CN102073041A - Top ionosphere detection space-borne MIMO radar system - Google Patents
Top ionosphere detection space-borne MIMO radar system Download PDFInfo
- Publication number
- CN102073041A CN102073041A CN 201010539079 CN201010539079A CN102073041A CN 102073041 A CN102073041 A CN 102073041A CN 201010539079 CN201010539079 CN 201010539079 CN 201010539079 A CN201010539079 A CN 201010539079A CN 102073041 A CN102073041 A CN 102073041A
- Authority
- CN
- China
- Prior art keywords
- sequence
- electron density
- frequency
- mimo radar
- ionosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种顶层电离层探测星载MIMO雷达系统,属于雷达技术领域,包括完全互补序列生成器、脉冲周期延迟器、调制器、发射天线、接收天线、解调器、脉冲压缩系统和电子密度分布生成系统;完全互补序列生成器同时生成N对互补序列,脉冲周期延迟器使两个互补的序列交替输入至调制器,N对信号分别进行N个载频的调制,由N个发射天线发射出去,回波信号由N个接收天线接收,解调器解调出N个载频上的信号,信号经脉冲压缩后送入电子密度分布生成系统,生成二维电离图。本发明的星载MIMO雷达系统用于顶层电离层探测,与现有的电离层探测器相比,具有超高的方位分辨率,可生成二维电离图;与现有的电离层探测器相比,有很高的工作效率。
The invention discloses a space-borne MIMO radar system for top-level ionosphere detection, which belongs to the field of radar technology and includes a complete complementary sequence generator, a pulse period delayer, a modulator, a transmitting antenna, a receiving antenna, a demodulator, a pulse compression system and Electron density distribution generation system; the complete complementary sequence generator generates N pairs of complementary sequences at the same time, and the pulse cycle delayer makes the two complementary sequences alternately input to the modulator, and the N pairs of signals are respectively modulated by N carrier frequencies, and are transmitted by N The antenna is transmitted, the echo signal is received by N receiving antennas, the demodulator demodulates the signals on N carrier frequencies, and the signal is sent to the electron density distribution generation system after pulse compression to generate a two-dimensional ionization map. The spaceborne MIMO radar system of the present invention is used for top-level ionosphere detection, and compared with existing ionosphere detectors, it has ultra-high azimuth resolution and can generate a two-dimensional ionogram; compared with existing ionosphere detectors than, there is a high work efficiency.
Description
技术领域technical field
本发明涉及一种用于顶层电离层探测星载MIMO(Multiple-Input Multiple-Output)雷达系统,属于雷达技术领域。The invention relates to a space-borne MIMO (Multiple-Input Multiple-Output) radar system for detecting the top ionosphere, belonging to the technical field of radar.
背景技术Background technique
电离层是地球空间环境的重要组成部分之一,其高度约从地面上60公里延伸到1000公里。电离层会对电磁波的传播产生较为严重的干扰,对卫星通信、导航定位和微波遥感等空间信息系统造成很大影响,因此探测电离层的结构有利于改善上述空间信息系统的信息获取与应用的质量。此外,通过探测电离层物理参数(电子密度等)的变化,可以对地震、海啸等自然灾害进行预警。台湾学者利用相关卫星数据针对近10年来台湾地区震级为5级以上的地震进行了分析,发现地震前高空电离层会出现电子密度下降的现象。因此,电离层探测对于科学研究和灾害预警都具有重要的意义。The ionosphere is one of the important components of the earth's space environment, and its altitude extends from about 60 kilometers to 1000 kilometers above the ground. The ionosphere will cause serious interference to the propagation of electromagnetic waves, and have a great impact on space information systems such as satellite communications, navigation and positioning, and microwave remote sensing. Therefore, detecting the structure of the ionosphere is conducive to improving the information acquisition and application of the above-mentioned space information systems. quality. In addition, by detecting changes in ionospheric physical parameters (electron density, etc.), early warnings of natural disasters such as earthquakes and tsunamis can be provided. Taiwanese scholars have used relevant satellite data to analyze earthquakes with magnitudes above 5 in Taiwan in the past 10 years, and found that there will be a decrease in electron density in the high-altitude ionosphere before earthquakes. Therefore, ionospheric detection is of great significance to scientific research and disaster warning.
电离层的垂直结构按电子密度分为D、E、F1、F2层,其中F2层的电子密度最大。通常,根据电子密度的分布又将电离层分为底层电离层和顶层电离层。底层电离层是指F2层以下到电离层底的区域;顶层电离层是指F2层以上到电离层顶的区域,约海拔200公里到1000公里。同样,电离层探测也分为底层探测和顶层探测两类。底层探测是利用地面探测设备对底层电离层进行观测。顶层探测指的是利用卫星等航天飞行器平台搭载电离层探测载荷对顶层电离层进行观测。星载电离层探测器主要用于探测顶层电离层。早期电离层探测为底层探测。随着运载火箭和人造卫星的出现和迅速发展,使得人们能够实现利用星载探测设备从太空对顶层电离层进行探测。1962年,第一颗电离层探测卫星Alouette-I发射升空,获取了第一批顶层电离层的电离图。它的工作模式和地面探测相同,采用频率扫描的方式来测量电离层垂直电子密度的一维分布,即每个脉冲周期内发射一个单频脉冲信号,不同脉冲周期发射不同频率的脉冲信号,不同频率的信号会在电离层不同高度处发生反射,在一个扫频周期里测量每个频率回波信号的延迟时间,得到电子密度在高度向的一维分布(随虚高的变化);之后,又出现了美国的ISIS(International Satellites for IonosphericStudies)-I&II,日本的ISS(Ionosphere Sounding Satellite)-I等电离层探测卫星,它们和Alouette-I的工作模式相同,并且发射功率大。20世纪90年代以后,随着大规模集成电路、高性能计算机和信号处理技术的发展,使得星载电离层探测器向小型化、智能化的方向发展。这一时期出现的电离层探测卫星有很大改进,主要体现在:采用小卫星技术,降低了发射成本;发射脉冲采用线性调频信号或脉冲编码信号,提高了信噪比,从而降低了发射功率。典型代表有美国国家航空航天局(NASA)2000年发射的磁层探测IMAGE卫星和乌克兰2001年发射的顶层电离层探测WARNING卫星,它们分别搭载了RPI(Radio Plasma Imager)和TOPADS(TOPside Automated Doppler Sounder)两种先进的电离层探测雷达。RPI主要获取磁层的电子密度图,其高度方向的分辨率(距离分辨率)为480公里,而TOPADS主要获取顶层电离层的电子密度图,其高度方向的分辨率为5公里。但是,它们的工作模式仍为传统的扫频工作模式。这种扫频模式的扫频周期较长,导致几乎没有方位向(沿卫星飞行方向)上电子密度的分辨能力,例如TOPADS的扫频周期为10秒,它的方位分辨率低达75公里。The vertical structure of the ionosphere is divided into D, E, F1, and F2 layers according to the electron density, among which the F2 layer has the highest electron density. Generally, the ionosphere is divided into the bottom ionosphere and the top ionosphere according to the distribution of electron density. The bottom ionosphere refers to the area below the F2 layer to the bottom of the ionosphere; the top ionosphere refers to the area above the F2 layer to the top of the ionosphere, about 200 kilometers to 1,000 kilometers above sea level. Similarly, ionospheric detection is also divided into two categories: bottom layer detection and top layer detection. Bottom detection is to use ground detection equipment to observe the bottom ionosphere. Top-level detection refers to the observation of the top-level ionosphere by using satellites and other spacecraft platforms to carry ionospheric detection payloads. Spaceborne ionospheric detectors are mainly used to detect the top ionosphere. Early ionospheric soundings were bottom-level soundings. With the emergence and rapid development of launch vehicles and artificial satellites, people can use spaceborne detection equipment to detect the top ionosphere from space. In 1962, the first ionospheric sounding satellite, Alouette-I, was launched and obtained the first ionograms of the top ionosphere. Its working mode is the same as that of ground detection. It uses frequency scanning to measure the one-dimensional distribution of ionosphere vertical electron density. The frequency signal will be reflected at different heights of the ionosphere, and the delay time of each frequency echo signal is measured in a frequency sweep cycle to obtain the one-dimensional distribution of the electron density in the height direction (variation with the virtual height); after that, The ISIS (International Satellites for Ionospheric Studies)-I&II of the United States and the ISS (Ionosphere Sounding Satellite)-I of Japan appeared again. They have the same working mode as Alouette-I and have high transmission power. After the 1990s, with the development of large-scale integrated circuits, high-performance computers and signal processing technology, spaceborne ionospheric detectors have developed in the direction of miniaturization and intelligence. The ionospheric detection satellites that appeared during this period have been greatly improved, mainly reflected in: the use of small satellite technology reduces the launch cost; the launch pulse adopts linear frequency modulation signal or pulse code signal, which improves the signal-to-noise ratio and reduces the transmit power. . Typical representatives include the magnetospheric detection IMAGE satellite launched by the National Aeronautics and Space Administration (NASA) in 2000 and the top ionosphere detection WARNING satellite launched by Ukraine in 2001. ) two advanced ionospheric sounding radars. RPI mainly obtains the electron density map of the magnetosphere, and its height direction resolution (distance resolution) is 480 kilometers, while TOPADS mainly obtains the electron density map of the top ionosphere, and its height direction resolution is 5 kilometers. However, their working mode is still the traditional sweeping working mode. The scanning period of this scanning mode is relatively long, resulting in almost no ability to resolve the electron density in the azimuth direction (along the flight direction of the satellite). For example, the scanning period of TOPADS is 10 seconds, and its azimuth resolution is as low as 75 kilometers.
近年来,随着多输入多输出(MIMO)通信系统的研究,人们将MIMO思想扩展到了雷达体制设计与雷达信号处理领域,提出了MIMO雷达的概念,它的工作模式是通过多个发射天线同时发射多种波形信号并通过多个接收天线接收回波信号。它可利用信号间的正交性来恢复各个波形信号,常用的信号有相位编码信号等。完全互补序列(CC-S,completecomplementary sequence)作为一种相位编码信号,能够保证信号间的完全正交性及高处理增益,近年来开始用于MIMO雷达研究。利用MIMO雷达信号多发多收的优势,可将MIMO雷达用于电离层探测。In recent years, with the research of multiple-input multiple-output (MIMO) communication systems, people have extended the idea of MIMO to the field of radar system design and radar signal processing, and proposed the concept of MIMO radar. Its working mode is through multiple transmitting antennas simultaneously. Transmit multiple waveform signals and receive echo signals through multiple receive antennas. It can use the orthogonality between signals to restore each waveform signal, and the commonly used signals include phase encoding signals and so on. Complete complementary sequence (CC-S, complete complementary sequence), as a phase encoding signal, can ensure complete orthogonality between signals and high processing gain, and has been used in MIMO radar research in recent years. Taking advantage of the multiple transmission and multiple reception of MIMO radar signals, MIMO radar can be used for ionospheric detection.
发明内容Contents of the invention
本发明目的是为了突破传统电离层探测中扫频工作模式的限制,提高方位分辨率,提出一种用于顶层电离层探测的MIMO雷达系统,该系统由N个发射天线同时发射多个不同频率的不同相位编码脉冲信号,由N个接收天线接收回波信号。此系统能够大大提高方位分辨率,得到二维电离图(电子密度在高度向和方位向的分布)。The purpose of the present invention is to break through the limitations of the frequency sweep mode in traditional ionospheric detection, improve the azimuth resolution, and propose a MIMO radar system for top-level ionospheric detection. The system transmits multiple different frequencies simultaneously by N transmitting antennas. Different phase encoding pulse signals of different phases, and the echo signals are received by N receiving antennas. This system can greatly improve the azimuth resolution and obtain a two-dimensional ionization map (the distribution of electron density in the height and azimuth directions).
一种顶层电离层探测星载MIMO雷达系统,包括完全互补序列生成器、脉冲周期延迟器、调制器、发射天线、接收天线、解调器、脉冲压缩系统和电子密度分布生成系统;A spaceborne MIMO radar system for top-level ionosphere detection, comprising a complete complementary sequence generator, a pulse period delayer, a modulator, a transmitting antenna, a receiving antenna, a demodulator, a pulse compression system and an electron density distribution generation system;
完全互补序列生成器每隔一个序列对的脉冲重复周期Tprf,同时生成N对完全互补序列{Ai,Bi},i=1,…,N,Ai序列、Bi序列具体为:The complete complementary sequence generator generates N pairs of complete complementary sequences {A i , B i }, i=1, ..., N, A i sequence and B i sequence at the same time every other pulse repetition period T prf of a sequence pair is:
式中,和代表子脉冲码,i=1,…,N,k=0,…,L-1,L表示序列的长度;In the formula, and Represent sub-pulse code, i=1,..., N, k=0,..., L-1, L represents the length of the sequence;
脉冲周期延迟器对完全互补序列生成器输出序列Bi延迟一个脉冲周期,即延迟序列对的半个脉冲重复周期Tprf/2,实现Ai、Bi交替输入至N个调制器;调制器对输入的序列Ai、Bi进行载频fi调制,其中,f1=fmin,f2=f1+Δ,f3=f2+Δ,……,fN=fmax,fmax和fmin分别表示发射频率的最大值和最小值,Δ表示频率间隔调制后的N路频率分别为f1,f2,…fN的信号分别经由N个发射天线发射出去;每个接收天线接收到所有频率的被电离层反射回来的信号,N个接收天线形成N个接收天线通道;解调器对接收天线通道的信号进行混频和低通滤波处理,解调出载频fi上的互补的两个信号;脉冲压缩系统对解调出的互补的两个信号进行匹配滤波,再叠加,实现脉冲压缩;电子密度分布生成系统测量每个通道脉冲压缩后信号的延迟时间ti,计算对应的虚高其中Hs表示卫星轨道高度,c表示真空中光速;将每个通道的解调频率fi换算成电子密度值Nei,Nei=(fi/9)2;则在一个序列对的脉冲重复周期Tprf里,得到N个电子密度值对应的虚高,生成电子密度随虚高的一维变化;综合多个脉冲重复周期的一维结果,得到电子密度随虚高和方位距离的二维变化,即二维电离图。The pulse cycle delayer delays the output sequence B i of the complete complementary sequence generator by one pulse cycle, that is, half the pulse repetition period T prf /2 of the delayed sequence pair, so that A i and B i are alternately input to N modulators; the modulator Perform carrier frequency f i modulation on the input sequences A i and B i , where f 1 =f min , f 2 =f 1 +Δ, f 3 =f 2 +Δ,..., f N =f max , f max and f min represent the maximum and minimum values of the transmitting frequency, respectively, and Δ represents the frequency interval The modulated N signals with frequencies f 1 , f 2 , ...f N are transmitted through N transmitting antennas respectively; each receiving antenna receives signals of all frequencies reflected by the ionosphere, and N receiving antennas form N receiving antenna channels; the demodulator performs frequency mixing and low-pass filtering on the signal of the receiving antenna channel, and demodulates two complementary signals on the carrier frequency f i ; the pulse compression system demodulates the complementary two signals The signals are matched and filtered, and then superimposed to achieve pulse compression; the electron density distribution generation system measures the delay time t i of the signal after pulse compression in each channel, and calculates the corresponding virtual height Where H s represents the height of the satellite orbit, c represents the speed of light in vacuum; the demodulation frequency f i of each channel is converted into the electron density value Ne i , Ne i = (f i /9) 2 ; then in a sequence of pulses In the repetition period T prf , the virtual height corresponding to N electron density values is obtained, and the one-dimensional change of the electron density with the virtual height is generated; the one-dimensional results of multiple pulse repetition periods are combined to obtain the two-dimensional variation of the electron density with the virtual height and the azimuth distance. Dimensional changes, that is, two-dimensional ionograms.
本发明的优点在于:The advantages of the present invention are:
(1)本发明的星载MIMO雷达系统用于顶层电离层探测,与现有的电离层探测器相比,具有超高的方位分辨率,可生成二维电离图;(1) The spaceborne MIMO radar system of the present invention is used for top-layer ionospheric detection, compared with existing ionospheric detectors, has ultra-high azimuth resolution, and can generate a two-dimensional ionogram;
(2)本发明的星载MIMO雷达系统与现有的电离层探测器相比,有很高的工作效率。(2) Compared with the existing ionospheric detectors, the spaceborne MIMO radar system of the present invention has very high working efficiency.
附图说明Description of drawings
图1是本发明的一种顶层电离层探测星载MIMO雷达系统的结构示意图;Fig. 1 is the structural representation of a kind of top layer ionosphere detection space-borne MIMO radar system of the present invention;
图2是图1中节点H1,H2,…,HN处的波形示意图;Fig. 2 is a schematic diagram of waveforms at nodes H 1 , H 2 , ..., H N in Fig. 1;
图3a是本发明实施例中的电子密度分布的二维视图显示;Figure 3a is a two-dimensional view display of the electron density distribution in an embodiment of the present invention;
图3b是本发明实施例中的电子密度分布的三维视图显示;Figure 3b is a three-dimensional view display of the electron density distribution in the embodiment of the present invention;
图4a是本发明实施例中系统探测结果二维电离图的二维视图显示;Fig. 4a is a two-dimensional view display of a two-dimensional ionogram of a system detection result in an embodiment of the present invention;
图4b是本发明实施例中系统探测结果二维电离图的三维视图显示。Fig. 4b is a three-dimensional display of the two-dimensional ionogram of the system detection result in the embodiment of the present invention.
图中:In the picture:
1-完全互补序列生成器 2-脉冲周期延迟器 3-调制器1-Complementary Complementary Sequence Generator 2-Pulse Period Delayer 3-Modulator
4-发射天线 5-接收天线 6-解调器4-Transmitting Antenna 5-Receiving Antenna 6-Demodulator
7-脉冲压缩系统 8-电子密度分布生成系统7-pulse compression system 8-electron density distribution generation system
图中装置的符号表示如下:The symbols of the device in the figure are as follows:
T:脉冲周期延迟器;Tx:发射天线;Rx:接收天线;LPF:低通滤波器;MF:匹配滤波器;混频器;求和器T: pulse cycle delayer; Tx: transmit antenna; Rx: receive antenna; LPF: low-pass filter; MF: matched filter; Mixer; summer
具体实施方式Detailed ways
下面将结合附图和实施例对本发明作进一步的详细说明。The present invention will be further described in detail with reference to the accompanying drawings and embodiments.
本发明的一种顶层电离层探测星载MIMO雷达系统,如图1所示,包括完全互补序列生成器1、脉冲周期延迟器2、调制器3、发射天线4、接收天线5、解调器6、脉冲压缩系统7和电子密度分布生成系统8。A kind of top ionosphere detection spaceborne MIMO radar system of the present invention, as shown in Figure 1, comprises complete complementary sequence generator 1,
完全互补序列生成器1(CC-S生成器)每隔一个序列对的脉冲重复周期Tprf,同时生成N对完全互补序列{Ai,Bi},i=1,…,N。The complete complementary sequence generator 1 (CC-S generator) generates N pairs of complete complementary sequences {A i , B i }, i=1, . . .
为保证发射信号间频谱不混叠,N的取值由式(1)限定:In order to ensure that the frequency spectrum between transmitted signals does not alias, the value of N is limited by formula (1):
式中,ρr表示距离分辨率,fmax和fmin分别表示发射频率的最大值和最小值,c表示真空中光速。In the formula, ρ r represents the distance resolution, f max and f min represent the maximum and minimum values of the emission frequency, respectively, and c represents the speed of light in vacuum.
Ai序列、Bi序列具体为:A i sequence and B i sequence are specifically:
式中,和代表子脉冲码,i=1,…,N,k=0,…,L-1。L表示序列的长度。Ai序列、Bi序列具有高处理增益并且满足完全正交性,如式(3)和式(4)所示。In the formula, and Represents sub-pulse codes, i=1,...,N, k=0,...,L-1. L represents the length of the sequence. A i sequence and B i sequence have high processing gain and satisfy complete orthogonality, as shown in formula (3) and formula (4).
式(3)和(4)中,分别表示序列Am和An、序列Bm和Bn的非周期相关函数。In formulas (3) and (4), Denote the aperiodic correlation functions of sequences A m and A n , sequences B m and B n respectively.
脉冲周期延迟器2对完全互补序列生成器1输出序列Bi(i=1,…,N)延迟一个脉冲周期,也就是延迟序列对的半个脉冲重复周期Tprf/2,实现Ai、Bi交替输入至调制器3。设调制频率为fi的调制器3的输入端为节点Hi,如图1中所示,图2为图1中节点H1,H2,…,HN处的波形示意图。节点Hi处为Ai、Bi交替脉冲序列,序列对的脉冲重复周期为Tprf。The
然后,N个调制器3对输入的序列Ai、Bi通过混频器进行载频fi调制,i=1,…,N,其中,f1=fmin,f2=f1+Δ,f3=f2+Δ,……,fN=fmax,fmax和fmin分别表示发射频率的最大值和最小值,Δ表示频率间隔 Then, N modulators 3 perform carrier frequency f i modulation on the input sequences A i and B i through the mixer, i=1,...,N, where f 1 =f min , f 2 =f 1 +Δ , f 3 =f 2 +Δ,..., f N =f max , f max and f min represent the maximum value and minimum value of the transmitting frequency respectively, Δ represents the frequency interval
调制后的N路频率分别为f1,f2,…fN的信号分别经由N个发射天线4发射出去。N channels of modulated signals with frequencies f 1 , f 2 , . . . f N are transmitted through N transmitting antennas 4 respectively.
频率为fi的信号经过电离层,会在电子密度为Nei=(fi/9)2所在高度处发生反射。The signal with frequency f i passes through the ionosphere and will be reflected at the height where the electron density is Ne i =(f i /9) 2 .
每个接收天线5都接收到所有频率的被电离层反射回来的信号,N个接收天线5形成N个接收天线通道。Each receiving antenna 5 receives signals of all frequencies reflected by the ionosphere, and N receiving antennas 5 form N receiving antenna channels.
解调器6包括混频器和低通滤波器,通过接收天线通道的信号依次进入混频器和低通滤波器,进行混频和低通滤波处理,解调出载频fi(i=1,…,N)上的互补的两个信号。Demodulator 6 comprises mixer and low-pass filter, enters mixer and low-pass filter successively by the signal of receiving antenna channel, carries out frequency mixing and low-pass filtering process, demodulates carrier frequency f i (i= 1, . . . , N) complementary two signals.
脉冲压缩系统7对解调出的互补的两个信号进行匹配滤波,再叠加,实现脉冲压缩,脉冲压缩系统7具体包括匹配滤波器和求和器,匹配滤波器对解调出的互补的两个信号进行匹配滤波,求和器再进行叠加。The pulse compression system 7 performs matched filtering on the two demodulated complementary signals, and then superimposes to realize pulse compression. The pulse compression system 7 specifically includes a matched filter and a summer, and the matched filter pairs the demodulated complementary two The signals are matched filtered, and then superimposed by the summer.
电子密度分布生成系统8测量每个通道脉冲压缩后信号的延迟时间ti,i=1,…,N,计算对应的虚高Hs表示卫星轨道高度,c表示真空中光速。再将每个通道的解调频率fi换算成电子密度值Nei,Nei=(fi/9)2。这样,在一个序列对的脉冲重复周期Tprf里,得到N个电子密度值对应的虚高,生成电子密度随虚高的一维变化。综合多个脉冲重复周期的一维结果,得到电子密度随虚高和方位距离的二维变化,也就是二维电离图。方位分辨率为Vs·Tprf,也就是一个序列对的脉冲重复周期卫星飞行的距离,Vs表示卫星速度大小。The electron density distribution generation system 8 measures the delay time t i of the pulse-compressed signal of each channel, i=1,...,N, and calculates the corresponding virtual height H s represents the altitude of the satellite orbit, and c represents the speed of light in vacuum. Then the demodulation frequency f i of each channel is converted into an electron density value Ne i , Ne i =(f i /9) 2 . In this way, in the pulse repetition period T prf of a sequence pair, imaginary heights corresponding to N electron density values are obtained, and a one-dimensional change of electron density with the imaginary height is generated. Combining the one-dimensional results of multiple pulse repetition periods, the two-dimensional variation of electron density with false height and azimuth distance is obtained, that is, the two-dimensional ionization map. The azimuth resolution is V s ·T prf , that is, the distance that the satellite flies in the pulse repetition period of a sequence pair, and V s represents the satellite speed.
实施例:Example:
根据表1所示参数,对系统进行了计算机仿真。仿真中完全互补序列的子脉冲码从{1,-1,j,-j}取值,其中j2=-1。According to the parameters shown in Table 1, a computer simulation was carried out on the system. In the simulation, the sub-pulse codes of the complete complementary sequence take values from {1, -1, j, -j}, where j 2 =-1.
表1仿真参数Table 1 Simulation parameters
仿真中将电离层电子密度分布Ne(h,x)近似看成垂直分布部分和水平扰动部分的乘积,假定垂直分布Nver(h)满足Chapman模型,水平扰动部分Fhor(x)是高斯函数:In the simulation, the ionospheric electron density distribution N e (h, x) is approximately regarded as the product of the vertical distribution part and the horizontal disturbance part, assuming that the vertical distribution N ver (h) satisfies the Chapman model, and the horizontal disturbance part F hor (x) is a Gaussian function:
Ne(h,x)=Nver(h)·Fhor(x) (5)N e (h, x) = N ver (h) · F hor (x) (5)
式中,h和x分别代表高度和水平距离,N0是电子密度峰值,h0是电子密度峰值所在高度,H是标高,μ和σ分别表示高斯函数的中心和尺度。取N0=1×1012/m3,h0=350km,H=50km,μ=0,σ=10km。图3为由式(5)直接生成的电子密度分布图,图3a为二维视图,图3b为三维视图。In the formula, h and x represent the height and horizontal distance, N 0 is the peak electron density, h 0 is the height of the electron density peak, H is the elevation, μ and σ represent the center and scale of the Gaussian function, respectively. Take N 0 =1×10 12 /m 3 , h 0 =350km, H=50km, μ=0, σ=10km. Fig. 3 is an electron density distribution diagram directly generated by formula (5), Fig. 3a is a two-dimensional view, and Fig. 3b is a three-dimensional view.
仿真中的信号延迟时间由式(8)计算得到,式(8)表示的是频率为fi的电磁波经电离层反射的双程延迟时间ti:The signal delay time in the simulation is calculated by formula (8), which expresses the round-trip delay time t i of the electromagnetic wave with frequency f i reflected by the ionosphere:
式中,Hs表示卫星轨道高度,hi表示电磁波发生反射所在的高度,也就是电子密度为(fi/9)2所在的高度,fp表示截止频率 In the formula, H s represents the height of the satellite orbit, h i represents the height where the electromagnetic wave is reflected, that is, the height where the electron density is (f i /9) 2 , f p represents the cut-off frequency
根据表1的参数,仿真中的方位分辨率高达0.28km,也就是卫星每飞行0.28km,即水平距离x每增加0.28km,系统生成一个电子密度随虚高的一维变化结果,综合水平距离x从-10km到10km的结果,得到电子密度二维分布——二维电离图,如图4所示,图4a为二维视图,图4b为三维视图。According to the parameters in Table 1, the azimuth resolution in the simulation is as high as 0.28km, that is, every time the satellite flies 0.28km, that is, every time the horizontal distance x increases by 0.28km, the system generates a one-dimensional change result of electron density with false height, and the comprehensive horizontal distance From the result of x from -10km to 10km, the two-dimensional distribution of electron density - two-dimensional ionization map is obtained, as shown in Figure 4, Figure 4a is a two-dimensional view, and Figure 4b is a three-dimensional view.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010539079A CN102073041B (en) | 2010-11-10 | 2010-11-10 | Top ionosphere detection space-borne MIMO radar system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010539079A CN102073041B (en) | 2010-11-10 | 2010-11-10 | Top ionosphere detection space-borne MIMO radar system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102073041A true CN102073041A (en) | 2011-05-25 |
CN102073041B CN102073041B (en) | 2012-09-05 |
Family
ID=44031657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010539079A Expired - Fee Related CN102073041B (en) | 2010-11-10 | 2010-11-10 | Top ionosphere detection space-borne MIMO radar system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102073041B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106597405A (en) * | 2016-12-02 | 2017-04-26 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | Multi-carrier signal form-based ionosphere detection method and system |
CN107202978A (en) * | 2016-03-16 | 2017-09-26 | 松下电器产业株式会社 | Radar installations and radar method |
CN107423372A (en) * | 2017-07-03 | 2017-12-01 | 武汉大学 | A kind of IONEX ionospheric datas editor and lossless optimization compression method |
CN113395232A (en) * | 2021-08-16 | 2021-09-14 | 深圳捷扬微电子有限公司 | Pulse ultra-wideband multi-antenna delay receiver and method for acquiring incident angle |
CN113924508A (en) * | 2019-06-13 | 2022-01-11 | 高通股份有限公司 | Space Time Frequency Multiplexing (STFM) for Radar Systems Using Complementary Pair Waveforms |
CN115825938A (en) * | 2022-11-09 | 2023-03-21 | 北京卫星信息工程研究所 | Spaceborne sky wave radar system and upper ionosphere detection method |
CN117665810A (en) * | 2024-01-31 | 2024-03-08 | 中国科学院地质与地球物理研究所 | Ionosphere electron density detection method, system and equipment for linear frequency modulation signals |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5428358A (en) * | 1994-05-03 | 1995-06-27 | The United States Of America As Represented By The Secretary Of The Navy | Apparatus and method for ionospheric mapping |
CN1407348A (en) * | 2001-09-04 | 2003-04-02 | 刘凤才 | Extending range of radar by artificial ionosphere and target detection by radar refraction |
JP2007333527A (en) * | 2006-06-14 | 2007-12-27 | Toshiba Corp | Ionosphere model compensation method |
-
2010
- 2010-11-10 CN CN201010539079A patent/CN102073041B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5428358A (en) * | 1994-05-03 | 1995-06-27 | The United States Of America As Represented By The Secretary Of The Navy | Apparatus and method for ionospheric mapping |
CN1407348A (en) * | 2001-09-04 | 2003-04-02 | 刘凤才 | Extending range of radar by artificial ionosphere and target detection by radar refraction |
JP2007333527A (en) * | 2006-06-14 | 2007-12-27 | Toshiba Corp | Ionosphere model compensation method |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107202978A (en) * | 2016-03-16 | 2017-09-26 | 松下电器产业株式会社 | Radar installations and radar method |
CN107202978B (en) * | 2016-03-16 | 2022-01-11 | 松下电器产业株式会社 | Radar apparatus and radar method |
CN106597405A (en) * | 2016-12-02 | 2017-04-26 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | Multi-carrier signal form-based ionosphere detection method and system |
CN106597405B (en) * | 2016-12-02 | 2019-06-14 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | An ionospheric detection method and system based on multi-carrier signal form |
CN107423372A (en) * | 2017-07-03 | 2017-12-01 | 武汉大学 | A kind of IONEX ionospheric datas editor and lossless optimization compression method |
CN113924508A (en) * | 2019-06-13 | 2022-01-11 | 高通股份有限公司 | Space Time Frequency Multiplexing (STFM) for Radar Systems Using Complementary Pair Waveforms |
CN113395232A (en) * | 2021-08-16 | 2021-09-14 | 深圳捷扬微电子有限公司 | Pulse ultra-wideband multi-antenna delay receiver and method for acquiring incident angle |
CN113395232B (en) * | 2021-08-16 | 2021-11-05 | 深圳捷扬微电子有限公司 | Pulse ultra-wideband multi-antenna delay receiver and method for acquiring incident angle |
US11233533B1 (en) | 2021-08-16 | 2022-01-25 | Shenzhen Giant Microelectronics Company Limited | Impulse radio ultra wideband multi-antenna time delay receiver and mthod for acquiring angle of arrival based on the same |
CN115825938A (en) * | 2022-11-09 | 2023-03-21 | 北京卫星信息工程研究所 | Spaceborne sky wave radar system and upper ionosphere detection method |
CN117665810A (en) * | 2024-01-31 | 2024-03-08 | 中国科学院地质与地球物理研究所 | Ionosphere electron density detection method, system and equipment for linear frequency modulation signals |
CN117665810B (en) * | 2024-01-31 | 2024-04-09 | 中国科学院地质与地球物理研究所 | Ionospheric electron density detection method, system and device using linear frequency modulation signal |
Also Published As
Publication number | Publication date |
---|---|
CN102073041B (en) | 2012-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102073041B (en) | Top ionosphere detection space-borne MIMO radar system | |
CN101539627B (en) | A method for constructing an ionospheric three-dimensional detection spaceborne SAR imaging processing platform | |
CN111693983B (en) | Complementary waveform construction method and module, cognitive radar system and waveform emission method | |
CN103529437B (en) | Method used for captive-balloon-borne phased array radar to distinguish open space targets under multi-target condition | |
CN103412310B (en) | Bistatic forward-looking synthetic aperture radar ground moving target detecting method and imaging method | |
CN105182327A (en) | Negative pseudo-range processing with multi-static fmcw radars | |
CN106597405B (en) | An ionospheric detection method and system based on multi-carrier signal form | |
CN102778681A (en) | Method for imaging stationary transmitter bistatic foresight synthetic aperture radar (ST-BFSAR) | |
Gennarelli et al. | A low frequency airborne GPR system for wide area geophysical surveys: The case study of Morocco Desert | |
Clarizia | Investigating the effect of ocean waves on GNSS-R microwave remote sensing measurements | |
CN109412744A (en) | A kind of comprehensive interference system of unmanned plane | |
CN103197312B (en) | Sparse microwave imaging method and device of imaging radar installed on low-speed platform | |
CN111487609A (en) | Multi-frequency continuous wave MIMO array radar system and target parameter estimation method thereof | |
CN101710173B (en) | Time-domain imaging method of spaceborne-airborne bistatic synthetic aperture radar | |
CN107192992A (en) | Method, calibrator, radar installations and the system of radar calibration | |
Zeng | Passive bistatic SAR with GNSS transmitter and a stationary receiver | |
Sandström et al. | A study of some FMCW radar algorithms for target location at low frequencies | |
US6721678B1 (en) | Determining three dimensional velocity of a object | |
Barrick et al. | Ocean surface features observed by HF coastal ground-wave radars: A progress review | |
Gurgel et al. | Remote sensing of surface currents and waves by the HF radar WERA | |
Pardhu et al. | Design of matched filter for radar applications | |
CN110376586B (en) | A distributed MIMO radar moving target detection method based on the tomographic principle | |
US12099130B2 (en) | Multi-channel active array system and method for obtaining positional information of an object | |
CN115436939B (en) | A multi-level resolution fast imaging method for multi-channel high-resolution wide-swath SAR | |
Fournier et al. | Correlation-based imaging of fast moving objects using a sparse network of passive receivers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120905 Termination date: 20181110 |
|
CF01 | Termination of patent right due to non-payment of annual fee |