[go: up one dir, main page]

CN102058393B - Method for measuring skin physiological parameters and optical characteristic parameters based on reflection spectrum measurement - Google Patents

Method for measuring skin physiological parameters and optical characteristic parameters based on reflection spectrum measurement Download PDF

Info

Publication number
CN102058393B
CN102058393B CN2010105256726A CN201010525672A CN102058393B CN 102058393 B CN102058393 B CN 102058393B CN 2010105256726 A CN2010105256726 A CN 2010105256726A CN 201010525672 A CN201010525672 A CN 201010525672A CN 102058393 B CN102058393 B CN 102058393B
Authority
CN
China
Prior art keywords
skin
parameters
optical characteristic
light intensity
characteristic parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010105256726A
Other languages
Chinese (zh)
Other versions
CN102058393A (en
Inventor
骆清铭
闻翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN2010105256726A priority Critical patent/CN102058393B/en
Publication of CN102058393A publication Critical patent/CN102058393A/en
Application granted granted Critical
Publication of CN102058393B publication Critical patent/CN102058393B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The invention provides a method for measuring based on reflection spectrumThe invention relates to a method and a system for measuring skin physiological parameters and optical characteristic parameters. The invention provides more accurate corresponding data of the reflected light intensity and the skin optical characteristic parameters by an analysis method combining experimental data and Monte Carlo simulation, the skin physiological parameters and the optical characteristic parameters based on the reflection spectrum measurement are obtained by calculating and fitting the data and a plurality of physiological parameters on the basis of the actually measured reflection spectrum when the skin of a sample is actually measured, and finally the skin absorption coefficient mu is measured in a non-invasive way in a nondestructive and real-time manneraAnd reduced scattering coefficient mus' etc. and physiological information such as melanin content, deoxyhemoglobin, oxyhemoglobin content, moisture content, etc.

Description

基于反射光谱测量的皮肤生理参数与光学特性参数的测量方法Measuring method of skin physiological parameters and optical characteristic parameters based on reflection spectrum measurement

技术领域 technical field

本发明属于光谱技术应用和生物医学工程领域,涉及一种基于反射光谱测量的皮肤生理参数与光学特性参数的测量方法。  The invention belongs to the fields of spectral technology application and biomedical engineering, and relates to a method for measuring skin physiological parameters and optical characteristic parameters based on reflection spectrum measurement. the

背景技术 Background technique

近年来,利用光学手段进行医学诊断与治疗正逐渐受到生物医学研究者的广泛关注。相对于X射线、CT、核磁共振等其他医学检测技术,光学技术可以以非侵入式的方式实施组织的无损结构与功能检测,并具有适用范围广、便携性高、成本低廉等优点。组织光学特性参数通过对组织中吸收与散射等光学特性的评价,来描述生物组织对不同波长入射光的响应。定量评价组织中的光学特性参数,一方面将有助于优化光学诊断方法在生物组织中的诊断深度与光学成像技术在生物组织中的成像质量。另一方面,将可对光学治疗到达治疗部位的能量强度给出定量分析,有助于优化光学治疗的治疗剂量。此外,组织光学特性参数本身是由组织中生理状态所决定的,例如:皮肤组织中对可见及近红外波长下的吸收主要是由皮肤中黑色素,含氧血红蛋白,脱氧血红蛋白和水分贡献的。在此波长范围内的吸收强度高低反映了这些物质含量的高低。因此,皮肤光学参数测量结果可以进一步反映皮肤生理参数的变化,从而对皮肤表面的生理状态给出客观科学的评价。  In recent years, the use of optical means for medical diagnosis and treatment has gradually attracted widespread attention from biomedical researchers. Compared with other medical detection technologies such as X-ray, CT, and nuclear magnetic resonance, optical technology can implement non-destructive structural and functional detection of tissues in a non-invasive manner, and has the advantages of wide application range, high portability, and low cost. The parameters of tissue optical properties describe the response of biological tissue to incident light of different wavelengths by evaluating the optical properties of tissue such as absorption and scattering. Quantitative evaluation of optical characteristic parameters in tissue will help to optimize the diagnostic depth of optical diagnostic methods in biological tissue and the imaging quality of optical imaging technology in biological tissue. On the other hand, quantitative analysis can be given to the energy intensity of optical therapy reaching the treatment site, which is helpful to optimize the treatment dose of optical therapy. In addition, the tissue optical characteristic parameters are determined by the physiological state of the tissue. For example, the absorption of visible and near-infrared wavelengths in skin tissue is mainly contributed by melanin, oxygenated hemoglobin, deoxyhemoglobin and water in the skin. The level of absorption intensity in this wavelength range reflects the level of these substances. Therefore, the measurement results of skin optical parameters can further reflect changes in skin physiological parameters, thereby giving an objective and scientific evaluation of the physiological state of the skin surface. the

作为人体最大和最重要的器官,皮肤的厚度约为0.5~4mm,总重量约占人体的8%,皮肤内容纳了人体约1/3的循环血液和约1/4的水分。皮肤组织的吸收系数μa和约化散射系数μ′s等光学特性参数,对于激光诊断、激光治疗、光剂量学等理论研究和临床实践有着非常重要的意义。黑色素是皮肤表皮层中的主要吸收物质,其浓度与皮肤白皙程度和色斑形成有直接关系,适当浓度的黑色素能阻挡过量的紫外线辐射对皮肤的影响,健康人表皮层黑色素浓度在1%-10%之间(参见S.L.Jacques,“Origins of tissue optical properties inthe UVA,visible,and NIR regions,”in Advances in Optical Imaging andPhotonMigration,R.R.Alfano and J.G.Fuj imoto,eds.(Optical Society of America),1996)。皮肤中含氧血红蛋白,脱氧血红蛋白与皮肤组织微循环状态有关,反应了组织代谢能力的强弱,健康人皮肤含氧血红蛋白与脱氧血红蛋白的总浓度即总血红蛋白含量在0.2%-7%之间(参见E.Angelopoulou,“Understanding the color of human skin,”Proc.SPIE 4299,243-251,2001),而含氧血红蛋白在总血红蛋白中所占比例,即血氧饱和度在0%-100%之 间(参见D.Yudovsky and L.Pilon,“Rapid and accurate estimation of bloodsaturation,melanin  content,and  epidermis thickness  from  spectral  diffusereflectance”,Applied Optics,2010)。皮肤中的水分含量是影响皮肤弹性与生理状态的重要指标,健康人皮肤的水分含量在15%-70%之间(参见R.R.Warner,M.C.Myers and D.A.Taylor,“Electron Probe Analysis of Human Skin:Determination of the WaterConcentration Profi le”,Journal of Investigative Dermatology,1988)。  As the largest and most important organ of the human body, the thickness of the skin is about 0.5-4mm, and the total weight accounts for about 8% of the human body. The skin contains about 1/3 of the circulating blood and about 1/4 of the water in the human body. Optical characteristic parameters such as absorption coefficient μa and reduced scattering coefficient μ's of skin tissue are of great significance to theoretical research and clinical practice of laser diagnosis, laser therapy, and light dosimetry. Melanin is the main absorbing substance in the epidermis of the skin, and its concentration is directly related to the degree of fairness of the skin and the formation of pigmentation spots. An appropriate concentration of melanin can block the impact of excessive ultraviolet radiation on the skin. The concentration of melanin in the epidermis of healthy people is between 1% and Between 10% (see S.L.Jacques, "Origins of tissue optical properties in the UVA, visible, and NIR regions," in Advances in Optical Imaging and PhotonMigration, R.R.Alfano and J.G.Fujimoto, eds. (Optical Society of America), 1996) . Oxygenated hemoglobin and deoxygenated hemoglobin in the skin are related to the microcirculation state of the skin tissue, reflecting the strength of tissue metabolism. The total concentration of oxygenated hemoglobin and deoxygenated hemoglobin in the skin of healthy people, that is, the total hemoglobin content, is between 0.2% and 7% ( See E. Angelopoulou, "Understanding the color of human skin," Proc. SPIE 4299, 243-251, 2001), and the proportion of oxygenated hemoglobin in total hemoglobin, that is, the blood oxygen saturation is between 0% and 100%. (see D. Yudovsky and L. Pilon, "Rapid and accurate estimation of bloodsaturation, melanin content, and epidermis thickness from spectral diffuse reflection", Applied Optics, 2010). The moisture content in the skin is an important indicator that affects skin elasticity and physiological state, and the moisture content of healthy human skin is between 15% and 70% (see R.R.Warner, M.C.Myers and D.A.Taylor, "Electron Probe Analysis of Human Skin: Determination of the Water Concentration Profile", Journal of Investigative Dermatology, 1988). the

测量组织光学特性参数的方法主要有两种,一种是测量光在经过组织后的空间分布,通过分析光的空间分布信息将组织的约化散射系数对光强衰减的贡献从组织吸收系数对光强的衰减中分离出来。另一种是利用脉冲激光作为光源,利用检测器获得的时域光强信号来计算接收到的信号受到组织散射影响的程度,从而确定组织的光学特性参数。利用光强分布测量组织光学特性参数的方法需要多个检测器以不同距离接收光源经组织传输的衰减光强,且在距离范围内的组织光学特性参数必须一致。(参见F.Bevilacqua,D.Piguet等,“In vivolocal determination of tissue optical properties:applications to human brain”.Applied Optics,1999)为了得到较好的吸收与散射分辨效果,需要较大的测量范围,但皮肤组织结构的复杂性使得大范围的测量无法满足组织均一性的条件。因此难以在皮肤组织上适用。而时域方法测量组织光学特性方法需要采用脉冲激光器和时间分辨能力在皮秒量级的检测器,(参见B.J.Tromberg,N.Shah等,“Non-Invasive In Vivo Characterization ofBreast Tumors Using Photon Migration Spectroscopy”,Neoplasia,2000)设备价格昂贵,可实施性差。  There are two main methods for measuring tissue optical characteristic parameters. One is to measure the spatial distribution of light after passing through the tissue. By analyzing the spatial distribution information of light, the contribution of the reduced scattering coefficient of the tissue to the light intensity attenuation is calculated from the tissue absorption coefficient to the light intensity attenuation. Separated from the attenuation of light intensity. The other is to use the pulsed laser as the light source, and use the time-domain light intensity signal obtained by the detector to calculate the degree to which the received signal is affected by tissue scattering, so as to determine the optical characteristic parameters of the tissue. The method of measuring tissue optical characteristic parameters by using light intensity distribution requires multiple detectors to receive the attenuated light intensity transmitted by the light source through the tissue at different distances, and the tissue optical characteristic parameters must be consistent within the distance range. (See F. Bevilacqua, D. Piguet, etc., "In vivolocal determination of tissue optical properties: applications to human brain". Applied Optics, 1999) In order to obtain better absorption and scattering resolution, a larger measurement range is required, but The complexity of skin tissue structure makes it impossible for large-scale measurements to meet the conditions of tissue homogeneity. Therefore, it is difficult to apply to skin tissue. The time-domain method for measuring tissue optical properties requires the use of pulsed lasers and detectors with a time resolution of picoseconds (see B.J.Tromberg, N.Shah et al., "Non-Invasive In Vivo Characterization of Breast Tumors Using Photon Migration Spectroscopy" , Neoplasia, 2000) equipment is expensive and poor in implementability. the

发明内容 Contents of the invention

鉴于上述现有技术方法对于皮肤光学特性参数测量的局限性,本发明所要解决的技术问题是通过实验数据和蒙特卡罗模拟相结合的分析方法提供更加精确的反射光强与皮肤光学特性参数的对应数据,在实际测量样本皮肤时以实际测量反射光谱为基础,通过该数据与多个生理参数进行计算拟合以得到基于反射光谱测量的皮肤生理参数与光学特性参数,最终以非侵入的方式无损、实时测量皮肤吸收系数μa和约化散射系数μs’等光学特性参数以及黑色素含量,脱氧血红蛋白、含氧血红蛋白含量,水分含量等生理信息。  In view of the limitations of the above-mentioned prior art methods for the measurement of skin optical characteristic parameters, the technical problem to be solved by the present invention is to provide more accurate reflection light intensity and skin optical characteristic parameters through an analysis method combining experimental data and Monte Carlo simulation. Corresponding data, based on the actual measured reflectance spectrum when actually measuring the sample skin, calculate and fit the data with multiple physiological parameters to obtain skin physiological parameters and optical characteristic parameters based on reflectance spectrum measurement, and finally in a non-invasive way Non-destructive, real-time measurement of optical characteristic parameters such as skin absorption coefficient μ a and reduced scattering coefficient μ s ', as well as physiological information such as melanin content, deoxygenated hemoglobin, oxygenated hemoglobin content, and water content.

本发明首先利用蒙特卡罗计算得到模拟标准数据Tmc,利用脂肪乳溶液混合印度墨水模拟生物组织进行组织模型实验,获得基于实验记录的对应光学特性参数下组织反射光强的实验标准数据Texp,并通过实验标准数据Texp校准模拟标准数据Tmc,从而得到最终优化标准数据T。  The present invention first uses Monte Carlo calculation to obtain the simulated standard data Tmc, uses the fat emulsion solution to mix India ink to simulate the biological tissue to carry out the tissue model experiment, obtains the experimental standard data Texp of the tissue reflection light intensity under the corresponding optical characteristic parameters based on the experimental records, and The simulated standard data Tmc is calibrated by the experimental standard data Texp to obtain the final optimized standard data T. the

针对实际测量样本,获取样本反射光谱曲线,利用最终优化标准数据T,通过对黑色素 浓度M,总血红蛋白含量B,血氧饱和度S,水分含量W,波长为500nm时约化散射系数μs500nm,瑞丽散射含量f等参数进行拟合得到最接近样本反射光谱曲线的模拟反射光谱曲线,此时计算得到生理参数黑色素浓度M,总血红蛋白含量B,血氧饱和度S,水分含量W,并进一步求得皮肤在所有波长下的吸收系数μa和约化散射系数μs’。  For the actual measurement sample, obtain the sample reflectance spectrum curve, use the final optimized standard data T, and reduce the scattering coefficient μ s ' by calculating the melanin concentration M, total hemoglobin content B, blood oxygen saturation S, water content W, and wavelength 500nm 500nm , Rayleigh scattering content f and other parameters are fitted to obtain the simulated reflectance spectrum curve closest to the sample reflectance spectrum curve. At this time, the physiological parameters melanin concentration M, total hemoglobin content B, blood oxygen saturation S, water content W, and Further obtain the absorption coefficient μa and the reduced scattering coefficient μs' of the skin at all wavelengths.

同时本发明进一步包括一种具有计算模块的皮肤生理参数与光学特性参数测量系统,该系统包括:皮肤反射光谱的测量装置、计算与显示装置。其中皮肤反射光谱的测量装置包括:宽光谱光源、光谱检测器、入射光纤、反射探头、接收光纤、反射探头支架、数据传输线。计算与显示装置中包括模数转化模块、计算模块、存储器、显示处理模块、显示器、数据总线。测量得到的组织模型实验数据由数据传输线传入计算与显示装置。通过模数转换后存储于存储器中,计算模块利用蒙特卡罗计算得到模拟标准数据Tmc,并调用存储于存储器中的组织模型实验数据得到实验标准数据Texp对模拟标准数据Tmc进行校准,从而得到最终优化标准数据T,并存储于存储器中。  At the same time, the present invention further includes a skin physiological parameter and optical characteristic parameter measurement system with a calculation module, and the system includes: a measurement device for the skin reflectance spectrum, a calculation and display device. The measuring device of the skin reflection spectrum includes: a wide-spectrum light source, a spectrum detector, an incident optical fiber, a reflection probe, a receiving optical fiber, a reflection probe bracket, and a data transmission line. The calculation and display device includes an analog-to-digital conversion module, a calculation module, a memory, a display processing module, a display, and a data bus. The measured experimental data of the tissue model is transmitted to the calculation and display device through the data transmission line. Stored in the memory after analog-to-digital conversion, the calculation module uses Monte Carlo calculation to obtain the simulated standard data Tmc, and calls the tissue model experimental data stored in the memory to obtain the experimental standard data Texp to calibrate the simulated standard data Tmc to obtain the final The standard data T is optimized and stored in memory. the

测量待测皮肤反射光谱时,分别测量待测皮肤的反射光谱与反射标准片的反射光谱,测量数据由数据传输线传入计算与显示装置。通过模数转换后存储于存储器中,计算模块利用反射标准片数据校准皮肤测量数据得到测量皮肤反射光谱。计算模块调用优化标准数据T,利用非线性迭代算法计算不同皮肤组织生理参数下对应的皮肤拟合反射光谱。将计算得到拟合反射光谱与测量皮肤反射光谱进行比较,得到待测皮肤反射光谱所对应的生理参数,并进一步计算得到所有波长下皮肤光学特性参数μa和μs’,将测量结果和皮肤反射光谱图像显示于显示器上。  When measuring the reflection spectrum of the skin to be tested, the reflection spectrum of the skin to be tested and the reflection spectrum of the reflection standard sheet are respectively measured, and the measurement data is transmitted to the calculation and display device through the data transmission line. Stored in the memory after analog-to-digital conversion, the calculation module calibrates the skin measurement data with the reflectance standard sheet data to obtain the measured skin reflectance spectrum. The calculation module calls the optimized standard data T, and uses a nonlinear iterative algorithm to calculate the corresponding skin fitting reflectance spectrum under different skin tissue physiological parameters. Comparing the calculated fitted reflectance spectrum with the measured skin reflectance spectrum, the physiological parameters corresponding to the measured skin reflectance spectrum are obtained, and further calculation is performed to obtain the skin optical characteristic parameters μ a and μ s ' at all wavelengths, and the measured results and skin The reflectance spectrum image is displayed on the monitor.

本发明的任务是提供一种基于反射光谱测量的皮肤生理参数与光学特性参数测量方法和皮肤生理参数与光学特性参数测量系统。  The task of the present invention is to provide a method for measuring skin physiological parameters and optical characteristic parameters and a system for measuring skin physiological parameters and optical characteristic parameters based on reflection spectrum measurement. the

实现本发明的具体技术方案是:  Realize the concrete technical scheme of the present invention is:

本发明提供的这种基于反射光谱测量的皮肤生理参数与光学特性参数测量方法,包括如下步骤:  The method for measuring skin physiological parameters and optical characteristic parameters based on reflection spectrum measurement provided by the present invention comprises the following steps:

步骤一:计算表示光学特性参数和反射光强之间的函数联系的优化数据T,包括以下分步骤:  Step 1: Calculate the optimization data T representing the functional relationship between the optical characteristic parameters and the reflected light intensity, including the following sub-steps:

a)配置标准组织模型溶液;  a) configure standard tissue model solution;

b)测量标准组织模型溶液的光学特性参数;  b) measuring the optical characteristic parameters of the standard tissue model solution;

c)将入射光纤和反射光纤前端平行地置入标准组织模型溶液中,入射光纤另一端与光源相连,光源提供覆盖400-1000nm波长范围的入射光,反射光纤另一端与光谱仪相连,记录400-1000nm波长范围光学特性参数对应的组织反射光强的实验数据Texp;  c) Place the front end of the incident fiber and the reflective fiber in parallel into the standard tissue model solution, the other end of the incident fiber is connected to the light source, the light source provides incident light covering the wavelength range of 400-1000nm, and the other end of the reflective fiber is connected to the spectrometer, record 400- The experimental data Texp of the tissue reflection light intensity corresponding to the optical characteristic parameters in the 1000nm wavelength range;

d)利用蒙特卡罗方法在输入组织模型溶液光学特性参数的情况下模拟得到反射光强的模拟数据Tmc;  d) Using the Monte Carlo method to simulate the simulated data Tmc of the reflected light intensity under the condition of inputting the optical characteristic parameters of the tissue model solution;

e)求使得K·Tmc-Texp的方差为最小时的常数K值;  e) seek the constant K value that makes the variance of K Tmc-Texp the minimum time;

f)以K·Tmc为示光学特性参数和反射光强之间的函数联系的优化数据T  f) Take K Tmc as the optimization data T of the functional relationship between the optical characteristic parameters and the reflected light intensity

步骤二:测量皮肤生理参数与光学特性参数,包括以下分步骤:  Step 2: Measuring skin physiological parameters and optical characteristic parameters, including the following sub-steps:

1)将与步骤一c)中相同的入射光纤和反射光纤的前端端面与洁净平整的待测皮肤表面接触,入射光纤另一端与光源相连,光源提供覆盖400-1000nm波长范围的入射光,反射光纤另一端与光谱仪相连,记录400-1000nm波长范围皮肤反射光强M(λ);  1) Contact the front ends of the incident fiber and reflective fiber that are the same as those in step 1 c) with the clean and flat skin surface to be tested, and connect the other end of the incident fiber to the light source, which provides incident light covering the wavelength range of 400-1000nm. The other end of the optical fiber is connected to the spectrometer to record the reflected light intensity M(λ) of the skin in the wavelength range of 400-1000nm;

2)将入射光纤和反射光纤的前端端面置于反射标准片上方,记录标准片反射光强Mstd(λ);  2) Place the front end faces of the incident optical fiber and the reflective optical fiber above the reflective standard sheet, and record the reflected light intensity M std (λ) of the standard sheet;

3)归一化的测量皮肤反射光谱为 mSPR ( λ ) = M ( λ ) M std ( λ ) ; 3) The normalized measured skin reflectance spectrum is wxya ( λ ) = m ( λ ) m std ( λ ) ;

4)设置四个生理参数和两个散射参数:黑色素含量M0初值范围为1%-10%,优选5%;血红蛋白含量B0初值范围为0.2%-7%;优选0.3%;血氧饱和度S0初值范围为0%-100%,优选75%;水分含量W0初值范围为15%-70%,优选60%;波长500nm的约化散射系数μs500nm初值范围为20-200,优选50;瑞丽散射含量f0初值范围为0%-100%,优选50%;  4) Set four physiological parameters and two scattering parameters: the initial value range of melanin content M0 is 1%-10%, preferably 5%; the initial value range of hemoglobin content B0 is 0.2%-7%; preferably 0.3%; blood oxygen saturation The initial value range of degree S0 is 0%-100%, preferably 75%; the initial value range of moisture content W0 is 15%-70%, preferably 60 %; 200, preferably 50; the initial value of Rayleigh scattering content f0 ranges from 0% to 100%, preferably 50%;

5)通过生理参数计算皮肤组织在各波长下的吸收系数和约化散射系数,针对该吸收系数和约化散射系数从步骤一得到的优化数据T中计算对应的标准反射光强;  5) Calculate the absorption coefficient and the reduced scattering coefficient of the skin tissue at each wavelength through the physiological parameters, and calculate the corresponding standard reflected light intensity from the optimized data T obtained in step 1 for the absorption coefficient and the reduced scattering coefficient;

6)组合步骤二1)所测量波长下计算得到的反射光强得到预测反射光谱pSPR(λ);  6) Combination step two 1) The reflected light intensity calculated under the measured wavelength obtains the predicted reflection spectrum pSPR(λ);

7)计算预测反射光谱与步骤二4)得到的测量皮肤反射光谱之间的误差u=∑|mSPR(λ)-pSPR(λ)|;  7) Calculate the error u=∑|mSPR(λ)-pSPR(λ)| between the measured skin reflectance spectrum obtained by calculating the predicted reflectance spectrum and step 2 4);

8)循环重复步骤二4)-7),得到使误差u达到最小的被测样本对应的生理参数;  8) Step 2 4)-7) is repeated cyclically to obtain the physiological parameters corresponding to the measured sample that minimizes the error u;

9)通过被测样本对应的生理参数计算得到被测样本皮肤的吸收系数μa和约化散射系数μs。  9) The absorption coefficient μ a and the reduced scattering coefficient μ s of the skin of the tested sample are calculated according to the physiological parameters corresponding to the tested sample.

本发明方法中的标准组织模型溶液是用脂肪乳溶液与印度墨水配置得到,配置的标准组织模型溶液由32组不同浓度溶液构成,溶液中脂肪乳的浓度为以下4个之一:20%,5%,1.25%,0.3125%;溶液中印度墨水的浓度为以下8个之一:0,0.0015%,0.003%,0.013%,0.023%,0.048%,0.073%,0.098%;  The standard tissue model solution in the method of the present invention is obtained by configuring the fat emulsion solution and India ink, and the configured standard tissue model solution is composed of 32 groups of solutions with different concentrations, and the concentration of the fat emulsion in the solution is one of the following four: 20%, 5%, 1.25%, 0.3125%; the concentration of India ink in the solution is one of the following 8: 0, 0.0015%, 0.003%, 0.013%, 0.023%, 0.048%, 0.073%, 0.098%;

本发明测量标准组织模型溶液的光学特性参数包括以下步骤:  The present invention measures the optical characteristic parameter of standard tissue model solution and comprises the following steps:

i)选定测量波长;  i) Select the measurement wavelength;

ii)在距离光源位置r处针对所述标准组织模型溶液进行测量得到所述测量波长的光通量M(r);  ii) measuring the luminous flux M (r) of the measurement wavelength for the standard tissue model solution at a distance from the light source position r;

iii)n次改变反射光纤探头与光源之间的距离r,并分别测量光通量 M(r)i,其中i=2,3,4……n;  iii) Change the distance r between the reflection fiber optic probe and the light source n times, and measure the luminous flux M (r) i respectively, where i=2, 3, 4...n;

iv)将ln(r *M(r))对于距离r进行线性拟合,计算得到拟合曲线的斜率1/δ0;  iv) Carry out linear fitting of ln(r * M (r) ) to the distance r, and calculate the slope 1/δ 0 of the fitted curve;

v)向溶液中滴加墨水,增加的组织模型溶液中的吸收系数为Δμa,所述吸收系数Δμa通过分光光度计测量墨水吸光度得到;  v) adding ink to the solution, the absorption coefficient in the tissue model solution increased is Δμa , and the absorption coefficient Δμa is obtained by measuring the absorbance of the ink with a spectrophotometer;

vi)以滴加了墨水的溶液为对象,针对所述波长重新进行步骤ii)-iv),计算得到此时拟合曲线的斜率1/δ1;  vi) Taking the solution added with ink as the object, re-carry out steps ii)-iv) for the wavelength, and calculate the slope 1/ δ1 of the fitting curve at this time;

vii)通过下列方程组  vii) Through the following equations

11 δδ 00 == 33 μμ aa 00 (( μμ aa 00 ++ μμ sthe s 00 ′′ )) 11 δδ 11 == 33 μμ aa 11 (( μμ aa 11 ++ μμ sthe s 00 ′′ )) μμ aa 11 == μμ aa 00 ++ ΔΔ μμ aa

计算得到所述标准组织模型溶液的光学特性参数μa0和μs0′;  Calculate the optical characteristic parameters μ a0 and μ s0 ′ of the standard tissue model solution;

上述方法中所述的反射标准片在可见近红外波长反射率为99.9%。  The reflection standard sheet described in the above method has a reflectivity of 99.9% at visible and near-infrared wavelengths. the

本发明提供的皮肤生理参数与光学特性参数测量系统,由皮肤反射光谱测量装置和计算与显示装置组成,所述的皮肤反射光谱测量装置由宽光谱光源、光谱检测器、入射光纤、接收光纤、反射探头、可调节高度反射探头支架、数据传输线组成,所述的反射探头由入射光光纤前端、接收光纤前端、位于该入射光纤前端和接收光纤前端外围的金属外壳及位于入射光光纤前端和接收光纤前端与和金属外壳内壁之间的填充物构成,接收光纤前端固定在反射探头中心,入射光纤前端以圆环排列等间距地环绕于接收光纤前端周围;所述的计算与显示装置由模数转化模块、计算模块、存储器、显示处理模块、显示器和数据总线组成;在所述的皮肤反射光谱测量装置中,入射光纤与光源相连,接收光纤与光谱检测器相连,光谱检测器通过数据传输线与计算与显示装置中的模数转换模块连接;在所述的计算与显示装置中,计算模块通过数据总线与模数转换模块,存储器,显示处理模块相接连,显示处理模块直接与显示器相连。本发明测量系统的计算模块可采用32位微控制器,显示处理模块可采用VGA驱动芯片。  The skin physiological parameter and optical characteristic parameter measurement system provided by the present invention is composed of a skin reflection spectrum measurement device and a calculation and display device. The skin reflection spectrum measurement device is composed of a wide-spectrum light source, a spectrum detector, an incident optical fiber, a receiving optical fiber, Reflection probe, adjustable height reflection probe bracket, data transmission line, the reflection probe is composed of the front end of the incident light fiber, the front end of the receiving fiber, the metal shell located at the front end of the incident fiber and the outer periphery of the front end of the receiving fiber, and the front end of the incident light fiber and the receiving fiber. The front end of the optical fiber and the filler between the inner wall of the metal shell are composed, the front end of the receiving optical fiber is fixed at the center of the reflection probe, and the front end of the incident optical fiber is arranged in a circular ring at equal intervals around the front end of the receiving optical fiber; the calculation and display device consists of a modulus Transformation module, calculation module, memory, display processing module, display and data bus; The calculation and display device is connected to the analog-to-digital conversion module; in the calculation and display device, the calculation module is connected to the analog-to-digital conversion module, memory, and display processing module through a data bus, and the display processing module is directly connected to the display. The calculation module of the measurement system of the present invention can adopt a 32-bit microcontroller, and the display processing module can adopt a VGA drive chip. the

本发明皮肤生理参数与光学特性参数的测量原理  Measuring principle of skin physiological parameters and optical characteristic parameters of the present invention

下面按照本系统的设计具体介绍皮肤生理参数与光学特性参数的测量原理,此例分为三个部分:反射光谱测量方法;最终优化标准数据T的建立;皮肤生理参数与光学特性参数的获取。  The following is a detailed introduction to the measurement principle of skin physiological parameters and optical characteristic parameters according to the design of this system. This example is divided into three parts: reflection spectrum measurement method; establishment of final optimized standard data T; acquisition of skin physiological parameters and optical characteristic parameters. the

一、反射光谱测量方法  1. Reflectance spectrum measurement method

测量皮肤反射光谱时,使得反射探头垂直地与皮肤组织表面软接触(接触但不发生形变),由光源产生的复合光经过耦合器进入入射光纤,经入射光纤进入皮肤组织。光纤探头4和皮肤组织表面直接接触,避免了入射光离开入射光纤后经历光纤介质/空气,空气/皮肤组织的两次界面损失。同时由于光纤探头4和皮肤组织表面直接接触,入射光纤与接收光纤之间的 80微米间隔使得入射光必须经过皮肤组织传输才能进入接收光纤。本实施例中入射光经入射光纤进入皮肤组织后,分别经过表皮层黑色素,真皮层氧合血红蛋白,脱氧血红蛋白,水分等吸收介质的吸收以及真皮层胶原等散射介质的散射被接收光纤接收到。反射光强经过接收光纤的传输,进入光谱仪。光栅式CCD光谱仪中,入射光根据其波长被光栅分散开,3648象素CCD分别记录,波长范围400-1000nm内的反射光谱。由于不同波长的入射光被高分辨光栅充分分散,每个像素分别探测的是不同波长下的光强值。所有波长下的光强测量数据M(λ)传入计算与显示装置中的存储器保存。  When measuring the skin reflectance spectrum, the reflectance probe is vertically in soft contact with the surface of the skin tissue (contact but not deformed), and the composite light generated by the light source enters the incident optical fiber through the coupler, and enters the skin tissue through the incident optical fiber. The optical fiber probe 4 is in direct contact with the surface of the skin tissue, avoiding two interface losses of the optical fiber medium/air and air/skin tissue after the incident light leaves the incident optical fiber. Simultaneously because the optical fiber probe 4 is in direct contact with the skin tissue surface, the 80 micron interval between the incident optical fiber and the receiving optical fiber makes the incident light must be transmitted through the skin tissue to enter the receiving optical fiber. In this embodiment, after the incident light enters the skin tissue through the incident optical fiber, it is received by the receiving optical fiber through the absorption of epidermal melanin, dermal oxyhemoglobin, deoxygenated hemoglobin, water and other absorbing media and the scattering of dermal collagen and other scattering media. The reflected light intensity is transmitted through the receiving optical fiber and enters the spectrometer. In the grating CCD spectrometer, the incident light is dispersed by the grating according to its wavelength, and the 3648-pixel CCD records the reflection spectrum within the wavelength range of 400-1000nm. Since the incident light of different wavelengths is fully dispersed by the high-resolution grating, each pixel detects the light intensity values at different wavelengths. The light intensity measurement data M(λ) at all wavelengths are transferred to the memory in the calculation and display device for storage. the

由于光谱仪检测到的光强M除受到在皮肤内传输衰减产生的反射光强R(λ)影响外,还受到光源光强S(λ),光纤收集效率G,检测器响应D(λ)的影响,即:  Because the light intensity M detected by the spectrometer is not only affected by the reflected light intensity R(λ) produced by the transmission attenuation in the skin, but also affected by the light intensity S(λ) of the light source, the collection efficiency G of the optical fiber, and the response D(λ) of the detector. influence, namely:

M(λ)=S(λ)R(λ)GD(λ)  M(λ)=S(λ)R(λ)GD(λ)

为了消除系统中光源与检测器波长的依赖性等其他因素对测量皮肤光谱的影响,采用反射率为99%的 

Figure GDA0000045783750000061
标准片(美国海洋光学公司)与探头表面固定距离处测量反射光强:  In order to eliminate the influence of other factors such as the dependence of light source and detector wavelength on the measurement of skin spectrum in the system, a reflectance of 99% is used.
Figure GDA0000045783750000061
Measure the reflected light intensity at a fixed distance between the standard sheet (Ocean Optics, USA) and the probe surface:

Mstd(λ)=S(λ)Rstd(λ)Gstd D(λ)  Mstd(λ)=S(λ)Rstd(λ)Gstd D(λ)

对光源强度和检测器波长响应进行校准测量时,与皮肤组织测量的不同之处为利用预制固件调整光纤探头位置使得光纤探头端面与反射标准片的上表面距离为固定值d,本例中d=5cm。  When calibrating light source intensity and detector wavelength response, the difference from skin tissue measurement is that the position of the optical fiber probe is adjusted using prefabricated firmware so that the distance between the end face of the optical fiber probe and the upper surface of the reflection standard is a fixed value d, in this example d = 5cm. the

则依此结果可用于反射光强的校准:  Then this result can be used for calibration of reflected light intensity:

Mm (( λλ )) Mm stdstd (( λλ )) == SS (( λλ )) RR (( λλ )) GDGD (( λλ )) SS (( λλ )) RR stdstd (( λλ )) GG stdstd DD. (( λλ )) == RR (( λλ )) GG RR stdstd (( λλ )) GG stdstd == KK RR (( λλ )) RR stdstd (( λλ ))

K为与光纤效率有关无波长依赖关系的常数,Rstd(λ)在可见近红外波长下也为常数99%。设常数k=Rstd(λ)/K,则皮肤组织反射光强校准为:  K is a constant that has no wavelength dependence on the fiber efficiency, and R std (λ) is also a constant of 99% at visible and near-infrared wavelengths. Assuming the constant k=R std (λ)/K, then the calibration of the reflected light intensity of the skin tissue is:

RR (( λλ )) == kk Mm (( λλ )) Mm stdstd (( λλ ))

图9中的R(λ)曲线即为测量皮肤反射光谱的典型数据。  The R(λ) curve in Figure 9 is the typical data for measuring the skin reflectance spectrum. the

二、最终优化标准数据T的建立  2. Establishment of final optimized standard data T

为了分析皮肤组织反射光谱,测量组织光学特性参数。本例首先建立了最终优化标准数据T,本例通过模型实验结合蒙特卡罗模拟分析获得皮肤吸收系数μa和约化散射系数μs’和探头测量反射光强的对应关系。具体步骤可分为模型实验,蒙特卡罗模拟和利用实验数据校 准模拟结果三个部分:  In order to analyze the skin tissue reflectance spectrum, the tissue optical property parameters are measured. In this example, the final optimized standard data T is first established. In this example, the corresponding relationship between the skin absorption coefficient μ a and the reduced scattering coefficient μ s ' and the reflected light intensity measured by the probe is obtained through model experiments combined with monte carlo simulation analysis. The specific steps can be divided into three parts: model experiment, Monte Carlo simulation and using experimental data to calibrate the simulation results:

1)组织模型实验采用脂肪乳溶液(广州百特侨光医疗用品有限公司)与印度墨水(北京索莱宝科技有限公司)配制的组织模型溶液模拟生物组织。脂肪乳溶液提供组织模型溶液中的散射,印度墨水溶液提供组织模型溶液中的吸收。通过调整脂肪乳溶液和印度墨水的浓度,来获得不同光学特性参数的标准组织模型溶液。将反射光纤探头置入多组模型溶液中测量反射光谱。由于组织模型溶液在光谱测量范围内每个波长下均有不同的吸收系数与约化散射系数。只需配置32组模型溶液(脂肪乳4个浓度:20%,5%,1.25%,0.3125%;印度墨水8个浓度:0,0.0015%,0.003%,0.013%,0.023%,0.048%,0.073%,0.098%)即可覆盖皮肤组织的光学特性参数范围,从而获得基于实验记录的组织反射光强的实验标准数据Texp。每组标准组织模型溶液中脂肪乳与印度墨水溶液浓度如表一所示。  1) Tissue model experiment The tissue model solution prepared by fat emulsion solution (Guangzhou Baite Qiaoguang Medical Supplies Co., Ltd.) and India ink (Beijing Suolaibao Technology Co., Ltd.) was used to simulate biological tissue. The fat emulsion solution provides scattering in the tissue model solution and the India ink solution provides absorption in the tissue model solution. Standard tissue model solutions with different optical property parameters were obtained by adjusting the concentrations of fat emulsion solution and India ink. Put the reflectance fiber optic probe into multiple groups of model solutions to measure the reflectance spectrum. Because the tissue model solution has different absorption coefficients and reduced scattering coefficients at each wavelength within the spectral measurement range. Only need to configure 32 sets of model solutions (4 concentrations of fat emulsion: 20%, 5%, 1.25%, 0.3125%; 8 concentrations of India ink: 0, 0.0015%, 0.003%, 0.013%, 0.023%, 0.048%, 0.073 %, 0.098%) can cover the optical characteristic parameter range of skin tissue, so as to obtain the experimental standard data Texp based on the tissue reflected light intensity recorded in the experiment. The concentration of fat emulsion and India ink solution in each standard tissue model solution is shown in Table 1. the

表一  Table I

Figure GDA0000045783750000071
Figure GDA0000045783750000071

对每组配置好的组织模型溶液,采用光通量测量结合添加吸收体的方法确定配置好的组织模型溶液的光学特性参数:  For each set of configured tissue model solutions, the optical characteristic parameters of the configured tissue model solutions are determined by measuring the luminous flux combined with the method of adding absorbers:

在特定波长下,利用两根400微米芯径阶跃型多模光纤的一端分别连接光源和光谱仪,另一端以距离r平行置于组织模型溶液中,测量得到的光强值为M(r),则根据点光源的漫射近似计算:  At a specific wavelength, one end of two 400-micron core-diameter step-type multimode fibers is used to connect the light source and the spectrometer respectively, and the other end is placed in the tissue model solution in parallel at a distance r, and the measured light intensity is M (r) , then it is calculated based on the diffuse approximation of the point light source:

Mm (( rr )) == KK ** Ff (( rr )) == KK ** ee -- rr // δδ 44 πDrπDr

测量的得到的光强M(r)与溶液中的距离点光源为r处的光通量F(r)相差常数K倍,其中K为与光源强度,光纤收集效率,光谱仪对光强响应相关。D为平均自由程,δ为光学穿透深度,这两个参数均可由吸收系数μa和约化散射系数μs’计算得到:  The measured light intensity M (r) and the luminous flux F (r) at a distance of r from the point light source in the solution differ by a constant K times, where K is related to the light source intensity, optical fiber collection efficiency, and spectrometer response to light intensity. D is the mean free path, and δ is the optical penetration depth. These two parameters can be calculated from the absorption coefficient μa and the reduced scattering coefficient μs':

DD. == 11 33 11 μμ aa ++ μμ sthe s ′′

δδ DD. μμ aa == 11 33 μμ aa (( μμ aa ++ μμ sthe s ′′ ))

对于同一样品和同一波长,参数K,D和δ均为不随r变化的常量,因此M(r)的计算式可以改写为:  For the same sample and the same wavelength, the parameters K, D and δ are all constants that do not change with r, so the calculation formula of M (r) can be rewritten as:

lnln (( rr ** Mm (( rr )) )) == -- (( 11 δδ )) rr ++ lnln (( KK 44 πDπD ))

对于同一溶液,其吸收系数与约化散射系数设为μa0和μs0′,改变测量光纤之间的距离r,测量不同距离处的光通量M(r),将ln(r*M(r))对于距离r进行线性拟合,则1/δ0为拟合曲线的斜率,且由于:  For the same solution, its absorption coefficient and reduced scattering coefficient are set to μ a0 and μ s0 ′, change the distance r between the measuring fibers, measure the luminous flux M (r) at different distances, set ln(r*M (r) ) for the distance r for linear fitting, then 1/δ 0 is the slope of the fitting curve, and because:

11 δδ 00 == 33 μμ aa 00 (( μμ aa 00 ++ μμ sthe s 00 ′′ ))

在求得斜率1/δ0后,即确定了表征μa0和μs0′关系的第一方程式,  After obtaining the slope 1/δ 0 , the first equation characterizing the relationship between μ a0 and μ s0 ′ is determined,

而通过向溶液中滴加墨水,可以增加组织模型溶液中的吸收系数Δμa,而不改变其约化散射系数μs0′,其中Δμa为添加墨水所产生的吸收系数,可以通过分光光度计测量墨水吸光度得到,则再通过测量M(r)的拟合曲线可得到1/δ1,此时:  And by adding ink to the solution, the absorption coefficient Δμ a in the tissue model solution can be increased without changing its reduced scattering coefficient μ s0 ′, where Δμ a is the absorption coefficient produced by adding ink, which can be measured by a spectrophotometer Obtained by measuring the absorbance of the ink, then by measuring the fitting curve of M (r) , 1/δ 1 can be obtained, at this time:

11 δδ 11 == 33 μμ aa 11 (( μμ aa 11 ++ μμ sthe s 00 ′′ ))

通过解方程组:  By solving the system of equations:

11 δδ 00 == 33 μμ aa 00 (( μμ aa 00 ++ μμ sthe s 00 ′′ )) 11 δδ 11 == 33 μμ aa 11 (( μμ aa 11 ++ μμ sthe s 00 ′′ )) μμ aa 11 == μμ aa 00 ++ ΔΔ μμ aa

即可计算出每组组织模型溶液的光学特性参数μa0和μs0′。  The optical characteristic parameters μ a0 and μ s0 ′ of each group of tissue model solutions can be calculated.

连接本例中的反射光谱测装置,将反射光谱探头置入模型溶液中,测量每组组织模型溶液样品的反射光谱。并以反射标准片进行校准,记录在所测量波长范围内每个波长下的反射光强。由于组织模型溶液样品在每个波长下的光学特性均不同,且各组样品中的光学特性参数相互重叠,因此可通过本例中的32组组织模型溶液的测量得到皮肤光学特性参数范围内, 不同吸收系数μa和约化散射系数μs’对应的组织反射光强的实验标准数据Texp。  Connect the reflectance spectrum measuring device in this example, put the reflectance spectrum probe into the model solution, and measure the reflectance spectrum of each group of tissue model solution samples. Calibrate with a reflective standard sheet, and record the reflected light intensity at each wavelength within the measured wavelength range. Because the optical properties of the tissue model solution samples are different at each wavelength, and the optical property parameters in each group of samples overlap each other, it can be obtained by measuring the 32 groups of tissue model solutions in this example. Within the range of the skin optical property parameters, The experimental standard data Texp of tissue reflected light intensity corresponding to different absorption coefficient μ a and reduced scattering coefficient μ s '.

2)本例中进一步利用蒙特卡罗模拟分析了下光子离开入射光纤后在该皮肤组织中的传输分布。图3表示,当μa=2.1870cm-1,μs’=64cm-1时,入射光从右侧的一根入射光线进入组织后,在反射探头表面范围内离开皮肤组织反射光分布的蒙特卡罗模拟结果。计算最终从反射探头接触面上接收光纤范围内逸出的总反射光强,从而得到理论模拟的反射探头接收光强。  2) In this example, Monte Carlo simulation is further used to analyze the transmission distribution of the photons in the skin tissue after leaving the incident optical fiber. Figure 3 shows that when μ a =2.1870cm -1 and μ s ' = 64cm -1 , after the incident light enters the tissue from the incident light on the right, it leaves the Monte Caro simulation results. Calculate the total reflected light intensity that finally escapes from the range of the receiving optical fiber on the contact surface of the reflection probe, so as to obtain the received light intensity of the reflection probe for theoretical simulation.

经过多次模拟,分别计算皮肤光学特性参数范围内不同吸收系数μa和约化散射系数μs’条件下,反射探头所能检测到的接收光强。从而得到根据蒙特卡罗模拟获得的模拟标准数据Tmc。  After several simulations, the received light intensity that can be detected by the reflection probe is calculated under the conditions of different absorption coefficient μ a and reduced scattering coefficient μ s ' within the range of skin optical characteristic parameters. Thus, the simulated standard data Tmc obtained by Monte Carlo simulation is obtained.

图4是针对发明装置实例利用蒙特卡罗模拟得到的反射光强标准数据Tmc。从图中可见,当组织中约化散射系数不变,吸收系数逐渐增加时,探头探测到的反射光强逐渐减弱。而组织中吸收系数不变,探头探测到的反射光强在组织散射较小时,随约化散射系数的增强而增强;在组织散射较大时,随约化散射系数的增强而减弱。而从反射光强标准数据的结果中也可以看出本实例采用的探头对散射的变化较敏感,在吸收系数较低时对吸收的变化不敏感而在吸收系数较高时对吸收系数的变化较敏感。而针对皮肤组织,由于真皮层有大量毛细血管,距离皮肤表面较近,提供了探头探测范围内皮肤组织中大量的吸收。因此本探头非常适合检测皮肤组织生理参数的变化改变组织中的吸收与约化散射系数。  Fig. 4 is the reflected light intensity standard data Tmc obtained by Monte Carlo simulation for the example of the inventive device. It can be seen from the figure that when the reduced scattering coefficient in the tissue remains constant and the absorption coefficient increases gradually, the reflected light intensity detected by the probe gradually decreases. While the absorption coefficient in the tissue remains unchanged, the reflected light intensity detected by the probe increases with the enhancement of the reduced scattering coefficient when the tissue scattering is small, and decreases with the enhancement of the reduced scattering coefficient when the tissue scattering is large. It can also be seen from the results of the standard data of reflected light intensity that the probe used in this example is more sensitive to the change of scattering, insensitive to the change of absorption when the absorption coefficient is low, and sensitive to the change of absorption coefficient when the absorption coefficient is high more sensitive. As for skin tissue, since the dermis has a large number of capillaries and is closer to the skin surface, it provides a large amount of absorption in the skin tissue within the detection range of the probe. Therefore, the probe is very suitable for detecting changes in physiological parameters of skin tissue, changing absorption and reduced scattering coefficients in the tissue. the

3)由于实验测量得到的Texp存在实验误差具有一定的波动性,而蒙特卡罗模拟得到的Tmc,为理论上的完美值,没有考虑实际实验中光纤接收效率与传输损耗等实验衰减,导致模拟结果与测量结果差常数k倍。因此本实施例将实验测量得到的实验标准数据Texp的结果引入以校准模拟标准数据Tmc,设置优化标准数据为T=k ×Tmc,针对所有数据求取T-Texp的方差,并得到该方差为最小值时的系数k=k’。  3) Due to the experimental error of Texp obtained by the experimental measurement has certain fluctuations, and the Tmc obtained by the Monte Carlo simulation is a theoretically perfect value, without considering the experimental attenuation such as optical fiber receiving efficiency and transmission loss in the actual experiment, resulting in the simulation The result differs from the measured result by a constant factor k. Therefore, in this embodiment, the results of the experimental standard data Texp obtained by the experimental measurement are introduced to calibrate the simulated standard data Tmc, the optimized standard data is set as T=k × Tmc, and the variance of T-Texp is obtained for all data, and the variance is obtained as The coefficient k=k' at the minimum value. the

则最终优化标准数据为T’=k’*Tmc,该最终优化标准数据T给出了不同皮肤吸收系数μa和约化散射系数μs’下探头测量得到的反射光强。即探头测量反射光强R=T(μa,μs’)。  Then the final optimized standard data is T'=k'*Tmc, and the final optimized standard data T gives the reflected light intensity measured by the probe under different skin absorption coefficient μ a and reduced scattering coefficient μ s '. That is, the probe measures the reflected light intensity R=T(μ a , μ s ').

三、皮肤生理参数与光学特性参数的获取  3. Acquisition of skin physiological parameters and optical characteristic parameters

1):在针对实际样本的测量中,CCD光谱仪获得的是针对皮肤样本的反射光谱曲线,其结果如附图9中点所表示的曲线。  1): In the measurement of the actual sample, the CCD spectrometer obtains the reflectance spectrum curve of the skin sample, and the result is shown as the curve indicated by the point in Fig. 9 . the

由于皮肤组织中的黑色素,脱氧血红蛋白、含氧血红蛋白,水分等生理物质的浓度关系决定了皮肤中的吸收系数的变化,且各成分的吸收系数随波长变化的依赖关系是不变的,因 此可以直接利用组织中生理物质的浓度来计算不同波长下组织的吸收系数。  Because the concentration relationship of melanin, deoxygenated hemoglobin, oxygenated hemoglobin, water and other physiological substances in the skin tissue determines the change of the absorption coefficient in the skin, and the dependence of the absorption coefficient of each component on the wavelength change is constant, so The concentration of physiological substances in the tissue can be directly used to calculate the absorption coefficient of the tissue at different wavelengths. the

皮肤中光的传输分为表皮层衰减与真皮层反射两个部分,因此皮肤样本的反射光谱计算公式可以表示为:  The transmission of light in the skin is divided into two parts: the attenuation of the epidermis and the reflection of the dermis, so the calculation formula of the reflection spectrum of the skin sample can be expressed as:

pSPR=Tepi’*Rderm pSPR=T epi '*R derm

其中Tepi为皮肤表皮层中光的透过率,Rderm为真皮层光的反射率。  Where T epi is the transmittance of light in the epidermis of the skin, and R derm is the reflectance of light in the dermis.

皮肤表皮层中光的衰减只受黑色素吸收的影响,因此光在皮肤表皮层的透过率可以表示为:  The attenuation of light in the epidermis of the skin is only affected by the absorption of melanin, so the transmittance of light in the epidermis of the skin can be expressed as:

Tepi(λ)=exp(-M*μa_mel(λ)*LepiT epi (λ)=exp(-M*μ a_mel (λ)*L epi )

其中M为黑色素浓度,Lepi为表皮层光学厚度,健康人体的取值为0.03cm,μa_mel(λ)为黑色素吸收系数是随波长变化的一组常数(数值参考文献S.L.Jacques,“Origins of tissueoptical properties in the UVA,visible,and NIR regions,”in Advances in Optical ImagingandPhoton Migration,R.R.Alfano and J.G.Fujimoto,eds.(Optical Society ofAmerica),1996)。  Wherein M is the concentration of melanin, Lepi is the optical thickness of the epidermis, the value of a healthy human body is 0.03cm, and μ a_mel (λ) is a set of constants that vary with the wavelength of the melanin absorption coefficient (numerical reference SLJacques, "Origins of tissueoptical properties in the UVA, visible, and NIR regions," in Advances in Optical Imaging and Photon Migration, RRAlfano and JG Fujimoto, eds. (Optical Society of America), 1996).

真皮层的反射由真皮层的吸收系数与约化散射系数决定,而通过此前的实验数据和蒙特卡罗模拟相结合的分析方法所得到的最终优化数据T中,给出了在皮肤中光学特性参数所能够取得的范围内,吸收系数和约化散射系数所有可能组合所对应的反射光强。  The reflection of the dermis is determined by the absorption coefficient and the reduced scattering coefficient of the dermis, and the final optimized data T obtained by combining the previous experimental data with the Monte Carlo simulation analysis method gives the optical properties in the skin Within the range that the parameters can obtain, the reflected light intensity corresponding to all possible combinations of the absorption coefficient and the reduced scattering coefficient. the

即Rderm(λ)=T(μa(λ),μs’(λ)) That is, R derm (λ)=T(μ a (λ), μ s '(λ))

此时只要给定吸收系数和约化散射系数,就能通过最终优化数据T得到相应的反射光强数据。  At this time, as long as the absorption coefficient and the reduced scattering coefficient are given, the corresponding reflected light intensity data can be obtained through the final optimization data T. the

2):真皮层的吸收介质主要有脱氧血红蛋白、含氧血红蛋白和水分。其吸收系数可计算为:  2): The absorption medium of the dermis mainly includes deoxygenated hemoglobin, oxygenated hemoglobin and water. Its absorption coefficient can be calculated as:

μa(λ)=B*(S*μa_oxy(λ)+(1-S)*μa_deoxy(λ))+W*μa_water(λ)  μ a (λ)=B*(S*μ a_oxy (λ)+(1-S)*μ a_deoxy (λ))+W*μ a_water (λ)

其中B,S,W分别表示总血红蛋白含量,血氧饱和度,水分含量,μa_oxy(λ),μa_deoxy(λ),μs_water(λ),分别为氧合血红蛋白,脱氧血红蛋白和水的吸收系数,均为随波长变化的常数(数值参考文献W.G.Zijlstra,A.Buursma and O.W.van Assendelft,“Visible and Near Infrared Absorption Spectraof Human and Animal Haemoglobin”,VSP Publishing,Utrecht,2000;G.M.Hale,M.R.Querry,“Optical constants ofwater in the 200-nm to 200-μm wavelength region”Applied Optics,1973)。真皮层的散射,主要由皮肤中散射微粒尺寸较小的瑞丽散射和米氏散射组成。设真皮层在波 长为500nm时的约化散射系数为μs500nm则瑞丽散射和米氏散射的波长依赖关系分别为μs500nm*(λ/500)-4,μs500nm*(λ/500)-1。因此真皮层约化散射系数可计算为:μs’(λ)=μs500nm*(f*(λ/500)-4+(1-f)*(λ/500)-1Wherein B, S, W respectively represent total hemoglobin content, blood oxygen saturation, water content, μ a_oxy (λ), μ a_deoxy (λ), μ s_water (λ), respectively the absorption of oxygenated hemoglobin, deoxygenated hemoglobin and water coefficients, are constants that vary with wavelength (numerical references WGZijlstra, A.Buursma and OWvan Assendelft, "Visible and Near Infrared Absorption Spectraof Human and Animal Haemoglobin", VSP Publishing, Utrecht, 2000; GMHale, MRQuerry, "Optical constants of water in the 200-nm to 200-μm wavelength region" Applied Optics, 1973). The scattering of the dermis is mainly composed of Rayleigh scattering and Mie scattering with small particle size in the skin. Assuming that the reduced scattering coefficient of the dermis at a wavelength of 500nm is μ s ' 500nm , the wavelength dependence of Rayleigh scattering and Mie scattering is respectively μ s ' 500nm *(λ/500) -4 , μ s ' 500nm *( λ/500) -1 . Therefore, the reduced scattering coefficient of the dermis can be calculated as: μ s '(λ)=μ s ' 500nm *(f*(λ/500) -4 +(1-f)*(λ/500) -1 )

其中f为表示真皮层瑞丽散射含量的参数。  Where f is a parameter representing the Rayleigh scattering content of the dermis. the

因此,在给定了三个生理参数总血红蛋白含量B,血氧饱和度S,水分含量W和两个皮肤散射性质参数波长为500nm时约化散射系数μs500nm,瑞丽散射含量f后就能够计算得到皮肤真皮层的吸收系数μa和约化散射系数μs’这两个光学特性参数。  Therefore, given the three physiological parameters total hemoglobin content B, blood oxygen saturation S, water content W and two skin scattering property parameters at a wavelength of 500nm, after reducing the scattering coefficient μ s ' 500nm , the Rayleigh scattering content f is Two optical characteristic parameters, the absorption coefficient μa and the reduced scattering coefficient μs' of the skin dermis, can be calculated.

3):根据以上所述原理,当设定四个生理参数黑色素浓度M,总血红蛋白含量B,血氧饱和度S,水分含量W和两个皮肤散射性质参数μs500nm,瑞丽散射含量f后根据方程组:  3): According to the above-mentioned principle, when setting four physiological parameters of melanin concentration M, total hemoglobin content B, blood oxygen saturation S, water content W and two skin scattering property parameters μ s ' 500nm , Rayleigh scattering content f Then according to the equation system:

pSPRpSPR (( λλ )) == expexp (( -- Mm ** μμ aa melmel (( λλ )) ** 0.030.03 )) .. ** TT (( μμ aa (( λλ )) ,, μμ sthe s ,, (( λλ )) )) μμ aa (( λλ )) == BB ** (( SS ** μμ aa oxyoxygen (( λλ )) ++ (( 11 -- SS )) ** μμ aa deoxydeoxy (( λλ )) )) ++ WW ** μμ aa waterthe water (( λλ )) μμ sthe s ,, (( λλ )) == μμ sthe s ,, 500500 nmnm ** (( ff ** (( λλ // 500500 )) -- 44 ++ (( 11 -- ff )) ** (( λλ // 500500 )) -- 11 ))

即能得到皮肤样本的拟合反射光谱曲线,其结果如附图9中实线所表示的曲线。  That is, the fitting reflectance spectrum curve of the skin sample can be obtained, and the result is shown as the curve represented by the solid line in Fig. 9 . the

4):通过附图5-8能够看到当其它参数为定值时单个生理参数的变化对反射光谱曲线的影响,其中定值参数设置为:M=0.02,B=0.004,S=0.9,W=0.60,μs500mn=43.6,f=0.62。  4): Through accompanying drawings 5-8, it can be seen that when other parameters are fixed values, the influence of the change of a single physiological parameter on the reflectance spectrum curve, wherein the fixed value parameters are set as: M=0.02, B=0.004, S=0.9, W = 0.60, μ s ' 500mn = 43.6, f = 0.62.

因此不同的黑色素浓度M,总血红蛋白含量B,血氧饱和度S,水分含量W,皮肤散射性质参数μs500nm,瑞丽散射含量f的设定会导致拟合反射光谱曲线的变化,通过拟合算法以该六个参数为变量进行曲线拟合并计算拟合出的反射光谱与实际测量光谱间的数组方差,并得到该方差最小时六个参数的取值,由此得到四个生理参数的计算值,并通过该六个参数计算得到相应的光学特性参数:皮肤吸收系数μa和约化散射系数μs’。  Therefore, different settings of melanin concentration M, total hemoglobin content B, blood oxygen saturation S, water content W, skin scattering property parameters μ s ' 500nm , and Rayleigh scattering content f will lead to changes in the fitted reflection spectrum curve. The combined algorithm uses the six parameters as variables to perform curve fitting and calculates the array variance between the fitted reflectance spectrum and the actual measured spectrum, and obtains the values of the six parameters when the variance is the smallest, thus obtaining four physiological parameters The calculated value, and the corresponding optical characteristic parameters are obtained by calculating the six parameters: skin absorption coefficient μa and reduced scattering coefficient μs'.

附图说明 Description of drawings

图1:是一种皮肤反射光谱的测量装置结构组成示意图,其中:  Figure 1: It is a schematic diagram of the structure of a measurement device for skin reflectance spectroscopy, where:

1——宽光谱光源;  1——broad-spectrum light source;

2——光谱检测器;  2—spectral detector;

3——入射光纤;  3——Incident fiber;

4——反射探头;  4——reflection probe;

5——接收光纤;  5——receiving optical fiber;

6——反射探头支架;  6——reflection probe bracket;

7——数据传输线;  7——data transmission line;

8——计算与显示装置;  8—calculation and display device;

图2:是发明装置实例中反射探头的结构图,其中:  Figure 2: is the structural diagram of the reflection probe in the inventive device example, wherein:

3——入射光纤;  3——Incident fiber;

5——接收光纤;  5——receiving optical fiber;

9——光纤包层;  9——fiber cladding;

10——反射探头;  10——reflection probe;

图3:是针对发明装置当μa=2.1870cm-1,μs’=64cm-1时反射探头中组织的反射光强分布的蒙特卡罗模拟结果;  Figure 3: Monte Carlo simulation results of the reflected light intensity distribution of the tissue in the reflective probe when μ a =2.1870cm -1 and μ s '=64cm -1 for the inventive device;

图4:是针对发明装置实例利用蒙特卡罗模拟得到的反射光强模拟标准数据;  Figure 4: It is the simulated standard data of reflected light intensity obtained by using Monte Carlo simulation for the example of the inventive device;

图5:是反射光谱随生理参数总血红蛋白含量B的变化趋势图;  Figure 5: It is a trend diagram of the change of the reflectance spectrum with the physiological parameter total hemoglobin content B;

图6:是反射光谱随生理参数黑色素含量M的变化趋势图;  Figure 6: It is the change trend diagram of the reflectance spectrum with the physiological parameter melanin content M;

图7:是反射光谱随生理参数血氧饱和度S的变化趋势图;  Figure 7: It is a trend diagram of the change of the reflectance spectrum with the physiological parameter blood oxygen saturation S;

图8:是反射光谱随生理参数水分含量W的变化趋势图;  Figure 8: It is a trend diagram of the change of the reflectance spectrum with the physiological parameter water content W;

图9:是针对发明装置实例光谱拟合与生理参数获取,此例反射光谱对应M=1.3%B=0.4%S=92%W=65%:  Figure 9: Spectral fitting and physiological parameter acquisition for the example of the inventive device, the reflection spectrum of this example corresponds to M=1.3% B=0.4% S=92% W=65%:

图10:计算模块获取皮肤生理参数与组织光学特性参数工作流程图。  Fig. 10: Workflow diagram of obtaining skin physiological parameters and tissue optical characteristic parameters by the calculation module. the

具体实施方式 Detailed ways

实施例1:反射光谱测量系统的构成  Embodiment 1: Composition of reflection spectrum measurement system

参见图1,介绍基于反射光谱测量测量皮肤生理参数与光学特性参数系统的结构组成:  Referring to Figure 1, the structural composition of the system for measuring skin physiological parameters and optical characteristic parameters based on reflection spectrum measurement is introduced:

皮肤反射光谱的测量系统包括皮肤反射光谱的测量装置和计算与显示装置,其中皮肤反射光谱的测量装置包括1,宽光谱光源;2,光谱检测器;3,入射光纤;4,反射探头;5,接收光纤;6,反射探头支架;7,数据传输线;计算与显示装置由模数转化模块、计算模块、存储器、显示处理模块、显示器、数据总线组成。由于在稳定电压下卤钨灯的光强波动较小且在可见近红外波长范围内随波长变化下的连续性较好,因此本实例中采用卤钨灯作为宽光谱光源提供可见近红外波长范围内的连续入射光谱。根据应用条件,也可以用氙灯,LED复合光源等其他宽光谱光源代替。入射光线通过SMA905接头与光源连接,并接入反射探头内,将光源提供的宽光谱入射光传导至皮肤表面。反射探头如图2所示,入射光纤3和接收光纤5均为400微米芯径阶跃型多模光纤。6根入射光纤对称环绕于接收光纤周围。入射光纤与接收光纤芯中心间隔480微米,反射探头中心半径740微米内为光纤包层9填充于入射光纤与接收光纤周围。中心半径740微米以外为起固定作用的金属外壳10,本例中,金属外壳采用铝合金材料制成。接收光纤从反射探头中心接收皮肤表面反射光,并将反射光通过SMA905接 头传入光谱检测器。光谱仪采用光栅式CCD光谱仪,3648象素CCD,波长范围400-1000nm,波长分辨率<1.34nm。反射探头支架6可以在垂直方向调整反射探头位置。光谱检测器通过数据传输线与计算与显示装置中的模数转换模块连接。  The measurement system of the skin reflection spectrum includes a measurement device of the skin reflection spectrum and a calculation and display device, wherein the measurement device of the skin reflection spectrum includes 1, a wide-spectrum light source; 2, a spectrum detector; 3, an incident optical fiber; 4, a reflection probe; 5 , receiving optical fiber; 6, reflection probe bracket; 7, data transmission line; the calculation and display device is composed of an analog-to-digital conversion module, a calculation module, a memory, a display processing module, a display, and a data bus. Since the light intensity fluctuation of the halogen tungsten lamp under the stable voltage is small and the continuity with the wavelength change in the visible and near-infrared wavelength range is good, so in this example, the halogen tungsten lamp is used as a wide-spectrum light source to provide the visible and near-infrared wavelength range The continuous incident spectrum in . According to the application conditions, it can also be replaced by other broad-spectrum light sources such as xenon lamps and LED composite light sources. The incident light is connected to the light source through the SMA905 connector, and connected to the reflection probe, which transmits the wide-spectrum incident light provided by the light source to the skin surface. As shown in FIG. 2 for the reflection probe, the incident optical fiber 3 and the receiving optical fiber 5 are both step-type multimode optical fibers with a core diameter of 400 microns. The 6 incident optical fibers surround the receiving optical fiber symmetrically. The distance between the center of the incident fiber and the receiving fiber core is 480 microns, and the fiber cladding 9 is filled around the incident fiber and the receiving fiber within a radius of 740 microns from the center of the reflection probe. Outside the central radius of 740 microns is the metal shell 10 for fixing. In this example, the metal shell is made of aluminum alloy. The receiving optical fiber receives the reflected light from the skin surface from the center of the reflection probe, and transmits the reflected light to the spectral detector through the SMA905 connector. The spectrometer adopts a grating CCD spectrometer, a 3648-pixel CCD, a wavelength range of 400-1000nm, and a wavelength resolution of <1.34nm. The reflection probe bracket 6 can adjust the position of the reflection probe in the vertical direction. The spectrum detector is connected with the analog-to-digital conversion module in the calculation and display device through a data transmission line. the

计算与显示装置中,计算模块通过数据总线与模数转换模块,存储器,显示处理模块相接连,显示处理模块直接与显示器相连。模数转换模块采用16位4通道并行模数转换芯片,负责光谱仪输出数据的A/D转换。存储器负责反射光谱测量数据与标准数据T的存储。计算模块采用内核为ARM32位CPU的微控制器,负责反射光谱的归一化计算,反射光谱分析,生理参数与光学特性参数的获取。显示处理模块采用VGA驱动芯片,用于实验结果的可视化处理。  In the calculation and display device, the calculation module is connected with the analog-to-digital conversion module, the memory and the display processing module through the data bus, and the display processing module is directly connected with the display. The analog-to-digital conversion module uses a 16-bit 4-channel parallel analog-to-digital conversion chip, which is responsible for the A/D conversion of the output data of the spectrometer. The memory is responsible for the storage of reflection spectrum measurement data and standard data T. The calculation module uses a microcontroller with ARM32-bit CPU as the core, which is responsible for the normalized calculation of reflection spectrum, reflection spectrum analysis, acquisition of physiological parameters and optical characteristic parameters. The display processing module uses a VGA driver chip for visual processing of experimental results. the

实施例2:皮肤生理参数与光学特性参数的测量过程  Embodiment 2: Measurement process of skin physiological parameters and optical characteristic parameters

由于在实际应用时,包含大量实验与蒙特卡罗模拟数据的反射光强优化数据T已记录并保存在计算与显示装置的存储单元中。则利用该装置测量组织生理参数与光学特性参数的过程如下:  In actual application, the reflected light intensity optimization data T including a large amount of experimental and Monte Carlo simulation data has been recorded and stored in the storage unit of the computing and display device. The process of using the device to measure tissue physiological parameters and optical characteristic parameters is as follows:

1)连接装置各部件,将反射探头垂直置于洁净平整的待测皮肤表面,记录皮肤反射光强M(λ);  1) Connect the components of the device, place the reflection probe vertically on the clean and flat surface of the skin to be tested, and record the skin reflection light intensity M(λ);

2)将反射探头垂直置于反射标准片上方固定距离d处,记录标准片反射光强Mstd(λ);  2) Place the reflection probe vertically at a fixed distance d above the reflection standard sheet, and record the reflected light intensity M std (λ) of the standard sheet;

3)则归一化的测量皮肤反射光谱为 mSPR ( &lambda; ) = M ( &lambda; ) M std ( &lambda; ) ; 3) Then the normalized measured skin reflectance spectrum is wxya ( &lambda; ) = m ( &lambda; ) m std ( &lambda; ) ;

4)设置四个生理参数和两个散射参数:黑色素含量M0初值范围为1%-10%,优选5%;血红蛋白含量B0初值范围为0.2%-7%;优选0.3%;血氧饱和度S0初值范围为0%-100%,优选75%;水分含量W0初值范围为15%-70%,优选60%;波长500nm的约化散射系数μs’500nm初值范围为20-200,优选50;瑞丽散射含量f0初值范围为0%-100%,优选50%;  4) Set four physiological parameters and two scattering parameters: the initial value range of melanin content M0 is 1%-10%, preferably 5%; the initial value range of hemoglobin content B0 is 0.2%-7%; preferably 0.3%; blood oxygen saturation The initial value range of degree S0 is 0%-100%, preferably 75%; the initial value range of moisture content W0 is 15%-70%, preferably 60%; the reduced scattering coefficient μs'500nm initial value range of wavelength 500nm is 20-200 , preferably 50; the initial value range of Rayleigh scattering content f0 is 0%-100%, preferably 50%;

5)通过生理参数计算皮肤组织在各波长下的吸收系数和约化散射系数,针对该吸收系数和约化散射系数从优化标准数据T中计算对应的标准反射光强;  5) Calculate the absorption coefficient and the reduced scattering coefficient of the skin tissue at each wavelength through the physiological parameters, and calculate the corresponding standard reflected light intensity from the optimized standard data T for the absorption coefficient and the reduced scattering coefficient;

6)计算预测反射光谱与4)得到的测量皮肤反射光谱之间的误差u=∑|mSPR(λ)-pSPR(λ)|;  6) Calculate the error u=Σ|mSPR(λ)-pSPR(λ)| between the measured skin reflectance spectrum obtained in 4) and the predicted reflectance spectrum;

7)重复过程4)-6),直到误差u达到最小,则得到被测样本对应的生理参数:黑色素浓度M,总血红蛋白含量B,血氧饱和度S,水分含量W和皮肤散射性质参数μs500nm,f。  7) Repeat the process 4)-6) until the error u reaches the minimum, then the physiological parameters corresponding to the measured sample are obtained: melanin concentration M, total hemoglobin content B, blood oxygen saturation S, moisture content W and skin scattering property parameter μ s'500nm , f .

8)通过上述被测样本对应的生理参数计算得到被测样本的光学特性参数:皮肤吸收系数μa和约化散射系数μs’。  8) Calculate the optical characteristic parameters of the tested sample through the above physiological parameters corresponding to the tested sample: skin absorption coefficient μ a and reduced scattering coefficient μ s '.

图9是一例健康男性右手前臂内侧皮肤反射光谱测量结果R(λ)以及根据非线性优化算法 得到的理参数与光学特性参数得到的计算反射光谱pR(λ)。该反射光谱对应得到的黑色素含量M=1.3%,总血红蛋白含量B=0.4%,血氧饱和度S=92%,水分含量W=65%。500nm的约化散射系数μs500nm=20.5cm-1,瑞丽散射含量f=46%。利用本发明实例装置共测量20例健康男性右手前臂内侧皮肤反射光谱,所获得的皮肤生理参数均符合文献记载参数范围。  Figure 9 is a case of healthy male right forearm inner skin reflection spectrum measurement results R(λ) and the calculated reflection spectrum pR(λ) obtained according to the physical parameters and optical characteristic parameters obtained by the nonlinear optimization algorithm. The reflection spectrum corresponds to the obtained melanin content M=1.3%, total hemoglobin content B=0.4%, blood oxygen saturation S=92%, and water content W=65%. The reduced scattering coefficient μ s ' 500nm = 20.5cm -1 at 500nm, the Rayleigh scattering content f = 46%. A total of 20 cases of healthy male right forearm inner skin reflectance spectra were measured by using the device of the example of the present invention, and the obtained skin physiological parameters all conformed to the parameter ranges recorded in the literature.

为实现以上方法,本实施例运用这样一种具有计算模块的皮肤生理参数与光学特性参数测量系统,该系统包括:皮肤反射光谱的测量装置、计算与显示装置。其中皮肤反射光谱的测量装置包括:宽光谱光源、光谱检测器、入射光纤、反射探头、接收光纤、反射探头支架、数据传输线。计算与显示装置中包括模数转化模块、计算模块、存储器、显示处理模块、显示器、数据总线。通过模数转换后存储于存储器中,计算模块利用蒙特卡罗计算得到模拟标准数据Tmc,并调用存储于存储器中的组织模型实验数据得到实验标准数据Texp对模拟标准数据Tmc进行校准,从而得到最终优化标准数据T,并存储于存储器中。  In order to realize the above method, this embodiment uses such a system for measuring skin physiological parameters and optical characteristic parameters with a calculation module, the system includes: a measurement device for skin reflectance spectrum, a calculation and display device. The measuring device of the skin reflection spectrum includes: a wide-spectrum light source, a spectrum detector, an incident optical fiber, a reflection probe, a receiving optical fiber, a reflection probe bracket, and a data transmission line. The calculation and display device includes an analog-to-digital conversion module, a calculation module, a memory, a display processing module, a display, and a data bus. Stored in the memory after analog-to-digital conversion, the calculation module uses Monte Carlo calculation to obtain the simulated standard data Tmc, and calls the tissue model experimental data stored in the memory to obtain the experimental standard data Texp to calibrate the simulated standard data Tmc to obtain the final The standard data T is optimized and stored in memory. the

皮肤反射光谱的测量装置测量待测皮肤反射光谱,其分别测量待测皮肤的反射光谱与反射标准片的反射光谱,测量数据由数据传输线传入计算与显示装置。通过模数转换后存储于存储器中,计算模块利用反射标准片数据校准皮肤测量数据得到测量皮肤反射光谱。计算模块调用优化标准数据T,利用非线性迭代算法计算不同皮肤组织生理参数下对应的皮肤拟合反射光谱。将计算得到拟合反射光谱与测量皮肤反射光谱进行比较,得到待测皮肤反射光谱所对应的生理参数,并进一步计算得到所有波长下皮肤光学特性参数μa和μs’,将测量结果和皮肤反射光谱图像显示于显示器上。计算模块获取皮肤生理参数与组织光学特性参数的工作流程图如图10所示。  The measuring device of the skin reflection spectrum measures the reflection spectrum of the skin to be tested, which respectively measures the reflection spectrum of the skin to be tested and the reflection spectrum of the reflection standard sheet, and the measurement data is transmitted to the calculation and display device through the data transmission line. Stored in the memory after analog-to-digital conversion, the calculation module calibrates the skin measurement data with the reflectance standard sheet data to obtain the measured skin reflectance spectrum. The calculation module calls the optimized standard data T, and uses a nonlinear iterative algorithm to calculate the corresponding skin fitting reflectance spectrum under different skin tissue physiological parameters. Comparing the calculated fitted reflectance spectrum with the measured skin reflectance spectrum, the physiological parameters corresponding to the measured skin reflectance spectrum are obtained, and further calculation is performed to obtain the skin optical characteristic parameters μ a and μ s ' at all wavelengths, and the measured results and skin The reflectance spectrum image is displayed on the monitor. Figure 10 shows the workflow of the calculation module for acquiring skin physiological parameters and tissue optical characteristic parameters.

另外,本领域技术人员还可在本发明精神内做其它变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。  In addition, those skilled in the art can also make other changes within the spirit of the present invention. Of course, these changes made according to the spirit of the present invention should be included within the scope of protection claimed by the present invention. the

Claims (4)

1.一种基于反射光谱测量的皮肤生理参数与光学特性参数测量方法,包括如下步骤:1. A method for measuring skin physiological parameters and optical characteristic parameters based on reflection spectrum measurement, comprising the steps of: 步骤一:计算表示光学特性参数和反射光强之间的函数联系的优化数据T,包括以下分步骤:Step 1: Calculate the optimization data T representing the functional relationship between the optical characteristic parameters and the reflected light intensity, including the following sub-steps: a)配置标准组织模型溶液;a) configuring a standard tissue model solution; b)测量标准组织模型溶液的光学特性参数;b) measuring the optical characteristic parameters of the standard tissue model solution; c)将入射光纤和反射光纤前端平行地置入标准组织模型溶液中,入射光纤另一端与光源相连,光源提供覆盖400-1000nm波长范围的入射光,反射光纤另一端与光谱仪相连,记录400-1000nm波长范围光学特性参数对应的组织反射光强的实验数据Texp;c) Place the front end of the incident fiber and the reflective fiber in parallel into the standard tissue model solution, the other end of the incident fiber is connected to the light source, the light source provides incident light covering the wavelength range of 400-1000nm, and the other end of the reflective fiber is connected to the spectrometer, record 400- The experimental data Texp of the tissue reflection light intensity corresponding to the optical characteristic parameters in the wavelength range of 1000nm; d)利用蒙特卡罗方法在输入标准组织模型溶液光学特性参数的情况下模拟得到反射光强的模拟数据Tmc;d) Using the Monte Carlo method to simulate and obtain the simulated data Tmc of the reflected light intensity under the condition of inputting the optical characteristic parameters of the standard tissue model solution; e)求使得|K·Tmc-Texp|的方差为最小时的常数K值;e) Find the constant K value that makes the variance of |K·Tmc-Texp| the smallest; f)以K·Tmc为光学特性参数和反射光强之间的函数联系的优化数据T;f) taking K Tmc as the optimization data T of the functional relationship between the optical characteristic parameters and the reflected light intensity; 步骤二:测量皮肤生理参数与光学特性参数,包括以下分步骤:Step 2: Measuring skin physiological parameters and optical characteristic parameters, including the following sub-steps: 1)将与步骤一c)中相同的入射光纤和反射光纤的前端端面与洁净平整的待测皮肤表面接触,入射光纤另一端与光源相连,光源提供覆盖400-1000nm波长范围的入射光,反射光纤另一端与光谱仪相连,记录400-1000nm波长范围皮肤反射光强M(λ);1) Contact the front ends of the incident fiber and reflective fiber that are the same as those in step 1 c) with the clean and flat skin surface to be tested, and connect the other end of the incident fiber to the light source, which provides incident light covering the wavelength range of 400-1000nm. The other end of the optical fiber is connected to the spectrometer to record the skin reflection light intensity M(λ) in the wavelength range of 400-1000nm; 2)将入射光纤和反射光纤的前端端面置于反射标准片上方,记录标准片反射光强Mstd(λ);2) Place the front end faces of the incident optical fiber and the reflective optical fiber above the reflective standard sheet, and record the reflected light intensity M std (λ) of the standard sheet; 3)归一化的测量皮肤反射光谱为
Figure FDA0000137018680000011
3) The normalized measured skin reflectance spectrum is
Figure FDA0000137018680000011
4)设置四个生理参数和两个散射参数:黑色素含量M0初值范围为1%-10%;血红蛋白含量B0初值范围为0.2%-7%;血氧饱和度S0初值范围为0%-100%;水分含量W0初值范围为15%-70%;波长500nm的约化散射系数μs500nm初值范围为20-200;瑞丽散射含量f0初值范围为0%-100%;4) Set four physiological parameters and two scattering parameters: the initial value range of melanin content M0 is 1%-10%; the initial value range of hemoglobin content B0 is 0.2%-7%; the initial value range of blood oxygen saturation S0 is 0% -100%; the initial value range of moisture content W0 is 15%-70%; the initial value range of the reduced scattering coefficient μ s ' at 500nm wavelength is 20-200; the initial value range of Rayleigh scattering content f0 is 0%-100%; 5)通过步骤二4)中设置的所述生理参数和所述散射参数计算皮肤组织在各波长下的吸收系数和约化散射系数,针对该吸收系数和约化散射系数从步骤一得到的优化数据T中计算对应的标准反射光强;5) Calculate the absorption coefficient and the reduced scattering coefficient of the skin tissue at each wavelength by the physiological parameters and the scattering parameters set in step two 4), and optimize the data T obtained from step one for the absorption coefficient and the reduced scattering coefficient Calculate the corresponding standard reflected light intensity in 6)组合400-1000nm波长下计算得到的所述标准反射光强得到预测反射光谱pSPR(λ);6) combining the standard reflected light intensity calculated under the wavelength of 400-1000nm to obtain the predicted reflectance spectrum pSPR(λ); 7)计算所述预测反射光谱与步骤二3)得到的所述测量皮肤反射光谱之间的误差u=∑|mSPR(λ)-pSPR(λ)|;7) Calculate the error u=∑|mSPR(λ)-pSPR(λ)| between the predicted reflectance spectrum and the measured skin reflectance spectrum obtained in step 2 3); 8)循环重复步骤二4)-7),得到使误差u达到最小的被测样本对应的所述生理参数和所述散射参数;8) Repeat step 2 4)-7) cyclically to obtain the physiological parameter and the scattering parameter corresponding to the measured sample that minimizes the error u; 9)通过所述使误差u达到最小的被测样本对应的生理参数和散射参数计算得到被测样本皮肤的吸收系数μa和约化散射系数μs’。9) Calculate the absorption coefficient μ a and the reduced scattering coefficient μ s ′ of the skin of the tested sample by calculating the physiological parameters and scattering parameters corresponding to the tested sample that minimize the error u.
2.如权利要求1所述的测量方法,其特征在于,标准组织模型溶液是用脂肪乳溶液与印度墨水配置得到,配置的标准组织模型溶液由32组不同浓度溶液构成,溶液中脂肪乳的浓度为以下4个之一:20%,5%,1.25%,0.3125%;溶液中印度墨水的浓度为以下8个之一:0,0.0015%,0.003%,0.013%,0.023%,0.048%,0.073%,0.098%。2. measuring method as claimed in claim 1, it is characterized in that, standard tissue model solution is to obtain with fat emulsion solution and Indian ink configuration, the standard tissue model solution of configuration is made of 32 groups of different concentration solutions, the fat emulsion in the solution The concentration is one of the following 4: 20%, 5%, 1.25%, 0.3125%; the concentration of India ink in the solution is one of the following 8: 0, 0.0015%, 0.003%, 0.013%, 0.023%, 0.048%, 0.073%, 0.098%. 3.如权利要求1所述的测量方法,其特征在于,测量标准组织模型溶液的光学特性参数包括以下步骤:3. measuring method as claimed in claim 1, is characterized in that, the optical characteristic parameter of measuring standard tissue model solution comprises the following steps: i)选定测量波长;i) Select the measurement wavelength; ii)在距离光源位置r处针对所述标准组织模型溶液进行测量得到所述测量波长的光通量M(r)ii) measuring the luminous flux M (r) of the measurement wavelength for the standard tissue model solution at a distance from the light source position r; iii)n次改变反射光纤探头与光源之间的距离r,并分别测量光通量M(r)i,其中i=2,3,4……n;iii) Change the distance r between the reflective fiber optic probe and the light source n times, and measure the luminous flux M (r) i respectively, where i=2, 3, 4...n; iv)将|n(r*M(r))对于距离r进行线性拟合,计算得到拟合曲线的斜率1/δ0iv) Carry out linear fitting of |n(r*M (r) ) to the distance r, and calculate the slope 1/δ 0 of the fitted curve; v)向溶液中滴加墨水后标准组织模型溶液中增加的吸收系数为Δμa,所述吸收系数Δμa通过分光光度计测量墨水吸光度得到;v) The absorption coefficient increased in the standard tissue model solution after dripping ink into the solution is Δμa , and the absorption coefficient Δμa is obtained by measuring the absorbance of the ink with a spectrophotometer; vi)以滴加了墨水的溶液为对象,针对所述测量波长重新进行步骤ii)-iv),计算得到此时拟合曲线的斜率1/δ1vi) Taking the solution added with ink as the object, re-carry out steps ii)-iv) for the measured wavelength, and calculate the slope 1/ δ1 of the fitting curve at this time; vii)通过下列方程组vii) Through the following equations 11 &delta;&delta; 00 == 33 &mu;&mu; aa 00 (( &mu;&mu; aa 00 ++ &mu;&mu; aa 00 &prime;&prime; )) 11 &delta;&delta; 11 == 33 &mu;&mu; aa 11 (( &mu;&mu; aa 11 ++ &mu;&mu; aa 00 &prime;&prime; )) &mu;&mu; aa 11 == &mu;&mu; aa 00 ++ &Delta;&mu;&Delta;&mu; aa 计算得到所述标准组织模型溶液的光学特性参数μa0和μs0′。The optical characteristic parameters μ a0 and μ s0 ′ of the standard tissue model solution are calculated. 4.如权利要求1所述的测量方法,其特征在于,反射标准片在可见近红外波长反射率为99.9%。4. measuring method as claimed in claim 1, is characterized in that, reflection standard sheet has a reflectivity of 99.9% in visible near infrared wavelength.
CN2010105256726A 2010-10-30 2010-10-30 Method for measuring skin physiological parameters and optical characteristic parameters based on reflection spectrum measurement Expired - Fee Related CN102058393B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105256726A CN102058393B (en) 2010-10-30 2010-10-30 Method for measuring skin physiological parameters and optical characteristic parameters based on reflection spectrum measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105256726A CN102058393B (en) 2010-10-30 2010-10-30 Method for measuring skin physiological parameters and optical characteristic parameters based on reflection spectrum measurement

Publications (2)

Publication Number Publication Date
CN102058393A CN102058393A (en) 2011-05-18
CN102058393B true CN102058393B (en) 2012-10-31

Family

ID=43994042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105256726A Expired - Fee Related CN102058393B (en) 2010-10-30 2010-10-30 Method for measuring skin physiological parameters and optical characteristic parameters based on reflection spectrum measurement

Country Status (1)

Country Link
CN (1) CN102058393B (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9468403B2 (en) * 2014-01-15 2016-10-18 Hong Kong Applied Science and Technology Research Institute Company Limited Single-body unit for pulse oximeter calibration
CN105510238B (en) * 2014-09-28 2019-04-05 天津先阳科技发展有限公司 Processing, modeling, prediction technique and the processing unit of multiposition diffusion spectroscopic data
CN106469243B (en) * 2015-08-14 2021-07-16 集粹坊科贸(北京)有限责任公司 Human face skin moisture and elasticity index calculation method based on digital image processing technology
CN105319181A (en) * 2015-11-02 2016-02-10 南京航空航天大学 Biological tissue thermal damage parameter measurement method
CN105380609A (en) * 2015-12-07 2016-03-09 江苏鼎云信息科技有限公司 Multi-spectrum based skin detection method and system
CN105651735B (en) * 2016-01-12 2019-02-01 浙江大学 Method based on spatially resolved reflectance spectrum inverting biological organism optical characteristic
US10393652B2 (en) * 2016-01-26 2019-08-27 Tubitak Portable optical apparatus for diffuse reflectance spectroscopy
CN105868159B (en) * 2016-03-28 2017-06-27 陈威 A kind of utilization Mathematical Modeling calculates 19 related methods of biological parameter of application on human skin light absorbs
CN106021178B (en) * 2016-03-28 2018-11-06 陈威 A method of calculating related 3 parameters of application on human skin collagen using mathematical model
JP2019519260A (en) * 2016-04-13 2019-07-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. System and method for skin detection of human subjects
KR102427034B1 (en) 2016-04-22 2022-07-29 바이압틱스 인코포레이티드 Determination of absolute and relative tissue oxygen saturation
CN105928890B (en) * 2016-05-26 2019-01-29 沈阳理工大学 A kind of method and system using white light scattering spectrum measurement tissue oxygenation saturation degree
KR102673720B1 (en) * 2016-07-29 2024-06-07 삼성전자주식회사 Apparatus and method for estimating substance in blood
CN109984725B (en) * 2017-12-29 2022-07-12 天津先阳科技发展有限公司 Contact pressure interference suppression method and device in diffuse reflection measurement and measurement method
CN111683588A (en) * 2018-01-22 2020-09-18 光谱公司 Optical response measurements from skin and tissue using spectroscopy
CN109342367B (en) * 2018-09-30 2020-04-10 华中科技大学 Diffusion optical imaging method and system based on control Monte Carlo method
CN109171662B (en) * 2018-10-10 2024-08-16 河南农业大学 Skin moisture content detector and skin moisture content detection method
JP7480708B2 (en) 2018-11-06 2024-05-10 ソニーグループ株式会社 Information processing device, information processing method, and program
WO2020239920A1 (en) * 2019-05-28 2020-12-03 Universität Zürich Apparatus for measuring optical or physiological parameters in scattering media featuring an optical contact detector
CN110279400B (en) * 2019-07-10 2024-10-01 长春国科希莱科技有限公司 Non-contact microscopic imaging device for skin detection
CN110826431B (en) * 2019-10-23 2023-04-25 南京航空航天大学 Monte Carlo-based visible light vein imaging method
KR20210142304A (en) * 2020-05-18 2021-11-25 삼성전자주식회사 Apparatus and method for calibration of optical sensor, the optical sensor and apparatus for estimating bio-information
CN111693470A (en) * 2020-06-04 2020-09-22 西安交通大学 Skin surface reflection spectrum measuring device and measuring method thereof
CN112683826B (en) * 2020-12-24 2024-07-19 广电计量检测(重庆)有限公司 Correction method and device of calibration color plate for percutaneous jaundice tester
CN113456069B (en) * 2021-07-28 2023-07-04 清华大学深圳国际研究生院 Device and equipment for near infrared blood sugar detection based on polarized light imaging
CN113974617B (en) * 2021-11-24 2024-07-02 中国科学院合肥物质科学研究院 Blood oxygen detection method and system based on tissue blood oxygen wide-field imaging
CN114496132A (en) * 2022-02-16 2022-05-13 北京工商大学 Skin local state database construction method, electronic equipment and storage medium
CN117379033B (en) * 2023-12-13 2024-02-20 深圳市宗匠科技有限公司 Skin pigment detection method, device, computer equipment and storage medium
CN118121196B (en) * 2024-05-07 2024-07-12 北京航天长峰股份有限公司 HCT prediction method, system, equipment and medium
CN118844999B (en) * 2024-07-04 2025-07-18 中国医学科学院北京协和医院 A system and method for measuring NADH
CN119012449B (en) * 2024-10-25 2025-02-07 广州美利康光电科技有限公司 A whitening light adaptive adjustment control method based on user skin condition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1580740A (en) * 2004-05-19 2005-02-16 北京交通大学 Biological tissue refractivity space distribution function detecting method
CN101103905A (en) * 2007-08-06 2008-01-16 天津炜辐医疗科技有限公司 Optical system for detecting turbidity medium and biological tissue optical parameter and detecting method
CN101454654A (en) * 2006-05-31 2009-06-10 国立大学法人静冈大学 Optical measuring device, optical measuring method, and storage medium storing optical measurement program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632645B2 (en) * 2002-12-12 2011-02-16 オリンパス株式会社 Imaging device and processor device
WO2009004541A1 (en) * 2007-07-03 2009-01-08 Koninklijke Philips Electronics N.V. Spectroscopy measurements of the concentration of a substance in a scattering tissue

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1580740A (en) * 2004-05-19 2005-02-16 北京交通大学 Biological tissue refractivity space distribution function detecting method
CN101454654A (en) * 2006-05-31 2009-06-10 国立大学法人静冈大学 Optical measuring device, optical measuring method, and storage medium storing optical measurement program
CN101103905A (en) * 2007-08-06 2008-01-16 天津炜辐医疗科技有限公司 Optical system for detecting turbidity medium and biological tissue optical parameter and detecting method

Also Published As

Publication number Publication date
CN102058393A (en) 2011-05-18

Similar Documents

Publication Publication Date Title
CN102058393B (en) Method for measuring skin physiological parameters and optical characteristic parameters based on reflection spectrum measurement
Bargo et al. In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy
US8301216B2 (en) Method and apparatus for quantification of optical properties of superficial volumes using small source-to-detector separations
Bosschaart et al. Optical properties of neonatal skin measured in vivo as a function of age and skin pigmentation
US8406861B2 (en) Detecting optical properties of a turbid medium
US9259486B2 (en) Method and system for calculating a quantification indicator for quantifying a dermal reaction on the skin of a living being
Ankri et al. On Phantom experiments of the photon migration model in tissues
CN101612034B (en) Time-resolved measurement system and method for reconstructing optical parameters of turbid media
Ueda et al. Time-resolved optical mammography and its preliminary clinical results
Wilson et al. The potential of time-resolved reflectance measurements for the noninvasive determination of tissue optical properties
Ong et al. Validation of tissue optical properties measurement using diffuse reflectance spectroscopy (DRS)
Maheswari et al. Soft tissue optical property extraction for carcinoma cell detection in diffuse optical tomography system under boundary element condition
Farrell et al. Charge-coupled device and neural-network-based instrument for the noninvasive determination of tissue optical properties in vivo
Charvet et al. A new optical method for the non-invasive detection of minimal tissue alterations
TWI588492B (en) Near-field array detection method for detecting optically high scatter material
Kumar et al. Optical characterization of mammalian tissues by laser reflectometry and Monte Carlo simulation
WO2015037446A1 (en) Measurement method and measurement device for brown adipose tissue
Pinheiro et al. Tutorial on the Use of the Photon Diffusion Approximation for Fast Calculation of Tissue Optical Properties
Sun et al. Basic research on determining optical properties of tissues in vivo by measuring diffuse reflectance with a charge-coupled device
Verkruysse et al. Remittance at a single wavelength of 390 nm to quantify epidermal melanin concentration
Shtyflyuk et al. Formulating the Problem of Determination of Individual Local Minimal Erythema Dose Without Test Exposures
Patterson et al. General-purpose instrument for PDT dosimetry
Bykov et al. Hyperspecral skin imaging with artificial neural networks validated by optical biotissue phantoms
Bosschaart Quantitative and localized spectroscopy for non-invasive bilirubinometry in neonates
Lisenko et al. Systems for real-time optical diagnostics of biological objects

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121031

CF01 Termination of patent right due to non-payment of annual fee