CN102071439A - Method for directly preparing Mg-Zn-Zr alloy through electrolyzing molten salts - Google Patents
Method for directly preparing Mg-Zn-Zr alloy through electrolyzing molten salts Download PDFInfo
- Publication number
- CN102071439A CN102071439A CN 201110004447 CN201110004447A CN102071439A CN 102071439 A CN102071439 A CN 102071439A CN 201110004447 CN201110004447 CN 201110004447 CN 201110004447 A CN201110004447 A CN 201110004447A CN 102071439 A CN102071439 A CN 102071439A
- Authority
- CN
- China
- Prior art keywords
- cathode
- alloy
- electrolysis
- molten salt
- current density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001093 Zr alloy Inorganic materials 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 35
- 150000003839 salts Chemical class 0.000 title claims abstract description 30
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 40
- 239000011777 magnesium Substances 0.000 claims abstract description 24
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 24
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 22
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 10
- 239000010439 graphite Substances 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 10
- 239000011733 molybdenum Substances 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 239000011701 zinc Substances 0.000 claims description 21
- 229910052725 zinc Inorganic materials 0.000 claims description 18
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 16
- 229910045601 alloy Inorganic materials 0.000 abstract description 16
- 239000000956 alloy Substances 0.000 abstract description 16
- 238000002844 melting Methods 0.000 abstract description 6
- 230000008018 melting Effects 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 238000003723 Smelting Methods 0.000 abstract description 3
- 238000004626 scanning electron microscopy Methods 0.000 description 9
- 229910000861 Mg alloy Inorganic materials 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 8
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- UQCVYEFSQYEJOJ-UHFFFAOYSA-N [Mg].[Zn].[Zr] Chemical compound [Mg].[Zn].[Zr] UQCVYEFSQYEJOJ-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- QRNPTSGPQSOPQK-UHFFFAOYSA-N magnesium zirconium Chemical compound [Mg].[Zr] QRNPTSGPQSOPQK-UHFFFAOYSA-N 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Electrolytic Production Of Metals (AREA)
Abstract
本发明提供的是一种熔盐电解直接制备Mg-Zn-Zr合金的方法。将无水MgCl2、KCl、KF、K2ZrF6、ZrO2和无水ZnCl2按质量百分比为30%-45%、45%-55%、5-8%、5.3-15%、2-4%、1-2%,研细混合均匀后,在电解槽中加热溶化;以惰性金属钼为阴极,石墨为阳极,电解温度510-630℃下,采取下沉阴极法,极距为4cm,阴极电流密度为3-12A/cm2,槽电压5.7-8.2V,经2-4小时的电解,在熔盐电解槽于阴极附近沉积出Mg-Zn-Zr合金。本发明得到的合金成分均匀;显著降低了热能耗,电解温度510-630℃,低于镁的熔点,远远低于锆的熔点;缩短了生产流程,降低了熔炼成本,经济效益十分显著。The invention provides a method for directly preparing Mg-Zn-Zr alloy by molten salt electrolysis. Anhydrous MgCl 2 , KCl, KF, K 2 ZrF 6 , ZrO 2 and anhydrous ZnCl 2 are 30%-45%, 45%-55%, 5-8%, 5.3-15%, 2- 4%, 1-2%, grind and mix evenly, heat and melt in the electrolytic cell; use inert metal molybdenum as the cathode, graphite as the anode, at an electrolysis temperature of 510-630°C, adopt the sinking cathode method, and the pole distance is 4cm , the cathode current density is 3-12A/cm 2 , the cell voltage is 5.7-8.2V, after 2-4 hours of electrolysis, the Mg-Zn-Zr alloy is deposited near the cathode in the molten salt electrolytic cell. The composition of the alloy obtained by the invention is uniform; heat energy consumption is significantly reduced; the electrolysis temperature is 510-630°C, which is lower than the melting point of magnesium and far lower than the melting point of zirconium; the production process is shortened, the smelting cost is reduced, and the economic benefits are very significant.
Description
技术领域technical field
本发明涉及的是一种电冶金的方法。具体说是一种熔盐电解直接制备Mg-Zn-Zr合金的方法。The invention relates to an electrometallurgy method. Specifically, it is a method for directly preparing Mg-Zn-Zr alloy by molten salt electrolysis.
背景技术Background technique
镁合金被称为“绿色合金”,具有密度小、比强度与比刚度高、导热性好、机械性能及化学性质优良、可回收利用等优点,使其在航天、汽车、笔记本电脑、军事等领域有了很大的应用,并且其用量有大幅度增加的趋势。镁合金按是否含锆,可分为含锆镁合金和不含锆镁合金。Magnesium alloys are called "green alloys". They have the advantages of low density, high specific strength and specific stiffness, good thermal conductivity, excellent mechanical and chemical properties, and recyclability, making them widely used in aerospace, automobiles, notebook computers, military, etc. The field has been widely used, and its usage has a tendency to increase significantly. Magnesium alloys can be divided into zirconium-containing magnesium alloys and zirconium-free magnesium alloys according to whether they contain zirconium.
Mg-Zn二元合金的晶粒尺寸粗大,容易形成微孔,力学性能低,在工业上很少应用。Zr是Mg-Zn合金中最有效的晶粒细化元素,并能减缓合金元素的扩散速度,阻止晶粒长大,Mg-Zn-Zr系合金是应用较多的锻造和变形镁合金。在Mg-Zn合金中添加0.6%~0.8%的Zr,其晶粒尺寸可降至0.65~6.50μm,具有最大的细化晶粒和提高力学性能的作用。故含锆镁合金得到了日益广泛的应用。The grain size of Mg-Zn binary alloy is coarse, it is easy to form micropores, and its mechanical properties are low, so it is rarely used in industry. Zr is the most effective grain refining element in Mg-Zn alloys, and can slow down the diffusion rate of alloying elements and prevent grain growth. Mg-Zn-Zr alloys are widely used forging and deformation magnesium alloys. Adding 0.6%-0.8% Zr to Mg-Zn alloy can reduce the grain size to 0.65-6.50μm, which has the greatest effect of refining grains and improving mechanical properties. Therefore, zirconium-containing magnesium alloys have been increasingly widely used.
目前Mg-Zn-Zr合金的生产方法多采用对掺法,是采用高纯锌、镁和镁锆中间合金在熔融状态下按一定比例对掺而成。这种方法生产流程长,工艺复杂,耗能高,合金成分易偏析,生产成本高。目前要获得质量良好的的Mg-Zn-Zr合金主要是通过真空熔炼方法制备,而此方法将加大Mg-Zn-Zr合金的熔炼成本,也对其设备提出了较高的要求。At present, the production method of Mg-Zn-Zr alloy mostly adopts the mixing method, which is formed by mixing high-purity zinc, magnesium and magnesium-zirconium master alloy in a certain proportion in a molten state. This method has long production process, complex process, high energy consumption, easy segregation of alloy components, and high production cost. At present, to obtain good quality Mg-Zn-Zr alloy is mainly prepared by vacuum melting method, and this method will increase the melting cost of Mg-Zn-Zr alloy, and also put forward higher requirements for its equipment.
已有技术中提出的对掺法制备合金,例如专利申请号为200710046148.9的专利“Mg-Zn-Zr变形镁合金制备方法”中,公开了一种以工业纯镁在气体的保护下加热,待镁完全熔化后,加入工业纯Zn、Mg-Zr中间合金,待合金完全熔化后进行搅拌,使合金成分均匀,保温后加精炼剂进行精炼,精炼完毕再次保温,然后进行浇铸,将浇铸好的铸锭进行均匀化处理,在挤压机上进行塑性变形,挤压后将挤压锭放在热处理炉中进行退火热处理;专利申请号为200810236147.5,名称为“一种Mg-Zn-Zr-Nd镁合金及其制备方法”中公开了一种通过调整Zn、Zr含量和加入微量稀土元素Nd,采用电阻炉或反射炉进行熔炼,直接制备出具有高强度和耐腐蚀能力的铸锭。The preparation of alloys by the method of doping proposed in the prior art, for example, in the patent "Mg-Zn-Zr deformed magnesium alloy preparation method" with the patent application number 200710046148.9, discloses a method of heating industrially pure magnesium under the protection of gas. After the magnesium is completely melted, add industrially pure Zn and Mg-Zr intermediate alloys, and stir after the alloys are completely melted to make the alloy composition uniform. The ingot is homogenized and plastically deformed on an extruder. After extrusion, the extruded ingot is placed in a heat treatment furnace for annealing heat treatment; the patent application number is 200810236147.5, and the name is "a kind of Mg-Zn-Zr-Nd magnesium Alloy and its preparation method” discloses a method of directly preparing an ingot with high strength and corrosion resistance by adjusting the content of Zn and Zr and adding a trace of rare earth element Nd, using a resistance furnace or a reverberatory furnace for smelting.
发明内容Contents of the invention
本发明的目的是提供一种工艺简单、能降低能耗、制备的Mg-Zn-Zr合金成分均匀的熔盐电解直接制备Mg-Zn-Zr合金的方法。The purpose of the present invention is to provide a method for directly preparing Mg-Zn-Zr alloy by molten salt electrolysis with simple process, energy consumption reduction and uniform composition of the prepared Mg-Zn-Zr alloy.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
将KCl、K2ZrF6在600℃的温度下进行干燥72小时,无水MgCl2、无水ZnCl2、KF在130℃温度下进行真空干燥24小时;将无水MgCl2、KCl、KF、K2ZrF6、ZrO2和无水ZnCl2按质量百分比为30%-45%、45%-55%、5-8%、5.3-15%、2-4%、1-2%,研细混合均匀后,在电解槽中加热溶化;以惰性金属钼(Mo)为阴极,石墨为阳极,电解温度510-630℃下,采取下沉阴极法,极距为4cm,阴极电流密度为3-12A/cm2,槽电压5.7-8.2V,经2-4小时的电解,在熔盐电解槽于阴极附近沉积出Mg-Zn-Zr合金。Dry KCl and K 2 ZrF 6 at a temperature of 600°C for 72 hours, dry anhydrous MgCl 2 , anhydrous ZnCl 2 , and KF in a vacuum at 130°C for 24 hours; dry anhydrous MgCl 2 , KCl, KF, K 2 ZrF 6 , ZrO 2 and anhydrous ZnCl 2 are 30%-45%, 45%-55%, 5-8%, 5.3-15%, 2-4%, 1-2% by mass percentage, finely ground After mixing evenly, heat and melt in the electrolytic cell; use the inert metal molybdenum (Mo) as the cathode, graphite as the anode, and at an electrolysis temperature of 510-630°C, adopt the sinking cathode method, the pole distance is 4cm, and the cathode current density is 3- 12A/cm 2 , cell voltage 5.7-8.2V, after electrolysis for 2-4 hours, Mg-Zn-Zr alloy is deposited near the cathode in the molten salt electrolytic cell.
本发明的理论依据为通过控制Mg2+、Zn2+、Zr4+的浓度和阴极电流密度,即可制备不同组分的镁锌锆合金。并且采用低共晶MgCl2-KCl熔盐为电解质,可在较低的温度下电解。The theoretical basis of the invention is that magnesium-zinc-zirconium alloys with different components can be prepared by controlling the concentration of Mg 2+ , Zn 2+ , Zr 4+ and the cathode current density. And the low eutectic MgCl 2 -KCl molten salt is used as the electrolyte, which can be electrolyzed at a lower temperature.
本发明技术方案的突出的实质性特点和显著性进步主要体现于:本发明采用金属化合物为原料直接制备Mg-Zn-Zr合金,合金成分均匀;显著降低了热能耗,电解温度510-630℃,低于镁的熔点(650℃),远远低于锆的熔点(1852℃);缩短了生产流程,降低了熔炼成本,经济效益十分显著。The outstanding substantive features and significant progress of the technical solution of the present invention are mainly reflected in: the present invention uses metal compounds as raw materials to directly prepare Mg-Zn-Zr alloys, and the alloy composition is uniform; heat energy consumption is significantly reduced, and the electrolysis temperature is 510-630°C , lower than the melting point of magnesium (650°C), far lower than the melting point of zirconium (1852°C); the production process is shortened, the smelting cost is reduced, and the economic benefits are very significant.
附图说明Description of drawings
图1a和图1b分别是实施例7和6制备的合金样品的X射线衍射分析(XRD),XRD分析表明,合金由Mg相、Mg7Zn3相、Zr相组成。Figure 1a and Figure 1b are the X-ray diffraction analysis (XRD) of the alloy samples prepared in Examples 7 and 6, respectively. XRD analysis shows that the alloy is composed of Mg phase, Mg 7 Zn 3 phase, and Zr phase.
图2a-图2d是实施例6制备的合金样品的电子扫描显微镜(SEM)(点扫描)及附带能谱仪(EDS)(对应点)分析。由EDS分析表明镁锌的化合物和单质锆都分布在晶界处。Fig. 2a-Fig. 2d are scanning electron microscopy (SEM) (point scanning) and attached energy dispersive spectroscopy (EDS) (corresponding point) analysis of the alloy sample prepared in Example 6. EDS analysis shows that the compounds of magnesium and zinc and elemental zirconium are distributed at the grain boundaries.
图3a-图3d是实施例5制备的合金样品的电子扫描显微镜(SEM)(点扫描)及附带能谱仪(EDS)(对应点)分析。3a-3d are scanning electron microscopy (SEM) (point scanning) and attached energy dispersive spectroscopy (EDS) (corresponding point) analysis of the alloy sample prepared in Example 5.
图4是实施例5制备的合金样品的电子扫描显微镜(SEM)照片及面扫描(EPMA)照片。面分布可见,此方法得到的合金中锆没有偏析现象。4 is a scanning electron microscope (SEM) photo and a surface scanning (EPMA) photo of the alloy sample prepared in Example 5. It can be seen from the surface distribution that there is no segregation of zirconium in the alloy obtained by this method.
图5是制备的合金样品的电子扫描显微镜(SEM)照片。从SEM照片可以看出,不同Zr含量Mg-Zn-Zr合金可以看出,随着锆元素含量的增加晶粒细化程度增强。(a:Mg-31Zn×100扫描电镜照片;b:Mg-11Zn-0.1Zn×100扫描电镜照片;c:Mg-13Zn--0.2Zr×100扫描电镜照片;d:Mg-18Zn-1.3Zr×100扫描电镜照片)Fig. 5 is a scanning electron microscope (SEM) photograph of the prepared alloy sample. From the SEM photos, it can be seen that the grain refinement degree of Mg-Zn-Zr alloys with different Zr content increases with the increase of zirconium element content. (a: SEM photo of Mg-31Zn×100; b: SEM photo of Mg-11Zn-0.1Zn×100; c: SEM photo of Mg-13Zn--0.2Zr×100; d: Mg-18Zn-1.3Zr× 100 SEM photos)
具体实施方式Detailed ways
下面列举对本发明做更详细地描述:List below and describe the present invention in more detail:
实施例1:将KCl、K2ZrF6在600℃的温度下进行干燥72小时,无水MgCl2、无水ZnCl2、KF在130℃温度下进行真空干燥24小时;以MgCl2+KCl+KF+K2ZrF6+ZrO2+ZnCl2为电解质体系,各成分的质量百分比分别为34.2%、51.4%、5.7%、5.3%、2.3%、1.1%,以惰性金属钼(Mo)为阴极,石墨为阳极,电解温度510℃下,采取下沉阴极法,极距为4cm,阴极电流密度为6A/cm2,阳极电流密度0.5A/cm2,槽电压6.1-7.2V,经2小时的电解,在熔盐电解槽于阴极附近沉积出Mg-Zn-Zr合金,镁、锌、锆的含量分别为:32.7%、66.1%、1.2%。Example 1: Dry KCl, K 2 ZrF 6 at 600°C for 72 hours, anhydrous MgCl 2 , anhydrous ZnCl 2 , and KF at 130°C for 24 hours in vacuum; use MgCl 2 +KCl+ KF+K 2 ZrF 6 +ZrO 2 +ZnCl 2 is the electrolyte system, the mass percentage of each component is 34.2%, 51.4%, 5.7%, 5.3%, 2.3%, 1.1%, and the inert metal molybdenum (Mo) is used as the cathode , graphite as the anode, at the electrolysis temperature of 510°C, the sinking cathode method is adopted, the pole distance is 4cm, the cathode current density is 6A/cm 2 , the anode current density is 0.5A/cm 2 , the cell voltage is 6.1-7.2V, after 2 hours Mg-Zn-Zr alloy is deposited near the cathode in the molten salt electrolytic cell, and the contents of magnesium, zinc and zirconium are respectively: 32.7%, 66.1%, and 1.2%.
实施例2:将KCl、K2ZrF6在600℃的温度下进行干燥72小时,无水MgCl2、无水ZnCl2、KF在130℃温度下进行真空干燥24小时;以MgCl2+KCl+KF+K2ZrF6+ZrO2+ZnCl2为电解质体系,各成分的质量百分比分别为34.2%、51.4%、5.7%、5.3%、2.3%、1.1%,以惰性金属钼(Mo)为阴极,石墨为阳极,电解温度540℃下,采取下沉阴极法,极距为4cm,阴极电流密度为3A/cm2,阳极电流密度0.5A/cm2,槽电压5.1-6.2V,经2小时的电解,在熔盐电解槽于阴极附近沉积出Mg-Zn-Zr合金,镁、锌、锆的含量分别为:45.9%、53.1%、1.0%。Example 2: Dry KCl, K 2 ZrF 6 at 600°C for 72 hours, anhydrous MgCl 2 , anhydrous ZnCl 2 , and KF at 130°C for 24 hours in vacuum; use MgCl 2 +KCl+ KF+K 2 ZrF 6 +ZrO 2 +ZnCl 2 is the electrolyte system, the mass percentage of each component is 34.2%, 51.4%, 5.7%, 5.3%, 2.3%, 1.1%, and the inert metal molybdenum (Mo) is used as the cathode , graphite as the anode, electrolysis temperature 540 ℃, adopt the sinking cathode method, the pole distance is 4cm, the cathode current density is 3A/cm 2 , the anode current density is 0.5A/cm 2 , the cell voltage is 5.1-6.2V, after 2 hours Mg-Zn-Zr alloy is deposited near the cathode in the molten salt electrolytic cell, and the contents of magnesium, zinc and zirconium are respectively: 45.9%, 53.1%, and 1.0%.
实施例3:将KCl、K2ZrF6在600℃的温度下进行干燥72小时,无水MgCl2、无水ZnCl2、KF在130℃温度下进行真空干燥24小时;以MgCl2+KCl+KF+K2ZrF6+ZrO2+ZnCl2为电解质体系,各成分的质量百分比分别为34.2%、51.4%、5.7%、5.3%、2.3%、1.1%,以惰性金属钼(Mo)为阴极,石墨为阳极,电解温度570℃下,采取下沉阴极法,极距为4cm,阴极电流密度为6A/cm2,阳极电流密度0.5A/cm2,槽电压6.1-7.2V,经2小时的电解,在熔盐电解槽于阴极附近沉积出Mg-Zn-Zr合金,镁、锌、锆的含量分别为:82.4%、16.7%、0.9%。Example 3: Dry KCl, K 2 ZrF 6 at 600°C for 72 hours, anhydrous MgCl 2 , anhydrous ZnCl 2 , and KF at 130°C for 24 hours in vacuum; use MgCl 2 +KCl+ KF+K 2 ZrF 6 +ZrO 2 +ZnCl 2 is the electrolyte system, the mass percentage of each component is 34.2%, 51.4%, 5.7%, 5.3%, 2.3%, 1.1%, and the inert metal molybdenum (Mo) is used as the cathode , graphite as the anode, electrolysis temperature 570 ℃, adopt the sinking cathode method, the pole distance is 4cm, the cathode current density is 6A/cm 2 , the anode current density is 0.5A/cm 2 , the cell voltage is 6.1-7.2V, after 2 hours Mg-Zn-Zr alloy is deposited near the cathode in the molten salt electrolytic cell, and the contents of magnesium, zinc and zirconium are respectively: 82.4%, 16.7%, and 0.9%.
实施例4:将KCl、K2ZrF6在600℃的温度下进行干燥72小时,无水MgCl2、无水ZnCl2、KF在130℃温度下进行真空干燥24小时;以MgCl2+KCl+KF+K2ZrF6+ZrO2+ZnCl2为电解质体系,各成分的质量百分比分别为34.2%、51.4%、5.7%、5.3%、2.3%、1.1%,以惰性金属钼(Mo)为阴极,石墨为阳极,电解温度570℃下,采取下沉阴极法,极距为4cm,阴极电流密度为12A/cm2,阳极电流密度0.5A/cm2,槽电压7.2-8.2V,经2小时的电解,在熔盐电解槽于阴极附近沉积出Mg-Zn-Zr合金,镁、锌、锆的含量分别为:52.2%、47.4%、0.4%。Example 4: Dry KCl, K 2 ZrF 6 at 600°C for 72 hours, anhydrous MgCl 2 , anhydrous ZnCl 2 , and KF at 130°C for 24 hours in vacuum; use MgCl 2 +KCl+ KF+K 2 ZrF 6 +ZrO 2 +ZnCl 2 is the electrolyte system, the mass percentage of each component is 34.2%, 51.4%, 5.7%, 5.3%, 2.3%, 1.1%, and the inert metal molybdenum (Mo) is used as the cathode , graphite as the anode, at the electrolysis temperature of 570°C, the sinking cathode method is adopted, the pole distance is 4cm, the cathode current density is 12A/cm 2 , the anode current density is 0.5A/cm 2 , the cell voltage is 7.2-8.2V, after 2 hours Mg-Zn-Zr alloy is deposited near the cathode in the molten salt electrolytic cell, and the contents of magnesium, zinc and zirconium are respectively: 52.2%, 47.4%, and 0.4%.
实施例5:将KCl、K2ZrF6在600℃的温度下进行干燥72小时,无水MgCl2、无水ZnCl2、KF在130℃温度下进行真空干燥24小时;以MgCl2+KCl+KF+K2ZrF6+ZrO2+ZnCl2为电解质体系,各成分的质量百分比分别为34.2%、51.4%、5.7%、5.3%、2.3%、1.1%,以惰性金属钼(Mo)为阴极,石墨为阳极,电解温度600℃下,采取下沉阴极法,极距为4cm,阴极电流密度为9A/cm2,阳极电流密度0.5A/cm2,槽电压6.4-7.5V,经2小时的电解,在熔盐电解槽于阴极附近沉积出Mg-Zn-Zr合金,镁、锌、锆的含量分别为:88.9%、11.0%、0.1%。Example 5: Dry KCl and K 2 ZrF 6 at 600°C for 72 hours, anhydrous MgCl 2 , anhydrous ZnCl 2 , and KF at 130°C for 24 hours in vacuum; use MgCl 2 +KCl+ KF+K 2 ZrF 6 +ZrO 2 +ZnCl 2 is the electrolyte system, the mass percentage of each component is 34.2%, 51.4%, 5.7%, 5.3%, 2.3%, 1.1%, and the inert metal molybdenum (Mo) is used as the cathode , graphite as the anode,
实施例6:将KCl、K2ZrF6在600℃的温度下进行干燥72小时,无水MgCl2、无水ZnCl2、KF在130℃温度下进行真空干燥24小时;以MgCl2+KCl+KF+K2ZrF6+ZrO2+ZnCl2为电解质体系,各成分的质量百分比分别为34.2%、51.4%、5.7%、5.3%、2.3%、1.1%,以惰性金属钼(Mo)为阴极,石墨为阳极,电解温度600℃下,采取下沉阴极法,极距为4cm,阴极电流密度为12A/cm2,阳极电流密度0.5A/cm2,槽电压7.1-8.2V,经4小时的电解,在熔盐电解槽于阴极附近沉积出Mg-Zn-Zr合金,镁、锌、锆的含量分别为:80.3%、18.4%、1.3%。Example 6: Dry KCl, K 2 ZrF 6 at 600°C for 72 hours, anhydrous MgCl 2 , anhydrous ZnCl 2 , and KF at 130°C for 24 hours in vacuum; use MgCl 2 +KCl+ KF+K 2 ZrF 6 +ZrO 2 +ZnCl 2 is the electrolyte system, the mass percentage of each component is 34.2%, 51.4%, 5.7%, 5.3%, 2.3%, 1.1%, and the inert metal molybdenum (Mo) is used as the cathode , graphite as the anode,
实施例7:将KCl、K2ZrF6在600℃的温度下进行干燥72小时,无水MgCl2、无水ZnCl2、KF在130℃温度下进行真空干燥24小时;以MgCl2+KCl+KF+K2ZrF6+ZrO2+ZnCl2为电解质体系,各成分的质量百分比分别为34.2%、51.4%、5.7%、5.3%、2.3%、1.1%,以惰性金属钼(Mo)为阴极,石墨为阳极,电解温度630℃下,采取下沉阴极法,极距为4cm,阴极电流密度为6A/cm2,阳极电流密度0.5A/cm2,槽电压5.3-6.6V,经2小时的电解,在熔盐电解槽于阴极附近沉积出Mg-Zn-Zr合金,镁、锌、锆的含量分别为:75.9%、23.9%、0.2%。Example 7: Dry KCl, K 2 ZrF 6 at 600°C for 72 hours, anhydrous MgCl 2 , anhydrous ZnCl 2 , and KF at 130°C for 24 hours in vacuum; use MgCl 2 +KCl+ KF+K 2 ZrF 6 +ZrO 2 +ZnCl 2 is the electrolyte system, the mass percentage of each component is 34.2%, 51.4%, 5.7%, 5.3%, 2.3%, 1.1%, and the inert metal molybdenum (Mo) is used as the cathode , with graphite as the anode, at an electrolysis temperature of 630°C, the sinking cathode method is adopted, the pole distance is 4cm, the cathode current density is 6A/cm 2 , the anode current density is 0.5A/cm 2 , the cell voltage is 5.3-6.6V, after 2 hours Mg-Zn-Zr alloy is deposited near the cathode in the molten salt electrolytic cell, and the contents of magnesium, zinc, and zirconium are respectively: 75.9%, 23.9%, and 0.2%.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110004447 CN102071439A (en) | 2011-01-11 | 2011-01-11 | Method for directly preparing Mg-Zn-Zr alloy through electrolyzing molten salts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110004447 CN102071439A (en) | 2011-01-11 | 2011-01-11 | Method for directly preparing Mg-Zn-Zr alloy through electrolyzing molten salts |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102071439A true CN102071439A (en) | 2011-05-25 |
Family
ID=44030190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110004447 Pending CN102071439A (en) | 2011-01-11 | 2011-01-11 | Method for directly preparing Mg-Zn-Zr alloy through electrolyzing molten salts |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102071439A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103320819A (en) * | 2013-07-03 | 2013-09-25 | 哈尔滨工程大学 | Method for preparing alloy with high zinc content through direct electrolysis |
WO2015131344A1 (en) * | 2014-03-05 | 2015-09-11 | 中国科学院青海盐湖研究所 | Method for preparing magnesium-zinc intermediate alloy by fused salt electrolysis process |
CN110846687A (en) * | 2019-11-22 | 2020-02-28 | 龙南龙钇重稀土科技股份有限公司 | Mg-Zn-Zr intermediate alloy and preparation method thereof |
CN113005481A (en) * | 2021-01-29 | 2021-06-22 | 河南大学 | Method for preparing biomedical zinc-zirconium or magnesium-zinc-zirconium alloy through electro-deoxidation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4533442A (en) * | 1984-07-31 | 1985-08-06 | Amax Inc. | Lithium metal/alloy recovery from multi-component molten salt |
CN101358359A (en) * | 2008-08-27 | 2009-02-04 | 哈尔滨工程大学 | Method for directly preparing Mg-Zr alloy by MgCl2, K2ZrF6 and ZrO2 electrolysis |
CN101440508A (en) * | 2008-12-12 | 2009-05-27 | 北京科技大学 | Preparation of reactive metal based alloy |
-
2011
- 2011-01-11 CN CN 201110004447 patent/CN102071439A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4533442A (en) * | 1984-07-31 | 1985-08-06 | Amax Inc. | Lithium metal/alloy recovery from multi-component molten salt |
CN101358359A (en) * | 2008-08-27 | 2009-02-04 | 哈尔滨工程大学 | Method for directly preparing Mg-Zr alloy by MgCl2, K2ZrF6 and ZrO2 electrolysis |
CN101440508A (en) * | 2008-12-12 | 2009-05-27 | 北京科技大学 | Preparation of reactive metal based alloy |
Non-Patent Citations (1)
Title |
---|
《兵器材料科学与工程》 20021130 张静等 含锆镁合金系中的合金相 50-56 1-8 第25卷, 第6期 2 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103320819A (en) * | 2013-07-03 | 2013-09-25 | 哈尔滨工程大学 | Method for preparing alloy with high zinc content through direct electrolysis |
WO2015131344A1 (en) * | 2014-03-05 | 2015-09-11 | 中国科学院青海盐湖研究所 | Method for preparing magnesium-zinc intermediate alloy by fused salt electrolysis process |
CN110846687A (en) * | 2019-11-22 | 2020-02-28 | 龙南龙钇重稀土科技股份有限公司 | Mg-Zn-Zr intermediate alloy and preparation method thereof |
WO2021098116A1 (en) * | 2019-11-22 | 2021-05-27 | 龙南龙钇重稀土科技股份有限公司 | Mg-zn-zr intermediate alloy and preparation method therefor |
CN113005481A (en) * | 2021-01-29 | 2021-06-22 | 河南大学 | Method for preparing biomedical zinc-zirconium or magnesium-zinc-zirconium alloy through electro-deoxidation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101886197B (en) | Aluminum-lithium-samarium alloy and fused salt electrolysis preparation method thereof | |
CN105925862B (en) | A kind of magnesium-alloy anode material and preparation method thereof | |
CN106967998B (en) | The method for preparing Al-Li master alloys as the nearly room temperature electro-deposition of raw material using lithia | |
CN101302593B (en) | Molten salt electrolytic preparation method of magnesium lithium holmium alloy | |
CN102071439A (en) | Method for directly preparing Mg-Zn-Zr alloy through electrolyzing molten salts | |
CN105543516B (en) | The method that aluminothermic reduction titanium dioxide prepares aluminium titanium mother alloy in fused-salt medium | |
CN102108529B (en) | Method for preparing aluminum-gadolinium-samarium alloy by fused salt electrolysis | |
CN101914706B (en) | Zinc-aluminum-neodymium alloy and its molten salt electrolytic preparation method | |
CN101358359B (en) | A method for directly preparing Mg-Zr alloy by electrolysis of MgCl2 and K2ZrF6, ZrO2 | |
CN110846687A (en) | Mg-Zn-Zr intermediate alloy and preparation method thereof | |
CN102644094A (en) | Method for preparing Al-Mg-Tb ternary alloy by means of fused salt electrolysis | |
WO2013185539A1 (en) | Inert alloy anode used for aluminum electrolysis and preparation method therefor | |
CN101660178B (en) | Molten salt electrolysis method for directly preparing Mg-Li-Mn alloy by coelectrodeposition of valence-variable manganese | |
CN104213154B (en) | Method for preparing magnesium alloy by electrolysis using magnesium oxide as raw material | |
CN101319337A (en) | Molten salt electrolytic co-deposition method for preparing magnesium-lithium-zinc alloys with different phase compositions | |
CN102268693A (en) | Method for preparing rare-earth magnesium alloy | |
CN102995067B (en) | The method of magnalium neodymium alloy is prepared in a kind of fused salt electrolysis | |
CN107841765B (en) | A kind of Zinc electrolysis anode material and preparation method thereof | |
CN101285143A (en) | A kind of method that molten salt electrolysis prepares magnesium lithium dysprosium alloy | |
WO2017043992A1 (en) | Lead-carbon metal composite material for electrodes of lead-acid batteries and method of synthesizing same | |
CN105220175B (en) | A kind of method that low-temperature molten salt electro-deposition prepares the magnesium copper alloy of different phase compositions | |
CN102912382B (en) | A kind of method of electrolytic preparation aluminium-magnesium alloy in fluorochloride molten salt system | |
CN105803364A (en) | As-cast lead-silver based alloy material and homogenization treatment method thereof | |
CN104962954B (en) | A kind of molten-salt electrolysis prepares the method and its alloy of rare earth aluminum bronze intermediate alloy | |
Wei et al. | Preparing different phases of Mg-Li-Sm alloys by molten salt electrolysis in LiCl-KCl-MgCl2-SmCl3 melts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110525 |