CN102073546A - Task-dynamic dispatching method under distributed computation mode in cloud computing environment - Google Patents
Task-dynamic dispatching method under distributed computation mode in cloud computing environment Download PDFInfo
- Publication number
- CN102073546A CN102073546A CN2010105835979A CN201010583597A CN102073546A CN 102073546 A CN102073546 A CN 102073546A CN 2010105835979 A CN2010105835979 A CN 2010105835979A CN 201010583597 A CN201010583597 A CN 201010583597A CN 102073546 A CN102073546 A CN 102073546A
- Authority
- CN
- China
- Prior art keywords
- task
- node
- computing
- information
- main controlled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000004044 response Effects 0.000 claims abstract description 6
- 238000012545 processing Methods 0.000 claims description 13
- 230000006399 behavior Effects 0.000 claims 3
- 230000010076 replication Effects 0.000 claims 2
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000012217 deletion Methods 0.000 claims 1
- 230000037430 deletion Effects 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 claims 1
- 238000011160 research Methods 0.000 description 6
- 238000011161 development Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Images
Landscapes
- Multi Processors (AREA)
Abstract
一种云计算环境中分布式计算模式下的任务动态调度方法,该方法有四大步骤:步骤一、主节点接收子节点的心跳信息并加以分析;步骤二、主节点根据节点状态表和任务状态表预分配任务;步骤三、子节点向主节点索取任务;步骤四、主节点为子节点分配任务。本发明首先考虑任务的资源需求及节点的性能信息,在满足需求的情况下对任务的分配进行动态控制,从而提高作业的响应速度和节点的资源使用率。它在云计算环境下的分布式计算技术领域里具有广泛地实用价值和应用前景。
A method for dynamically scheduling tasks in a distributed computing mode in a cloud computing environment. The method has four steps: Step 1, the master node receives and analyzes the heartbeat information of the child nodes; The state table pre-allocates tasks; Step 3, the child node requests tasks from the master node; Step 4, the master node assigns tasks to the child nodes. The invention firstly considers the resource requirement of the task and the performance information of the node, and dynamically controls the allocation of the task when the requirement is met, thereby improving the response speed of the job and the resource utilization rate of the node. It has extensive practical value and application prospects in the field of distributed computing technology under the cloud computing environment.
Description
(一)技术领域(1) Technical field
本发明涉及一种分布式计算模型的任务调度方法。具体涉及到一种云计算环境中分布式计算模式下的任务动态调度方法。它是一种任务调度子系统中任务的基于节点性能的动态调度方法,属于计算机技术领域。The invention relates to a task scheduling method of a distributed computing model. Specifically, it relates to a task dynamic scheduling method in a distributed computing mode in a cloud computing environment. It is a dynamic scheduling method based on node performance for tasks in a task scheduling subsystem, and belongs to the field of computer technology.
(二)背景技术(2) Background technology
目前,随着网络应用的飞速发展使得对计算能力的需求不断增加,伴随着网格计算、并行计算、分布式计算的发展,云计算应运而生,被列为国家未来重点发展的技术方向,并成为了当今计算机研究界和工业界的热点研究课题。随着云计算的流行,越来越多的网络(Web)服务和商业应用被部署到云计算环境中,对于云环境中处理应用层计算请求的分布式节点来说,如何通过任务的调度以高效处理上层计算请求,提高性能上异构的分布式节点的资源的使用率,并提升作业的响应速度成为当前云计算领域的研究热点。At present, with the rapid development of network applications, the demand for computing power continues to increase, and with the development of grid computing, parallel computing, and distributed computing, cloud computing has emerged as the times require, and is listed as a key technical direction for the country's future development. And it has become a hot research topic in today's computer research and industry circles. With the popularity of cloud computing, more and more network (Web) services and business applications are deployed in the cloud computing environment. For the distributed nodes processing application layer computing requests in the cloud environment, how to use task scheduling and Efficiently processing upper-layer computing requests, improving the resource utilization of heterogeneous distributed nodes in terms of performance, and improving the response speed of jobs has become a research hotspot in the field of cloud computing.
在对云环境中的海量数据进行处理时,以分布式存储和分布式并行处理为基础的任务调度是关键步骤之一。改进作业和任务的调度方法是目前的研究热点,国内外研究主要包括多作业并行运行时作业之间的调度、单作业运行时子任务的调度和并行运行的子任务数量的最优化等方面。When processing massive data in the cloud environment, task scheduling based on distributed storage and distributed parallel processing is one of the key steps. Improving the scheduling method of jobs and tasks is a research hotspot at present. Research at home and abroad mainly includes scheduling between jobs when multiple jobs are running in parallel, scheduling subtasks when a single job is running, and optimizing the number of subtasks running in parallel.
在作业的调度方面,当前的最基本的调度方式为先进先出的作业调度方法,毋庸置疑,这种作业处理方法有很多弊端,尤其是在作业数量较多时,整体响应时间很长。公平调度器(Fair scheduler)的提出较好的解决了这个问题,当单独一个作业在运行时,它将使用整个集群。当有其它作业被提交时,系统会将任务空闲时间片赋给这些新的作业,以使得每一个作业都大概获取到等量的CPU时间,并且使小任务得到快速响应的同时保证大任务的服务水平。容量调度器(Capacity scheduler)则支持多队列,作业提交后进入一个队列,资源按队列分配,每个队列中的作业使用该队列的资源;在一个队列中,高优先级的作业可以先于低优先级的作业使用资源;但一旦一个作业开始执行,它就不会被更高优先级的作业抢占;为防止一个或多个用户垄断所有资源,强制为每个队列分配一定比例的资源。中国科学院计算技术研究所提出的基于MR-Predict的三队列调度器根据CPU和I/O使用率将工作负载分成3类,能够在不同类型的工作负载环境下同时提高CPU和I/O资源的使用率。In terms of job scheduling, the current most basic scheduling method is the first-in first-out job scheduling method. Undoubtedly, this job processing method has many disadvantages, especially when the number of jobs is large, the overall response time is very long. The fair scheduler (Fair scheduler) is a better solution to this problem. When a single job is running, it will use the entire cluster. When other jobs are submitted, the system will assign task idle time slices to these new jobs, so that each job can obtain approximately the same amount of CPU time, and make small tasks respond quickly while ensuring the performance of large tasks. Service Level. The Capacity scheduler supports multiple queues. After a job is submitted, it enters a queue, resources are allocated according to the queue, and the jobs in each queue use the resources of the queue; Priority jobs use resources; but once a job starts executing, it is not preempted by higher priority jobs; to prevent one or more users from monopolizing all resources, each queue is forced to allocate a certain percentage of resources. The MR-Predict-based three-queue scheduler proposed by the Institute of Computing Technology, Chinese Academy of Sciences divides workloads into three categories according to CPU and I/O usage, and can simultaneously improve the utilization of CPU and I/O resources under different types of workload environments. usage rate.
在任务调度上,加州伯克利大学的研究人员提出的LATE(Longest ApproximateTime to End)调度算法则聚焦于对作业中的备份任务的调度的优化。通过推测完成任务所需要的时间,确保只在速度快的节点上执行估计最晚完成的任务的备份任务。普渡大学的研究人员提出了基于历史统计数据的任务数量最优化配置方法,其研究主要关注在执行作业时,云环境中每个节点上同时运行的任务的数目对性能的影响,根据历史统计数据,获取最优化配置并应用于新的同类作业。In terms of task scheduling, the LATE (Longest Approximate Time to End) scheduling algorithm proposed by researchers at the University of California, Berkeley focuses on optimizing the scheduling of backup tasks in jobs. By speculating on how long it will take to complete, this ensures that backup tasks that are estimated to be the latest to complete are only executed on the fastest nodes. Researchers at Purdue University proposed an optimal configuration method for the number of tasks based on historical statistical data. Their research focuses on the impact of the number of concurrently running tasks on each node in the cloud environment on performance when executing jobs. According to historical statistics data, obtain optimal configurations and apply them to new jobs of the same kind.
然而,在大多数情况下,不同节点的性能各异,不同时刻各节点的负载状况也不同,如何根据节点的性能异构性及动态负债状况确定任务的动态分配策略,对于高效处理计算任务并提高分布式节点的资源使用率、提升作业的响应速度有重要意义。However, in most cases, the performance of different nodes is different, and the load status of each node is also different at different times. How to determine the dynamic allocation strategy of tasks according to the performance heterogeneity and dynamic liability status of nodes is very important for efficient processing of computing tasks and It is of great significance to improve the resource utilization rate of distributed nodes and improve the response speed of jobs.
(三)发明内容(3) Contents of the invention
1、目的:1. Purpose:
本发明的主要目的是提供一种云计算环境中分布式计算模式下的任务动态调度方法,它首先考虑任务的资源需求及节点的性能信息,在满足需求的情况下对任务的分配进行动态控制,从而提高作业的响应速度和节点的资源使用率。The main purpose of the present invention is to provide a dynamic scheduling method for tasks in a distributed computing mode in a cloud computing environment. It first considers the resource requirements of tasks and the performance information of nodes, and dynamically controls the assignment of tasks when the requirements are met. , thereby improving job response speed and node resource utilization.
为实现上述目的,本发明提出了云计算环境中分布式计算模式下基于节点性能和任务执行状况的任务的动态调度方法,云计算环境下分布式计算节点的组成结构如图1所示,主要包括一个主控节点(主节点)和多个计算节点(子节点),计算节点既可以是物理机,也可以是虚拟机,对主控节点透明,节点间通过网络互联。主控节点与计算节点通过远程过程调用(RPC)方式交互。主控节点主要负责接收计算节点的心跳信息,并加以分析和反馈以控制任务的调度和执行;计算节点除了执行任务以外,还主要负责收集本节点的性能信息和任务执行信息并发送给主控节点。In order to achieve the above object, the present invention proposes a dynamic scheduling method for tasks based on node performance and task execution status in the distributed computing mode in the cloud computing environment. The composition structure of the distributed computing nodes in the cloud computing environment is shown in Figure 1, mainly It includes a master control node (master node) and multiple computing nodes (child nodes). The computing nodes can be physical machines or virtual machines, which are transparent to the master control node, and the nodes are interconnected through the network. The master control node interacts with the computing node through remote procedure call (RPC). The main control node is mainly responsible for receiving the heartbeat information of the computing node, and analyzing and giving feedback to control the scheduling and execution of tasks; in addition to executing tasks, the computing node is also mainly responsible for collecting the performance information and task execution information of the node and sending them to the main control node. node.
2、技术方案:2. Technical solution:
本发明的技术方案是这样的:Technical scheme of the present invention is such:
本发明一种云计算环境中分布式计算模式下的任务动态调度方法,具体流程如图2所示,该方法包括以下步骤:A method for dynamically scheduling tasks in a distributed computing mode in a cloud computing environment according to the present invention. The specific process is as shown in Figure 2. The method includes the following steps:
步骤201.计算节点动态收集本节点的性能信息及任务执行信息,以心跳信息的形式报告给主控节点。
步骤202.主控节点接收并分析各计算节点的心跳信息,创建并不断更新节点状态表和任务状态表。根据节点状态表和任务状态表,主控节点为计算节点预分配任务,更新节点预取表和任务预分表。
步骤203.如果计算节点中有空的任务槽(task slot)可用,则在下次的心跳信息中加入向主控节点请求任务的标志。
步骤204.主控节点接收到计算节点的任务请求后,按调度策略为其分配任务,并更新节点预取表和任务预分表。
其中,步骤201所述的节点性能信息和任务执行信息是主控节点更新节点状态表和任务状态表的重要数据来源。节点性能信息可包括CPU主频、内存大小、CPU使用率、内存使用率、I/O资源使用率等。任务执行信息包括刚结束的任务执行信息和正在进行中的任务执行信息;刚结束的任务执行信息包括任务的TaskID、所在作业的JobID、用于IO的时间(复制处理数据)和用于CPU计算的时间,其中,复制处理数据发生在该计算节点没有此任务的输入数据的情况下发生;正在进行中的任务执行信息包括任务的TaskID、所在作业的JobID、任务的执行进度和已执行时间。每个计算节点每隔一段时间收集本节点的这两种信息,并封装为心跳信息发送给主控节点。Wherein, the node performance information and task execution information described in
其中,步骤202中所述的节点状态表和任务状态表是主控节点制定任务分配方案的重要参考信息。节点状态表描述了近一段时期内各计算节点的性能状态,任务状态表记录了各计算节点在近一段时期内处理任务的情况。主控节点第一次接收到计算节点的心跳信息后,创建节点状态表和任务状态表并在以后每次接收到计算节点的心跳信息后更新这两个表。节点状态表包括NodeName、CPU_Speed、MemSize、CPU_Usage、Mem_Usage、IO_Usage这些字段;任务状态表包括JobID、TaskID、NodeName、Time_IO、Time_CPU、Progress、PastTime这些字段。节点预取表和任务预分表记录着当前集群中任务的预分配信息。节点预取表记录了主控节点为计算节点预先分配任务的信息,节点预取表包括NodeName、preFetched、preFetchedTaskID这些字段。任务预分表记录了主控节点将任务预先分配给计算节点的信息,任务预分表包括TaskID、preScheduled、preScheduledNodeName这些字段。Wherein, the node state table and the task state table described in
其中,步骤203所述的计算节点的任务槽的大小是指计算节点同一时刻能并行执行的最大任务数,任务槽的大小在分布式节点集群启动前配置好。计算节点只有在有空的任务槽的时候才向主控节点申请任务,任务的申请通过心跳信息传递,心跳信息中包含申请任务的标志位,如果为真则表明该计算节点有空的任务槽,主控节点可以将任务分配给该计算节点执行。Wherein, the size of the task slot of the computing node in
其中,步骤204所述的主控节点为申请任务的计算节点分配任务执行是通过分布式调度算法决定的。分布式调度算法在主控节点的调度器中实现,同一时刻可能有多个计算节点同时申请任务执行,调度器通过读取节点状态表、任务状态表、节点预取表和任务预分表,并结合剩余任务队列,根据分布式调度算法确定为计算节点分配任务的优先次序及任务个数,然后更新节点预取表和任务预分表。Wherein, the allocation of task execution by the master control node to the computing node applying for the task described in
3、优点及功效:本发明一种云计算环境中分布式计算模式下的任务动态调度方法,它与现有技术此,其主要优点是:(1)通过分析计算节点的性能动态变化和历史任务执行信息,使得主控节点对任务的分配更合理,更能充分发挥性能较好的计算节点的性能优势,而原有的任务调度方法都没有考虑各计算节点在性能上的动态变化性;(2)改变了典型的分布式计算模型(如MapReduce)中只要计算节点向主控节点申请任务即可获得任务执行的惯例,而为主控节点赋予了选择计算节点去执行任务的权利,这样就避免了性能较差的计算节点带来的瓶颈问题。3. Advantages and effects: a method for dynamically dispatching tasks in a distributed computing mode in a cloud computing environment of the present invention, which is different from the prior art in that its main advantages are: (1) by analyzing the performance dynamic changes and history of computing nodes Task execution information makes the allocation of tasks by the master control node more reasonable, and can give full play to the performance advantages of computing nodes with better performance. However, the original task scheduling method does not consider the dynamic variability of the performance of each computing node; (2) Changed the practice in typical distributed computing models (such as MapReduce) that as long as computing nodes apply for tasks from the master control node, they can obtain task execution, and the master control node has given the right to select computing nodes to perform tasks, so that This avoids the bottleneck problem caused by computing nodes with poor performance.
(四)附图说明(4) Description of drawings
图1本发明的云计算环境中分布式计算节点的组成结构示意图Fig. 1 is a schematic diagram of the composition structure of distributed computing nodes in the cloud computing environment of the present invention
图2云环境中基于分布式节点性能和任务执行状况的任务分布式调度流程示意图Figure 2 Schematic diagram of task distributed scheduling process based on distributed node performance and task execution status in cloud environment
图3本发明包括的三个阶段(初始化、信息更新和任务调度)的交互结构图Fig. 3 is an interactive structural diagram of three phases (initialization, information update and task scheduling) included in the present invention
图4本发明包括的三个阶段的详细流程图The detailed flowchart of three stages that Fig. 4 present invention comprises
图5本发明信息更新模块流程示意图Fig. 5 schematic flow chart of the information update module of the present invention
图6本发明任务调度模块流程示意图Figure 6 is a schematic flow diagram of the task scheduling module of the present invention
图中符号说明如下:The symbols in the figure are explained as follows:
201-204步骤序号;501-505步骤序号;601-604步骤序号;201-204 step number; 501-505 step number; 601-604 step number;
(五)具体实施方式(5) Specific implementation methods
为使本发明的目的、技术方案和优点表达得更加清楚明白,下面结合附图及具体实施例对本发明再作进一步详细的说明。In order to make the object, technical solution and advantages of the present invention more clearly, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
本发明所需满足的设备环境条件见图1,云环境中分布式计算节点的组成结构主要包括一个主控节点(主节点)和多个计算节点(子节点),计算节点既可以是物理机,也可以是虚拟机,对主控节点透明,节点间通过网络互联。主控节点与计算节点通过远程过程调用(RPC)方式交互。主控节点主要负责接收计算节点的心跳信息,并加以分析和反馈以控制任务的调度和执行;其中,节点分析器用于接收和分析计算节点的性能信息,更新节点状态表,任务分析器用于接收和分析计算节点的任务信息,更新任务状态表。计算节点除了执行任务以外,还主要负责收集本节点的性能信息和任务执行信息并发送给主控节点;其中,节点性能监控器负责收集节点最近一段时间的性能信息,任务监控器负责收集节点最近一段时间执行任务的记录信息。The equipment environment conditions that the present invention needs to satisfy are shown in Fig. 1, and the composition structure of the distributed computing node in the cloud environment mainly includes a main control node (master node) and a plurality of computing nodes (sub-nodes), and the computing node can be a physical machine , it can also be a virtual machine, which is transparent to the master control node, and the nodes are interconnected through the network. The master control node interacts with the computing node through remote procedure call (RPC). The main control node is mainly responsible for receiving the heartbeat information of computing nodes, and analyzing and feeding back to control the scheduling and execution of tasks; among them, the node analyzer is used to receive and analyze the performance information of computing nodes, update the node status table, and the task analyzer is used to receive And analyze the task information of computing nodes, and update the task status table. In addition to executing tasks, computing nodes are also mainly responsible for collecting the performance information and task execution information of the node and sending them to the master control node; among them, the node performance monitor is responsible for collecting the performance information of the node in the latest period, and the task monitor is responsible for collecting the latest Record information of tasks executed for a period of time.
本发明在软件条件方面,要求各节点采用Linux操作系统,安装有Java开发工具包1.6及以上版本。In terms of software conditions, the present invention requires each node to adopt a Linux operating system and to be installed with Java development kit version 1.6 and above.
本发明在环境条件方面,要求各节点能够通过ssh无密码互相访问。In terms of environmental conditions, the present invention requires each node to be able to access each other through ssh without password.
基于节点性能和任务执行状况的任务动态调度流程见图2,主要包括两个内容:(1)计算节点收集封装本节点的心跳信息并发送给主控节点,主控节点根据接收到的心跳信息建立和更新节点状态表和任务状态表;(2)主控节点在接收到计算节点的任务请求后,根据调度算法为计算节点分配任务并更新节点预取表和任务预分表。The task dynamic scheduling process based on node performance and task execution status is shown in Figure 2, which mainly includes two contents: (1) The computing node collects and encapsulates the heartbeat information of the node and sends it to the master control node, and the master control node according to the received heartbeat information Establish and update the node state table and task state table; (2) After receiving the task request from the computing node, the master control node assigns tasks to the computing node according to the scheduling algorithm and updates the node prefetching table and task pre-allocation table.
该方法包括三个阶段:初始化、信息更新和任务调度。其交互结构如图3所示。在初始化阶段,主控节点接收作业,并建立节点状态表和任务状态表;在信息更新阶段,主控节点接收计算节点的心跳信息并更新节点状态表、任务状态表、节点预取表和任务预分表,若计算节点请求任务,则进入任务调度阶段;在任务调度阶段,主控节点根据节点信息和任务信息为计算节点分配任务,结束后返回信息更新阶段等待计算节点的心跳信息。The method includes three phases: initialization, information update and task scheduling. Its interactive structure is shown in Figure 3. In the initialization phase, the master control node receives the job, and establishes the node status table and task status table; in the information update phase, the master control node receives the heartbeat information of the computing node and updates the node status table, task status table, node prefetch table and task Pre-allocate the table. If the computing node requests a task, it enters the task scheduling stage; in the task scheduling stage, the master control node assigns tasks to the computing node according to the node information and task information, and returns to the information update stage after the end to wait for the heartbeat information of the computing node.
下面以一实例进行说明,如图4所示,本发明所述的方法包括以下步骤:Illustrate with an example below, as shown in Figure 4, the method of the present invention comprises the following steps:
步骤401:计算节点上的节点性能监控器收集本节点的性能信息,任务监控器收集本节点的任务执行信息,再封装成心跳信息,发送给主控节点。信息收集和心跳信息发送的周期为3秒。Step 401: The node performance monitor on the computing node collects the performance information of the node, and the task monitor collects the task execution information of the node, and then encapsulates it into heartbeat information and sends it to the master control node. The cycle of information collection and heartbeat information sending is 3 seconds.
步骤402:主控节点接收并分析各计算节点的心跳信息,如果是第一次收到心跳信息,则创建节点状态表和任务状态表,如果已创建,则每收到一个心跳信息就更新节点状态表和任务状态表。主控节点根据节点状态表和任务状态表,为计算节点预分配任务,更新节点预取表和任务预分表。具体如图5的信息更新模块所示。Step 402: The master control node receives and analyzes the heartbeat information of each computing node. If it is the first time to receive the heartbeat information, create a node status table and a task status table. If it has already been created, update the node every time a heartbeat information is received State table and task state table. According to the node state table and task state table, the master control node pre-allocates tasks for computing nodes, and updates the node prefetch table and task pre-allocation table. Specifically, it is shown in the information update module in FIG. 5 .
步骤403:计算节点若有空的任务槽(task slot)可用,则在下次的心跳信息中加入向主控节点请求任务的标志。Step 403: If the computing node has an empty task slot available, add a flag requesting a task to the master control node in the next heartbeat message.
步骤404:主控节点接收到计算节点的任务请求后,按调度策略为其分配任务。具体如图6的任务调度模块所示。Step 404: After receiving the task request from the computing node, the master control node allocates tasks to it according to the scheduling policy. Specifically, it is shown in the task scheduling module in FIG. 6 .
信息更新模块的详细流程如图5所示,The detailed process of the information update module is shown in Figure 5.
步骤501:主控节点监听计算节点的RPC访问,接收计算节点发送的心跳信息。主控节点同一时刻只能接收一个计算节点的心跳信息,如果主控节点在接收某个计算节点的心跳信息时,有其他计算节点也向主控节点发送心跳信息,则主控节点将较晚心跳的计算节点加入等待队列。计算节点上的节点性能监控器监控并收集本节点最近一段时间内的性能信息,任务监控器监控本节点上正在执行的任务的信息并收集已执行的最近的3个历史任务的记录,计算节点将性能信息和任务信息封装为心跳信息。如果最近一段时间内的任务信息没有更新,心跳信息中也可以只包含节点的性能信息。计算节点每隔一段时间将心跳信息通过RPC方式发送给主控节点。心跳周期为3秒。每次心跳时,心跳信息中都应包含节点的性能信息和当前正在执行的任务的信息,而计算节点每执行完一个任务,都在下一次心跳时将刚结束的任务的执行记录加入心跳信息发送给主控节点,即任务信息中包含两类任务信息:已完成但未上报的任务信息(可能为空)和正在进行中的任务信息。Step 501: the master control node monitors the RPC access of the computing node, and receives the heartbeat information sent by the computing node. The master control node can only receive the heartbeat information of one computing node at a time. If the master control node receives the heartbeat information of a certain computing node, other computing nodes also send heartbeat information to the master control node, the master control node will be delayed. The heartbeat computing node joins the waiting queue. The node performance monitor on the computing node monitors and collects the performance information of the node in the latest period. The task monitor monitors the information of the tasks being executed on the node and collects the records of the last three historical tasks that have been executed. The computing node Encapsulate performance information and task information as heartbeat information. If the task information has not been updated in the recent period, the heartbeat information may only contain the performance information of the node. Computing nodes send heartbeat information to the master control node through RPC at regular intervals. The heartbeat period is 3 seconds. At each heartbeat, the heartbeat information should contain the performance information of the node and the information of the currently executing task, and every time the computing node completes a task, it will add the execution record of the task just completed to the heartbeat information and send it in the next heartbeat For the master control node, the task information contains two types of task information: completed but not reported task information (may be empty) and ongoing task information.
步骤502:主控节点根据接收到的心跳信息,更新节点状态表和任务状态表。对于节点状态表,将心跳信息中的计算节点状态信息覆盖主控节点中节点状态表对应于该计算节点的信息。任务状态表中记录着每个节点上执行的最近3个历史任务的信息和正在进行中的任务信息,主控节点每次收到新的任务状态信息时,首先看是否有已完成但未上报的任务信息,如果有,则获得该任务的TaskID并查看该任务在任务状态表中是否已存在,若存在则更新任务状态表中该任务的信息,否则删除任务状态表中该计算节点的最旧的任务信息并加入该已完成的任务信息。对于正在进行中的任务信息,获得该任务的TaskID,如果该任务在任务状态表中已存在,则更新任务状态表中该任务的信息,否则,在任务状态表中加入该任务的信息。Step 502: The master control node updates the node state table and the task state table according to the received heartbeat information. For the node status table, the computing node status information in the heartbeat information is overwritten with the information corresponding to the computing node in the node status table in the master control node. The task status table records the information of the last three historical tasks executed on each node and the task information in progress. Every time the master control node receives new task status information, it first checks whether there are tasks that have been completed but not reported. If yes, obtain the TaskID of the task and check whether the task already exists in the task status table, if it exists, update the information of the task in the task status table, otherwise delete the last Old task information and add the completed task information. For the task information in progress, obtain the TaskID of the task, if the task already exists in the task state table, update the information of the task in the task state table, otherwise, add the information of the task in the task state table.
步骤503:根据节点状态表和任务状态表更新节点预取表和任务预分表。对于任务列表中的第m个任务,根据节点状态表和任务状态表,预测每个节点执行该任务所需的时间,预测算法如下:Step 503: Update the node prefetching table and the task pre-allocation table according to the node state table and the task state table. For the mth task in the task list, predict the time required for each node to execute the task according to the node state table and task state table, the prediction algorithm is as follows:
其中,Tij为第i个计算节点执行其第ji个任务所需的预测时间,ts为出现可用任务槽的时间,ti0为复制数据所需的时间,tcpu为数据处理时间,h为计算节点已经成功执行的任务的参考数目,n为集群中的计算节点数。Among them, T ij is the predicted time required for the i-th computing node to execute its j - th task, t s is the time when an available task slot appears, t i0 is the time required for copying data, t cpu is the data processing time, h is the reference number of tasks that the computing nodes have successfully executed, and n is the number of computing nodes in the cluster.
获得Tij的值后,主控节点选择最小的一个,向其对应的计算节点预分配任务。并将任务m标记为已预分,将即将执行该任务的计算节点标记为已预取。After obtaining the value of T ij , the master control node selects the smallest one, and pre-allocates tasks to its corresponding computing nodes. And mark the task m as pre-segmented, and mark the computing node that will execute the task as pre-fetched.
接着,主控节点继续在未被标记为已预取的各计算节点中为下一个没有标记为已预分的任务选择执行它的计算节点。每次只预分num个任务,其中num=5。预分完毕后,任务队列里可能还有未被标记为已预分的任务,节点列表中也可能会有未被标记为已预取的节点。Next, the master control node continues to select a computing node for executing the next task not marked as pre-partitioned among computing nodes not marked as pre-fetched. Only num tasks are pre-divided each time, where num=5. After the pre-allocation is completed, there may be tasks not marked as pre-allocated in the task queue, and there may be nodes not marked as pre-fetched in the node list.
步骤504:如果计算节点在心跳信息中将请求任务字段标记为真,则进入任务调度模块。Step 504: If the computing node marks the requested task field as true in the heartbeat information, enter the task scheduling module.
任务调度模块的详细流程如图6所示:The detailed process of the task scheduling module is shown in Figure 6:
步骤601:主控节点首先通过查找节点预取表判断是否已为该节点预先分配任务,如果已预先分配,则为该节点分配已预分的任务,并标记该任务已分配,标记该节点为未预取。Step 601: The master control node first judges whether the task has been pre-allocated for the node by looking up the node prefetch table, and if it has been pre-allocated, assign the pre-allocated task to the node, mark the task as allocated, and mark the node as Not prefetched.
步骤602:如果主控节点没有为该节点预先分配任务,根据步骤503中所述的预测算法,未被标记为已预取的节点是性能较差或计算能力较弱的节点,则从任务队列中选取一个任务给该节点执行,但是并不将该任务标记为已分配,待下次预分时,该任务将被预分给处理速度较快的节点,因而该任务将有一个备份任务在快节点上执行以保证其顺利执行。Step 602: If the master control node does not pre-allocate tasks for this node, according to the prediction algorithm described in
步骤603:为计算节点分配任务结束后,主控节点更新节点预取表和任务预分表。Step 603: After allocating tasks to the computing nodes, the master control node updates the node prefetching table and task preallocation table.
步骤604:任务调度阶段结束,转入信息更新阶段,主控节点继续接收并处理计算节点发送过来的心跳信息。Step 604: the task scheduling phase is over, and the information update phase is entered, and the master control node continues to receive and process the heartbeat information sent by the computing node.
最后所应说明的是:以上实施例仅用以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate and not limit the technical solutions of the present invention, although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art should understand that: the present invention can still be modified Or an equivalent replacement, any modification or partial replacement without departing from the spirit and scope of the present invention shall fall within the scope of the claims of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010583597 CN102073546B (en) | 2010-12-13 | 2010-12-13 | Task-dynamic dispatching method under distributed computation mode in cloud computing environment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010583597 CN102073546B (en) | 2010-12-13 | 2010-12-13 | Task-dynamic dispatching method under distributed computation mode in cloud computing environment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102073546A true CN102073546A (en) | 2011-05-25 |
CN102073546B CN102073546B (en) | 2013-07-10 |
Family
ID=44032092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010583597 Expired - Fee Related CN102073546B (en) | 2010-12-13 | 2010-12-13 | Task-dynamic dispatching method under distributed computation mode in cloud computing environment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102073546B (en) |
Cited By (117)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102209041A (en) * | 2011-07-13 | 2011-10-05 | 上海红神信息技术有限公司 | Scheduling method, device and system |
CN102347989A (en) * | 2011-10-25 | 2012-02-08 | 百度在线网络技术(北京)有限公司 | Data distribution method and system based on resource description symbols |
CN102360314A (en) * | 2011-10-28 | 2012-02-22 | 中国科学院计算技术研究所 | System and method for managing resources of data center |
CN102404615A (en) * | 2011-11-29 | 2012-04-04 | 广东威创视讯科技股份有限公司 | Video processing system based on cloud computing |
CN102495759A (en) * | 2011-12-08 | 2012-06-13 | 曙光信息产业(北京)有限公司 | Method for scheduling job in cloud computing environment |
CN102541640A (en) * | 2011-12-28 | 2012-07-04 | 厦门市美亚柏科信息股份有限公司 | Cluster GPU (graphic processing unit) resource scheduling system and method |
CN102843248A (en) * | 2011-06-21 | 2012-12-26 | 中兴通讯股份有限公司 | Method and device for automatic standalone distributed deployment of software |
CN102866918A (en) * | 2012-07-26 | 2013-01-09 | 中国科学院信息工程研究所 | Resource management system for distributed programming framework |
CN102916992A (en) * | 2011-08-03 | 2013-02-06 | 中兴通讯股份有限公司 | Method and system for scheduling cloud computing remote resources unifiedly |
CN103001809A (en) * | 2012-12-25 | 2013-03-27 | 曙光信息产业(北京)有限公司 | Service node state monitoring method for cloud storage system |
CN103036946A (en) * | 2012-11-21 | 2013-04-10 | 中国电信股份有限公司云计算分公司 | Method and system for processing file backup on cloud platform |
CN103064742A (en) * | 2012-12-25 | 2013-04-24 | 中国科学院深圳先进技术研究院 | Automatic deployment system and method of hadoop cluster |
CN103092698A (en) * | 2012-12-24 | 2013-05-08 | 中国科学院深圳先进技术研究院 | System and method of cloud computing application automatic deployment |
CN103095853A (en) * | 2013-02-27 | 2013-05-08 | 北京航空航天大学 | Cloud data center calculation capacity management system |
CN103297499A (en) * | 2013-04-19 | 2013-09-11 | 无锡成电科大科技发展有限公司 | Scheduling method and system based on cloud platform |
CN103309738A (en) * | 2013-05-31 | 2013-09-18 | 中国联合网络通信集团有限公司 | User job scheduling method and device |
CN103324533A (en) * | 2012-03-22 | 2013-09-25 | 华为技术有限公司 | distributed data processing method, device and system |
CN103347055A (en) * | 2013-06-19 | 2013-10-09 | 北京奇虎科技有限公司 | System, device and method for processing tasks in cloud computing platform |
WO2013149502A1 (en) * | 2012-04-01 | 2013-10-10 | 华为技术有限公司 | Method and device of resource scheduling and management |
CN103377087A (en) * | 2012-04-27 | 2013-10-30 | 北大方正集团有限公司 | Data task processing method, device and system |
CN103414771A (en) * | 2013-08-05 | 2013-11-27 | 国云科技股份有限公司 | A monitoring method for long task operation between nodes in cloud computing environment |
CN103500119A (en) * | 2013-09-06 | 2014-01-08 | 西安交通大学 | Task allocation method based on pre-dispatch |
CN103546509A (en) * | 2012-07-13 | 2014-01-29 | 云联(北京)信息技术有限公司 | Resource-saving cloud service system and resource saving method |
CN103546510A (en) * | 2012-07-13 | 2014-01-29 | 云联(北京)信息技术有限公司 | Management system and management method on basis of cloud service |
CN103617305A (en) * | 2013-10-22 | 2014-03-05 | 芜湖大学科技园发展有限公司 | Self-adaptive electric power simulation cloud computing platform job scheduling algorithm |
CN103713942A (en) * | 2012-09-28 | 2014-04-09 | 腾讯科技(深圳)有限公司 | Method and system for dispatching and running a distributed computing frame in cluster |
CN103761146A (en) * | 2014-01-06 | 2014-04-30 | 浪潮电子信息产业股份有限公司 | Method for dynamically setting quantities of slots for MapReduce |
CN103941662A (en) * | 2014-03-19 | 2014-07-23 | 华存数据信息技术有限公司 | Task scheduling system and method based on cloud computing |
CN104008002A (en) * | 2014-06-17 | 2014-08-27 | 电子科技大学 | Target host selection method for deploying virtual machine under cloud platform environment |
CN104077188A (en) * | 2013-03-29 | 2014-10-01 | 西门子公司 | Method and device for scheduling tasks |
CN104102533A (en) * | 2014-06-17 | 2014-10-15 | 华中科技大学 | Bandwidth aware based Hadoop scheduling method and system |
CN104166589A (en) * | 2013-05-17 | 2014-11-26 | 阿里巴巴集团控股有限公司 | Heartbeat package processing method and device |
CN104268007A (en) * | 2014-01-07 | 2015-01-07 | 深圳市华傲数据技术有限公司 | Distributed event request scheduling method and system |
CN104301423A (en) * | 2014-10-24 | 2015-01-21 | 北京奇虎科技有限公司 | A method, device and system for sending heartbeat messages |
CN104360909A (en) * | 2014-11-04 | 2015-02-18 | 无锡天脉聚源传媒科技有限公司 | Method and device for processing videos |
CN104461722A (en) * | 2014-12-16 | 2015-03-25 | 广东石油化工学院 | Job scheduling method used for cloud computing system |
CN104462581A (en) * | 2014-12-30 | 2015-03-25 | 成都因纳伟盛科技股份有限公司 | Micro-channel memory mapping and Smart-Slice based ultrafast file fingerprint extraction system and method |
CN104503845A (en) * | 2015-01-14 | 2015-04-08 | 北京邮电大学 | Task distributing method and system |
WO2015061976A1 (en) * | 2013-10-30 | 2015-05-07 | Nokia Technologies Oy | Methods and apparatus for task management in a mobile cloud computing environment |
WO2015066979A1 (en) * | 2013-11-07 | 2015-05-14 | 浪潮电子信息产业股份有限公司 | Machine learning method for mapreduce task resource configuration parameters |
CN104917642A (en) * | 2014-03-11 | 2015-09-16 | 深圳业拓讯通信科技有限公司 | Port mirror image data transmitting method and system |
CN104933110A (en) * | 2015-06-03 | 2015-09-23 | 电子科技大学 | MapReduce-based data pre-fetching method |
CN105095008A (en) * | 2015-08-25 | 2015-11-25 | 国电南瑞科技股份有限公司 | Distributed task fault redundancy method suitable for cluster system |
CN105227488A (en) * | 2015-08-25 | 2016-01-06 | 上海交通大学 | A kind of network flow group scheduling method for distributed computer platforms |
CN105468726A (en) * | 2015-11-20 | 2016-04-06 | 广州视源电子科技股份有限公司 | Data computing method and system based on local computing and distributed computing |
CN105516620A (en) * | 2015-12-10 | 2016-04-20 | 阔地教育科技有限公司 | Distribution control device, image processing device and live and recorded broadcast interaction system |
CN105573824A (en) * | 2014-10-10 | 2016-05-11 | 腾讯科技(深圳)有限公司 | Monitoring method and system of distributed computing system |
CN105578205A (en) * | 2014-10-27 | 2016-05-11 | 深圳国微技术有限公司 | Video transcoding method and system |
CN105868008A (en) * | 2016-03-23 | 2016-08-17 | 深圳大学 | Resource scheduling method and recognition system based on key resources and data preprocessing |
CN105975334A (en) * | 2016-04-25 | 2016-09-28 | 深圳市永兴元科技有限公司 | Distributed scheduling method and system of task |
CN106027617A (en) * | 2016-05-11 | 2016-10-12 | 广东浪潮大数据研究有限公司 | Method for implementing dynamic scheduling of tasks and resources in private cloud environment |
CN106055401A (en) * | 2016-06-13 | 2016-10-26 | 北京唯智佳辰科技发展有限责任公司 | Automatic starting-stopping and computation task dynamic allocation method for mass parallel coarse particle computation |
CN106095586A (en) * | 2016-06-23 | 2016-11-09 | 东软集团股份有限公司 | A kind of method for allocating tasks, Apparatus and system |
CN106156631A (en) * | 2015-06-01 | 2016-11-23 | 上海红神信息技术有限公司 | A kind of service function and structural characterization uncertain software and hardware device |
CN104008002B (en) * | 2014-06-17 | 2016-11-30 | 电子科技大学 | The destination host system of selection of deploying virtual machine under cloud platform environment |
CN106293952A (en) * | 2016-07-11 | 2017-01-04 | 河南大学 | The remote sensing method for scheduling task that a kind of task based access control demand is mated with service ability |
CN106354563A (en) * | 2016-08-29 | 2017-01-25 | 广州市香港科大霍英东研究院 | Distributed computing system for 3D (three-dimensional reconstruction) and 3D reconstruction method |
CN106371923A (en) * | 2016-08-30 | 2017-02-01 | 江苏国泰新点软件有限公司 | Method and device for processing task |
CN106375373A (en) * | 2016-08-24 | 2017-02-01 | 广西小草信息产业有限责任公司 | Task decomposition method and system based on dynamic cloud nodes |
CN106452957A (en) * | 2016-09-30 | 2017-02-22 | 邦彦技术股份有限公司 | Heartbeat detection method and node system |
CN106484524A (en) * | 2015-08-28 | 2017-03-08 | 阿里巴巴集团控股有限公司 | A kind of task processing method and device |
CN106528288A (en) * | 2015-09-10 | 2017-03-22 | 中兴通讯股份有限公司 | Resource management method, device and system |
CN106528189A (en) * | 2015-09-10 | 2017-03-22 | 阿里巴巴集团控股有限公司 | Backup task starting method and device and electronic equipment |
CN106559648A (en) * | 2015-09-29 | 2017-04-05 | 鸿富锦精密工业(深圳)有限公司 | Pedestrian's detecting system and method |
CN106657328A (en) * | 2016-12-20 | 2017-05-10 | 上海创远仪器技术股份有限公司 | Wireless communication signal analysis and measurement system based on cloud computing technology |
CN106648900A (en) * | 2016-12-28 | 2017-05-10 | 深圳Tcl数字技术有限公司 | Smart television-based supercomputing method and system |
CN106776034A (en) * | 2016-12-27 | 2017-05-31 | 国网浙江省电力公司电力科学研究院 | A kind of task batch processing computational methods, master station computer and system |
CN104123214B (en) * | 2013-04-26 | 2017-07-14 | 阿里巴巴集团控股有限公司 | The method and system of tasks carrying progress metrics and displaying based on runtime data |
CN107066338A (en) * | 2017-04-13 | 2017-08-18 | 中国人民解放军国防科学技术大学 | The computing environment method of automatic configuration of distributed computing system |
CN107168779A (en) * | 2017-03-31 | 2017-09-15 | 咪咕互动娱乐有限公司 | A kind of task management method and system |
CN107408070A (en) * | 2014-12-12 | 2017-11-28 | 微软技术许可有限责任公司 | More transaction journals in distributed memory system |
CN107479963A (en) * | 2016-06-08 | 2017-12-15 | 国家计算机网络与信息安全管理中心 | A kind of method for allocating tasks and system |
CN107491265A (en) * | 2016-06-12 | 2017-12-19 | 杭州海康威视数字技术股份有限公司 | Distribute the method and device of Internet protocol IP disks |
CN107580023A (en) * | 2017-08-04 | 2018-01-12 | 山东大学 | Stream processing job scheduling method and system for dynamically adjusting task allocation |
CN107608773A (en) * | 2017-08-24 | 2018-01-19 | 阿里巴巴集团控股有限公司 | task concurrent processing method, device and computing device |
CN107870813A (en) * | 2016-09-22 | 2018-04-03 | 中兴通讯股份有限公司 | A kind of method and device of distributed algorithm processing data |
WO2018059423A1 (en) * | 2016-09-30 | 2018-04-05 | 腾讯科技(深圳)有限公司 | Distributed resource scheduling method, scheduling node, and access node |
CN108121599A (en) * | 2016-11-30 | 2018-06-05 | 杭州海康威视数字技术股份有限公司 | A kind of method for managing resource, apparatus and system |
CN108449215A (en) * | 2018-03-31 | 2018-08-24 | 甘肃万维信息技术有限责任公司 | Based on distributed server performance monitoring system |
CN108475212A (en) * | 2015-12-17 | 2018-08-31 | 起元技术有限责任公司 | Data are handled using dynamic partition |
WO2018196631A1 (en) * | 2017-04-26 | 2018-11-01 | Midea Group Co., Ltd. | Training machine learning models on a large-scale distributed system using a job server |
CN108829504A (en) * | 2018-06-28 | 2018-11-16 | 泰康保险集团股份有限公司 | A kind of method for scheduling task, device, medium and electronic equipment |
CN108958942A (en) * | 2018-07-18 | 2018-12-07 | 郑州云海信息技术有限公司 | A kind of distributed system distribution multitask method, scheduler and computer equipment |
CN109086894A (en) * | 2018-07-06 | 2018-12-25 | 西安热工研究院有限公司 | A kind of warning message centring system of facing area genco |
CN109246479A (en) * | 2018-10-09 | 2019-01-18 | 深圳市亿联智能有限公司 | A kind of cloud computing control mode based on Intelligent set top box |
CN109343942A (en) * | 2018-09-03 | 2019-02-15 | 北京邮电大学 | Task scheduling method based on edge computing network |
CN109408220A (en) * | 2017-08-17 | 2019-03-01 | 北京国双科技有限公司 | A kind of task processing method and device |
CN109450913A (en) * | 2018-11-27 | 2019-03-08 | 浪潮软件股份有限公司 | A kind of multinode registration dispatching method based on strategy |
CN109614211A (en) * | 2018-11-28 | 2019-04-12 | 新华三技术有限公司合肥分公司 | Distributed task scheduling pre-scheduling method and device |
CN109783214A (en) * | 2018-12-29 | 2019-05-21 | 广州供电局有限公司 | Task schedule control system |
CN109921926A (en) * | 2019-02-19 | 2019-06-21 | 重庆市勘测院 | A kind of autocontrol method and system of outdoor scene modeling cluster |
CN109922050A (en) * | 2019-02-03 | 2019-06-21 | 普信恒业科技发展(北京)有限公司 | A kind of task detection method and device |
CN109995824A (en) * | 2017-12-29 | 2019-07-09 | 阿里巴巴集团控股有限公司 | Method for scheduling task and device in a kind of peer-to-peer network |
CN110109742A (en) * | 2019-05-09 | 2019-08-09 | 重庆八戒电子商务有限公司 | A kind of method and device that the distributed task scheduling based on zookeeper is coordinated |
CN110209488A (en) * | 2019-06-10 | 2019-09-06 | 北京达佳互联信息技术有限公司 | Task executing method, device, equipment, system and storage medium |
CN110297693A (en) * | 2019-07-04 | 2019-10-01 | 北京伟杰东博信息科技有限公司 | A kind of method and its system of the distribution of distributed software task |
CN110389822A (en) * | 2019-07-29 | 2019-10-29 | 北京金山云网络技术有限公司 | Node scheduling method, device and server for executing tasks |
CN110389973A (en) * | 2019-07-30 | 2019-10-29 | 大连海事大学 | A Parallel Outlier Detection Method in Heterogeneous Distributed Environment |
CN110413389A (en) * | 2019-07-24 | 2019-11-05 | 浙江工业大学 | A task scheduling optimization method in Spark environment with unbalanced resources |
US10489195B2 (en) | 2017-07-20 | 2019-11-26 | Cisco Technology, Inc. | FPGA acceleration for serverless computing |
WO2020000944A1 (en) * | 2018-06-25 | 2020-01-02 | 星环信息科技(上海)有限公司 | Preemptive scheduling based resource sharing use method, system and |
CN110673945A (en) * | 2018-07-03 | 2020-01-10 | 北京京东尚科信息技术有限公司 | Distributed task management method and management system |
CN110737521A (en) * | 2019-10-14 | 2020-01-31 | 中国人民解放军32039部队 | Disaster recovery method and device based on task scheduling center |
US10678444B2 (en) | 2018-04-02 | 2020-06-09 | Cisco Technology, Inc. | Optimizing serverless computing using a distributed computing framework |
CN111352709A (en) * | 2018-12-20 | 2020-06-30 | 顺丰科技有限公司 | Task scheduling method and device in distributed system |
CN111580945A (en) * | 2020-04-21 | 2020-08-25 | 智业互联(厦门)健康科技有限公司 | Micro-service task coordination scheduling method and system |
US10771584B2 (en) | 2017-11-30 | 2020-09-08 | Cisco Technology, Inc. | Provisioning using pre-fetched data in serverless computing environments |
CN112003898A (en) * | 2020-07-27 | 2020-11-27 | 珠海许继芝电网自动化有限公司 | Load balancing method and system for multi-node cluster |
CN112131007A (en) * | 2020-09-28 | 2020-12-25 | 济南浪潮高新科技投资发展有限公司 | GPU resource scheduling method, device and medium based on AI platform |
US10884807B2 (en) | 2017-04-12 | 2021-01-05 | Cisco Technology, Inc. | Serverless computing and task scheduling |
US10938677B2 (en) | 2017-04-12 | 2021-03-02 | Cisco Technology, Inc. | Virtualized network functions and service chaining in serverless computing infrastructure |
WO2021063171A1 (en) * | 2019-09-30 | 2021-04-08 | 腾讯科技(深圳)有限公司 | Decision tree model training method, system, storage medium, and prediction method |
CN113112139A (en) * | 2021-04-07 | 2021-07-13 | 上海联蔚盘云科技有限公司 | Cloud platform bill processing method and equipment |
CN113157403A (en) * | 2020-01-07 | 2021-07-23 | 中科寒武纪科技股份有限公司 | Job processing method and device, computer equipment and readable storage medium |
CN114706671A (en) * | 2022-05-17 | 2022-07-05 | 中诚华隆计算机技术有限公司 | Multiprocessor scheduling optimization method and system |
WO2023168937A1 (en) * | 2022-03-09 | 2023-09-14 | 中兴通讯股份有限公司 | Data processing method and apparatus, computer device, and readable medium |
WO2024207846A1 (en) * | 2023-12-11 | 2024-10-10 | 天翼云科技有限公司 | Method and system for scheduling sensitive data workflow in multi-cloud environment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101719931A (en) * | 2009-11-27 | 2010-06-02 | 南京邮电大学 | Multi-intelligent body-based hierarchical cloud computing model construction method |
US20100287280A1 (en) * | 2009-05-08 | 2010-11-11 | Gal Sivan | System and method for cloud computing based on multiple providers |
-
2010
- 2010-12-13 CN CN 201010583597 patent/CN102073546B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100287280A1 (en) * | 2009-05-08 | 2010-11-11 | Gal Sivan | System and method for cloud computing based on multiple providers |
CN101719931A (en) * | 2009-11-27 | 2010-06-02 | 南京邮电大学 | Multi-intelligent body-based hierarchical cloud computing model construction method |
Non-Patent Citations (1)
Title |
---|
万至臻 等: "基于MapReduce模型的并行计算平台的设计与实现", 《中国优秀硕士学位论文全文数据库》, 31 December 2008 (2008-12-31) * |
Cited By (178)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102843248A (en) * | 2011-06-21 | 2012-12-26 | 中兴通讯股份有限公司 | Method and device for automatic standalone distributed deployment of software |
CN102843248B (en) * | 2011-06-21 | 2018-02-02 | 中兴通讯股份有限公司 | The method and device of automatic unit distributed deployment software |
CN102209041A (en) * | 2011-07-13 | 2011-10-05 | 上海红神信息技术有限公司 | Scheduling method, device and system |
CN102209041B (en) * | 2011-07-13 | 2014-05-07 | 上海红神信息技术有限公司 | Scheduling method, device and system |
WO2013016977A1 (en) * | 2011-08-03 | 2013-02-07 | 中兴通讯股份有限公司 | Method and system for uniformly scheduling remote resources of cloud computing |
CN102916992A (en) * | 2011-08-03 | 2013-02-06 | 中兴通讯股份有限公司 | Method and system for scheduling cloud computing remote resources unifiedly |
CN102916992B (en) * | 2011-08-03 | 2016-12-28 | 世纪恒通科技股份有限公司 | A kind of method and system of United Dispatching cloud computing remote resource |
CN102347989A (en) * | 2011-10-25 | 2012-02-08 | 百度在线网络技术(北京)有限公司 | Data distribution method and system based on resource description symbols |
CN102360314A (en) * | 2011-10-28 | 2012-02-22 | 中国科学院计算技术研究所 | System and method for managing resources of data center |
CN102404615A (en) * | 2011-11-29 | 2012-04-04 | 广东威创视讯科技股份有限公司 | Video processing system based on cloud computing |
CN102495759A (en) * | 2011-12-08 | 2012-06-13 | 曙光信息产业(北京)有限公司 | Method for scheduling job in cloud computing environment |
CN102541640A (en) * | 2011-12-28 | 2012-07-04 | 厦门市美亚柏科信息股份有限公司 | Cluster GPU (graphic processing unit) resource scheduling system and method |
CN102541640B (en) * | 2011-12-28 | 2014-10-29 | 厦门市美亚柏科信息股份有限公司 | Cluster GPU (graphic processing unit) resource scheduling system and method |
CN103324533B (en) * | 2012-03-22 | 2016-12-28 | 华为技术有限公司 | distributed data processing method, device and system |
CN103324533A (en) * | 2012-03-22 | 2013-09-25 | 华为技术有限公司 | distributed data processing method, device and system |
CN103365713B (en) * | 2012-04-01 | 2017-06-20 | 华为技术有限公司 | A kind of scheduling of resource and management method and device |
WO2013149502A1 (en) * | 2012-04-01 | 2013-10-10 | 华为技术有限公司 | Method and device of resource scheduling and management |
CN103365713A (en) * | 2012-04-01 | 2013-10-23 | 华为技术有限公司 | Resource dispatch and management method and device |
CN103377087B (en) * | 2012-04-27 | 2017-06-23 | 北大方正集团有限公司 | A kind of data task processing method, apparatus and system |
CN103377087A (en) * | 2012-04-27 | 2013-10-30 | 北大方正集团有限公司 | Data task processing method, device and system |
CN103546509B (en) * | 2012-07-13 | 2018-05-29 | 天津米游科技有限公司 | A kind of cloud service system to economize on resources and resource-effective method |
CN103546510B (en) * | 2012-07-13 | 2018-08-28 | 天津米游科技有限公司 | Management system based on cloud service and management method |
CN103546509A (en) * | 2012-07-13 | 2014-01-29 | 云联(北京)信息技术有限公司 | Resource-saving cloud service system and resource saving method |
CN103546510A (en) * | 2012-07-13 | 2014-01-29 | 云联(北京)信息技术有限公司 | Management system and management method on basis of cloud service |
CN102866918B (en) * | 2012-07-26 | 2016-02-24 | 中国科学院信息工程研究所 | The resource management system of Based on Distributed programming framework |
CN102866918A (en) * | 2012-07-26 | 2013-01-09 | 中国科学院信息工程研究所 | Resource management system for distributed programming framework |
CN103713942A (en) * | 2012-09-28 | 2014-04-09 | 腾讯科技(深圳)有限公司 | Method and system for dispatching and running a distributed computing frame in cluster |
CN103713942B (en) * | 2012-09-28 | 2018-01-05 | 腾讯科技(深圳)有限公司 | The method and system of management and running distributed computing framework in the cluster |
CN103036946A (en) * | 2012-11-21 | 2013-04-10 | 中国电信股份有限公司云计算分公司 | Method and system for processing file backup on cloud platform |
CN103036946B (en) * | 2012-11-21 | 2016-08-24 | 中国电信股份有限公司 | A kind of method and system processing file backup task for cloud platform |
CN103092698A (en) * | 2012-12-24 | 2013-05-08 | 中国科学院深圳先进技术研究院 | System and method of cloud computing application automatic deployment |
CN103001809B (en) * | 2012-12-25 | 2016-12-28 | 曙光信息产业(北京)有限公司 | Service node method for monitoring state for cloud storage system |
CN103064742A (en) * | 2012-12-25 | 2013-04-24 | 中国科学院深圳先进技术研究院 | Automatic deployment system and method of hadoop cluster |
CN103001809A (en) * | 2012-12-25 | 2013-03-27 | 曙光信息产业(北京)有限公司 | Service node state monitoring method for cloud storage system |
CN103064742B (en) * | 2012-12-25 | 2016-05-11 | 中国科学院深圳先进技术研究院 | A kind of automatic deployment system and method for hadoop cluster |
CN103095853B (en) * | 2013-02-27 | 2016-08-03 | 北京航空航天大学 | Cloud data center calculation capacity management system |
CN103095853A (en) * | 2013-02-27 | 2013-05-08 | 北京航空航天大学 | Cloud data center calculation capacity management system |
CN104077188A (en) * | 2013-03-29 | 2014-10-01 | 西门子公司 | Method and device for scheduling tasks |
CN103297499B (en) * | 2013-04-19 | 2017-02-08 | 无锡成电科大科技发展有限公司 | Scheduling method and system based on cloud platform |
CN103297499A (en) * | 2013-04-19 | 2013-09-11 | 无锡成电科大科技发展有限公司 | Scheduling method and system based on cloud platform |
CN104123214B (en) * | 2013-04-26 | 2017-07-14 | 阿里巴巴集团控股有限公司 | The method and system of tasks carrying progress metrics and displaying based on runtime data |
CN104166589A (en) * | 2013-05-17 | 2014-11-26 | 阿里巴巴集团控股有限公司 | Heartbeat package processing method and device |
CN103309738A (en) * | 2013-05-31 | 2013-09-18 | 中国联合网络通信集团有限公司 | User job scheduling method and device |
CN103309738B (en) * | 2013-05-31 | 2016-12-28 | 中国联合网络通信集团有限公司 | User job dispatching method and device |
CN103347055A (en) * | 2013-06-19 | 2013-10-09 | 北京奇虎科技有限公司 | System, device and method for processing tasks in cloud computing platform |
CN103347055B (en) * | 2013-06-19 | 2016-04-20 | 北京奇虎科技有限公司 | Task processing system in cloud computing platform, Apparatus and method for |
CN103414771B (en) * | 2013-08-05 | 2017-02-15 | 国云科技股份有限公司 | A monitoring method for long task operation between nodes in cloud computing environment |
CN103414771A (en) * | 2013-08-05 | 2013-11-27 | 国云科技股份有限公司 | A monitoring method for long task operation between nodes in cloud computing environment |
CN103500119B (en) * | 2013-09-06 | 2017-01-04 | 西安交通大学 | A kind of method for allocating tasks based on pre-scheduling |
CN103500119A (en) * | 2013-09-06 | 2014-01-08 | 西安交通大学 | Task allocation method based on pre-dispatch |
CN103617305A (en) * | 2013-10-22 | 2014-03-05 | 芜湖大学科技园发展有限公司 | Self-adaptive electric power simulation cloud computing platform job scheduling algorithm |
WO2015061976A1 (en) * | 2013-10-30 | 2015-05-07 | Nokia Technologies Oy | Methods and apparatus for task management in a mobile cloud computing environment |
WO2015066979A1 (en) * | 2013-11-07 | 2015-05-14 | 浪潮电子信息产业股份有限公司 | Machine learning method for mapreduce task resource configuration parameters |
CN103761146B (en) * | 2014-01-06 | 2017-10-31 | 浪潮电子信息产业股份有限公司 | A kind of method that MapReduce dynamically sets slots quantity |
CN103761146A (en) * | 2014-01-06 | 2014-04-30 | 浪潮电子信息产业股份有限公司 | Method for dynamically setting quantities of slots for MapReduce |
CN104268007A (en) * | 2014-01-07 | 2015-01-07 | 深圳市华傲数据技术有限公司 | Distributed event request scheduling method and system |
CN104917642B (en) * | 2014-03-11 | 2019-03-22 | 深圳业拓讯通信科技有限公司 | A kind of Port Mirroring data transmission method and its system |
CN104917642A (en) * | 2014-03-11 | 2015-09-16 | 深圳业拓讯通信科技有限公司 | Port mirror image data transmitting method and system |
CN103941662A (en) * | 2014-03-19 | 2014-07-23 | 华存数据信息技术有限公司 | Task scheduling system and method based on cloud computing |
CN104008002B (en) * | 2014-06-17 | 2016-11-30 | 电子科技大学 | The destination host system of selection of deploying virtual machine under cloud platform environment |
CN104102533A (en) * | 2014-06-17 | 2014-10-15 | 华中科技大学 | Bandwidth aware based Hadoop scheduling method and system |
CN104008002A (en) * | 2014-06-17 | 2014-08-27 | 电子科技大学 | Target host selection method for deploying virtual machine under cloud platform environment |
CN105573824B (en) * | 2014-10-10 | 2020-04-03 | 腾讯科技(深圳)有限公司 | Monitoring method and system for distributed computing system |
CN105573824A (en) * | 2014-10-10 | 2016-05-11 | 腾讯科技(深圳)有限公司 | Monitoring method and system of distributed computing system |
CN104301423A (en) * | 2014-10-24 | 2015-01-21 | 北京奇虎科技有限公司 | A method, device and system for sending heartbeat messages |
CN104301423B (en) * | 2014-10-24 | 2018-11-06 | 北京奇安信科技有限公司 | A kind of method, apparatus and system sending heartbeat message |
CN105578205A (en) * | 2014-10-27 | 2016-05-11 | 深圳国微技术有限公司 | Video transcoding method and system |
CN104360909B (en) * | 2014-11-04 | 2017-10-03 | 无锡天脉聚源传媒科技有限公司 | A kind of method for processing video frequency and device |
CN104360909A (en) * | 2014-11-04 | 2015-02-18 | 无锡天脉聚源传媒科技有限公司 | Method and device for processing videos |
CN107408070A (en) * | 2014-12-12 | 2017-11-28 | 微软技术许可有限责任公司 | More transaction journals in distributed memory system |
CN104461722B (en) * | 2014-12-16 | 2017-11-10 | 广东石油化工学院 | A kind of job scheduling method for cloud computing system |
CN104461722A (en) * | 2014-12-16 | 2015-03-25 | 广东石油化工学院 | Job scheduling method used for cloud computing system |
CN104462581A (en) * | 2014-12-30 | 2015-03-25 | 成都因纳伟盛科技股份有限公司 | Micro-channel memory mapping and Smart-Slice based ultrafast file fingerprint extraction system and method |
CN104462581B (en) * | 2014-12-30 | 2018-03-06 | 成都因纳伟盛科技股份有限公司 | Very fast file fingerprint extraction system and method based on the mapping of microchannel internal memory and Smart Slice |
CN104503845A (en) * | 2015-01-14 | 2015-04-08 | 北京邮电大学 | Task distributing method and system |
CN104503845B (en) * | 2015-01-14 | 2017-07-14 | 北京邮电大学 | A kind of task distribution method and system |
CN106156631A (en) * | 2015-06-01 | 2016-11-23 | 上海红神信息技术有限公司 | A kind of service function and structural characterization uncertain software and hardware device |
CN106156631B (en) * | 2015-06-01 | 2019-03-12 | 上海红神信息技术有限公司 | A kind of service function and the uncertain software and hardware device of structural characterization corresponding relationship |
CN104933110A (en) * | 2015-06-03 | 2015-09-23 | 电子科技大学 | MapReduce-based data pre-fetching method |
CN104933110B (en) * | 2015-06-03 | 2018-02-09 | 电子科技大学 | A kind of data prefetching method based on MapReduce |
CN105227488B (en) * | 2015-08-25 | 2018-05-08 | 上海交通大学 | A kind of network flow group scheduling method for distributed computer platforms |
CN105095008A (en) * | 2015-08-25 | 2015-11-25 | 国电南瑞科技股份有限公司 | Distributed task fault redundancy method suitable for cluster system |
CN105095008B (en) * | 2015-08-25 | 2018-04-17 | 国电南瑞科技股份有限公司 | A kind of distributed task scheduling fault redundance method suitable for group system |
CN105227488A (en) * | 2015-08-25 | 2016-01-06 | 上海交通大学 | A kind of network flow group scheduling method for distributed computer platforms |
CN106484524A (en) * | 2015-08-28 | 2017-03-08 | 阿里巴巴集团控股有限公司 | A kind of task processing method and device |
CN106528189A (en) * | 2015-09-10 | 2017-03-22 | 阿里巴巴集团控股有限公司 | Backup task starting method and device and electronic equipment |
CN106528189B (en) * | 2015-09-10 | 2019-05-28 | 阿里巴巴集团控股有限公司 | A kind of method, apparatus and electronic equipment starting backup tasks |
CN106528288A (en) * | 2015-09-10 | 2017-03-22 | 中兴通讯股份有限公司 | Resource management method, device and system |
CN106559648A (en) * | 2015-09-29 | 2017-04-05 | 鸿富锦精密工业(深圳)有限公司 | Pedestrian's detecting system and method |
CN105468726A (en) * | 2015-11-20 | 2016-04-06 | 广州视源电子科技股份有限公司 | Data computing method and system based on local computing and distributed computing |
CN105468726B (en) * | 2015-11-20 | 2019-02-01 | 广州视源电子科技股份有限公司 | Data computing method and system based on local computing and distributed computing |
CN105516620A (en) * | 2015-12-10 | 2016-04-20 | 阔地教育科技有限公司 | Distribution control device, image processing device and live and recorded broadcast interaction system |
CN108475212A (en) * | 2015-12-17 | 2018-08-31 | 起元技术有限责任公司 | Data are handled using dynamic partition |
CN108475212B (en) * | 2015-12-17 | 2021-12-31 | 起元技术有限责任公司 | Method, system, and computer readable medium for processing data using dynamic partitioning |
CN105868008A (en) * | 2016-03-23 | 2016-08-17 | 深圳大学 | Resource scheduling method and recognition system based on key resources and data preprocessing |
CN105868008B (en) * | 2016-03-23 | 2019-05-28 | 深圳大学 | Resource regulating method and identifying system based on keystone resources and data prediction |
CN105975334A (en) * | 2016-04-25 | 2016-09-28 | 深圳市永兴元科技有限公司 | Distributed scheduling method and system of task |
CN106027617A (en) * | 2016-05-11 | 2016-10-12 | 广东浪潮大数据研究有限公司 | Method for implementing dynamic scheduling of tasks and resources in private cloud environment |
CN107479963A (en) * | 2016-06-08 | 2017-12-15 | 国家计算机网络与信息安全管理中心 | A kind of method for allocating tasks and system |
CN107491265A (en) * | 2016-06-12 | 2017-12-19 | 杭州海康威视数字技术股份有限公司 | Distribute the method and device of Internet protocol IP disks |
CN107491265B (en) * | 2016-06-12 | 2021-05-25 | 杭州海康威视数字技术股份有限公司 | Method and device for distributing internet protocol IP disk |
CN106055401B (en) * | 2016-06-13 | 2019-02-26 | 北京唯智佳辰科技发展有限责任公司 | Magnanimity calculates the parallel automatic start-stop and calculating task dynamic allocation method of coarse granule |
CN106055401A (en) * | 2016-06-13 | 2016-10-26 | 北京唯智佳辰科技发展有限责任公司 | Automatic starting-stopping and computation task dynamic allocation method for mass parallel coarse particle computation |
CN106095586A (en) * | 2016-06-23 | 2016-11-09 | 东软集团股份有限公司 | A kind of method for allocating tasks, Apparatus and system |
CN106293952A (en) * | 2016-07-11 | 2017-01-04 | 河南大学 | The remote sensing method for scheduling task that a kind of task based access control demand is mated with service ability |
CN106293952B (en) * | 2016-07-11 | 2019-06-21 | 河南大学 | A Remote Sensing Task Scheduling Method Based on Matching Task Requirements and Service Capabilities |
CN106375373A (en) * | 2016-08-24 | 2017-02-01 | 广西小草信息产业有限责任公司 | Task decomposition method and system based on dynamic cloud nodes |
CN106354563B (en) * | 2016-08-29 | 2020-05-22 | 广州市香港科大霍英东研究院 | Distributed computing system for 3D reconstruction and 3D reconstruction method |
CN106354563A (en) * | 2016-08-29 | 2017-01-25 | 广州市香港科大霍英东研究院 | Distributed computing system for 3D (three-dimensional reconstruction) and 3D reconstruction method |
CN106371923A (en) * | 2016-08-30 | 2017-02-01 | 江苏国泰新点软件有限公司 | Method and device for processing task |
CN107870813A (en) * | 2016-09-22 | 2018-04-03 | 中兴通讯股份有限公司 | A kind of method and device of distributed algorithm processing data |
US10838777B2 (en) | 2016-09-30 | 2020-11-17 | Tencent Technology (Shenzhen) Company Limited | Distributed resource allocation method, allocation node, and access node |
CN107885594B (en) * | 2016-09-30 | 2020-06-12 | 腾讯科技(深圳)有限公司 | Distributed resource scheduling method, scheduling node and access node |
CN107885594A (en) * | 2016-09-30 | 2018-04-06 | 腾讯科技(深圳)有限公司 | Distributed resource scheduling method, scheduling node and access node |
CN106452957B (en) * | 2016-09-30 | 2019-09-10 | 邦彦技术股份有限公司 | Heartbeat detection method and node system |
WO2018059423A1 (en) * | 2016-09-30 | 2018-04-05 | 腾讯科技(深圳)有限公司 | Distributed resource scheduling method, scheduling node, and access node |
CN106452957A (en) * | 2016-09-30 | 2017-02-22 | 邦彦技术股份有限公司 | Heartbeat detection method and node system |
CN108121599A (en) * | 2016-11-30 | 2018-06-05 | 杭州海康威视数字技术股份有限公司 | A kind of method for managing resource, apparatus and system |
CN106657328A (en) * | 2016-12-20 | 2017-05-10 | 上海创远仪器技术股份有限公司 | Wireless communication signal analysis and measurement system based on cloud computing technology |
CN106776034B (en) * | 2016-12-27 | 2020-07-31 | 国网浙江省电力公司电力科学研究院 | Task batch processing calculation method, master station computer and system |
CN106776034A (en) * | 2016-12-27 | 2017-05-31 | 国网浙江省电力公司电力科学研究院 | A kind of task batch processing computational methods, master station computer and system |
CN106648900B (en) * | 2016-12-28 | 2020-12-08 | 深圳Tcl数字技术有限公司 | Supercomputing method and system based on smart television |
CN106648900A (en) * | 2016-12-28 | 2017-05-10 | 深圳Tcl数字技术有限公司 | Smart television-based supercomputing method and system |
CN107168779A (en) * | 2017-03-31 | 2017-09-15 | 咪咕互动娱乐有限公司 | A kind of task management method and system |
US10938677B2 (en) | 2017-04-12 | 2021-03-02 | Cisco Technology, Inc. | Virtualized network functions and service chaining in serverless computing infrastructure |
US10884807B2 (en) | 2017-04-12 | 2021-01-05 | Cisco Technology, Inc. | Serverless computing and task scheduling |
CN107066338A (en) * | 2017-04-13 | 2017-08-18 | 中国人民解放军国防科学技术大学 | The computing environment method of automatic configuration of distributed computing system |
WO2018196631A1 (en) * | 2017-04-26 | 2018-11-01 | Midea Group Co., Ltd. | Training machine learning models on a large-scale distributed system using a job server |
US11740935B2 (en) | 2017-07-20 | 2023-08-29 | Cisco Technology, Inc. | FPGA acceleration for serverless computing |
US11119821B2 (en) | 2017-07-20 | 2021-09-14 | Cisco Technology, Inc. | FPGA acceleration for serverless computing |
US11709704B2 (en) | 2017-07-20 | 2023-07-25 | Cisco Technology, Inc. | FPGA acceleration for serverless computing |
US10489195B2 (en) | 2017-07-20 | 2019-11-26 | Cisco Technology, Inc. | FPGA acceleration for serverless computing |
CN107580023A (en) * | 2017-08-04 | 2018-01-12 | 山东大学 | Stream processing job scheduling method and system for dynamically adjusting task allocation |
CN107580023B (en) * | 2017-08-04 | 2020-05-12 | 山东大学 | A stream processing job scheduling method and system for dynamically adjusting task allocation |
CN109408220A (en) * | 2017-08-17 | 2019-03-01 | 北京国双科技有限公司 | A kind of task processing method and device |
CN107608773A (en) * | 2017-08-24 | 2018-01-19 | 阿里巴巴集团控股有限公司 | task concurrent processing method, device and computing device |
US10771584B2 (en) | 2017-11-30 | 2020-09-08 | Cisco Technology, Inc. | Provisioning using pre-fetched data in serverless computing environments |
US11570272B2 (en) | 2017-11-30 | 2023-01-31 | Cisco Technology, Inc. | Provisioning using pre-fetched data in serverless computing environments |
CN109995824A (en) * | 2017-12-29 | 2019-07-09 | 阿里巴巴集团控股有限公司 | Method for scheduling task and device in a kind of peer-to-peer network |
CN108449215A (en) * | 2018-03-31 | 2018-08-24 | 甘肃万维信息技术有限责任公司 | Based on distributed server performance monitoring system |
US11016673B2 (en) | 2018-04-02 | 2021-05-25 | Cisco Technology, Inc. | Optimizing serverless computing using a distributed computing framework |
US10678444B2 (en) | 2018-04-02 | 2020-06-09 | Cisco Technology, Inc. | Optimizing serverless computing using a distributed computing framework |
WO2020000944A1 (en) * | 2018-06-25 | 2020-01-02 | 星环信息科技(上海)有限公司 | Preemptive scheduling based resource sharing use method, system and |
CN108829504A (en) * | 2018-06-28 | 2018-11-16 | 泰康保险集团股份有限公司 | A kind of method for scheduling task, device, medium and electronic equipment |
CN110673945A (en) * | 2018-07-03 | 2020-01-10 | 北京京东尚科信息技术有限公司 | Distributed task management method and management system |
CN109086894A (en) * | 2018-07-06 | 2018-12-25 | 西安热工研究院有限公司 | A kind of warning message centring system of facing area genco |
CN108958942A (en) * | 2018-07-18 | 2018-12-07 | 郑州云海信息技术有限公司 | A kind of distributed system distribution multitask method, scheduler and computer equipment |
CN109343942A (en) * | 2018-09-03 | 2019-02-15 | 北京邮电大学 | Task scheduling method based on edge computing network |
CN109343942B (en) * | 2018-09-03 | 2020-11-03 | 北京邮电大学 | Task scheduling method based on edge computing network |
CN109246479A (en) * | 2018-10-09 | 2019-01-18 | 深圳市亿联智能有限公司 | A kind of cloud computing control mode based on Intelligent set top box |
CN109450913A (en) * | 2018-11-27 | 2019-03-08 | 浪潮软件股份有限公司 | A kind of multinode registration dispatching method based on strategy |
CN109614211A (en) * | 2018-11-28 | 2019-04-12 | 新华三技术有限公司合肥分公司 | Distributed task scheduling pre-scheduling method and device |
CN111352709A (en) * | 2018-12-20 | 2020-06-30 | 顺丰科技有限公司 | Task scheduling method and device in distributed system |
CN109783214B (en) * | 2018-12-29 | 2021-06-22 | 广东电网有限责任公司广州供电局 | Task scheduling control system |
CN109783214A (en) * | 2018-12-29 | 2019-05-21 | 广州供电局有限公司 | Task schedule control system |
CN109922050A (en) * | 2019-02-03 | 2019-06-21 | 普信恒业科技发展(北京)有限公司 | A kind of task detection method and device |
CN109921926A (en) * | 2019-02-19 | 2019-06-21 | 重庆市勘测院 | A kind of autocontrol method and system of outdoor scene modeling cluster |
CN110109742A (en) * | 2019-05-09 | 2019-08-09 | 重庆八戒电子商务有限公司 | A kind of method and device that the distributed task scheduling based on zookeeper is coordinated |
US11556380B2 (en) | 2019-06-10 | 2023-01-17 | Beijing Dajia Internet Information Technology Co., Ltd. | Task execution method, apparatus, device and system, and storage medium |
CN110209488A (en) * | 2019-06-10 | 2019-09-06 | 北京达佳互联信息技术有限公司 | Task executing method, device, equipment, system and storage medium |
CN110297693A (en) * | 2019-07-04 | 2019-10-01 | 北京伟杰东博信息科技有限公司 | A kind of method and its system of the distribution of distributed software task |
CN110413389B (en) * | 2019-07-24 | 2021-09-28 | 浙江工业大学 | Task scheduling optimization method under resource imbalance Spark environment |
CN110413389A (en) * | 2019-07-24 | 2019-11-05 | 浙江工业大学 | A task scheduling optimization method in Spark environment with unbalanced resources |
CN110389822A (en) * | 2019-07-29 | 2019-10-29 | 北京金山云网络技术有限公司 | Node scheduling method, device and server for executing tasks |
CN110389973A (en) * | 2019-07-30 | 2019-10-29 | 大连海事大学 | A Parallel Outlier Detection Method in Heterogeneous Distributed Environment |
CN110389973B (en) * | 2019-07-30 | 2022-06-07 | 大连海事大学 | A Parallel Outlier Detection Method in Heterogeneous Distributed Environment |
WO2021063171A1 (en) * | 2019-09-30 | 2021-04-08 | 腾讯科技(深圳)有限公司 | Decision tree model training method, system, storage medium, and prediction method |
CN110737521A (en) * | 2019-10-14 | 2020-01-31 | 中国人民解放军32039部队 | Disaster recovery method and device based on task scheduling center |
CN113157403A (en) * | 2020-01-07 | 2021-07-23 | 中科寒武纪科技股份有限公司 | Job processing method and device, computer equipment and readable storage medium |
CN111580945A (en) * | 2020-04-21 | 2020-08-25 | 智业互联(厦门)健康科技有限公司 | Micro-service task coordination scheduling method and system |
CN112003898A (en) * | 2020-07-27 | 2020-11-27 | 珠海许继芝电网自动化有限公司 | Load balancing method and system for multi-node cluster |
CN112131007B (en) * | 2020-09-28 | 2023-02-21 | 山东浪潮科学研究院有限公司 | GPU resource scheduling method, device and medium based on AI platform |
CN112131007A (en) * | 2020-09-28 | 2020-12-25 | 济南浪潮高新科技投资发展有限公司 | GPU resource scheduling method, device and medium based on AI platform |
CN113112139A (en) * | 2021-04-07 | 2021-07-13 | 上海联蔚盘云科技有限公司 | Cloud platform bill processing method and equipment |
WO2023168937A1 (en) * | 2022-03-09 | 2023-09-14 | 中兴通讯股份有限公司 | Data processing method and apparatus, computer device, and readable medium |
CN114706671B (en) * | 2022-05-17 | 2022-08-12 | 中诚华隆计算机技术有限公司 | Multiprocessor scheduling optimization method and system |
CN114706671A (en) * | 2022-05-17 | 2022-07-05 | 中诚华隆计算机技术有限公司 | Multiprocessor scheduling optimization method and system |
WO2024207846A1 (en) * | 2023-12-11 | 2024-10-10 | 天翼云科技有限公司 | Method and system for scheduling sensitive data workflow in multi-cloud environment |
Also Published As
Publication number | Publication date |
---|---|
CN102073546B (en) | 2013-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102073546A (en) | Task-dynamic dispatching method under distributed computation mode in cloud computing environment | |
Ding et al. | Q-learning based dynamic task scheduling for energy-efficient cloud computing | |
US6732139B1 (en) | Method to distribute programs using remote java objects | |
CN104021040B (en) | Based on the cloud computing associated task dispatching method and device under time constraint condition | |
CN102063336B (en) | A Distributed Computing Multi-Application Function Asynchronous Concurrent Scheduling Method | |
Mansouri et al. | Combination of data replication and scheduling algorithm for improving data availability in Data Grids | |
CN111861412B (en) | Scientific workflow scheduling method and system for completion time optimization | |
Lai et al. | Sol: Fast distributed computation over slow networks | |
WO2012113290A1 (en) | Gene computing system and method | |
CN104243617A (en) | Task scheduling method and system facing mixed load in heterogeneous cluster | |
CN104503832A (en) | Virtual machine scheduling system and virtual machine scheduling method with balanced equity and efficiency | |
Zhang et al. | Meteor: Optimizing spark-on-yarn for short applications | |
CN114138488A (en) | Cloud-native implementation method and system based on elastic high-performance computing | |
CN113934525A (en) | Hadoop cluster task scheduling method based on positive and negative feedback load scheduling algorithm | |
Farahani et al. | Serverless Workflow Management on the Computing Continuum: A Mini-Survey | |
CN111522637A (en) | Storm task scheduling method based on cost benefit | |
CN117215788A (en) | Dynamic elastic telescoping method based on micro-service load | |
CN108446165A (en) | A kind of task forecasting method in cloud computing | |
Bakni et al. | Survey on improving the performance of MapReduce in Hadoop | |
Liang et al. | A CUDA programming toolkit on grids | |
KR101092359B1 (en) | Scheduling apparatus and method in grid | |
CN111538593A (en) | Data acquisition method based on industrial internet operating system | |
Jiang et al. | Energy optimization oriented three-way clustering algorithm for cloud tasks | |
Lin et al. | Research on weighted rotation fair scheduling algorithm based on hama parallel computing framework | |
Kaladevi et al. | Processor Co Allocation Enabling Advanced Reservation of Jobs using Priorities in Multi-Cluster system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: SHANGHAI SHICONG INFORMATION TECHNOLOGY CO., LTD. Free format text: FORMER OWNER: BEIHANG UNIVERSITY Effective date: 20150512 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 100191 HAIDIAN, BEIJING TO: 201401 FENGXIAN, SHANGHAI |
|
TR01 | Transfer of patent right |
Effective date of registration: 20150512 Address after: 201401 Shanghai Fengxian District City Ring Road No. 2200 building 2128 room Patentee after: Shanghai Shi Cong network information technology Co., Ltd Address before: 100191 Beijing City, Haidian District Xueyuan Road No. 37 North College of computer Patentee before: Beihang University |
|
C56 | Change in the name or address of the patentee | ||
CP03 | Change of name, title or address |
Address after: 200233 room 202-35, Guiping Road, Shanghai, Xuhui District, 92 Patentee after: SHANGHAI JUNESH INFORMATION TECHNOLOGY CO., LTD. Address before: 201401 Shanghai Fengxian District City Ring Road No. 2200 building 2128 room Patentee before: Shanghai Shi Cong network information technology Co., Ltd |
|
DD01 | Delivery of document by public notice |
Addressee: SHANGHAI JUNESH INFORMATION TECHNOLOGY CO., LTD. Document name: Notification to Pay the Fees |
|
DD01 | Delivery of document by public notice | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130710 Termination date: 20181213 |