-16B而得。借由在外延形成外延半导体层324之前凹陷浅沟槽隔离区30,而增加源极及漏极区的体积。这对于减少源极及漏极区的电流拥挤(current crowding)的正面影响。由于应力源极及漏极区的体积增加,也增加了鳍式场效应晶体管的沟道区上的张力及压缩应力。此外,由于外延半导体层324的侧壁面积增加造成硅化物区330尺寸增加,也降低了硅化物区330的电流拥挤效应。FIG. 16B shows another cross-sectional view of the structure shown in FIG. 16A, wherein the cross-sectional view is taken through the vertical plane crossing line 16B-16B in FIG. 16A. The volume of the source and drain regions is increased by recessing the STI region 30 before epitaxially forming the epitaxial semiconductor layer 324 . This has the positive effect of reducing current crowding in the source and drain regions. Due to the increased volume of the stressed source and drain regions, the tensile and compressive stresses on the channel region of the FinFET are also increased. In addition, the size of the silicide region 330 increases due to the increase in the area of the sidewall of the epitaxial semiconductor layer 324 , which also reduces the current crowding effect of the silicide region 330 .

虽然本发明已以数个优选实施例揭示如上,然而其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作任意的更动与润饰,因此本发明的保护范围当视随附的权利要求所界定的范围为准。Although the present invention has been disclosed above with several preferred embodiments, it is not intended to limit the present invention. Any skilled person in the art can make arbitrary changes and modifications without departing from the spirit and scope of the present invention. Therefore The protection scope of the present invention should be determined by the scope defined by the appended claims.

Claims (6)

1.一种集成电路结构,包括:1. An integrated circuit structure comprising: 一半导体基板,包括在一第一元件区的一第一部分,以及在一第二元件区的一第二部分;a semiconductor substrate comprising a first portion in a first element region and a second portion in a second element region; 一第一半导体鳍板,在该半导体基板上,且具有一第一鳍板高度;a first semiconductor fin on the semiconductor substrate and having a first fin height; 一第二半导体鳍板,在该半导体基板上,且具有一第二鳍板高度,其中该第一鳍板高度大于该第二鳍板高度;a second semiconductor fin on the semiconductor substrate and having a second fin height, wherein the first fin height is greater than the second fin height; 一第一浅沟槽隔离区及一第二浅沟槽隔离区,位于该第一半导体鳍板的相对边,该第一、第二浅沟槽隔离区具有一第一不纯物,其具有一第一不纯物浓度;A first shallow trench isolation region and a second shallow trench isolation region are located on opposite sides of the first semiconductor fin plate, and the first and second shallow trench isolation regions have a first impurity having - the first impurity concentration; 一第三浅沟槽隔离区及一第四浅沟槽隔离区,位于该第二半导体鳍板的相对边,该第三、第四浅沟槽隔离区具有一第二不纯物,其具有一第二不纯物浓度,且该第一不纯物浓度不同于该第二不纯物浓度;A third shallow trench isolation region and a fourth shallow trench isolation region are located on opposite sides of the second semiconductor fin plate, and the third and fourth shallow trench isolation regions have a second impurity having a second impurity concentration, and the first impurity concentration is different from the second impurity concentration; 一第一鳍式场效应晶体管,包括:一第一栅极介电质,在该第一半导体鳍板的一顶表面及侧壁上;及一第一栅极电极,在该第一栅极介电质上;以及A first FinFET comprising: a first gate dielectric on a top surface and sidewalls of the first semiconductor fin; and a first gate electrode on the first gate on a dielectric; and 一第二鳍式场效应晶体管,包括:一第二栅极介电质,在该第二半导体鳍板的一顶表面及侧壁上;及一第二栅极电极,在该第二栅极介电质上;A second FinFET comprising: a second gate dielectric on a top surface and sidewalls of the second semiconductor fin; and a second gate electrode on the second gate On the dielectric; 其中该第一鳍式场效应晶体管为一p型鳍式场效应晶体管,及该第二鳍式场效应晶体管为一n型鳍式场效应晶体管,且其中该第一鳍式场效应晶体管及该第二鳍式场效应晶体管为在同一静态随机存取存储器单元的鳍式场效应晶体管。wherein the first FinFET is a p-type FinFET, and the second FinFET is an n-type FinFET, and wherein the first FinFET and the The second FinFET is a FinFET in the same SRAM cell. 2.如权利要求1所述的集成电路结构,其中该第一半导体鳍板的该顶表面与该第二半导体鳍板的该顶表面等高。2. The integrated circuit structure of claim 1, wherein the top surface of the first semiconductor fin is at the same height as the top surface of the second semiconductor fin. 3.如权利要求1所述的集成电路结构,3. The integrated circuit structure of claim 1, 其中该第一浅沟槽隔离区及该第二浅沟槽隔离区具有第一顶表面与该第一半导体鳍板的一底表面齐平;以及wherein the first STI region and the second STI region have a first top surface flush with a bottom surface of the first semiconductor fin; and 其中该第三浅沟槽隔离区及该第四浅沟槽隔离区具有第二顶表面与该第二半导体鳍板的一底表面齐平,且其中该第一顶表面低于该第二顶表面。wherein the third shallow trench isolation region and the fourth shallow trench isolation region have a second top surface flush with a bottom surface of the second semiconductor fin plate, and wherein the first top surface is lower than the second top surface surface. 4.如权利要求1所述的集成电路结构,其中该第一鳍板高度对该第二鳍板高度的比例大于1.25。4. The integrated circuit structure of claim 1, wherein a ratio of the first fin height to the second fin height is greater than 1.25. 5.一种集成电路结构的形成方法,包括:5. A method for forming an integrated circuit structure, comprising: 提供一半导体基板,包括在一第一元件区的一第一部分,以及在一第二元件区的一第二部分;providing a semiconductor substrate including a first portion in a first element region and a second portion in a second element region; 在该半导体基板上形成一第一半导体鳍板,且具有一第一鳍板高度;以及forming a first semiconductor fin on the semiconductor substrate and having a first fin height; and 在该半导体基板上形成一第二半导体鳍板,且具有一第二鳍板高度,其中该第一鳍板高度大于该第二鳍板高度;forming a second semiconductor fin on the semiconductor substrate and having a second fin height, wherein the first fin height is greater than the second fin height; 其中该第一半导体鳍板及该第二半导体鳍板的形成步骤包括:Wherein the forming steps of the first semiconductor fin plate and the second semiconductor fin plate include: 在该半导体基板中形成一第一浅沟槽隔离区及一第二浅沟槽隔离区,其中该第一浅沟槽隔离区在该第一元件区中,该第二浅沟槽隔离区在该第二元件区中;A first shallow trench isolation region and a second shallow trench isolation region are formed in the semiconductor substrate, wherein the first shallow trench isolation region is in the first element region, and the second shallow trench isolation region is in the first element region in the second element area; 以一第一不纯物掺杂该第一浅沟槽隔离区至一第一不纯物浓度;doping the first STI region with a first impurity to a first impurity concentration; 以一第二不纯物掺杂该第二浅沟槽隔离区至不同于该第一不纯物浓度的一第二不纯物浓度;以及doping the second shallow trench isolation region with a second impurity to a second impurity concentration different from the first impurity concentration; and 同时凹陷该第一浅沟槽隔离区及该第二浅沟槽隔离区。Simultaneously recess the first shallow trench isolation region and the second shallow trench isolation region. 6.如权利要求5所述的集成电路结构的形成方法,还包括:6. The forming method of the integrated circuit structure as claimed in claim 5, further comprising: 形成一第一鳍式场效应晶体管包括:Forming a first FinFET includes: 在该第一半导体鳍板的一顶表面及侧壁上形成一第一栅极介电质;以及forming a first gate dielectric on a top surface and sidewalls of the first semiconductor fin; and 在该第一栅极介电质上形成一第一栅极电极;以及forming a first gate electrode on the first gate dielectric; and 形成一第二鳍式场效应晶体管包括:Forming a second FinFET includes: 在该第二半导体鳍板的一顶表面及侧壁上形成一第二栅极介电质;以及forming a second gate dielectric on a top surface and sidewalls of the second semiconductor fin; and 在该第二栅极介电质上形成一第二栅极电极。A second gate electrode is formed on the second gate dielectric.
CN 201010553964 2009-11-20 2010-11-19 Integrated circuit structure and method of forming the same Active CN102074582B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US26316409P 2009-11-20 2009-11-20
US61/263,164 2009-11-20
US12/871,655 2010-08-30
US12/871,655 US8941153B2 (en) 2009-11-20 2010-08-30 FinFETs with different fin heights

Publications (2)

Publication Number Publication Date
CN102074582A CN102074582A (en) 2011-05-25
CN102074582B true CN102074582B (en) 2013-06-12

Family

ID=44033037

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010553964 Active CN102074582B (en) 2009-11-20 2010-11-19 Integrated circuit structure and method of forming the same

Country Status (1)

Country Link
CN (1) CN102074582B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8373238B2 (en) * 2009-12-03 2013-02-12 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with multiple Fin heights
CN103022039B (en) * 2011-09-21 2016-03-30 中国科学院微电子研究所 Sram unit and manufacturing method thereof
CN103022038B (en) * 2011-09-21 2015-06-10 中国科学院微电子研究所 Sram unit and manufacturing method thereof
US9397104B2 (en) 2011-09-21 2016-07-19 Institute of Microelectronics, Chinese Academy of Sciences SRAM cell and method for manufacturing the same
US9196541B2 (en) 2011-09-21 2015-11-24 Institute of Microelectronics, Chinese Academy of Sciences SRAM cell and method for manufacturing the same
CN103021854B (en) * 2011-09-28 2015-09-16 中国科学院微电子研究所 Method for manufacturing fin field effect transistor and semiconductor structure formed by method
EP2803077A4 (en) * 2012-01-13 2015-11-04 Tela Innovations Inc CIRCUITS WITH LINEAR FINFET STRUCTURES
US8860148B2 (en) * 2012-04-11 2014-10-14 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for FinFET integrated with capacitor
KR101994237B1 (en) * 2012-08-28 2019-06-28 삼성전자 주식회사 Semiconductor device and fabricating method thereof
US20150171217A1 (en) 2013-12-12 2015-06-18 Texas Instruments Incorporated Design and integration of finfet device
US9184087B2 (en) * 2013-12-27 2015-11-10 Taiwan Semiconductor Manufacturing Co., Ltd. Mechanisms for forming FinFETs with different fin heights
WO2015149705A1 (en) * 2014-04-04 2015-10-08 唐棕 Fin type semiconductor structure and forming method therefor
CN105097436B (en) * 2014-05-22 2018-03-23 中芯国际集成电路制造(上海)有限公司 The preparation method of strained silicon layer, the preparation method of PMOS device and semiconductor devices
CN105097542B (en) * 2014-05-22 2018-11-16 中芯国际集成电路制造(上海)有限公司 A kind of manufacturing method and electronic device of semiconductor devices
CN104733325A (en) * 2015-03-31 2015-06-24 上海华力微电子有限公司 Method for manufacturing fin field effect transistors
KR102460718B1 (en) * 2015-05-28 2022-10-31 삼성전자주식회사 Integrated circuit device
US9865595B1 (en) * 2016-12-14 2018-01-09 Taiwan Semiconductor Manufacturing Co., Ltd. FinFET device with epitaxial structures that wrap around the fins and the method of fabricating the same
CN109273442B (en) * 2017-07-18 2021-05-04 联华电子股份有限公司 Semiconductor device and method of making the same
CN109686779B (en) * 2017-10-19 2022-05-13 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and method of forming the same
US11404423B2 (en) * 2018-04-19 2022-08-02 Taiwan Semiconductor Manufacturing Co., Ltd Fin-based strap cell structure for improving memory performance
US11362100B2 (en) * 2020-03-24 2022-06-14 Silicon Storage Technology, Inc. FinFET split gate non-volatile memory cells with enhanced floating gate to floating gate capacitive coupling
CN114744045B (en) * 2020-06-01 2024-12-03 福建省晋华集成电路有限公司 Semiconductor structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088036A (en) * 2009-12-03 2011-06-08 台湾积体电路制造股份有限公司 Integrated circuit structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE400892T1 (en) * 2001-11-26 2008-07-15 Imec Inter Uni Micro Electr PRODUCTION PROCESS FOR CMOS SEMICONDUCTOR COMPONENTS WITH SELECTABLE GATE THICKNESS
US6921982B2 (en) * 2003-07-21 2005-07-26 International Business Machines Corporation FET channel having a strained lattice structure along multiple surfaces
JP4122439B2 (en) * 2004-03-11 2008-07-23 独立行政法人産業技術総合研究所 CMOS circuit using double insulated gate field effect transistor
KR100576361B1 (en) * 2004-03-23 2006-05-03 삼성전자주식회사 3D CMOS field effect transistor and method of manufacturing the same
KR100612419B1 (en) * 2004-10-19 2006-08-16 삼성전자주식회사 Semiconductor device having fin transistor and planar transistor and method for forming same
US20080157225A1 (en) * 2006-12-29 2008-07-03 Suman Datta SRAM and logic transistors with variable height multi-gate transistor architecture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088036A (en) * 2009-12-03 2011-06-08 台湾积体电路制造股份有限公司 Integrated circuit structure

Also Published As

Publication number Publication date
CN102074582A (en) 2011-05-25

Similar Documents

Publication Publication Date Title
CN102074582B (en) Integrated circuit structure and method of forming the same
JP5330358B2 (en) Integrated circuit structure and integrated circuit manufacturing method
CN102088036B (en) integrated circuit structure
US9721829B2 (en) FinFETs with different fin height and EPI height setting
CN102194755B (en) Fin field effect transistor and manufacturing method thereof
CN101189730B (en) Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
CN103199010B (en) Finfet and forming method thereof
CN101261991B (en) Semiconductor Structures and Chips
CN104488079B (en) FINFET with merged fins and vertical silicide
CN102194697A (en) Formation method of semiconductor structure
CN103578996B (en) Transistor fabrication process
CN112349592B (en) NS-FET for avoiding parasitic channel effect and preparation method thereof
CN102339860B (en) Semiconductor device and method for manufacturing the same
CN108074974B (en) Method of forming semiconductor device
TWI699886B (en) Semiconductor devices and method of fabricating thereof
US20240243180A1 (en) Semiconductor device and method of fabricating the same
CN104282565A (en) Fin field effect transistor and forming method thereof
CN113497111A (en) Semiconductor structure and forming method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant