[go: up one dir, main page]

CN102073546A - Task-dynamic dispatching method under distributed computation mode in cloud computing environment - Google Patents

Task-dynamic dispatching method under distributed computation mode in cloud computing environment Download PDF

Info

Publication number
CN102073546A
CN102073546A CN2010105835979A CN201010583597A CN102073546A CN 102073546 A CN102073546 A CN 102073546A CN 2010105835979 A CN2010105835979 A CN 2010105835979A CN 201010583597 A CN201010583597 A CN 201010583597A CN 102073546 A CN102073546 A CN 102073546A
Authority
CN
China
Prior art keywords
task
node
computing
information
main controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010105835979A
Other languages
Chinese (zh)
Other versions
CN102073546B (en
Inventor
肖利民
毛宏
祝明发
阮利
胡声秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Junesh Information Technology Co Ltd
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN 201010583597 priority Critical patent/CN102073546B/en
Publication of CN102073546A publication Critical patent/CN102073546A/en
Application granted granted Critical
Publication of CN102073546B publication Critical patent/CN102073546B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Multi Processors (AREA)

Abstract

一种云计算环境中分布式计算模式下的任务动态调度方法,该方法有四大步骤:步骤一、主节点接收子节点的心跳信息并加以分析;步骤二、主节点根据节点状态表和任务状态表预分配任务;步骤三、子节点向主节点索取任务;步骤四、主节点为子节点分配任务。本发明首先考虑任务的资源需求及节点的性能信息,在满足需求的情况下对任务的分配进行动态控制,从而提高作业的响应速度和节点的资源使用率。它在云计算环境下的分布式计算技术领域里具有广泛地实用价值和应用前景。

Figure 201010583597

A method for dynamically scheduling tasks in a distributed computing mode in a cloud computing environment. The method has four steps: Step 1, the master node receives and analyzes the heartbeat information of the child nodes; The state table pre-allocates tasks; Step 3, the child node requests tasks from the master node; Step 4, the master node assigns tasks to the child nodes. The invention firstly considers the resource requirement of the task and the performance information of the node, and dynamically controls the allocation of the task when the requirement is met, thereby improving the response speed of the job and the resource utilization rate of the node. It has extensive practical value and application prospects in the field of distributed computing technology under the cloud computing environment.

Figure 201010583597

Description

一种云计算环境中分布式计算模式下的任务动态调度方法 A method for dynamic scheduling of tasks in a distributed computing mode in a cloud computing environment

(一)技术领域(1) Technical field

本发明涉及一种分布式计算模型的任务调度方法。具体涉及到一种云计算环境中分布式计算模式下的任务动态调度方法。它是一种任务调度子系统中任务的基于节点性能的动态调度方法,属于计算机技术领域。The invention relates to a task scheduling method of a distributed computing model. Specifically, it relates to a task dynamic scheduling method in a distributed computing mode in a cloud computing environment. It is a dynamic scheduling method based on node performance for tasks in a task scheduling subsystem, and belongs to the field of computer technology.

(二)背景技术(2) Background technology

目前,随着网络应用的飞速发展使得对计算能力的需求不断增加,伴随着网格计算、并行计算、分布式计算的发展,云计算应运而生,被列为国家未来重点发展的技术方向,并成为了当今计算机研究界和工业界的热点研究课题。随着云计算的流行,越来越多的网络(Web)服务和商业应用被部署到云计算环境中,对于云环境中处理应用层计算请求的分布式节点来说,如何通过任务的调度以高效处理上层计算请求,提高性能上异构的分布式节点的资源的使用率,并提升作业的响应速度成为当前云计算领域的研究热点。At present, with the rapid development of network applications, the demand for computing power continues to increase, and with the development of grid computing, parallel computing, and distributed computing, cloud computing has emerged as the times require, and is listed as a key technical direction for the country's future development. And it has become a hot research topic in today's computer research and industry circles. With the popularity of cloud computing, more and more network (Web) services and business applications are deployed in the cloud computing environment. For the distributed nodes processing application layer computing requests in the cloud environment, how to use task scheduling and Efficiently processing upper-layer computing requests, improving the resource utilization of heterogeneous distributed nodes in terms of performance, and improving the response speed of jobs has become a research hotspot in the field of cloud computing.

在对云环境中的海量数据进行处理时,以分布式存储和分布式并行处理为基础的任务调度是关键步骤之一。改进作业和任务的调度方法是目前的研究热点,国内外研究主要包括多作业并行运行时作业之间的调度、单作业运行时子任务的调度和并行运行的子任务数量的最优化等方面。When processing massive data in the cloud environment, task scheduling based on distributed storage and distributed parallel processing is one of the key steps. Improving the scheduling method of jobs and tasks is a research hotspot at present. Research at home and abroad mainly includes scheduling between jobs when multiple jobs are running in parallel, scheduling subtasks when a single job is running, and optimizing the number of subtasks running in parallel.

在作业的调度方面,当前的最基本的调度方式为先进先出的作业调度方法,毋庸置疑,这种作业处理方法有很多弊端,尤其是在作业数量较多时,整体响应时间很长。公平调度器(Fair scheduler)的提出较好的解决了这个问题,当单独一个作业在运行时,它将使用整个集群。当有其它作业被提交时,系统会将任务空闲时间片赋给这些新的作业,以使得每一个作业都大概获取到等量的CPU时间,并且使小任务得到快速响应的同时保证大任务的服务水平。容量调度器(Capacity scheduler)则支持多队列,作业提交后进入一个队列,资源按队列分配,每个队列中的作业使用该队列的资源;在一个队列中,高优先级的作业可以先于低优先级的作业使用资源;但一旦一个作业开始执行,它就不会被更高优先级的作业抢占;为防止一个或多个用户垄断所有资源,强制为每个队列分配一定比例的资源。中国科学院计算技术研究所提出的基于MR-Predict的三队列调度器根据CPU和I/O使用率将工作负载分成3类,能够在不同类型的工作负载环境下同时提高CPU和I/O资源的使用率。In terms of job scheduling, the current most basic scheduling method is the first-in first-out job scheduling method. Undoubtedly, this job processing method has many disadvantages, especially when the number of jobs is large, the overall response time is very long. The fair scheduler (Fair scheduler) is a better solution to this problem. When a single job is running, it will use the entire cluster. When other jobs are submitted, the system will assign task idle time slices to these new jobs, so that each job can obtain approximately the same amount of CPU time, and make small tasks respond quickly while ensuring the performance of large tasks. Service Level. The Capacity scheduler supports multiple queues. After a job is submitted, it enters a queue, resources are allocated according to the queue, and the jobs in each queue use the resources of the queue; Priority jobs use resources; but once a job starts executing, it is not preempted by higher priority jobs; to prevent one or more users from monopolizing all resources, each queue is forced to allocate a certain percentage of resources. The MR-Predict-based three-queue scheduler proposed by the Institute of Computing Technology, Chinese Academy of Sciences divides workloads into three categories according to CPU and I/O usage, and can simultaneously improve the utilization of CPU and I/O resources under different types of workload environments. usage rate.

在任务调度上,加州伯克利大学的研究人员提出的LATE(Longest ApproximateTime to End)调度算法则聚焦于对作业中的备份任务的调度的优化。通过推测完成任务所需要的时间,确保只在速度快的节点上执行估计最晚完成的任务的备份任务。普渡大学的研究人员提出了基于历史统计数据的任务数量最优化配置方法,其研究主要关注在执行作业时,云环境中每个节点上同时运行的任务的数目对性能的影响,根据历史统计数据,获取最优化配置并应用于新的同类作业。In terms of task scheduling, the LATE (Longest Approximate Time to End) scheduling algorithm proposed by researchers at the University of California, Berkeley focuses on optimizing the scheduling of backup tasks in jobs. By speculating on how long it will take to complete, this ensures that backup tasks that are estimated to be the latest to complete are only executed on the fastest nodes. Researchers at Purdue University proposed an optimal configuration method for the number of tasks based on historical statistical data. Their research focuses on the impact of the number of concurrently running tasks on each node in the cloud environment on performance when executing jobs. According to historical statistics data, obtain optimal configurations and apply them to new jobs of the same kind.

然而,在大多数情况下,不同节点的性能各异,不同时刻各节点的负载状况也不同,如何根据节点的性能异构性及动态负债状况确定任务的动态分配策略,对于高效处理计算任务并提高分布式节点的资源使用率、提升作业的响应速度有重要意义。However, in most cases, the performance of different nodes is different, and the load status of each node is also different at different times. How to determine the dynamic allocation strategy of tasks according to the performance heterogeneity and dynamic liability status of nodes is very important for efficient processing of computing tasks and It is of great significance to improve the resource utilization rate of distributed nodes and improve the response speed of jobs.

(三)发明内容(3) Contents of the invention

1、目的:1. Purpose:

本发明的主要目的是提供一种云计算环境中分布式计算模式下的任务动态调度方法,它首先考虑任务的资源需求及节点的性能信息,在满足需求的情况下对任务的分配进行动态控制,从而提高作业的响应速度和节点的资源使用率。The main purpose of the present invention is to provide a dynamic scheduling method for tasks in a distributed computing mode in a cloud computing environment. It first considers the resource requirements of tasks and the performance information of nodes, and dynamically controls the assignment of tasks when the requirements are met. , thereby improving job response speed and node resource utilization.

为实现上述目的,本发明提出了云计算环境中分布式计算模式下基于节点性能和任务执行状况的任务的动态调度方法,云计算环境下分布式计算节点的组成结构如图1所示,主要包括一个主控节点(主节点)和多个计算节点(子节点),计算节点既可以是物理机,也可以是虚拟机,对主控节点透明,节点间通过网络互联。主控节点与计算节点通过远程过程调用(RPC)方式交互。主控节点主要负责接收计算节点的心跳信息,并加以分析和反馈以控制任务的调度和执行;计算节点除了执行任务以外,还主要负责收集本节点的性能信息和任务执行信息并发送给主控节点。In order to achieve the above object, the present invention proposes a dynamic scheduling method for tasks based on node performance and task execution status in the distributed computing mode in the cloud computing environment. The composition structure of the distributed computing nodes in the cloud computing environment is shown in Figure 1, mainly It includes a master control node (master node) and multiple computing nodes (child nodes). The computing nodes can be physical machines or virtual machines, which are transparent to the master control node, and the nodes are interconnected through the network. The master control node interacts with the computing node through remote procedure call (RPC). The main control node is mainly responsible for receiving the heartbeat information of the computing node, and analyzing and giving feedback to control the scheduling and execution of tasks; in addition to executing tasks, the computing node is also mainly responsible for collecting the performance information and task execution information of the node and sending them to the main control node. node.

2、技术方案:2. Technical solution:

本发明的技术方案是这样的:Technical scheme of the present invention is such:

本发明一种云计算环境中分布式计算模式下的任务动态调度方法,具体流程如图2所示,该方法包括以下步骤:A method for dynamically scheduling tasks in a distributed computing mode in a cloud computing environment according to the present invention. The specific process is as shown in Figure 2. The method includes the following steps:

步骤201.计算节点动态收集本节点的性能信息及任务执行信息,以心跳信息的形式报告给主控节点。Step 201. The computing node dynamically collects performance information and task execution information of the node, and reports to the master control node in the form of heartbeat information.

步骤202.主控节点接收并分析各计算节点的心跳信息,创建并不断更新节点状态表和任务状态表。根据节点状态表和任务状态表,主控节点为计算节点预分配任务,更新节点预取表和任务预分表。Step 202. The master control node receives and analyzes the heartbeat information of each computing node, creates and continuously updates the node status table and the task status table. According to the node state table and task state table, the master control node pre-allocates tasks for computing nodes, and updates the node prefetch table and task pre-allocation table.

步骤203.如果计算节点中有空的任务槽(task slot)可用,则在下次的心跳信息中加入向主控节点请求任务的标志。Step 203. If there is an empty task slot (task slot) available in the computing node, add a flag requesting a task to the master control node in the next heartbeat message.

步骤204.主控节点接收到计算节点的任务请求后,按调度策略为其分配任务,并更新节点预取表和任务预分表。Step 204. After receiving the task request from the computing node, the master control node allocates tasks to it according to the scheduling policy, and updates the node prefetching table and task pre-allocation table.

其中,步骤201所述的节点性能信息和任务执行信息是主控节点更新节点状态表和任务状态表的重要数据来源。节点性能信息可包括CPU主频、内存大小、CPU使用率、内存使用率、I/O资源使用率等。任务执行信息包括刚结束的任务执行信息和正在进行中的任务执行信息;刚结束的任务执行信息包括任务的TaskID、所在作业的JobID、用于IO的时间(复制处理数据)和用于CPU计算的时间,其中,复制处理数据发生在该计算节点没有此任务的输入数据的情况下发生;正在进行中的任务执行信息包括任务的TaskID、所在作业的JobID、任务的执行进度和已执行时间。每个计算节点每隔一段时间收集本节点的这两种信息,并封装为心跳信息发送给主控节点。Wherein, the node performance information and task execution information described in step 201 are important data sources for the master control node to update the node state table and task state table. Node performance information may include CPU main frequency, memory size, CPU usage, memory usage, I/O resource usage, and the like. The task execution information includes the task execution information that has just ended and the task execution information that is in progress; the task execution information that has just ended includes the TaskID of the task, the JobID of the job, the time used for IO (copy processing data) and the time used for CPU calculation The time for copying processing data occurs when the computing node does not have input data for this task; the ongoing task execution information includes the TaskID of the task, the JobID of the job it is in, the execution progress of the task, and the execution time. Each computing node collects these two kinds of information of the node at regular intervals, and encapsulates it as heartbeat information and sends it to the master control node.

其中,步骤202中所述的节点状态表和任务状态表是主控节点制定任务分配方案的重要参考信息。节点状态表描述了近一段时期内各计算节点的性能状态,任务状态表记录了各计算节点在近一段时期内处理任务的情况。主控节点第一次接收到计算节点的心跳信息后,创建节点状态表和任务状态表并在以后每次接收到计算节点的心跳信息后更新这两个表。节点状态表包括NodeName、CPU_Speed、MemSize、CPU_Usage、Mem_Usage、IO_Usage这些字段;任务状态表包括JobID、TaskID、NodeName、Time_IO、Time_CPU、Progress、PastTime这些字段。节点预取表和任务预分表记录着当前集群中任务的预分配信息。节点预取表记录了主控节点为计算节点预先分配任务的信息,节点预取表包括NodeName、preFetched、preFetchedTaskID这些字段。任务预分表记录了主控节点将任务预先分配给计算节点的信息,任务预分表包括TaskID、preScheduled、preScheduledNodeName这些字段。Wherein, the node state table and the task state table described in step 202 are important reference information for the master control node to formulate a task allocation scheme. The node status table describes the performance status of each computing node in the recent period, and the task status table records the processing status of each computing node in the recent period. After the master control node receives the heartbeat information of the computing node for the first time, it creates a node status table and a task status table and updates these two tables each time it receives the heartbeat information of the computing node. The node status table includes the fields NodeName, CPU_Speed, MemSize, CPU_Usage, Mem_Usage, and IO_Usage; the task status table includes the fields JobID, TaskID, NodeName, Time_IO, Time_CPU, Progress, and PastTime. The node prefetch table and task preallocation table record the preallocation information of tasks in the current cluster. The node prefetch table records the information about pre-assigned tasks for computing nodes by the master control node. The node prefetch table includes fields such as NodeName, preFetched, and preFetchedTaskID. The task pre-allocation table records the information that the master control node pre-allocates tasks to computing nodes. The task pre-allocation table includes fields such as TaskID, preScheduled, and preScheduledNodeName.

其中,步骤203所述的计算节点的任务槽的大小是指计算节点同一时刻能并行执行的最大任务数,任务槽的大小在分布式节点集群启动前配置好。计算节点只有在有空的任务槽的时候才向主控节点申请任务,任务的申请通过心跳信息传递,心跳信息中包含申请任务的标志位,如果为真则表明该计算节点有空的任务槽,主控节点可以将任务分配给该计算节点执行。Wherein, the size of the task slot of the computing node in step 203 refers to the maximum number of tasks that the computing node can execute in parallel at the same time, and the size of the task slot is configured before the start of the distributed node cluster. Computing nodes only apply for tasks to the master control node when there are free task slots. The application of the task is transmitted through the heartbeat message. The heartbeat message contains the flag bit of the application task. If it is true, it indicates that the computing node has an empty task slot. , the master control node can assign tasks to the computing node for execution.

其中,步骤204所述的主控节点为申请任务的计算节点分配任务执行是通过分布式调度算法决定的。分布式调度算法在主控节点的调度器中实现,同一时刻可能有多个计算节点同时申请任务执行,调度器通过读取节点状态表、任务状态表、节点预取表和任务预分表,并结合剩余任务队列,根据分布式调度算法确定为计算节点分配任务的优先次序及任务个数,然后更新节点预取表和任务预分表。Wherein, the allocation of task execution by the master control node to the computing node applying for the task described in step 204 is determined by a distributed scheduling algorithm. The distributed scheduling algorithm is implemented in the scheduler of the master control node. At the same time, multiple computing nodes may apply for task execution at the same time. The scheduler reads the node status table, task status table, node prefetch table and task pre-allocation table, Combined with the remaining task queue, according to the distributed scheduling algorithm, the priority order and the number of tasks assigned to computing nodes are determined, and then the node prefetching table and task pre-allocation table are updated.

3、优点及功效:本发明一种云计算环境中分布式计算模式下的任务动态调度方法,它与现有技术此,其主要优点是:(1)通过分析计算节点的性能动态变化和历史任务执行信息,使得主控节点对任务的分配更合理,更能充分发挥性能较好的计算节点的性能优势,而原有的任务调度方法都没有考虑各计算节点在性能上的动态变化性;(2)改变了典型的分布式计算模型(如MapReduce)中只要计算节点向主控节点申请任务即可获得任务执行的惯例,而为主控节点赋予了选择计算节点去执行任务的权利,这样就避免了性能较差的计算节点带来的瓶颈问题。3. Advantages and effects: a method for dynamically dispatching tasks in a distributed computing mode in a cloud computing environment of the present invention, which is different from the prior art in that its main advantages are: (1) by analyzing the performance dynamic changes and history of computing nodes Task execution information makes the allocation of tasks by the master control node more reasonable, and can give full play to the performance advantages of computing nodes with better performance. However, the original task scheduling method does not consider the dynamic variability of the performance of each computing node; (2) Changed the practice in typical distributed computing models (such as MapReduce) that as long as computing nodes apply for tasks from the master control node, they can obtain task execution, and the master control node has given the right to select computing nodes to perform tasks, so that This avoids the bottleneck problem caused by computing nodes with poor performance.

(四)附图说明(4) Description of drawings

图1本发明的云计算环境中分布式计算节点的组成结构示意图Fig. 1 is a schematic diagram of the composition structure of distributed computing nodes in the cloud computing environment of the present invention

图2云环境中基于分布式节点性能和任务执行状况的任务分布式调度流程示意图Figure 2 Schematic diagram of task distributed scheduling process based on distributed node performance and task execution status in cloud environment

图3本发明包括的三个阶段(初始化、信息更新和任务调度)的交互结构图Fig. 3 is an interactive structural diagram of three phases (initialization, information update and task scheduling) included in the present invention

图4本发明包括的三个阶段的详细流程图The detailed flowchart of three stages that Fig. 4 present invention comprises

图5本发明信息更新模块流程示意图Fig. 5 schematic flow chart of the information update module of the present invention

图6本发明任务调度模块流程示意图Figure 6 is a schematic flow diagram of the task scheduling module of the present invention

图中符号说明如下:The symbols in the figure are explained as follows:

201-204步骤序号;501-505步骤序号;601-604步骤序号;201-204 step number; 501-505 step number; 601-604 step number;

(五)具体实施方式(5) Specific implementation methods

为使本发明的目的、技术方案和优点表达得更加清楚明白,下面结合附图及具体实施例对本发明再作进一步详细的说明。In order to make the object, technical solution and advantages of the present invention more clearly, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.

本发明所需满足的设备环境条件见图1,云环境中分布式计算节点的组成结构主要包括一个主控节点(主节点)和多个计算节点(子节点),计算节点既可以是物理机,也可以是虚拟机,对主控节点透明,节点间通过网络互联。主控节点与计算节点通过远程过程调用(RPC)方式交互。主控节点主要负责接收计算节点的心跳信息,并加以分析和反馈以控制任务的调度和执行;其中,节点分析器用于接收和分析计算节点的性能信息,更新节点状态表,任务分析器用于接收和分析计算节点的任务信息,更新任务状态表。计算节点除了执行任务以外,还主要负责收集本节点的性能信息和任务执行信息并发送给主控节点;其中,节点性能监控器负责收集节点最近一段时间的性能信息,任务监控器负责收集节点最近一段时间执行任务的记录信息。The equipment environment conditions that the present invention needs to satisfy are shown in Fig. 1, and the composition structure of the distributed computing node in the cloud environment mainly includes a main control node (master node) and a plurality of computing nodes (sub-nodes), and the computing node can be a physical machine , it can also be a virtual machine, which is transparent to the master control node, and the nodes are interconnected through the network. The master control node interacts with the computing node through remote procedure call (RPC). The main control node is mainly responsible for receiving the heartbeat information of computing nodes, and analyzing and feeding back to control the scheduling and execution of tasks; among them, the node analyzer is used to receive and analyze the performance information of computing nodes, update the node status table, and the task analyzer is used to receive And analyze the task information of computing nodes, and update the task status table. In addition to executing tasks, computing nodes are also mainly responsible for collecting the performance information and task execution information of the node and sending them to the master control node; among them, the node performance monitor is responsible for collecting the performance information of the node in the latest period, and the task monitor is responsible for collecting the latest Record information of tasks executed for a period of time.

本发明在软件条件方面,要求各节点采用Linux操作系统,安装有Java开发工具包1.6及以上版本。In terms of software conditions, the present invention requires each node to adopt a Linux operating system and to be installed with Java development kit version 1.6 and above.

本发明在环境条件方面,要求各节点能够通过ssh无密码互相访问。In terms of environmental conditions, the present invention requires each node to be able to access each other through ssh without password.

基于节点性能和任务执行状况的任务动态调度流程见图2,主要包括两个内容:(1)计算节点收集封装本节点的心跳信息并发送给主控节点,主控节点根据接收到的心跳信息建立和更新节点状态表和任务状态表;(2)主控节点在接收到计算节点的任务请求后,根据调度算法为计算节点分配任务并更新节点预取表和任务预分表。The task dynamic scheduling process based on node performance and task execution status is shown in Figure 2, which mainly includes two contents: (1) The computing node collects and encapsulates the heartbeat information of the node and sends it to the master control node, and the master control node according to the received heartbeat information Establish and update the node state table and task state table; (2) After receiving the task request from the computing node, the master control node assigns tasks to the computing node according to the scheduling algorithm and updates the node prefetching table and task pre-allocation table.

该方法包括三个阶段:初始化、信息更新和任务调度。其交互结构如图3所示。在初始化阶段,主控节点接收作业,并建立节点状态表和任务状态表;在信息更新阶段,主控节点接收计算节点的心跳信息并更新节点状态表、任务状态表、节点预取表和任务预分表,若计算节点请求任务,则进入任务调度阶段;在任务调度阶段,主控节点根据节点信息和任务信息为计算节点分配任务,结束后返回信息更新阶段等待计算节点的心跳信息。The method includes three phases: initialization, information update and task scheduling. Its interactive structure is shown in Figure 3. In the initialization phase, the master control node receives the job, and establishes the node status table and task status table; in the information update phase, the master control node receives the heartbeat information of the computing node and updates the node status table, task status table, node prefetch table and task Pre-allocate the table. If the computing node requests a task, it enters the task scheduling stage; in the task scheduling stage, the master control node assigns tasks to the computing node according to the node information and task information, and returns to the information update stage after the end to wait for the heartbeat information of the computing node.

下面以一实例进行说明,如图4所示,本发明所述的方法包括以下步骤:Illustrate with an example below, as shown in Figure 4, the method of the present invention comprises the following steps:

步骤401:计算节点上的节点性能监控器收集本节点的性能信息,任务监控器收集本节点的任务执行信息,再封装成心跳信息,发送给主控节点。信息收集和心跳信息发送的周期为3秒。Step 401: The node performance monitor on the computing node collects the performance information of the node, and the task monitor collects the task execution information of the node, and then encapsulates it into heartbeat information and sends it to the master control node. The cycle of information collection and heartbeat information sending is 3 seconds.

步骤402:主控节点接收并分析各计算节点的心跳信息,如果是第一次收到心跳信息,则创建节点状态表和任务状态表,如果已创建,则每收到一个心跳信息就更新节点状态表和任务状态表。主控节点根据节点状态表和任务状态表,为计算节点预分配任务,更新节点预取表和任务预分表。具体如图5的信息更新模块所示。Step 402: The master control node receives and analyzes the heartbeat information of each computing node. If it is the first time to receive the heartbeat information, create a node status table and a task status table. If it has already been created, update the node every time a heartbeat information is received State table and task state table. According to the node state table and task state table, the master control node pre-allocates tasks for computing nodes, and updates the node prefetch table and task pre-allocation table. Specifically, it is shown in the information update module in FIG. 5 .

步骤403:计算节点若有空的任务槽(task slot)可用,则在下次的心跳信息中加入向主控节点请求任务的标志。Step 403: If the computing node has an empty task slot available, add a flag requesting a task to the master control node in the next heartbeat message.

步骤404:主控节点接收到计算节点的任务请求后,按调度策略为其分配任务。具体如图6的任务调度模块所示。Step 404: After receiving the task request from the computing node, the master control node allocates tasks to it according to the scheduling policy. Specifically, it is shown in the task scheduling module in FIG. 6 .

信息更新模块的详细流程如图5所示,The detailed process of the information update module is shown in Figure 5.

步骤501:主控节点监听计算节点的RPC访问,接收计算节点发送的心跳信息。主控节点同一时刻只能接收一个计算节点的心跳信息,如果主控节点在接收某个计算节点的心跳信息时,有其他计算节点也向主控节点发送心跳信息,则主控节点将较晚心跳的计算节点加入等待队列。计算节点上的节点性能监控器监控并收集本节点最近一段时间内的性能信息,任务监控器监控本节点上正在执行的任务的信息并收集已执行的最近的3个历史任务的记录,计算节点将性能信息和任务信息封装为心跳信息。如果最近一段时间内的任务信息没有更新,心跳信息中也可以只包含节点的性能信息。计算节点每隔一段时间将心跳信息通过RPC方式发送给主控节点。心跳周期为3秒。每次心跳时,心跳信息中都应包含节点的性能信息和当前正在执行的任务的信息,而计算节点每执行完一个任务,都在下一次心跳时将刚结束的任务的执行记录加入心跳信息发送给主控节点,即任务信息中包含两类任务信息:已完成但未上报的任务信息(可能为空)和正在进行中的任务信息。Step 501: the master control node monitors the RPC access of the computing node, and receives the heartbeat information sent by the computing node. The master control node can only receive the heartbeat information of one computing node at a time. If the master control node receives the heartbeat information of a certain computing node, other computing nodes also send heartbeat information to the master control node, the master control node will be delayed. The heartbeat computing node joins the waiting queue. The node performance monitor on the computing node monitors and collects the performance information of the node in the latest period. The task monitor monitors the information of the tasks being executed on the node and collects the records of the last three historical tasks that have been executed. The computing node Encapsulate performance information and task information as heartbeat information. If the task information has not been updated in the recent period, the heartbeat information may only contain the performance information of the node. Computing nodes send heartbeat information to the master control node through RPC at regular intervals. The heartbeat period is 3 seconds. At each heartbeat, the heartbeat information should contain the performance information of the node and the information of the currently executing task, and every time the computing node completes a task, it will add the execution record of the task just completed to the heartbeat information and send it in the next heartbeat For the master control node, the task information contains two types of task information: completed but not reported task information (may be empty) and ongoing task information.

步骤502:主控节点根据接收到的心跳信息,更新节点状态表和任务状态表。对于节点状态表,将心跳信息中的计算节点状态信息覆盖主控节点中节点状态表对应于该计算节点的信息。任务状态表中记录着每个节点上执行的最近3个历史任务的信息和正在进行中的任务信息,主控节点每次收到新的任务状态信息时,首先看是否有已完成但未上报的任务信息,如果有,则获得该任务的TaskID并查看该任务在任务状态表中是否已存在,若存在则更新任务状态表中该任务的信息,否则删除任务状态表中该计算节点的最旧的任务信息并加入该已完成的任务信息。对于正在进行中的任务信息,获得该任务的TaskID,如果该任务在任务状态表中已存在,则更新任务状态表中该任务的信息,否则,在任务状态表中加入该任务的信息。Step 502: The master control node updates the node state table and the task state table according to the received heartbeat information. For the node status table, the computing node status information in the heartbeat information is overwritten with the information corresponding to the computing node in the node status table in the master control node. The task status table records the information of the last three historical tasks executed on each node and the task information in progress. Every time the master control node receives new task status information, it first checks whether there are tasks that have been completed but not reported. If yes, obtain the TaskID of the task and check whether the task already exists in the task status table, if it exists, update the information of the task in the task status table, otherwise delete the last Old task information and add the completed task information. For the task information in progress, obtain the TaskID of the task, if the task already exists in the task state table, update the information of the task in the task state table, otherwise, add the information of the task in the task state table.

步骤503:根据节点状态表和任务状态表更新节点预取表和任务预分表。对于任务列表中的第m个任务,根据节点状态表和任务状态表,预测每个节点执行该任务所需的时间,预测算法如下:Step 503: Update the node prefetching table and the task pre-allocation table according to the node state table and the task state table. For the mth task in the task list, predict the time required for each node to execute the task according to the node state table and task state table, the prediction algorithm is as follows:

TT ii jj ii == ΣΣ jj -- hh jj -- 11 (( tt sthe s ++ tt ioio ++ tt cpucpu )) hh ,, ii == 1,21,2 .. .. .. .. .. .. nno -- -- -- (( 11 ))

其中,Tij为第i个计算节点执行其第ji个任务所需的预测时间,ts为出现可用任务槽的时间,ti0为复制数据所需的时间,tcpu为数据处理时间,h为计算节点已经成功执行的任务的参考数目,n为集群中的计算节点数。Among them, T ij is the predicted time required for the i-th computing node to execute its j - th task, t s is the time when an available task slot appears, t i0 is the time required for copying data, t cpu is the data processing time, h is the reference number of tasks that the computing nodes have successfully executed, and n is the number of computing nodes in the cluster.

获得Tij的值后,主控节点选择最小的一个,向其对应的计算节点预分配任务。并将任务m标记为已预分,将即将执行该任务的计算节点标记为已预取。After obtaining the value of T ij , the master control node selects the smallest one, and pre-allocates tasks to its corresponding computing nodes. And mark the task m as pre-segmented, and mark the computing node that will execute the task as pre-fetched.

接着,主控节点继续在未被标记为已预取的各计算节点中为下一个没有标记为已预分的任务选择执行它的计算节点。每次只预分num个任务,其中num=5。预分完毕后,任务队列里可能还有未被标记为已预分的任务,节点列表中也可能会有未被标记为已预取的节点。Next, the master control node continues to select a computing node for executing the next task not marked as pre-partitioned among computing nodes not marked as pre-fetched. Only num tasks are pre-divided each time, where num=5. After the pre-allocation is completed, there may be tasks not marked as pre-allocated in the task queue, and there may be nodes not marked as pre-fetched in the node list.

步骤504:如果计算节点在心跳信息中将请求任务字段标记为真,则进入任务调度模块。Step 504: If the computing node marks the requested task field as true in the heartbeat information, enter the task scheduling module.

任务调度模块的详细流程如图6所示:The detailed process of the task scheduling module is shown in Figure 6:

步骤601:主控节点首先通过查找节点预取表判断是否已为该节点预先分配任务,如果已预先分配,则为该节点分配已预分的任务,并标记该任务已分配,标记该节点为未预取。Step 601: The master control node first judges whether the task has been pre-allocated for the node by looking up the node prefetch table, and if it has been pre-allocated, assign the pre-allocated task to the node, mark the task as allocated, and mark the node as Not prefetched.

步骤602:如果主控节点没有为该节点预先分配任务,根据步骤503中所述的预测算法,未被标记为已预取的节点是性能较差或计算能力较弱的节点,则从任务队列中选取一个任务给该节点执行,但是并不将该任务标记为已分配,待下次预分时,该任务将被预分给处理速度较快的节点,因而该任务将有一个备份任务在快节点上执行以保证其顺利执行。Step 602: If the master control node does not pre-allocate tasks for this node, according to the prediction algorithm described in step 503, the nodes that are not marked as having been prefetched are nodes with poor performance or weak computing power, then the task queue Select a task for the node to execute, but do not mark the task as allocated, and the task will be pre-allocated to the node with faster processing speed when the next pre-allocation is performed, so this task will have a backup task in the Execute on the fast node to ensure its smooth execution.

步骤603:为计算节点分配任务结束后,主控节点更新节点预取表和任务预分表。Step 603: After allocating tasks to the computing nodes, the master control node updates the node prefetching table and task preallocation table.

步骤604:任务调度阶段结束,转入信息更新阶段,主控节点继续接收并处理计算节点发送过来的心跳信息。Step 604: the task scheduling phase is over, and the information update phase is entered, and the master control node continues to receive and process the heartbeat information sent by the computing node.

最后所应说明的是:以上实施例仅用以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate and not limit the technical solutions of the present invention, although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art should understand that: the present invention can still be modified Or an equivalent replacement, any modification or partial replacement without departing from the spirit and scope of the present invention shall fall within the scope of the claims of the present invention.

Claims (5)

1. the task dynamic dispatching method under the distributed computing model in the cloud computing environment, by dynamically obtaining and the resource requirement of analysis task and the performance information and the historic task execution information of node, distribution to task under situation about satisfying the demands is dynamically controlled, thereby improve the response speed of operation and the resource utilization of node, it is characterized in that: this method may further comprise the steps:
Step 1: the performance information of this node of computing node dynamic collection and task are carried out information, report to main controlled node with the form of heartbeat message; Main controlled node receives and analyzes the heartbeat message of each computing node, generates node state table and task status table;
Step 2: main controlled node is computing node predistribution task according to node state table and task status table, and more new node is looked ahead and shown and the pre-submeter of task;
Step 3:, then in the heartbeat message of next time, add sign to main controlled node request task if free task groove is that task slot can use in the computing node;
Step 4: after main controlled node receives the task requests of computing node, press scheduling strategy and be its allocating task.
2. the task dynamic dispatching method in a kind of cloud computing environment according to claim 1 under the distributed computing model is characterized in that: described joint behavior information of step 1 and task execution information are the significant data sources that main controlled node upgrades node state table and task status table; Joint behavior information comprises CPU frequency, memory size, CPU usage, memory usage and I/O resource utilization; Task execution information comprises the task execution information of firm end and the task execution information of well afoot; Just the task execution information that finishes comprises that the JobID of TaskID, the place operation of task, the time that is used for IO are the replication processes data and are used for the time that CPU calculates, wherein, the replication processes data occur in this computing node and do not have under the input data conditions of this task and take place; The task execution information of well afoot comprises the TaskID of task, JobID, task executions progress and the executed time of place operation; Each computing node is collected these two kinds of information of this node at set intervals, and is encapsulated as heartbeat message and sends to main controlled node.
3. the task dynamic dispatching method in a kind of cloud computing environment according to claim 1 under the distributed computing model is characterized in that: described node state table of step 2 and task status table are the important references information that main controlled node is formulated the Task Distribution scheme; Node state table has been described the performance state of each computing node in a recent period of time, the task status table record situation of each computing node Processing tasks in a recent period of time; After main controlled node receives the heartbeat message of computing node for the first time, upgrade these two tables after creating node state table and task status table and receiving the heartbeat message of computing node afterwards at every turn; Node state table comprises NodeName, CPU_Speed, MemSize, CPU_Usage, these fields of Mem_Usage, IO_Usage; Task status table comprises JobID, TaskID, NodeName, Time_IO, Time_CPU, Progress, these fields of PastTime; Node look ahead table record main controlled node be the information that computing node is allocated task in advance, the node table of looking ahead comprises NodeName, preFetched, these fields of preFetchedTaskID; Task presort table record main controlled node allocate task in advance information to computing node, the pre-submeter of task comprises TaskID, preScheduled, these fields of preScheduledNodeName; The specific implementation process is as follows:
1) main controlled node is monitored the RPC visit of computing node, receives the heartbeat message that computing node sends; The main controlled node synchronization can only receive the heartbeat message of a computing node, if main controlled node is when receiving the heartbeat message of certain computing node, have other computing nodes also to send heartbeat message to main controlled node, then main controlled node adds waiting list with the computing node of later heartbeat; Joint behavior watch-dog monitoring on the computing node is also collected interior performance information of nearest a period of time of this node, the Mission Monitor device is monitored the information of carrying out on this node of task and is collected the record of executed 3 historic tasks recently, and computing node is encapsulated as heartbeat message with performance information and mission bit stream; If the mission bit stream in a period of time does not recently upgrade, also can only comprise the performance information of node in the heartbeat message; Computing node sends to main controlled node with heartbeat message by the RPC mode at set intervals; Heart beat cycle is 3 seconds, during each heartbeat, all should comprise the performance information of node and the information of current carrying out of task in the heartbeat message, and computing node whenever executes a task, the task executions that all will just finish when heartbeat next time record adds heartbeat message and sends to main controlled node, promptly comprises two generic task information in the mission bit stream: finished but the mission bit stream that do not report and the mission bit stream of well afoot;
2) main controlled node upgrades node state table and task status table according to the heartbeat message that receives; For node state table, the computing node status information in the heartbeat message is covered in the main controlled node node state table corresponding to the information of this computing node; Writing down the information of nearest 3 historic tasks of carrying out on each node and the mission bit stream of well afoot in the task status table, when main controlled node is received new task status information at every turn, at first see if there is the mission bit stream of having finished but not reported, if have, then obtain the TaskID of this task and check whether this task exists in task status table, if there is the information of this task in the updating task state table then, otherwise the oldest mission bit stream of this computing node and add this completed mission bit stream in the deletion task status table; For the mission bit stream of well afoot, obtain the TaskID of this task, if this task exists in task status table, the information of this task in the updating task state table then, otherwise, in task status table, add the information of this task;
3) according to node state table and task status table look ahead table and the pre-submeter of task of new node more.For m task in the task list, according to node state table and task status table, predict that each node carries out the time of this required by task, prediction algorithm is as follows:
T i j i = Σ j - h j - 1 ( t s + t io + t cpu ) h , i = 1,2 . . . . . . n - - - ( 1 )
Wherein, T IjBe that i computing node carried out its j iThe predicted time of individual required by task, t sFor the time of available task groove, t occurring I0Be required time of copy data, t CpuBe data processing time, h is the computing node reference number of the task of successful execution, and n is the computing node number in the cluster;
Obtain T IjValue after, main controlled node is selected minimum one, to its corresponding computing node predistribution task, and task m is labeled as presorts, and the computing node that is about to carry out this task is labeled as looks ahead;
Then, main controlled node continues not carry out its computing node for the next task choosing of having presorted that is not labeled as in being marked as each computing node of having looked ahead, only presorts num task, wherein num=5 at every turn; Presort finish after, may also have in the task queue not to be marked as the task of having presorted, also may have in the node listing and not be marked as the node of having looked ahead;
4) if computing node will ask the task word segment mark to be designated as very, then enter task scheduling modules in heartbeat message.
4. the task dynamic dispatching method in a kind of cloud computing environment according to claim 1 under the distributed computing model, it is characterized in that: the task groove of the described computing node of step 3, its size is meant the maximum number of tasks of computing node synchronization energy executed in parallel, and the size of task groove configures before the distributed node cluster starts; Computing node only in free task groove just to main controlled node application task, the application of task is by the heartbeat message transmission, the zone bit that comprises the application task in the heartbeat message, if for very then show the task groove that this computing node is free, main controlled node can assign the task to this computing node and carry out.
5. the task dynamic dispatching method in a kind of cloud computing environment according to claim 1 under the distributed computing model is characterized in that: the described main controlled node of step 4 is that the computing node allocating task execution of application task determines by the distributed scheduling algorithm; The distributed scheduling algorithm is realized in the scheduler of main controlled node, synchronization has a plurality of computing nodes application task simultaneously to be carried out, scheduler is by reading node state table, task status table, node look ahead table and the pre-submeter of task, and in conjunction with the residue task queue, be defined as the priority ranking and the task number of computing node allocating task according to the distributed scheduling algorithm, then look ahead table and the pre-submeter of task of new node more; The specific implementation process is as follows:
1) main controlled node at first judges whether to allocate task in advance for this node by searching the node table of looking ahead, if allocate in advance, the then task of having presorted for the distribution of this node, and this task of mark is distributed, and this node of mark is not for looking ahead;
2) if main controlled node is not allocated task in advance for this node, according to the prediction algorithm formula (1) described in the step 2, not being marked as the node of having looked ahead is the more weak node of poor-performing or computing power, then choosing a task from task queue carries out for this node, but not with this task flagging for distributing, treat pre-timesharing next time, this task will be given processing speed node faster in advance, thereby this task will have a backup tasks to carry out to guarantee its smooth execution on fast node;
3) for after the computing node allocating task finishes, main controlled node is look ahead table and the pre-submeter of task of new node more;
4) the task scheduling stage finishes, and changes the information updating stage over to, and main controlled node continues to receive and handle the heartbeat message that computing node sends over.
CN 201010583597 2010-12-13 2010-12-13 Task-dynamic dispatching method under distributed computation mode in cloud computing environment Expired - Fee Related CN102073546B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010583597 CN102073546B (en) 2010-12-13 2010-12-13 Task-dynamic dispatching method under distributed computation mode in cloud computing environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010583597 CN102073546B (en) 2010-12-13 2010-12-13 Task-dynamic dispatching method under distributed computation mode in cloud computing environment

Publications (2)

Publication Number Publication Date
CN102073546A true CN102073546A (en) 2011-05-25
CN102073546B CN102073546B (en) 2013-07-10

Family

ID=44032092

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010583597 Expired - Fee Related CN102073546B (en) 2010-12-13 2010-12-13 Task-dynamic dispatching method under distributed computation mode in cloud computing environment

Country Status (1)

Country Link
CN (1) CN102073546B (en)

Cited By (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102209041A (en) * 2011-07-13 2011-10-05 上海红神信息技术有限公司 Scheduling method, device and system
CN102347989A (en) * 2011-10-25 2012-02-08 百度在线网络技术(北京)有限公司 Data distribution method and system based on resource description symbols
CN102360314A (en) * 2011-10-28 2012-02-22 中国科学院计算技术研究所 System and method for managing resources of data center
CN102404615A (en) * 2011-11-29 2012-04-04 广东威创视讯科技股份有限公司 Video processing system based on cloud computing
CN102495759A (en) * 2011-12-08 2012-06-13 曙光信息产业(北京)有限公司 Method for scheduling job in cloud computing environment
CN102541640A (en) * 2011-12-28 2012-07-04 厦门市美亚柏科信息股份有限公司 Cluster GPU (graphic processing unit) resource scheduling system and method
CN102843248A (en) * 2011-06-21 2012-12-26 中兴通讯股份有限公司 Method and device for automatic standalone distributed deployment of software
CN102866918A (en) * 2012-07-26 2013-01-09 中国科学院信息工程研究所 Resource management system for distributed programming framework
CN102916992A (en) * 2011-08-03 2013-02-06 中兴通讯股份有限公司 Method and system for scheduling cloud computing remote resources unifiedly
CN103001809A (en) * 2012-12-25 2013-03-27 曙光信息产业(北京)有限公司 Service node state monitoring method for cloud storage system
CN103036946A (en) * 2012-11-21 2013-04-10 中国电信股份有限公司云计算分公司 Method and system for processing file backup on cloud platform
CN103064742A (en) * 2012-12-25 2013-04-24 中国科学院深圳先进技术研究院 Automatic deployment system and method of hadoop cluster
CN103092698A (en) * 2012-12-24 2013-05-08 中国科学院深圳先进技术研究院 System and method of cloud computing application automatic deployment
CN103095853A (en) * 2013-02-27 2013-05-08 北京航空航天大学 Cloud data center calculation capacity management system
CN103297499A (en) * 2013-04-19 2013-09-11 无锡成电科大科技发展有限公司 Scheduling method and system based on cloud platform
CN103309738A (en) * 2013-05-31 2013-09-18 中国联合网络通信集团有限公司 User job scheduling method and device
CN103324533A (en) * 2012-03-22 2013-09-25 华为技术有限公司 distributed data processing method, device and system
CN103347055A (en) * 2013-06-19 2013-10-09 北京奇虎科技有限公司 System, device and method for processing tasks in cloud computing platform
WO2013149502A1 (en) * 2012-04-01 2013-10-10 华为技术有限公司 Method and device of resource scheduling and management
CN103377087A (en) * 2012-04-27 2013-10-30 北大方正集团有限公司 Data task processing method, device and system
CN103414771A (en) * 2013-08-05 2013-11-27 国云科技股份有限公司 A monitoring method for long task operation between nodes in cloud computing environment
CN103500119A (en) * 2013-09-06 2014-01-08 西安交通大学 Task allocation method based on pre-dispatch
CN103546509A (en) * 2012-07-13 2014-01-29 云联(北京)信息技术有限公司 Resource-saving cloud service system and resource saving method
CN103546510A (en) * 2012-07-13 2014-01-29 云联(北京)信息技术有限公司 Management system and management method on basis of cloud service
CN103617305A (en) * 2013-10-22 2014-03-05 芜湖大学科技园发展有限公司 Self-adaptive electric power simulation cloud computing platform job scheduling algorithm
CN103713942A (en) * 2012-09-28 2014-04-09 腾讯科技(深圳)有限公司 Method and system for dispatching and running a distributed computing frame in cluster
CN103761146A (en) * 2014-01-06 2014-04-30 浪潮电子信息产业股份有限公司 Method for dynamically setting quantities of slots for MapReduce
CN103941662A (en) * 2014-03-19 2014-07-23 华存数据信息技术有限公司 Task scheduling system and method based on cloud computing
CN104008002A (en) * 2014-06-17 2014-08-27 电子科技大学 Target host selection method for deploying virtual machine under cloud platform environment
CN104077188A (en) * 2013-03-29 2014-10-01 西门子公司 Method and device for scheduling tasks
CN104102533A (en) * 2014-06-17 2014-10-15 华中科技大学 Bandwidth aware based Hadoop scheduling method and system
CN104166589A (en) * 2013-05-17 2014-11-26 阿里巴巴集团控股有限公司 Heartbeat package processing method and device
CN104268007A (en) * 2014-01-07 2015-01-07 深圳市华傲数据技术有限公司 Distributed event request scheduling method and system
CN104301423A (en) * 2014-10-24 2015-01-21 北京奇虎科技有限公司 A method, device and system for sending heartbeat messages
CN104360909A (en) * 2014-11-04 2015-02-18 无锡天脉聚源传媒科技有限公司 Method and device for processing videos
CN104461722A (en) * 2014-12-16 2015-03-25 广东石油化工学院 Job scheduling method used for cloud computing system
CN104462581A (en) * 2014-12-30 2015-03-25 成都因纳伟盛科技股份有限公司 Micro-channel memory mapping and Smart-Slice based ultrafast file fingerprint extraction system and method
CN104503845A (en) * 2015-01-14 2015-04-08 北京邮电大学 Task distributing method and system
WO2015061976A1 (en) * 2013-10-30 2015-05-07 Nokia Technologies Oy Methods and apparatus for task management in a mobile cloud computing environment
WO2015066979A1 (en) * 2013-11-07 2015-05-14 浪潮电子信息产业股份有限公司 Machine learning method for mapreduce task resource configuration parameters
CN104917642A (en) * 2014-03-11 2015-09-16 深圳业拓讯通信科技有限公司 Port mirror image data transmitting method and system
CN104933110A (en) * 2015-06-03 2015-09-23 电子科技大学 MapReduce-based data pre-fetching method
CN105095008A (en) * 2015-08-25 2015-11-25 国电南瑞科技股份有限公司 Distributed task fault redundancy method suitable for cluster system
CN105227488A (en) * 2015-08-25 2016-01-06 上海交通大学 A kind of network flow group scheduling method for distributed computer platforms
CN105468726A (en) * 2015-11-20 2016-04-06 广州视源电子科技股份有限公司 Data computing method and system based on local computing and distributed computing
CN105516620A (en) * 2015-12-10 2016-04-20 阔地教育科技有限公司 Distribution control device, image processing device and live and recorded broadcast interaction system
CN105573824A (en) * 2014-10-10 2016-05-11 腾讯科技(深圳)有限公司 Monitoring method and system of distributed computing system
CN105578205A (en) * 2014-10-27 2016-05-11 深圳国微技术有限公司 Video transcoding method and system
CN105868008A (en) * 2016-03-23 2016-08-17 深圳大学 Resource scheduling method and recognition system based on key resources and data preprocessing
CN105975334A (en) * 2016-04-25 2016-09-28 深圳市永兴元科技有限公司 Distributed scheduling method and system of task
CN106027617A (en) * 2016-05-11 2016-10-12 广东浪潮大数据研究有限公司 Method for implementing dynamic scheduling of tasks and resources in private cloud environment
CN106055401A (en) * 2016-06-13 2016-10-26 北京唯智佳辰科技发展有限责任公司 Automatic starting-stopping and computation task dynamic allocation method for mass parallel coarse particle computation
CN106095586A (en) * 2016-06-23 2016-11-09 东软集团股份有限公司 A kind of method for allocating tasks, Apparatus and system
CN106156631A (en) * 2015-06-01 2016-11-23 上海红神信息技术有限公司 A kind of service function and structural characterization uncertain software and hardware device
CN104008002B (en) * 2014-06-17 2016-11-30 电子科技大学 The destination host system of selection of deploying virtual machine under cloud platform environment
CN106293952A (en) * 2016-07-11 2017-01-04 河南大学 The remote sensing method for scheduling task that a kind of task based access control demand is mated with service ability
CN106354563A (en) * 2016-08-29 2017-01-25 广州市香港科大霍英东研究院 Distributed computing system for 3D (three-dimensional reconstruction) and 3D reconstruction method
CN106371923A (en) * 2016-08-30 2017-02-01 江苏国泰新点软件有限公司 Method and device for processing task
CN106375373A (en) * 2016-08-24 2017-02-01 广西小草信息产业有限责任公司 Task decomposition method and system based on dynamic cloud nodes
CN106452957A (en) * 2016-09-30 2017-02-22 邦彦技术股份有限公司 Heartbeat detection method and node system
CN106484524A (en) * 2015-08-28 2017-03-08 阿里巴巴集团控股有限公司 A kind of task processing method and device
CN106528288A (en) * 2015-09-10 2017-03-22 中兴通讯股份有限公司 Resource management method, device and system
CN106528189A (en) * 2015-09-10 2017-03-22 阿里巴巴集团控股有限公司 Backup task starting method and device and electronic equipment
CN106559648A (en) * 2015-09-29 2017-04-05 鸿富锦精密工业(深圳)有限公司 Pedestrian's detecting system and method
CN106657328A (en) * 2016-12-20 2017-05-10 上海创远仪器技术股份有限公司 Wireless communication signal analysis and measurement system based on cloud computing technology
CN106648900A (en) * 2016-12-28 2017-05-10 深圳Tcl数字技术有限公司 Smart television-based supercomputing method and system
CN106776034A (en) * 2016-12-27 2017-05-31 国网浙江省电力公司电力科学研究院 A kind of task batch processing computational methods, master station computer and system
CN104123214B (en) * 2013-04-26 2017-07-14 阿里巴巴集团控股有限公司 The method and system of tasks carrying progress metrics and displaying based on runtime data
CN107066338A (en) * 2017-04-13 2017-08-18 中国人民解放军国防科学技术大学 The computing environment method of automatic configuration of distributed computing system
CN107168779A (en) * 2017-03-31 2017-09-15 咪咕互动娱乐有限公司 A kind of task management method and system
CN107408070A (en) * 2014-12-12 2017-11-28 微软技术许可有限责任公司 More transaction journals in distributed memory system
CN107479963A (en) * 2016-06-08 2017-12-15 国家计算机网络与信息安全管理中心 A kind of method for allocating tasks and system
CN107491265A (en) * 2016-06-12 2017-12-19 杭州海康威视数字技术股份有限公司 Distribute the method and device of Internet protocol IP disks
CN107580023A (en) * 2017-08-04 2018-01-12 山东大学 Stream processing job scheduling method and system for dynamically adjusting task allocation
CN107608773A (en) * 2017-08-24 2018-01-19 阿里巴巴集团控股有限公司 task concurrent processing method, device and computing device
CN107870813A (en) * 2016-09-22 2018-04-03 中兴通讯股份有限公司 A kind of method and device of distributed algorithm processing data
WO2018059423A1 (en) * 2016-09-30 2018-04-05 腾讯科技(深圳)有限公司 Distributed resource scheduling method, scheduling node, and access node
CN108121599A (en) * 2016-11-30 2018-06-05 杭州海康威视数字技术股份有限公司 A kind of method for managing resource, apparatus and system
CN108449215A (en) * 2018-03-31 2018-08-24 甘肃万维信息技术有限责任公司 Based on distributed server performance monitoring system
CN108475212A (en) * 2015-12-17 2018-08-31 起元技术有限责任公司 Data are handled using dynamic partition
WO2018196631A1 (en) * 2017-04-26 2018-11-01 Midea Group Co., Ltd. Training machine learning models on a large-scale distributed system using a job server
CN108829504A (en) * 2018-06-28 2018-11-16 泰康保险集团股份有限公司 A kind of method for scheduling task, device, medium and electronic equipment
CN108958942A (en) * 2018-07-18 2018-12-07 郑州云海信息技术有限公司 A kind of distributed system distribution multitask method, scheduler and computer equipment
CN109086894A (en) * 2018-07-06 2018-12-25 西安热工研究院有限公司 A kind of warning message centring system of facing area genco
CN109246479A (en) * 2018-10-09 2019-01-18 深圳市亿联智能有限公司 A kind of cloud computing control mode based on Intelligent set top box
CN109343942A (en) * 2018-09-03 2019-02-15 北京邮电大学 Task scheduling method based on edge computing network
CN109408220A (en) * 2017-08-17 2019-03-01 北京国双科技有限公司 A kind of task processing method and device
CN109450913A (en) * 2018-11-27 2019-03-08 浪潮软件股份有限公司 A kind of multinode registration dispatching method based on strategy
CN109614211A (en) * 2018-11-28 2019-04-12 新华三技术有限公司合肥分公司 Distributed task scheduling pre-scheduling method and device
CN109783214A (en) * 2018-12-29 2019-05-21 广州供电局有限公司 Task schedule control system
CN109921926A (en) * 2019-02-19 2019-06-21 重庆市勘测院 A kind of autocontrol method and system of outdoor scene modeling cluster
CN109922050A (en) * 2019-02-03 2019-06-21 普信恒业科技发展(北京)有限公司 A kind of task detection method and device
CN109995824A (en) * 2017-12-29 2019-07-09 阿里巴巴集团控股有限公司 Method for scheduling task and device in a kind of peer-to-peer network
CN110109742A (en) * 2019-05-09 2019-08-09 重庆八戒电子商务有限公司 A kind of method and device that the distributed task scheduling based on zookeeper is coordinated
CN110209488A (en) * 2019-06-10 2019-09-06 北京达佳互联信息技术有限公司 Task executing method, device, equipment, system and storage medium
CN110297693A (en) * 2019-07-04 2019-10-01 北京伟杰东博信息科技有限公司 A kind of method and its system of the distribution of distributed software task
CN110389822A (en) * 2019-07-29 2019-10-29 北京金山云网络技术有限公司 Node scheduling method, device and server for executing tasks
CN110389973A (en) * 2019-07-30 2019-10-29 大连海事大学 A Parallel Outlier Detection Method in Heterogeneous Distributed Environment
CN110413389A (en) * 2019-07-24 2019-11-05 浙江工业大学 A task scheduling optimization method in Spark environment with unbalanced resources
US10489195B2 (en) 2017-07-20 2019-11-26 Cisco Technology, Inc. FPGA acceleration for serverless computing
WO2020000944A1 (en) * 2018-06-25 2020-01-02 星环信息科技(上海)有限公司 Preemptive scheduling based resource sharing use method, system and
CN110673945A (en) * 2018-07-03 2020-01-10 北京京东尚科信息技术有限公司 Distributed task management method and management system
CN110737521A (en) * 2019-10-14 2020-01-31 中国人民解放军32039部队 Disaster recovery method and device based on task scheduling center
US10678444B2 (en) 2018-04-02 2020-06-09 Cisco Technology, Inc. Optimizing serverless computing using a distributed computing framework
CN111352709A (en) * 2018-12-20 2020-06-30 顺丰科技有限公司 Task scheduling method and device in distributed system
CN111580945A (en) * 2020-04-21 2020-08-25 智业互联(厦门)健康科技有限公司 Micro-service task coordination scheduling method and system
US10771584B2 (en) 2017-11-30 2020-09-08 Cisco Technology, Inc. Provisioning using pre-fetched data in serverless computing environments
CN112003898A (en) * 2020-07-27 2020-11-27 珠海许继芝电网自动化有限公司 Load balancing method and system for multi-node cluster
CN112131007A (en) * 2020-09-28 2020-12-25 济南浪潮高新科技投资发展有限公司 GPU resource scheduling method, device and medium based on AI platform
US10884807B2 (en) 2017-04-12 2021-01-05 Cisco Technology, Inc. Serverless computing and task scheduling
US10938677B2 (en) 2017-04-12 2021-03-02 Cisco Technology, Inc. Virtualized network functions and service chaining in serverless computing infrastructure
WO2021063171A1 (en) * 2019-09-30 2021-04-08 腾讯科技(深圳)有限公司 Decision tree model training method, system, storage medium, and prediction method
CN113112139A (en) * 2021-04-07 2021-07-13 上海联蔚盘云科技有限公司 Cloud platform bill processing method and equipment
CN113157403A (en) * 2020-01-07 2021-07-23 中科寒武纪科技股份有限公司 Job processing method and device, computer equipment and readable storage medium
CN114706671A (en) * 2022-05-17 2022-07-05 中诚华隆计算机技术有限公司 Multiprocessor scheduling optimization method and system
WO2023168937A1 (en) * 2022-03-09 2023-09-14 中兴通讯股份有限公司 Data processing method and apparatus, computer device, and readable medium
WO2024207846A1 (en) * 2023-12-11 2024-10-10 天翼云科技有限公司 Method and system for scheduling sensitive data workflow in multi-cloud environment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719931A (en) * 2009-11-27 2010-06-02 南京邮电大学 Multi-intelligent body-based hierarchical cloud computing model construction method
US20100287280A1 (en) * 2009-05-08 2010-11-11 Gal Sivan System and method for cloud computing based on multiple providers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100287280A1 (en) * 2009-05-08 2010-11-11 Gal Sivan System and method for cloud computing based on multiple providers
CN101719931A (en) * 2009-11-27 2010-06-02 南京邮电大学 Multi-intelligent body-based hierarchical cloud computing model construction method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
万至臻 等: "基于MapReduce模型的并行计算平台的设计与实现", 《中国优秀硕士学位论文全文数据库》, 31 December 2008 (2008-12-31) *

Cited By (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102843248A (en) * 2011-06-21 2012-12-26 中兴通讯股份有限公司 Method and device for automatic standalone distributed deployment of software
CN102843248B (en) * 2011-06-21 2018-02-02 中兴通讯股份有限公司 The method and device of automatic unit distributed deployment software
CN102209041A (en) * 2011-07-13 2011-10-05 上海红神信息技术有限公司 Scheduling method, device and system
CN102209041B (en) * 2011-07-13 2014-05-07 上海红神信息技术有限公司 Scheduling method, device and system
WO2013016977A1 (en) * 2011-08-03 2013-02-07 中兴通讯股份有限公司 Method and system for uniformly scheduling remote resources of cloud computing
CN102916992A (en) * 2011-08-03 2013-02-06 中兴通讯股份有限公司 Method and system for scheduling cloud computing remote resources unifiedly
CN102916992B (en) * 2011-08-03 2016-12-28 世纪恒通科技股份有限公司 A kind of method and system of United Dispatching cloud computing remote resource
CN102347989A (en) * 2011-10-25 2012-02-08 百度在线网络技术(北京)有限公司 Data distribution method and system based on resource description symbols
CN102360314A (en) * 2011-10-28 2012-02-22 中国科学院计算技术研究所 System and method for managing resources of data center
CN102404615A (en) * 2011-11-29 2012-04-04 广东威创视讯科技股份有限公司 Video processing system based on cloud computing
CN102495759A (en) * 2011-12-08 2012-06-13 曙光信息产业(北京)有限公司 Method for scheduling job in cloud computing environment
CN102541640A (en) * 2011-12-28 2012-07-04 厦门市美亚柏科信息股份有限公司 Cluster GPU (graphic processing unit) resource scheduling system and method
CN102541640B (en) * 2011-12-28 2014-10-29 厦门市美亚柏科信息股份有限公司 Cluster GPU (graphic processing unit) resource scheduling system and method
CN103324533B (en) * 2012-03-22 2016-12-28 华为技术有限公司 distributed data processing method, device and system
CN103324533A (en) * 2012-03-22 2013-09-25 华为技术有限公司 distributed data processing method, device and system
CN103365713B (en) * 2012-04-01 2017-06-20 华为技术有限公司 A kind of scheduling of resource and management method and device
WO2013149502A1 (en) * 2012-04-01 2013-10-10 华为技术有限公司 Method and device of resource scheduling and management
CN103365713A (en) * 2012-04-01 2013-10-23 华为技术有限公司 Resource dispatch and management method and device
CN103377087B (en) * 2012-04-27 2017-06-23 北大方正集团有限公司 A kind of data task processing method, apparatus and system
CN103377087A (en) * 2012-04-27 2013-10-30 北大方正集团有限公司 Data task processing method, device and system
CN103546509B (en) * 2012-07-13 2018-05-29 天津米游科技有限公司 A kind of cloud service system to economize on resources and resource-effective method
CN103546510B (en) * 2012-07-13 2018-08-28 天津米游科技有限公司 Management system based on cloud service and management method
CN103546509A (en) * 2012-07-13 2014-01-29 云联(北京)信息技术有限公司 Resource-saving cloud service system and resource saving method
CN103546510A (en) * 2012-07-13 2014-01-29 云联(北京)信息技术有限公司 Management system and management method on basis of cloud service
CN102866918B (en) * 2012-07-26 2016-02-24 中国科学院信息工程研究所 The resource management system of Based on Distributed programming framework
CN102866918A (en) * 2012-07-26 2013-01-09 中国科学院信息工程研究所 Resource management system for distributed programming framework
CN103713942A (en) * 2012-09-28 2014-04-09 腾讯科技(深圳)有限公司 Method and system for dispatching and running a distributed computing frame in cluster
CN103713942B (en) * 2012-09-28 2018-01-05 腾讯科技(深圳)有限公司 The method and system of management and running distributed computing framework in the cluster
CN103036946A (en) * 2012-11-21 2013-04-10 中国电信股份有限公司云计算分公司 Method and system for processing file backup on cloud platform
CN103036946B (en) * 2012-11-21 2016-08-24 中国电信股份有限公司 A kind of method and system processing file backup task for cloud platform
CN103092698A (en) * 2012-12-24 2013-05-08 中国科学院深圳先进技术研究院 System and method of cloud computing application automatic deployment
CN103001809B (en) * 2012-12-25 2016-12-28 曙光信息产业(北京)有限公司 Service node method for monitoring state for cloud storage system
CN103064742A (en) * 2012-12-25 2013-04-24 中国科学院深圳先进技术研究院 Automatic deployment system and method of hadoop cluster
CN103001809A (en) * 2012-12-25 2013-03-27 曙光信息产业(北京)有限公司 Service node state monitoring method for cloud storage system
CN103064742B (en) * 2012-12-25 2016-05-11 中国科学院深圳先进技术研究院 A kind of automatic deployment system and method for hadoop cluster
CN103095853B (en) * 2013-02-27 2016-08-03 北京航空航天大学 Cloud data center calculation capacity management system
CN103095853A (en) * 2013-02-27 2013-05-08 北京航空航天大学 Cloud data center calculation capacity management system
CN104077188A (en) * 2013-03-29 2014-10-01 西门子公司 Method and device for scheduling tasks
CN103297499B (en) * 2013-04-19 2017-02-08 无锡成电科大科技发展有限公司 Scheduling method and system based on cloud platform
CN103297499A (en) * 2013-04-19 2013-09-11 无锡成电科大科技发展有限公司 Scheduling method and system based on cloud platform
CN104123214B (en) * 2013-04-26 2017-07-14 阿里巴巴集团控股有限公司 The method and system of tasks carrying progress metrics and displaying based on runtime data
CN104166589A (en) * 2013-05-17 2014-11-26 阿里巴巴集团控股有限公司 Heartbeat package processing method and device
CN103309738A (en) * 2013-05-31 2013-09-18 中国联合网络通信集团有限公司 User job scheduling method and device
CN103309738B (en) * 2013-05-31 2016-12-28 中国联合网络通信集团有限公司 User job dispatching method and device
CN103347055A (en) * 2013-06-19 2013-10-09 北京奇虎科技有限公司 System, device and method for processing tasks in cloud computing platform
CN103347055B (en) * 2013-06-19 2016-04-20 北京奇虎科技有限公司 Task processing system in cloud computing platform, Apparatus and method for
CN103414771B (en) * 2013-08-05 2017-02-15 国云科技股份有限公司 A monitoring method for long task operation between nodes in cloud computing environment
CN103414771A (en) * 2013-08-05 2013-11-27 国云科技股份有限公司 A monitoring method for long task operation between nodes in cloud computing environment
CN103500119B (en) * 2013-09-06 2017-01-04 西安交通大学 A kind of method for allocating tasks based on pre-scheduling
CN103500119A (en) * 2013-09-06 2014-01-08 西安交通大学 Task allocation method based on pre-dispatch
CN103617305A (en) * 2013-10-22 2014-03-05 芜湖大学科技园发展有限公司 Self-adaptive electric power simulation cloud computing platform job scheduling algorithm
WO2015061976A1 (en) * 2013-10-30 2015-05-07 Nokia Technologies Oy Methods and apparatus for task management in a mobile cloud computing environment
WO2015066979A1 (en) * 2013-11-07 2015-05-14 浪潮电子信息产业股份有限公司 Machine learning method for mapreduce task resource configuration parameters
CN103761146B (en) * 2014-01-06 2017-10-31 浪潮电子信息产业股份有限公司 A kind of method that MapReduce dynamically sets slots quantity
CN103761146A (en) * 2014-01-06 2014-04-30 浪潮电子信息产业股份有限公司 Method for dynamically setting quantities of slots for MapReduce
CN104268007A (en) * 2014-01-07 2015-01-07 深圳市华傲数据技术有限公司 Distributed event request scheduling method and system
CN104917642B (en) * 2014-03-11 2019-03-22 深圳业拓讯通信科技有限公司 A kind of Port Mirroring data transmission method and its system
CN104917642A (en) * 2014-03-11 2015-09-16 深圳业拓讯通信科技有限公司 Port mirror image data transmitting method and system
CN103941662A (en) * 2014-03-19 2014-07-23 华存数据信息技术有限公司 Task scheduling system and method based on cloud computing
CN104008002B (en) * 2014-06-17 2016-11-30 电子科技大学 The destination host system of selection of deploying virtual machine under cloud platform environment
CN104102533A (en) * 2014-06-17 2014-10-15 华中科技大学 Bandwidth aware based Hadoop scheduling method and system
CN104008002A (en) * 2014-06-17 2014-08-27 电子科技大学 Target host selection method for deploying virtual machine under cloud platform environment
CN105573824B (en) * 2014-10-10 2020-04-03 腾讯科技(深圳)有限公司 Monitoring method and system for distributed computing system
CN105573824A (en) * 2014-10-10 2016-05-11 腾讯科技(深圳)有限公司 Monitoring method and system of distributed computing system
CN104301423A (en) * 2014-10-24 2015-01-21 北京奇虎科技有限公司 A method, device and system for sending heartbeat messages
CN104301423B (en) * 2014-10-24 2018-11-06 北京奇安信科技有限公司 A kind of method, apparatus and system sending heartbeat message
CN105578205A (en) * 2014-10-27 2016-05-11 深圳国微技术有限公司 Video transcoding method and system
CN104360909B (en) * 2014-11-04 2017-10-03 无锡天脉聚源传媒科技有限公司 A kind of method for processing video frequency and device
CN104360909A (en) * 2014-11-04 2015-02-18 无锡天脉聚源传媒科技有限公司 Method and device for processing videos
CN107408070A (en) * 2014-12-12 2017-11-28 微软技术许可有限责任公司 More transaction journals in distributed memory system
CN104461722B (en) * 2014-12-16 2017-11-10 广东石油化工学院 A kind of job scheduling method for cloud computing system
CN104461722A (en) * 2014-12-16 2015-03-25 广东石油化工学院 Job scheduling method used for cloud computing system
CN104462581A (en) * 2014-12-30 2015-03-25 成都因纳伟盛科技股份有限公司 Micro-channel memory mapping and Smart-Slice based ultrafast file fingerprint extraction system and method
CN104462581B (en) * 2014-12-30 2018-03-06 成都因纳伟盛科技股份有限公司 Very fast file fingerprint extraction system and method based on the mapping of microchannel internal memory and Smart Slice
CN104503845A (en) * 2015-01-14 2015-04-08 北京邮电大学 Task distributing method and system
CN104503845B (en) * 2015-01-14 2017-07-14 北京邮电大学 A kind of task distribution method and system
CN106156631A (en) * 2015-06-01 2016-11-23 上海红神信息技术有限公司 A kind of service function and structural characterization uncertain software and hardware device
CN106156631B (en) * 2015-06-01 2019-03-12 上海红神信息技术有限公司 A kind of service function and the uncertain software and hardware device of structural characterization corresponding relationship
CN104933110A (en) * 2015-06-03 2015-09-23 电子科技大学 MapReduce-based data pre-fetching method
CN104933110B (en) * 2015-06-03 2018-02-09 电子科技大学 A kind of data prefetching method based on MapReduce
CN105227488B (en) * 2015-08-25 2018-05-08 上海交通大学 A kind of network flow group scheduling method for distributed computer platforms
CN105095008A (en) * 2015-08-25 2015-11-25 国电南瑞科技股份有限公司 Distributed task fault redundancy method suitable for cluster system
CN105095008B (en) * 2015-08-25 2018-04-17 国电南瑞科技股份有限公司 A kind of distributed task scheduling fault redundance method suitable for group system
CN105227488A (en) * 2015-08-25 2016-01-06 上海交通大学 A kind of network flow group scheduling method for distributed computer platforms
CN106484524A (en) * 2015-08-28 2017-03-08 阿里巴巴集团控股有限公司 A kind of task processing method and device
CN106528189A (en) * 2015-09-10 2017-03-22 阿里巴巴集团控股有限公司 Backup task starting method and device and electronic equipment
CN106528189B (en) * 2015-09-10 2019-05-28 阿里巴巴集团控股有限公司 A kind of method, apparatus and electronic equipment starting backup tasks
CN106528288A (en) * 2015-09-10 2017-03-22 中兴通讯股份有限公司 Resource management method, device and system
CN106559648A (en) * 2015-09-29 2017-04-05 鸿富锦精密工业(深圳)有限公司 Pedestrian's detecting system and method
CN105468726A (en) * 2015-11-20 2016-04-06 广州视源电子科技股份有限公司 Data computing method and system based on local computing and distributed computing
CN105468726B (en) * 2015-11-20 2019-02-01 广州视源电子科技股份有限公司 Data computing method and system based on local computing and distributed computing
CN105516620A (en) * 2015-12-10 2016-04-20 阔地教育科技有限公司 Distribution control device, image processing device and live and recorded broadcast interaction system
CN108475212A (en) * 2015-12-17 2018-08-31 起元技术有限责任公司 Data are handled using dynamic partition
CN108475212B (en) * 2015-12-17 2021-12-31 起元技术有限责任公司 Method, system, and computer readable medium for processing data using dynamic partitioning
CN105868008A (en) * 2016-03-23 2016-08-17 深圳大学 Resource scheduling method and recognition system based on key resources and data preprocessing
CN105868008B (en) * 2016-03-23 2019-05-28 深圳大学 Resource regulating method and identifying system based on keystone resources and data prediction
CN105975334A (en) * 2016-04-25 2016-09-28 深圳市永兴元科技有限公司 Distributed scheduling method and system of task
CN106027617A (en) * 2016-05-11 2016-10-12 广东浪潮大数据研究有限公司 Method for implementing dynamic scheduling of tasks and resources in private cloud environment
CN107479963A (en) * 2016-06-08 2017-12-15 国家计算机网络与信息安全管理中心 A kind of method for allocating tasks and system
CN107491265A (en) * 2016-06-12 2017-12-19 杭州海康威视数字技术股份有限公司 Distribute the method and device of Internet protocol IP disks
CN107491265B (en) * 2016-06-12 2021-05-25 杭州海康威视数字技术股份有限公司 Method and device for distributing internet protocol IP disk
CN106055401B (en) * 2016-06-13 2019-02-26 北京唯智佳辰科技发展有限责任公司 Magnanimity calculates the parallel automatic start-stop and calculating task dynamic allocation method of coarse granule
CN106055401A (en) * 2016-06-13 2016-10-26 北京唯智佳辰科技发展有限责任公司 Automatic starting-stopping and computation task dynamic allocation method for mass parallel coarse particle computation
CN106095586A (en) * 2016-06-23 2016-11-09 东软集团股份有限公司 A kind of method for allocating tasks, Apparatus and system
CN106293952A (en) * 2016-07-11 2017-01-04 河南大学 The remote sensing method for scheduling task that a kind of task based access control demand is mated with service ability
CN106293952B (en) * 2016-07-11 2019-06-21 河南大学 A Remote Sensing Task Scheduling Method Based on Matching Task Requirements and Service Capabilities
CN106375373A (en) * 2016-08-24 2017-02-01 广西小草信息产业有限责任公司 Task decomposition method and system based on dynamic cloud nodes
CN106354563B (en) * 2016-08-29 2020-05-22 广州市香港科大霍英东研究院 Distributed computing system for 3D reconstruction and 3D reconstruction method
CN106354563A (en) * 2016-08-29 2017-01-25 广州市香港科大霍英东研究院 Distributed computing system for 3D (three-dimensional reconstruction) and 3D reconstruction method
CN106371923A (en) * 2016-08-30 2017-02-01 江苏国泰新点软件有限公司 Method and device for processing task
CN107870813A (en) * 2016-09-22 2018-04-03 中兴通讯股份有限公司 A kind of method and device of distributed algorithm processing data
US10838777B2 (en) 2016-09-30 2020-11-17 Tencent Technology (Shenzhen) Company Limited Distributed resource allocation method, allocation node, and access node
CN107885594B (en) * 2016-09-30 2020-06-12 腾讯科技(深圳)有限公司 Distributed resource scheduling method, scheduling node and access node
CN107885594A (en) * 2016-09-30 2018-04-06 腾讯科技(深圳)有限公司 Distributed resource scheduling method, scheduling node and access node
CN106452957B (en) * 2016-09-30 2019-09-10 邦彦技术股份有限公司 Heartbeat detection method and node system
WO2018059423A1 (en) * 2016-09-30 2018-04-05 腾讯科技(深圳)有限公司 Distributed resource scheduling method, scheduling node, and access node
CN106452957A (en) * 2016-09-30 2017-02-22 邦彦技术股份有限公司 Heartbeat detection method and node system
CN108121599A (en) * 2016-11-30 2018-06-05 杭州海康威视数字技术股份有限公司 A kind of method for managing resource, apparatus and system
CN106657328A (en) * 2016-12-20 2017-05-10 上海创远仪器技术股份有限公司 Wireless communication signal analysis and measurement system based on cloud computing technology
CN106776034B (en) * 2016-12-27 2020-07-31 国网浙江省电力公司电力科学研究院 Task batch processing calculation method, master station computer and system
CN106776034A (en) * 2016-12-27 2017-05-31 国网浙江省电力公司电力科学研究院 A kind of task batch processing computational methods, master station computer and system
CN106648900B (en) * 2016-12-28 2020-12-08 深圳Tcl数字技术有限公司 Supercomputing method and system based on smart television
CN106648900A (en) * 2016-12-28 2017-05-10 深圳Tcl数字技术有限公司 Smart television-based supercomputing method and system
CN107168779A (en) * 2017-03-31 2017-09-15 咪咕互动娱乐有限公司 A kind of task management method and system
US10938677B2 (en) 2017-04-12 2021-03-02 Cisco Technology, Inc. Virtualized network functions and service chaining in serverless computing infrastructure
US10884807B2 (en) 2017-04-12 2021-01-05 Cisco Technology, Inc. Serverless computing and task scheduling
CN107066338A (en) * 2017-04-13 2017-08-18 中国人民解放军国防科学技术大学 The computing environment method of automatic configuration of distributed computing system
WO2018196631A1 (en) * 2017-04-26 2018-11-01 Midea Group Co., Ltd. Training machine learning models on a large-scale distributed system using a job server
US11740935B2 (en) 2017-07-20 2023-08-29 Cisco Technology, Inc. FPGA acceleration for serverless computing
US11119821B2 (en) 2017-07-20 2021-09-14 Cisco Technology, Inc. FPGA acceleration for serverless computing
US11709704B2 (en) 2017-07-20 2023-07-25 Cisco Technology, Inc. FPGA acceleration for serverless computing
US10489195B2 (en) 2017-07-20 2019-11-26 Cisco Technology, Inc. FPGA acceleration for serverless computing
CN107580023A (en) * 2017-08-04 2018-01-12 山东大学 Stream processing job scheduling method and system for dynamically adjusting task allocation
CN107580023B (en) * 2017-08-04 2020-05-12 山东大学 A stream processing job scheduling method and system for dynamically adjusting task allocation
CN109408220A (en) * 2017-08-17 2019-03-01 北京国双科技有限公司 A kind of task processing method and device
CN107608773A (en) * 2017-08-24 2018-01-19 阿里巴巴集团控股有限公司 task concurrent processing method, device and computing device
US10771584B2 (en) 2017-11-30 2020-09-08 Cisco Technology, Inc. Provisioning using pre-fetched data in serverless computing environments
US11570272B2 (en) 2017-11-30 2023-01-31 Cisco Technology, Inc. Provisioning using pre-fetched data in serverless computing environments
CN109995824A (en) * 2017-12-29 2019-07-09 阿里巴巴集团控股有限公司 Method for scheduling task and device in a kind of peer-to-peer network
CN108449215A (en) * 2018-03-31 2018-08-24 甘肃万维信息技术有限责任公司 Based on distributed server performance monitoring system
US11016673B2 (en) 2018-04-02 2021-05-25 Cisco Technology, Inc. Optimizing serverless computing using a distributed computing framework
US10678444B2 (en) 2018-04-02 2020-06-09 Cisco Technology, Inc. Optimizing serverless computing using a distributed computing framework
WO2020000944A1 (en) * 2018-06-25 2020-01-02 星环信息科技(上海)有限公司 Preemptive scheduling based resource sharing use method, system and
CN108829504A (en) * 2018-06-28 2018-11-16 泰康保险集团股份有限公司 A kind of method for scheduling task, device, medium and electronic equipment
CN110673945A (en) * 2018-07-03 2020-01-10 北京京东尚科信息技术有限公司 Distributed task management method and management system
CN109086894A (en) * 2018-07-06 2018-12-25 西安热工研究院有限公司 A kind of warning message centring system of facing area genco
CN108958942A (en) * 2018-07-18 2018-12-07 郑州云海信息技术有限公司 A kind of distributed system distribution multitask method, scheduler and computer equipment
CN109343942A (en) * 2018-09-03 2019-02-15 北京邮电大学 Task scheduling method based on edge computing network
CN109343942B (en) * 2018-09-03 2020-11-03 北京邮电大学 Task scheduling method based on edge computing network
CN109246479A (en) * 2018-10-09 2019-01-18 深圳市亿联智能有限公司 A kind of cloud computing control mode based on Intelligent set top box
CN109450913A (en) * 2018-11-27 2019-03-08 浪潮软件股份有限公司 A kind of multinode registration dispatching method based on strategy
CN109614211A (en) * 2018-11-28 2019-04-12 新华三技术有限公司合肥分公司 Distributed task scheduling pre-scheduling method and device
CN111352709A (en) * 2018-12-20 2020-06-30 顺丰科技有限公司 Task scheduling method and device in distributed system
CN109783214B (en) * 2018-12-29 2021-06-22 广东电网有限责任公司广州供电局 Task scheduling control system
CN109783214A (en) * 2018-12-29 2019-05-21 广州供电局有限公司 Task schedule control system
CN109922050A (en) * 2019-02-03 2019-06-21 普信恒业科技发展(北京)有限公司 A kind of task detection method and device
CN109921926A (en) * 2019-02-19 2019-06-21 重庆市勘测院 A kind of autocontrol method and system of outdoor scene modeling cluster
CN110109742A (en) * 2019-05-09 2019-08-09 重庆八戒电子商务有限公司 A kind of method and device that the distributed task scheduling based on zookeeper is coordinated
US11556380B2 (en) 2019-06-10 2023-01-17 Beijing Dajia Internet Information Technology Co., Ltd. Task execution method, apparatus, device and system, and storage medium
CN110209488A (en) * 2019-06-10 2019-09-06 北京达佳互联信息技术有限公司 Task executing method, device, equipment, system and storage medium
CN110297693A (en) * 2019-07-04 2019-10-01 北京伟杰东博信息科技有限公司 A kind of method and its system of the distribution of distributed software task
CN110413389B (en) * 2019-07-24 2021-09-28 浙江工业大学 Task scheduling optimization method under resource imbalance Spark environment
CN110413389A (en) * 2019-07-24 2019-11-05 浙江工业大学 A task scheduling optimization method in Spark environment with unbalanced resources
CN110389822A (en) * 2019-07-29 2019-10-29 北京金山云网络技术有限公司 Node scheduling method, device and server for executing tasks
CN110389973A (en) * 2019-07-30 2019-10-29 大连海事大学 A Parallel Outlier Detection Method in Heterogeneous Distributed Environment
CN110389973B (en) * 2019-07-30 2022-06-07 大连海事大学 A Parallel Outlier Detection Method in Heterogeneous Distributed Environment
WO2021063171A1 (en) * 2019-09-30 2021-04-08 腾讯科技(深圳)有限公司 Decision tree model training method, system, storage medium, and prediction method
CN110737521A (en) * 2019-10-14 2020-01-31 中国人民解放军32039部队 Disaster recovery method and device based on task scheduling center
CN113157403A (en) * 2020-01-07 2021-07-23 中科寒武纪科技股份有限公司 Job processing method and device, computer equipment and readable storage medium
CN111580945A (en) * 2020-04-21 2020-08-25 智业互联(厦门)健康科技有限公司 Micro-service task coordination scheduling method and system
CN112003898A (en) * 2020-07-27 2020-11-27 珠海许继芝电网自动化有限公司 Load balancing method and system for multi-node cluster
CN112131007B (en) * 2020-09-28 2023-02-21 山东浪潮科学研究院有限公司 GPU resource scheduling method, device and medium based on AI platform
CN112131007A (en) * 2020-09-28 2020-12-25 济南浪潮高新科技投资发展有限公司 GPU resource scheduling method, device and medium based on AI platform
CN113112139A (en) * 2021-04-07 2021-07-13 上海联蔚盘云科技有限公司 Cloud platform bill processing method and equipment
WO2023168937A1 (en) * 2022-03-09 2023-09-14 中兴通讯股份有限公司 Data processing method and apparatus, computer device, and readable medium
CN114706671B (en) * 2022-05-17 2022-08-12 中诚华隆计算机技术有限公司 Multiprocessor scheduling optimization method and system
CN114706671A (en) * 2022-05-17 2022-07-05 中诚华隆计算机技术有限公司 Multiprocessor scheduling optimization method and system
WO2024207846A1 (en) * 2023-12-11 2024-10-10 天翼云科技有限公司 Method and system for scheduling sensitive data workflow in multi-cloud environment

Also Published As

Publication number Publication date
CN102073546B (en) 2013-07-10

Similar Documents

Publication Publication Date Title
CN102073546A (en) Task-dynamic dispatching method under distributed computation mode in cloud computing environment
Ding et al. Q-learning based dynamic task scheduling for energy-efficient cloud computing
US6732139B1 (en) Method to distribute programs using remote java objects
CN104021040B (en) Based on the cloud computing associated task dispatching method and device under time constraint condition
CN102063336B (en) A Distributed Computing Multi-Application Function Asynchronous Concurrent Scheduling Method
Mansouri et al. Combination of data replication and scheduling algorithm for improving data availability in Data Grids
CN111861412B (en) Scientific workflow scheduling method and system for completion time optimization
Lai et al. Sol: Fast distributed computation over slow networks
WO2012113290A1 (en) Gene computing system and method
CN104243617A (en) Task scheduling method and system facing mixed load in heterogeneous cluster
CN104503832A (en) Virtual machine scheduling system and virtual machine scheduling method with balanced equity and efficiency
Zhang et al. Meteor: Optimizing spark-on-yarn for short applications
CN114138488A (en) Cloud-native implementation method and system based on elastic high-performance computing
CN113934525A (en) Hadoop cluster task scheduling method based on positive and negative feedback load scheduling algorithm
Farahani et al. Serverless Workflow Management on the Computing Continuum: A Mini-Survey
CN111522637A (en) Storm task scheduling method based on cost benefit
CN117215788A (en) Dynamic elastic telescoping method based on micro-service load
CN108446165A (en) A kind of task forecasting method in cloud computing
Bakni et al. Survey on improving the performance of MapReduce in Hadoop
Liang et al. A CUDA programming toolkit on grids
KR101092359B1 (en) Scheduling apparatus and method in grid
CN111538593A (en) Data acquisition method based on industrial internet operating system
Jiang et al. Energy optimization oriented three-way clustering algorithm for cloud tasks
Lin et al. Research on weighted rotation fair scheduling algorithm based on hama parallel computing framework
Kaladevi et al. Processor Co Allocation Enabling Advanced Reservation of Jobs using Priorities in Multi-Cluster system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SHANGHAI SHICONG INFORMATION TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: BEIHANG UNIVERSITY

Effective date: 20150512

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 100191 HAIDIAN, BEIJING TO: 201401 FENGXIAN, SHANGHAI

TR01 Transfer of patent right

Effective date of registration: 20150512

Address after: 201401 Shanghai Fengxian District City Ring Road No. 2200 building 2128 room

Patentee after: Shanghai Shi Cong network information technology Co., Ltd

Address before: 100191 Beijing City, Haidian District Xueyuan Road No. 37 North College of computer

Patentee before: Beihang University

C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: 200233 room 202-35, Guiping Road, Shanghai, Xuhui District, 92

Patentee after: SHANGHAI JUNESH INFORMATION TECHNOLOGY CO., LTD.

Address before: 201401 Shanghai Fengxian District City Ring Road No. 2200 building 2128 room

Patentee before: Shanghai Shi Cong network information technology Co., Ltd

DD01 Delivery of document by public notice

Addressee: SHANGHAI JUNESH INFORMATION TECHNOLOGY CO., LTD.

Document name: Notification to Pay the Fees

DD01 Delivery of document by public notice
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130710

Termination date: 20181213