CN102055334B - Control circuit and method of buck-boost power converter - Google Patents
Control circuit and method of buck-boost power converter Download PDFInfo
- Publication number
- CN102055334B CN102055334B CN200910209285.9A CN200910209285A CN102055334B CN 102055334 B CN102055334 B CN 102055334B CN 200910209285 A CN200910209285 A CN 200910209285A CN 102055334 B CN102055334 B CN 102055334B
- Authority
- CN
- China
- Prior art keywords
- signal
- voltage
- error
- generate
- buck
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000001514 detection method Methods 0.000 claims abstract description 79
- 238000010586 diagram Methods 0.000 description 14
- 238000007599 discharging Methods 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 4
- 239000000872 buffer Substances 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种升降压式电源转换器,具体地说,是一种升降压式电源转换器的控制电路及方法。The invention relates to a buck-boost power converter, in particular to a control circuit and method for a buck-boost power converter.
背景技术 Background technique
图1显示已知的同步式升降压式电源转换器10,其包括升降压式功率级12以及控制电路22提供信号VA、VB、VC及VD分别切换升降压式功率级12中的开关SWA、SWB、SWC及SWD以将输入电压Vin转换为输出电压Vo。在控制电路14中,电阻R1及R2分压输出电压Vo产生回授信号VFB,误差放大器24放大回授信号VFB及参考电压Vref之间的差值产生信号VCL至信号产生器22,信号产生器22提供信号VU、VX及VY,其中信号VU与信号VCL相关,信号VX及VY为锯齿波信号,比较器18比较信号VU及VX产生信号VZ1,比较器20比较信号VU及VY产生信号VZ2,逻辑电路16根据信号VZ1及VZ2产生信号VA、VB、VC及VD。1 shows a known synchronous buck-boost power converter 10, which includes a buck-boost power stage 12 and a control circuit 22 that provides signals VA, VB, VC, and VD to switch the voltages in the buck-boost power stage 12, respectively. The switches SWA, SWB, SWC and SWD convert the input voltage Vin to the output voltage Vo. In the control circuit 14, the resistors R1 and R2 divide the output voltage Vo to generate the feedback signal VFB, and the error amplifier 24 amplifies the difference between the feedback signal VFB and the reference voltage Vref to generate the signal VCL to the signal generator 22, and the signal generator 22 provides signals VU, VX and VY, wherein the signal VU is related to the signal VCL, the signals VX and VY are sawtooth wave signals, the comparator 18 compares the signals VU and VX to generate a signal VZ1, and the comparator 20 compares the signals VU and VY to generate a signal VZ2, The logic circuit 16 generates signals VA, VB, VC and VD according to the signals VZ1 and VZ2.
图2显示图1中信号的波形图,其中波形26为信号VY,波形28为信号VU,波形30为信号VX,波形32为信号VZ1,波形34为信号VZ2,波形36为信号VA,波形38为信号VB,波形40为信号VC,波形42为信号VD。参照图1及图2,当信号VX大于信号VU时,如时间t1至t2,信号VZ1为低准位,如波形28、30及32所示,当信号VX小于信号VU时,如时间t2至t5,信号VZ1为高准位。当信号VY大于信号VU时,如时间t0至t3,信号VZ2为低准位,如波形26、28及34所示,当信号VY小于信号VU时,如时间t3至t4,信号VZ2为高准位。假设以时间t1至t5表示输出电压Vo的一个周期,在时间t1至t2期间,升降压式功率级12处于第一状态,此时开关SWA及SWC关闭(turn off)而开关SWB及SWD打开(turn on),如波形36至42所示。在时间t2至t3期间,升降压式功率级12处于第二状态,此时开关SWA及SWD打开而开关SWB及SWC关闭。在时间t3至t4期间,升降压式功率级12处于第三状态,此时开关SWA及SWC打开而开关SWB及SWD关闭。在时间t4至t5期间,升降压式功率级12回到第二状态。其中第二状态在一个周期中出现二次,如果能改变切换顺序将两次的第二状态排在一起,将可以减少切换损失提高效能。此外,当信号VU上升或下降而接近信号VX的峰值或信号VY的谷值时,信号VB或VC的工作周期(duty)将非常短,因此开关SWB或SWC可能还没完全打开(turn on)便又关上,这除了增加切换损失之外没有任何意义。Fig. 2 shows the waveform diagram of the signal in Fig. 1, wherein the waveform 26 is the signal VY, the waveform 28 is the signal VU, the waveform 30 is the signal VX, the waveform 32 is the signal VZ1, the waveform 34 is the signal VZ2, the waveform 36 is the signal VA, and the waveform 38 is signal VB, waveform 40 is signal VC, and waveform 42 is signal VD. 1 and 2, when the signal VX is greater than the signal VU, such as from time t1 to t2, the signal VZ1 is at a low level, as shown in waveforms 28, 30 and 32, when the signal VX is smaller than the signal VU, such as from time t2 to t2 At t5, the signal VZ1 is at a high level. When the signal VY is greater than the signal VU, such as time t0 to t3, the signal VZ2 is low level, as shown in waveforms 26, 28 and 34, when the signal VY is smaller than the signal VU, such as time t3 to t4, the signal VZ2 is Micro Motion bit. Assuming that a cycle of the output voltage Vo is represented by time t1 to t5, during the period from time t1 to t2, the buck-boost power stage 12 is in the first state, at this time the switches SWA and SWC are turned off and the switches SWB and SWD are turned on (turn on), as shown in waveforms 36 to 42. During the time t2 to t3, the buck-boost power stage 12 is in the second state, at this time the switches SWA and SWD are turned on and the switches SWB and SWC are turned off. During time t3 to t4, the buck-boost power stage 12 is in the third state, at this time, the switches SWA and SWC are turned on and the switches SWB and SWD are turned off. During time t4 to t5, the buck-boost power stage 12 returns to the second state. Wherein the second state appears twice in one cycle, if the switching sequence can be changed to arrange the two second states together, the switching loss can be reduced and the performance can be improved. In addition, when the signal VU rises or falls and approaches the peak value of the signal VX or the valley value of the signal VY, the duty cycle of the signal VB or VC will be very short, so the switch SWB or SWC may not be fully turned on (turn on) It turns off again, which has no meaning other than increasing the switching loss.
美国专利号7,176,667也提出一种升降压式电源转换器的控制电路,其在升降压模式时利用一随输出电压Vo调节脉宽的脉宽调变信号以及一固定脉宽的信号决定开关SWA、SWB、SWC及SWD的切换,然而,这种插入固定脉宽信号的方式在模式转换时可能造成不连续的工作周期,进而导致大输出涟波。U.S. Patent No. 7,176,667 also proposes a control circuit for a buck-boost power converter, which uses a pulse width modulation signal that adjusts the pulse width with the output voltage Vo and a signal with a fixed pulse width to determine the switch in the buck-boost mode. The switching of SWA, SWB, SWC and SWD, however, this method of inserting a fixed pulse width signal may cause a discontinuous duty cycle during mode conversion, resulting in a large output ripple.
因此已知的升降压式电源转换器的控制电路存在着上述种种不便和问题。Therefore, there are various inconveniences and problems mentioned above in the control circuit of the known buck-boost power converter.
发明内容 Contents of the invention
本发明的目的,在于提出一种升降压式电源转换器的控制电路及方法。The object of the present invention is to provide a control circuit and method for a buck-boost power converter.
本发明的另一目的,在于提出一种最佳化开关切换顺序以改善效能的控制电路及方法。Another object of the present invention is to provide a control circuit and method for optimizing switching sequence of switches to improve performance.
本发明的又一目的,在于提出一种减少输出涟波的控制电路及方法。Another object of the present invention is to provide a control circuit and method for reducing output ripple.
本发明的再一目的,在于提出一种加速由省电模式回到正常操作的瞬时响应的控制电路及方法。Another object of the present invention is to provide a control circuit and method for accelerating the transient response from the power-saving mode back to normal operation.
为实现上述目的,本发明的技术解决方案是:For realizing the above object, technical solution of the present invention is:
一种升降压式电源转换器的控制电路,用以提供控制信号驱动升降压式功率级以将输入电压转换为输出电压,所述升降压式功率级包含电感及至少二开关连接所述电感,其特征在于所述控制电路包括:A control circuit of a buck-boost power converter, which is used to provide a control signal to drive a buck-boost power stage to convert an input voltage into an output voltage. The buck-boost power stage includes an inductor and at least two switch connections The inductance is characterized in that the control circuit includes:
回授电路,检测所述输出电压产生回授信号;A feedback circuit, detecting the output voltage to generate a feedback signal;
误差放大器连接所述回授电路,放大所述回授信号和一参考电压之间的差值产生误差信号;The error amplifier is connected to the feedback circuit, and amplifies the difference between the feedback signal and a reference voltage to generate an error signal;
动态工作周期产生器,在被启动后根据检测信号产生第一信号;以及a dynamic duty cycle generator, which generates a first signal according to the detection signal after being activated; and
驱动电路连接所述误差放大器及动态工作周期产生器,根据所述误差信号和第一信号决定所述控制信号。The drive circuit is connected to the error amplifier and the dynamic duty cycle generator, and determines the control signal according to the error signal and the first signal.
本发明的升降压式电源转换器的控制电路还可以采用以下的技术措施来进一步实现。The control circuit of the buck-boost power converter of the present invention can also be further realized by adopting the following technical measures.
前述的控制电路,其中检测信号与所述输入电压、输出电压、通过所述电感的电感电流及所述输出电压的变化量其中至少一个相关。In the aforementioned control circuit, the detection signal is related to at least one of the input voltage, the output voltage, the inductor current passing through the inductor, and the variation of the output voltage.
前述的控制电路,其中所述动态工作周期产生器根据所述检测信号提供补偿信号。The aforementioned control circuit, wherein the dynamic duty cycle generator provides a compensation signal according to the detection signal.
前述的控制电路,其中所述动态工作周期产生器包括:The aforementioned control circuit, wherein the dynamic duty cycle generator includes:
模拟数字转换器,将所述检测信号转换为补偿信号;以及an analog-to-digital converter that converts the detection signal into a compensation signal; and
数字模拟转换器连接所述模拟数字转换器,将所述补偿信号转换为所述第一信号。A digital-to-analog converter is connected to the analog-to-digital converter to convert the compensation signal into the first signal.
前述的控制电路,其中更包括工作周期补偿器连接所述误差放大器及动态工作周期产生器,根据所述补偿信号补偿所述误差信号。The aforementioned control circuit further includes a duty cycle compensator connected to the error amplifier and the dynamic duty cycle generator, and compensates the error signal according to the compensation signal.
前述的控制电路,其中所述工作周期补偿器包括:The aforementioned control circuit, wherein the duty cycle compensator includes:
分压电路,根据所述补偿信号分压所述误差信号产生第一电压;a voltage divider circuit, which divides the error signal according to the compensation signal to generate a first voltage;
电压电流转换器连接所述分压电路,将所述第一电压转换为电流;a voltage-to-current converter connected to the voltage dividing circuit to convert the first voltage into a current;
电阻连接在所述误差放大器及电压电流转换器之间,因应所述电流产生一第二电压供调整所述误差信号。The resistor is connected between the error amplifier and the voltage-to-current converter, and generates a second voltage for adjusting the error signal in response to the current.
前述的控制电路,其中所述驱动电路包括:The aforementioned control circuit, wherein the drive circuit includes:
第一比较器连接所述误差放大器,比较所述误差信号及一锯齿波信号产生第一比较信号;The first comparator is connected to the error amplifier, and compares the error signal with a sawtooth signal to generate a first comparison signal;
第二比较器连接所述动态工作周期产生器,比较所述第一信号及锯齿波信号产生第二比较信号;以及The second comparator is connected to the dynamic duty cycle generator, and compares the first signal and the sawtooth signal to generate a second comparison signal; and
逻辑电路连接所述第一比较器及第二比较器,根据所述第一及第二比较信号产生所述控制信号。The logic circuit is connected to the first comparator and the second comparator, and generates the control signal according to the first and second comparison signals.
前述的控制电路,其中更包括模式选择器连接所述动态工作周期产生器根据所述检测信号产生致能信号以启动所述动态工作周期产生器。The aforementioned control circuit further includes a mode selector connected to the dynamic duty cycle generator to generate an enable signal according to the detection signal to activate the dynamic duty cycle generator.
前述的控制电路,其中更包括模式选择器连接所述动态工作周期产生器根据所述误差信号产生致能信号以启动所述动态工作周期产生器。The aforementioned control circuit further includes a mode selector connected to the dynamic duty cycle generator to generate an enable signal according to the error signal to activate the dynamic duty cycle generator.
前述的控制电路,其中更包括箝制检测器连接所述误差放大器,根据第二检测信号箝制所述误差信号的准位,所述第二检测信号与所述输入电压、输出电压及电感电流其中至少一个相关。The aforementioned control circuit further includes a clamp detector connected to the error amplifier, and clamps the level of the error signal according to the second detection signal, the second detection signal is related to at least one of the input voltage, the output voltage and the inductor current a related.
一种升降压式电源转换器的控制方法,用以提供控制信号驱动升降压式功率级以将输入电压转换为输出电压,所述升降压式功率级包含电感及至少二开关连接所述电感,其特征在于所述控制方法包括下列步骤:A control method for a buck-boost power converter, which is used to provide a control signal to drive a buck-boost power stage to convert an input voltage into an output voltage. The buck-boost power stage includes an inductor and at least two switch connections Described inductance, it is characterized in that described control method comprises the following steps:
(A)检测所述输出电压产生回授信号;(A) detecting the output voltage to generate a feedback signal;
(B)放大所述回授信号及一参考电压之间的差值产生误差信号;(B) amplifying the difference between the feedback signal and a reference voltage to generate an error signal;
(C)根据检测信号决定第一信号;(C) determining the first signal according to the detection signal;
(D)根据致能信号触发所述第一信号;以及(D) triggering the first signal according to an enabling signal; and
(E)根据所述误差信号及第一信号决定所述控制信号。(E) determining the control signal according to the error signal and the first signal.
前述的控制方法,其中所述检测信号与所述输入电压、输出电压、通过所述电感的电感电流及所述输出电压的变化量其中至少一个相关。In the aforementioned control method, wherein the detection signal is related to at least one of the input voltage, the output voltage, the inductor current passing through the inductor, and the variation of the output voltage.
前述的控制方法,其中更包括The aforementioned control method, which further includes
根据检测信号提供补偿信号;以及providing a compensation signal based on the detection signal; and
根据所述补偿信号补偿所述误差信号。The error signal is compensated according to the compensation signal.
前述的控制方法,其中所述步骤C包括:The aforementioned control method, wherein said step C comprises:
将所述检测信号转换为所述补偿信号;以及converting the detection signal into the compensation signal; and
将所述补偿信号转换为所述第一信号。converting the compensation signal into the first signal.
前述的控制方法,其中所述根据所述补偿信号补偿所述误差信号的步骤包括:The aforementioned control method, wherein the step of compensating the error signal according to the compensation signal comprises:
根据所述补偿信号分压所述误差信号产生第一电压;dividing the error signal according to the compensation signal to generate a first voltage;
将所述第一电压转换为电流给一电阻以产生一第二电压;以及converting the first voltage to a current to a resistor to generate a second voltage; and
藉由所述第二电压调整所述误差信号。The error signal is adjusted by the second voltage.
前述的控制方法,其中所述步骤E包括:The aforementioned control method, wherein said step E includes:
比较所述误差信号及一锯齿波信号产生第一比较信号;comparing the error signal with a sawtooth signal to generate a first comparison signal;
比较所述第一信号及锯齿波信号产生第二比较信号;以及comparing the first signal and the sawtooth signal to generate a second comparison signal; and
根据所述第一及第二比较信号产生所述控制信号。The control signal is generated according to the first and second comparison signals.
前述的控制方法,其中更包括根据所述检测信号产生所述致能信号。The aforementioned control method further includes generating the enable signal according to the detection signal.
前述的控制方法,其中更包括根据所述误差信号产生所述致能信号。The aforementioned control method further includes generating the enabling signal according to the error signal.
前述的控制方法,其中更包括根据第二检测信号箝制所述误差信号的准位,所述第二检测信号与所述输入电压、输出电压及电感电流其中至少一个相关。The aforementioned control method further includes clamping the level of the error signal according to a second detection signal, and the second detection signal is related to at least one of the input voltage, the output voltage and the inductor current.
一种升降压式电源转换器的控制电路,用以提供控制信号驱动升降压式功率级以将输入电压转换为输出电压,所述升降压式功率级包含电感及至少二开关连接所述电感,其特征在于所述控制电路包括:A control circuit of a buck-boost power converter, which is used to provide a control signal to drive a buck-boost power stage to convert an input voltage into an output voltage. The buck-boost power stage includes an inductor and at least two switch connections The inductance is characterized in that the control circuit includes:
回授电路,检测所述输出电压产生回授信号;A feedback circuit, detecting the output voltage to generate a feedback signal;
误差放大器连接所述回授电路,放大所述回授信号及一参考电压之间的差值产生第一误差信号;The error amplifier is connected to the feedback circuit, and amplifies the difference between the feedback signal and a reference voltage to generate a first error signal;
工作周期补偿器连接所述误差放大器,根据补偿信号补偿所述第一误差信号产生第二误差信号;The duty cycle compensator is connected to the error amplifier, and compensates the first error signal according to the compensation signal to generate a second error signal;
工作周期产生器连接所述工作周期补偿器,在被启动后产生一第一信号;以及a duty cycle generator connected to the duty cycle compensator and generating a first signal after being activated; and
驱动电路连接所述工作周期补偿器及工作周期产生器,根据所述第二误差信号及第一信号决定所述控制信号。The driving circuit is connected to the duty cycle compensator and the duty cycle generator, and determines the control signal according to the second error signal and the first signal.
前述的控制电路,其中所述工作周期补偿器包括:The aforementioned control circuit, wherein the duty cycle compensator includes:
分压电路,根据所述补偿信号分压所述第一误差信号产生第一电压;a voltage dividing circuit, which divides the first error signal according to the compensation signal to generate a first voltage;
电压电流转换器连接所述分压电路,将所述第一电压转换为电流;以及a voltage-to-current converter connected to the voltage dividing circuit to convert the first voltage into a current; and
电阻连接在所述误差放大器及电压电流转换器之间,因应所述电流产生一第二电压与所述第一误差信号相减产生所述第二误差信号。The resistor is connected between the error amplifier and the voltage-to-current converter, and a second voltage generated in response to the current is subtracted from the first error signal to generate the second error signal.
前述的控制电路,其中所述工作周期产生器根据检测信号提供动态的所述第一信号,所述检测信号与所述输入电压、输出电压、通过所述电感的电感电流及所述输出电压的变化量其中至少一个相关。The aforementioned control circuit, wherein the duty cycle generator provides the dynamic first signal according to the detection signal, the detection signal is related to the input voltage, the output voltage, the inductor current passing through the inductor, and the output voltage At least one of the deltas is correlated.
前述的控制电路,其中所述工作周期产生器根据所述检测信号产生所述补偿信号。The aforementioned control circuit, wherein the duty cycle generator generates the compensation signal according to the detection signal.
前述的控制电路,其中所述工作周期产生器包括:The aforementioned control circuit, wherein the duty cycle generator includes:
模拟数字转换器,将所述检测信号转换为所述补偿信号;以及an analog-to-digital converter converting the detection signal into the compensation signal; and
数字模拟转换器连接所述模拟数字转换器,将所述补偿信号转换为所述第一信号。A digital-to-analog converter is connected to the analog-to-digital converter to convert the compensation signal into the first signal.
前述的控制电路,其中所述工作周期产生器提供固定的所述第一信号。The aforementioned control circuit, wherein the duty cycle generator provides a fixed first signal.
前述的控制电路,其中所述驱动电路包括:The aforementioned control circuit, wherein the drive circuit includes:
第一比较器连接所述工作周期补偿器,比较所述第二误差信号及一锯齿波信号产生第一比较信号;The first comparator is connected to the duty cycle compensator, and compares the second error signal with a sawtooth signal to generate a first comparison signal;
第二比较器连接所述工作周期产生器,比较所述第一信号及锯齿波信号产生第二比较信号;以及The second comparator is connected to the duty cycle generator, and compares the first signal and the sawtooth signal to generate a second comparison signal; and
逻辑电路连接所述第一比较器及第二比较器,根据所述第一及第二比较信号产生所述控制信号。The logic circuit is connected to the first comparator and the second comparator, and generates the control signal according to the first and second comparison signals.
前述的控制电路,其中更包括模式选择器连接所述工作周期产生器,根据检测信号产生致能信号以启动所述工作周期产生器,所述检测信号与所述输入电压、输出电压、通过所述电感的电感电流及所述输出电压的变化量其中至少一个相关。The aforementioned control circuit further includes a mode selector connected to the duty cycle generator, and generates an enable signal to start the duty cycle generator according to the detection signal, and the detection signal is related to the input voltage, the output voltage, and the At least one of the inductor current of the inductor and the variation of the output voltage is related.
前述的控制电路,其中更包括模式选择器连接所述工作周期产生器,根据所述误差信号产生致能信号以启动所述工作周期产生器。The aforementioned control circuit further includes a mode selector connected to the duty cycle generator for generating an enable signal according to the error signal to activate the duty cycle generator.
前述的控制电路,其中更包括箝制检测器连接所述误差放大器,根据检测信号箝制所述第一误差信号的准位,所述检测信号与所述输入电压、输出电压及通过所述电感的电感电流其中至少一个相关。The aforementioned control circuit further includes a clamping detector connected to the error amplifier, clamping the level of the first error signal according to the detection signal, the detection signal and the input voltage, the output voltage and the inductance passing through the inductor At least one of the currents is relevant.
一种升降压式电源转换器的控制方法,用以提供控制信号驱动升降压式功率级以将输入电压转换为输出电压,所述升降压式功率级包含电感及至少二开关连接所述电感,其特征在于所述控制方法包括下列步骤:A control method for a buck-boost power converter, which is used to provide a control signal to drive a buck-boost power stage to convert an input voltage into an output voltage. The buck-boost power stage includes an inductor and at least two switch connections Described inductance, it is characterized in that described control method comprises the following steps:
(A)检测所述输出电压产生回授信号;(A) detecting the output voltage to generate a feedback signal;
(B)放大所述回授信号及一参考电压之间的差值产生第一误差信号;(B) amplifying the difference between the feedback signal and a reference voltage to generate a first error signal;
(C)补偿所述第一误差信号产生第二误差信号;(C) compensating the first error signal to generate a second error signal;
(D)根据致能信号触发第一信号;以及(D) triggering the first signal according to the enabling signal; and
(E)根据所述第二误差信号及第一信号决定所述控制信号。(E) determining the control signal according to the second error signal and the first signal.
前述的控制方法,其中所述步骤C包括根据检测信号决定补偿信号供补偿所述第一误差信号,所述检测信号与所述输入电压、输出电压、通过所述电感的电感电流及所述输出电压的变化量其中至少一个相关。The aforementioned control method, wherein the step C includes determining a compensation signal for compensating the first error signal according to the detection signal, the detection signal is related to the input voltage, the output voltage, the inductor current passing through the inductor, and the output At least one of the variations in voltage is correlated.
前述的控制方法,其中所述步骤C包括:The aforementioned control method, wherein said step C comprises:
根据所述补偿信号分压所述第一误差信号产生第一电压;dividing the first error signal according to the compensation signal to generate a first voltage;
将所述第一电压转换为电流给一电阻以产生一第二电压;以及converting the first voltage to a current to a resistor to generate a second voltage; and
将所述第一误差信号减去第二电压产生所述第二误差信号。Subtracting the second voltage from the first error signal produces the second error signal.
前述的控制方法,其中更包括根据所述检测信号提供动态的所述第一信号。The aforementioned control method further includes providing the dynamic first signal according to the detection signal.
前述的控制方法,其中所述根据检测信号提供动态的所述第一信号的步骤包括:The aforementioned control method, wherein the step of providing the dynamic first signal according to the detection signal comprises:
将检测信号转换为所述补偿信号;以及converting the detection signal into said compensation signal; and
将所述补偿信号转换为所述第一信号。converting the compensation signal into the first signal.
前述的控制方法,其中更包括提供固定的所述第一信号。The aforementioned control method further includes providing a fixed first signal.
前述的控制方法,其中所述步骤E包括:The aforementioned control method, wherein said step E includes:
比较所述第二误差信号及一锯齿波信号产生第一比较信号;comparing the second error signal with a sawtooth signal to generate a first comparison signal;
比较所述第一信号及锯齿波信号产生第二比较信号;以及comparing the first signal and the sawtooth signal to generate a second comparison signal; and
根据所述第一及第二比较信号产生所述控制信号。The control signal is generated according to the first and second comparison signals.
前述的控制方法,其中更包括根据检测信号产生所述致能信号,所述检测信号与所述输入电压、输出电压、通过所述电感的电感电流及所述输出电压之变化量其中至少一个相关。The aforementioned control method further includes generating the enable signal according to a detection signal related to at least one of the input voltage, the output voltage, the inductor current passing through the inductor, and the variation of the output voltage .
前述的控制方法,其中更包括根据所述误差信号产生所述致能信号。The aforementioned control method further includes generating the enabling signal according to the error signal.
前述的控制方法,其中更包括根据检测信号箝制所述第一误差信号的准位,所述检测信号与所述输入电压、输出电压及通过所述电感的电感电流其中至少一个相关。The aforementioned control method further includes clamping the level of the first error signal according to a detection signal related to at least one of the input voltage, the output voltage, and the inductor current passing through the inductor.
一种升降压式电源转换器的控制电路,用以提供控制信号驱动升降压式功率级以将输入电压转换为输出电压,所述升降压式功率级包含电感及至少二开关连接所述电感,其特征在于所述控制电路包括:A control circuit of a buck-boost power converter, which is used to provide a control signal to drive a buck-boost power stage to convert an input voltage into an output voltage. The buck-boost power stage includes an inductor and at least two switch connections The inductance is characterized in that the control circuit includes:
回授电路,检测所述输出电压产生回授信号;A feedback circuit, detecting the output voltage to generate a feedback signal;
误差放大器连接所述回授电路,放大所述回授信号及一参考电压之间的差值产生误差信号;The error amplifier is connected to the feedback circuit, and amplifies the difference between the feedback signal and a reference voltage to generate an error signal;
箝制检测器连接所述误差放大器,根据检测信号箝制所述误差信号的准位;以及A clamping detector is connected to the error amplifier, and clamps the level of the error signal according to the detection signal; and
驱动电路连接所述误差放大器,根据所述误差信号及一第一信号决定所述控制信号。The drive circuit is connected to the error amplifier, and determines the control signal according to the error signal and a first signal.
前述的控制电路,其中所述检测信号与所述输入电压、输出电压及通过所述电感的电感电流其中至少一个相关。In the aforementioned control circuit, wherein the detection signal is related to at least one of the input voltage, the output voltage, and the inductor current passing through the inductor.
前述的控制电路,其中更包括动态工作周期产生器根据第二检测信号产生所述第一信号,所述第二检测信号与所述输入电压、输出电压、电感电流及所述输出电压的变化量其中至少一个相关。The aforementioned control circuit, which further includes a dynamic duty cycle generator to generate the first signal according to the second detection signal, the second detection signal is related to the variation of the input voltage, output voltage, inductor current and the output voltage At least one of them is relevant.
前述的控制电路,其中所述动态工作周期产生器更包括根据所述第二检测信号提供补偿信号。In the aforementioned control circuit, the dynamic duty cycle generator further includes providing a compensation signal according to the second detection signal.
前述的控制电路,其中所述动态工作周期产生器包括:The aforementioned control circuit, wherein the dynamic duty cycle generator includes:
模拟数字转换器,将所述第二检测信号转换为补偿信号;以及an analog-to-digital converter converting the second detection signal into a compensation signal; and
数字模拟转换器连接所述模拟数字转换器,将所述补偿信号转换为所述第一信号。A digital-to-analog converter is connected to the analog-to-digital converter to convert the compensation signal into the first signal.
前述的控制电路,其中更包括工作周期补偿器连接所述误差放大器及动态工作周期产生器,根据所述补偿信号补偿所述误差信号。The aforementioned control circuit further includes a duty cycle compensator connected to the error amplifier and the dynamic duty cycle generator, and compensates the error signal according to the compensation signal.
前述的控制电路,其中所述工作周期补偿器包括:The aforementioned control circuit, wherein the duty cycle compensator includes:
分压电路,根据所述补偿信号分压所述误差信号产生第一电压;a voltage divider circuit, which divides the error signal according to the compensation signal to generate a first voltage;
电压电流转换器连接所述分压电路,将所述第一电压转换为电流;以及a voltage-to-current converter connected to the voltage dividing circuit to convert the first voltage into a current; and
电阻连接在所述误差放大器及电压电流转换器之间,因应所述电流产生一第二电压调整所述误差信号。The resistor is connected between the error amplifier and the voltage-to-current converter, and generates a second voltage to adjust the error signal in response to the current.
前述的控制电路,其中更包括模式选择器连接所述动态工作周期产生器根据所述第二检测信号产生致能信号以启动所述动态工作周期产生器。The aforementioned control circuit further includes a mode selector connected to the dynamic duty cycle generator to generate an enable signal according to the second detection signal to activate the dynamic duty cycle generator.
前述的控制电路,其中更包括模式选择器连接所述动态工作周期产生器根据所述误差信号产生致能信号以启动所述动态工作周期产生器。The aforementioned control circuit further includes a mode selector connected to the dynamic duty cycle generator to generate an enable signal according to the error signal to activate the dynamic duty cycle generator.
前述的控制电路,其中所述驱动电路包括:The aforementioned control circuit, wherein the drive circuit includes:
第一比较器连接所述误差放大器,比较所述误差信号及一锯齿波信号产生第一比较信号;The first comparator is connected to the error amplifier, and compares the error signal with a sawtooth signal to generate a first comparison signal;
第二比较器,比较所述第一信号及锯齿波信号产生第二比较信号;以及a second comparator, comparing the first signal and the sawtooth signal to generate a second comparison signal; and
逻辑电路连接所述第一比较器及第二比较器,根据所述第一及第二比较信号产生所述控制信号。The logic circuit is connected to the first comparator and the second comparator, and generates the control signal according to the first and second comparison signals.
一种升降压式电源转换器的控制方法,用以提供控制信号驱动升降压式功率级以将输入电压转换为输出电压,所述升降压式功率级包含电感及至少二开关连接所述电感,其特征在于所述控制方法包括下列步骤:A control method for a buck-boost power converter, which is used to provide a control signal to drive a buck-boost power stage to convert an input voltage into an output voltage. The buck-boost power stage includes an inductor and at least two switch connections Described inductance, it is characterized in that described control method comprises the following steps:
(A)检测所述输出电压产生回授信号;(A) detecting the output voltage to generate a feedback signal;
(B)放大所述回授信号及一参考电压之间的差值产生误差信号;(B) amplifying the difference between the feedback signal and a reference voltage to generate an error signal;
(C)根据检测信号箝制所述误差信号的准位;以及(C) clamping the level of the error signal according to the detection signal; and
(D)根据所述误差信号及一第一信号决定所述控制信号。(D) determining the control signal according to the error signal and a first signal.
前述的控制方法,其中所述检测信号与所述输入电压、输出电压及通过所述电感的电感电流其中至少一个相关。In the aforementioned control method, wherein the detection signal is related to at least one of the input voltage, the output voltage, and the inductor current passing through the inductor.
前述的控制方法,其中更包括根据第二检测信号决定所述第一信号,所述第二检测信号与所述输入电压、输出电压、电感电流及所述输出电压的变化量其中至少一个相关。The aforementioned control method further includes determining the first signal according to a second detection signal, and the second detection signal is related to at least one of the input voltage, output voltage, inductor current, and variation of the output voltage.
前述的控制方法,其中更包括根据所述第二检测信号提供补偿信号以补偿所述误差信号。The aforementioned control method further includes providing a compensation signal to compensate the error signal according to the second detection signal.
前述的控制方法,其中所述决定所述第一信号的步骤包括:The aforementioned control method, wherein the step of determining the first signal includes:
将所述第二检测信号转换为补偿信号;以及converting the second detection signal into a compensation signal; and
将所述补偿信号转换为所述第一信号。converting the compensation signal into the first signal.
前述的控制方法,其中所述补偿所述误差信号的步骤包括:The aforementioned control method, wherein the step of compensating the error signal comprises:
根据所述补偿信号分压所述误差信号产生第一电压;dividing the error signal according to the compensation signal to generate a first voltage;
将所述第一电压转换为电流给一电阻产生一第二电压;以及converting the first voltage to a current to generate a second voltage for a resistor; and
根据所述第二电压调整所述误差信号。The error signal is adjusted according to the second voltage.
前述的控制方法,其中更包括根据所述第二检测信号产生致能信号以触发所述第一信号。The aforementioned control method further includes generating an enabling signal to trigger the first signal according to the second detection signal.
前述的控制方法,其中更包括根据所述误差信号产生致能信号以触发所述第一信号。The aforementioned control method further includes generating an enabling signal to trigger the first signal according to the error signal.
前述的控制方法,其中所述步骤D包括:The aforementioned control method, wherein said step D comprises:
比较所述误差信号及一锯齿波信号产生第一比较信号;comparing the error signal with a sawtooth signal to generate a first comparison signal;
比较所述第一信号及锯齿波信号产生第二比较信号;以及comparing the first signal and the sawtooth signal to generate a second comparison signal; and
根据所述第一及第二比较信号产生所述控制信号。The control signal is generated according to the first and second comparison signals.
一种升降压式电源转换器的控制电路,用以提供控制信号驱动升降压式功率级以将输入电压转换为输出电压,所述升降压式功率级包含电感及至少二开关连接所述电感,其特征在于所述控制电路包括:A control circuit of a buck-boost power converter, which is used to provide a control signal to drive a buck-boost power stage to convert an input voltage into an output voltage. The buck-boost power stage includes an inductor and at least two switch connections The inductance is characterized in that the control circuit includes:
回授电路,检测所述输出电压产生回授信号;A feedback circuit, detecting the output voltage to generate a feedback signal;
误差放大器连接所述回授电路,放大所述回授信号及一参考电压之间的差值产生第一误差信号;The error amplifier is connected to the feedback circuit, and amplifies the difference between the feedback signal and a reference voltage to generate a first error signal;
箝制检测器连接所述误差放大器,根据第一检测信号箝制所述第一误差信号的准位;A clamping detector is connected to the error amplifier, and clamps the level of the first error signal according to the first detection signal;
工作周期补偿器连接所述误差放大器,根据补偿信号补偿所述第一误差信号产生第二误差信号;The duty cycle compensator is connected to the error amplifier, and compensates the first error signal according to the compensation signal to generate a second error signal;
动态工作周期产生器连接所述工作周期补偿器,在被启动后根据第二检测信号产生一第一信号;The dynamic duty cycle generator is connected to the duty cycle compensator, and generates a first signal according to the second detection signal after being activated;
模式选择器连接所述动态工作周期产生器,提供致能信号以启动所述动态工作周期产生器;以及a mode selector connected to the dynamic duty cycle generator, providing an enable signal to start the dynamic duty cycle generator; and
驱动电路连接所述工作周期补偿器及动态工作周期产生器,根据所述第二误差信号及第一信号决定所述控制信号。The driving circuit is connected to the duty cycle compensator and the dynamic duty cycle generator, and determines the control signal according to the second error signal and the first signal.
前述的控制电路,其中所述第一检测信号与所述输入电压、输出电压及通过所述电感的电感电流其中至少一个相关。In the aforementioned control circuit, wherein the first detection signal is related to at least one of the input voltage, the output voltage, and the inductor current passing through the inductor.
前述的控制电路,其中所述第二检测信号与所述输入电压、输出电压、电感电流及所述输出电压的变化量其中至少一个相关。In the aforementioned control circuit, wherein the second detection signal is related to at least one of the input voltage, the output voltage, the inductor current, and the variation of the output voltage.
前述的控制电路,其中所述工作周期补偿器包括:The aforementioned control circuit, wherein the duty cycle compensator includes:
分压电路,根据所述补偿信号分压所述第一误差信号产生第一电压;a voltage dividing circuit, which divides the first error signal according to the compensation signal to generate a first voltage;
电压电流转换器,连接所述分压电路,将所述第一电压转换为电流;a voltage-to-current converter connected to the voltage dividing circuit to convert the first voltage into a current;
电阻,连接在所述误差放大器及电压电流转换器之间,因应所述电流产生一第二电压与所述第一误差信号相减产生所述第二误差信号。The resistor is connected between the error amplifier and the voltage-to-current converter, generates a second voltage corresponding to the current and subtracts the first error signal to generate the second error signal.
前述的控制电路,其中所述动态工作周期产生器根据所述第二检测信号提供所述补偿信号给所述工作周期补偿器。The aforementioned control circuit, wherein the dynamic duty cycle generator provides the compensation signal to the duty cycle compensator according to the second detection signal.
前述的控制电路,其中所述动态工作周期产生器包括:The aforementioned control circuit, wherein the dynamic duty cycle generator includes:
模拟数字转换器,将所述第二检测信号转换为所述补偿信号;以及an analog-to-digital converter converting the second detection signal into the compensation signal; and
数字模拟转换器连接所述模拟数字转换器,将所述补偿信号转换为所述第一信号。A digital-to-analog converter is connected to the analog-to-digital converter to convert the compensation signal into the first signal.
前述的控制电路,其中所述模式选择器根据所述第二检测信号产生所述致能信号。In the aforementioned control circuit, wherein the mode selector generates the enable signal according to the second detection signal.
前述的控制电路,其中所述模式选择器根据所述第一误差信号产生所述致能信号器。In the aforementioned control circuit, wherein the mode selector generates the enabling signal device according to the first error signal.
前述的控制电路,其中所述驱动电路包括:The aforementioned control circuit, wherein the drive circuit includes:
第一比较器连接所述工作周期补偿器,比较所述第二误差信号及一锯齿波信号产生第一比较信号;The first comparator is connected to the duty cycle compensator, and compares the second error signal with a sawtooth signal to generate a first comparison signal;
第二比较器连接所述动态工作周期产生器,比较所述第一信号及锯齿波信号产生第二比较信号;以及The second comparator is connected to the dynamic duty cycle generator, and compares the first signal and the sawtooth signal to generate a second comparison signal; and
逻辑电路连接所述第一比较器及第二比较器,根据所述第一及第二比较信号产生所述控制信号。The logic circuit is connected to the first comparator and the second comparator, and generates the control signal according to the first and second comparison signals.
一种升降压式电源转换器的控制方法,用以提供控制信号驱动升降压式功率级以将输入电压转换为输出电压,所述升降压式功率级包含电感及至少二开关连接所述电感,其特征在于所述控制方法包括下列步骤:A control method for a buck-boost power converter, which is used to provide a control signal to drive a buck-boost power stage to convert an input voltage into an output voltage. The buck-boost power stage includes an inductor and at least two switch connections Described inductance, it is characterized in that described control method comprises the following steps:
(A)检测所述输出电压产生回授信号;(A) detecting the output voltage to generate a feedback signal;
(B)放大所述回授信号及一参考电压之间的差值产生第一误差信号;(B) amplifying the difference between the feedback signal and a reference voltage to generate a first error signal;
(C)根据第一检测信号箝制所述第一误差信号的准位;(C) clamping the level of the first error signal according to the first detection signal;
(D)根据致能信号触发一第一信号;(D) triggering a first signal according to the enabling signal;
(E)根据第二检测信号决定所述第一信号;(E) determining the first signal according to the second detection signal;
(F)补偿所述第一误差信号产生第二误差信号;以及(F) compensating the first error signal to generate a second error signal; and
(G)根据所述第二误差信号及第一信号决定所述控制信号。(G) determining the control signal according to the second error signal and the first signal.
前述的控制方法,其中所述第一检测信号与所述输入电压、输出电压及通过所述电感的电感电流其中至少一个相关。In the aforementioned control method, wherein the first detection signal is related to at least one of the input voltage, the output voltage, and the inductor current passing through the inductor.
前述的控制方法,其中所述第二检测信号与所述输入电压、输出电压、电感电流及所述输出电压的变化量其中至少一个相关。In the aforementioned control method, wherein the second detection signal is related to at least one of the input voltage, output voltage, inductor current, and variation of the output voltage.
前述的控制方法,其中所述步骤D包括根据所述第二检测信号产生所述致能信号。In the aforementioned control method, the step D includes generating the enable signal according to the second detection signal.
前述的控制方法,其中所述步骤D包括根据所述第一误差信号产生所述致能信号。In the aforementioned control method, the step D includes generating the enable signal according to the first error signal.
前述的控制方法,其中所述步骤F包括根据所述第二检测信号决定补偿信号以补偿所述第一误差信号。In the aforementioned control method, the step F includes determining a compensation signal to compensate the first error signal according to the second detection signal.
前述的控制方法,其中所述步骤E包括:The aforementioned control method, wherein said step E includes:
将所述第二检测信号转换为所述补偿信号;以及converting the second detection signal into the compensation signal; and
将所述补偿信号转换为模拟的第一信号。The compensation signal is converted into an analog first signal.
前述的控制方法,其中所述步骤F更包括:The aforementioned control method, wherein said step F further includes:
根据所述补偿信号分压所述第一误差信号产生第一电压;dividing the first error signal according to the compensation signal to generate a first voltage;
将所述第一电压转换为电流给一电阻以产生一第二电压;以及converting the first voltage to a current to a resistor to generate a second voltage; and
将所述第一误差信号减去第二电压产生所述第二误差信号。Subtracting the second voltage from the first error signal produces the second error signal.
前述的控制方法,其中所述步骤G包括:The aforementioned control method, wherein said step G includes:
比较所述第二误差信号及一锯齿波信号产生第一比较信号;comparing the second error signal with a sawtooth signal to generate a first comparison signal;
比较所述第一信号及锯齿波信号产生第二比较信号;以及comparing the first signal and the sawtooth signal to generate a second comparison signal; and
根据所述第一及第二比较信号产生所述控制信号。The control signal is generated according to the first and second comparison signals.
采用上述技术方案后,本发明的升降压式电源转换器的控制电路及方法具有以下优点:After adopting the above technical solution, the control circuit and method of the buck-boost power converter of the present invention have the following advantages:
1.最佳化开关切换顺序,减少切换损失、改善效能。1. Optimize the switch switching sequence, reduce switching loss and improve performance.
2.减少输出涟波。2. Reduce output ripple.
附图说明 Description of drawings
图1为已知的同步式升降压式电源转换器示意图;FIG. 1 is a schematic diagram of a known synchronous buck-boost power converter;
图2为图1中信号的波形图;Fig. 2 is the oscillogram of signal among Fig. 1;
图3为本发明的实施例示意图;Fig. 3 is a schematic diagram of an embodiment of the present invention;
图4为图3中升降压式功率级在降压模式下的电流路径示意图;FIG. 4 is a schematic diagram of the current path of the buck-boost power stage in the buck mode in FIG. 3;
图5为图3中升降压式功率级在升降压模式下的电流路径示意图;FIG. 5 is a schematic diagram of the current path of the buck-boost power stage in the buck-boost mode in FIG. 3;
图6为图3中升降压式功率级在升压模式下的电流路径示意图;FIG. 6 is a schematic diagram of the current path of the buck-boost power stage in the boost mode in FIG. 3;
图7为图3中信号的波形图;Fig. 7 is the oscillogram of signal among Fig. 3;
图8为图3中信号的波形图;Fig. 8 is the waveform diagram of signal in Fig. 3;
图9为图3中信号的波形图;Fig. 9 is a waveform diagram of the signal in Fig. 3;
图10为图3中工作周期补偿器的实施例示意图;以及Figure 10 is a schematic diagram of an embodiment of the duty cycle compensator in Figure 3; and
图11为图3中逻辑电路、动态工作周期产生器及模式选择器的实施例示意图。FIG. 11 is a schematic diagram of an embodiment of the logic circuit, the dynamic duty cycle generator and the mode selector in FIG. 3 .
图中,10、升降压式电源转换器12、升降压式功率级14、控制电路16、逻辑电路18、比较器20、比较器22、信号产生器24、误差放大器26、信号VY的波形28、信号VU的波形30、信号VX的波形32、信号VZ1的波形34、信号VZ2的波形36、信号VA的波形38、信号VB的波形40、信号VC的波形42、信号VD的波形50、升降压式电源转换器52、升降压式功率级54、控制电路55、驱动电路56、逻辑电路58、比较器60、比较器62、工作周期补偿器64、动态工作周期产生器66、脉冲省略模式箝制检测器68、模式选择器70、误差放大器72、回授电路74、降压充电路径76、降压放电路径78、升压充电路径80、降压充电或升压放电路径82、降压放电路径84、升压放电路径86、升压充电路径90、信号Vcomp’的波形92、锯齿波信号Vramp的波形94、第一信号Di的波形96、电感电流IL的波形100、信号Vcomp’的波形102、锯齿波信号Vramp的波形104、第一信号Di的波形106、电感电流IL的波形110、信号Vcomp’的波形112、锯齿波信号Vramp的波形114、第一信号Di的波形116、电感电流IL的波形118、电感电流IL的平均电流120、缓冲器122、分压电路124、缓冲器126、电压电流转换器130、锯齿波产生器132、模拟数字转换器134、数字模拟转换器138、比较器140、反相器142、与非门144、反相器。In the figure, 10, buck-boost power converter 12, buck-boost power stage 14, control circuit 16, logic circuit 18, comparator 20, comparator 22, signal generator 24, error amplifier 26, signal VY Waveform 28, waveform 30 of signal VU, waveform 32 of signal VX, waveform 34 of signal VZ1, waveform 36 of signal VZ2, waveform 38 of signal VA, waveform 40 of signal VB, waveform 42 of signal VC, waveform 50 of signal VD , buck-boost power converter 52, buck-boost power stage 54, control circuit 55, drive circuit 56, logic circuit 58, comparator 60, comparator 62, duty cycle compensator 64, dynamic duty cycle generator 66 , pulse omission mode clamp detector 68, mode selector 70, error amplifier 72, feedback circuit 74, buck charging path 76, buck discharging path 78, boost charging path 80, buck charging or boost discharging path 82 , step-down discharge path 84, boost discharge path 86, boost charge path 90, signal Vcomp' waveform 92, sawtooth wave signal Vramp waveform 94, first signal Di waveform 96, inductor current IL waveform 100, signal The waveform 102 of Vcomp', the waveform 104 of the sawtooth signal Vramp, the waveform 106 of the first signal Di, the waveform 110 of the inductor current IL, the waveform 112 of the signal Vcomp', the waveform 114 of the sawtooth signal Vramp, and the waveform of the first signal Di 116, the waveform 118 of the inductor current IL, the average current 120 of the inductor current IL, the buffer 122, the voltage divider circuit 124, the buffer 126, the voltage-current converter 130, the sawtooth wave generator 132, the analog-to-digital converter 134, the digital-to-analog Converter 138, comparator 140, inverter 142, NAND gate 144, inverter.
具体实施方式 Detailed ways
以下结合实施例及其附图对本发明作更进一步说明。The present invention will be further described below in conjunction with embodiment and accompanying drawing.
现请参阅图3,图3显示本发明实施例的示意图。如图所示,所述升降压式电源转换器50中,控制电路54提供控制信号VA、VB、VC及VD分别切换升降压式功率级52中与电感L连接的开关SWA、SWB、SWC及SWD,以将输入电压Vin转换为输出电压Vo。在控制电路54中,回授电路72检测所述输出电压Vo产生回授信号VFB,误差放大器70放大回授信号VFB及参考电压VREF之间的差值产生误差信号Vcomp,脉冲省略模式箝制检测器66根据检测信号S1箝制(clamp)误差信号Vcomp的准位,其中检测信号S1与输入电压Vin、输出电压Vo及电感电流IL其中至少一个有关,模式选择器68根据检测信号S2产生信号S3给逻辑电路56以及产生致能信号EN致能动态工作周期产生器64,其中检测信号S2与输入电压Vin、输出电压Vo、电感电流IL及输出电压变化量其中至少一个有关,在其它实施例中,模式选择器68也可以利用误差信号Vcomp来产生信号S3及EN,动态工作周期产生器64根据检测信号S2决定动态的第一信号Di及补偿信号DDC,工作周期补偿器62根据补偿信号DDC补偿误差信号Vcomp产生误差信号Vcomp’,驱动电路55根据锯齿波信号Vramp、误差信号Vcomp’、第一信号Di及信号S3产生控制信号VA、VB、VC及VD。驱动电路55包括比较器58比较信号Vcomp’及锯齿波信号Vramp产生比较信号S4,比较器60比较锯齿波信号Vramp及第一信号Di产生比较信号S5,以及逻辑电路56根据信号S3、S4及S5决定控制信号VA、VB、VC及VD。Please refer to FIG. 3 , which shows a schematic diagram of an embodiment of the present invention. As shown in the figure, in the buck-boost power converter 50, the control circuit 54 provides control signals VA, VB, VC and VD to switch the switches SWA, SWB, and SWC and SWD are used to convert the input voltage Vin to the output voltage Vo. In the control circuit 54, the feedback circuit 72 detects the output voltage Vo to generate a feedback signal VFB, the error amplifier 70 amplifies the difference between the feedback signal VFB and the reference voltage VREF to generate an error signal Vcomp, and the pulse omission mode clamps the detector 66 clamps the level of the error signal Vcomp according to the detection signal S1, wherein the detection signal S1 is related to at least one of the input voltage Vin, the output voltage Vo and the inductor current IL, and the mode selector 68 generates a signal S3 according to the detection signal S2 to the logic The circuit 56 and the enabling signal EN enable the dynamic duty cycle generator 64, wherein the detection signal S2 is related to at least one of the input voltage Vin, the output voltage Vo, the inductor current IL, and the variation of the output voltage. In other embodiments, the mode The selector 68 can also use the error signal Vcomp to generate the signals S3 and EN, the dynamic duty cycle generator 64 determines the dynamic first signal Di and the compensation signal DDC according to the detection signal S2, and the duty cycle compensator 62 compensates the error signal according to the compensation signal DDC Vcomp generates an error signal Vcomp', and the driving circuit 55 generates control signals VA, VB, VC, and VD according to the sawtooth signal Vramp, the error signal Vcomp', the first signal Di, and the signal S3. The driving circuit 55 includes a comparator 58 comparing the signal Vcomp' and the sawtooth signal Vramp to generate a comparison signal S4, the comparator 60 comparing the sawtooth signal Vramp and the first signal Di to generate a comparison signal S5, and the logic circuit 56 according to the signals S3, S4 and S5 Determine the control signals VA, VB, VC and VD.
图4显示升降压式功率级52在降压模式下的电流路径,在降压模式下,开关SWC维持关闭(turn off)而开关SWD维持打开(tunr on),当开关SWA打开而开关SWB关闭时形成降压充电路径74,当开关SWA关闭而开关SWB打开时形成降压放电路径76。图5显示升降压式功率级52在升降压模式下的电流路径,在升降压模式下,当开关SWA及SWC打开而开关SWB及SWD关闭时形成升压充电路径78,当开关SWA及SWD打开而开关SWB及SWC关闭时形成降压充电或升压放电路径80,当开关SWB及SWD打开而开关SWA及SWC关闭时形成降压放电路径82。图6显示升降压式功率级52在升压模式下的电流路径,在升压模式下,开关SWA维持打开而开关SWB维持关闭,当开关SWC打开而开关SWD关闭时形成升压充电路径86,当开关SWC关闭而开关SWD打开时形成升压放电路径84。FIG. 4 shows the current path of the buck-boost power stage 52 in the buck mode. In the buck mode, the switch SWC is kept closed (turn off) and the switch SWD is kept open (tunr on). When the switch SWA is turned on and the switch SWB A buck charge path 74 is formed when switched off, and a buck discharge path 76 is formed when switch SWA is closed and switch SWB is opened. 5 shows the current path of the buck-boost power stage 52 in the buck-boost mode. In the buck-boost mode, when the switches SWA and SWC are turned on and the switches SWB and SWD are turned off, a boost charging path 78 is formed. When the switch SWA When SWD is open and switches SWB and SWC are closed, a buck charge or boost discharge path 80 is formed, and when switches SWB and SWD are opened and switches SWA and SWC are closed, a buck discharge path 82 is formed. FIG. 6 shows the current path of the buck-boost power stage 52 in the boost mode. In the boost mode, the switch SWA is kept open and the switch SWB is kept closed. When the switch SWC is opened and the switch SWD is closed, a boost charging path 86 is formed. , the boost discharge path 84 is formed when the switch SWC is closed and the switch SWD is opened.
图7显示图3中信号的波形图,其中波形90为误差信号Vcomp’,波形92为锯齿波信号Vramp,波形94为第一信号Di,波形96为通过电感L的电感电流IL。参照图3及图7,在降压模式时,动态工作周期产生器64关闭,因此第一信号Di为零,故开关SWC维持关闭而开关SWD维持打开,误差信号Vcomp’及锯齿波信号Vramp则控制开关SWA及SWB的切换以控制电感电流IL的上升及下降,如波形90、92及96所示,在降压充电周期D2’期间,如时间t6至t7,开关SWA打开而开关SWB关闭故电感电流IL上升,在降压放电周期D3’期间,如时间t7至t8,开关SWA关闭而开关SWB打开故电感电流IL下降。在由降压模式进入升降压模式时,如时间t8所示,模式选择器68送出致能信号EN致能动态工作周期产生器64,因此第一信号Di不为零,如波形94所示,故产生升压充电周期D1,如时间t8至t9,由于第一信号Di随检测信号S2改变,故升压充电周期D1也随信号S2变化,为了避免因插入升压充电周期D1而导致大输出涟波,动态工作周期产生器64送出补偿信号DDC至工作周期补偿器62以使误差信号Vcomp’随第一信号Di的上升而下降,如波形90及94所示,因此降压充电周期由D2’减少为D2而降压放电周期由D3’增加为D3,如此电感电流IL在每一周期的起始准位与结束准位相同,如时间t8及t11所示,故能避免大输出涟波。由图7的波形96可知,时间t8至t11可视为一个周期,其中时间t8至t9为升压充电状态,时间t9至t10为降压充电状态,时间t10至t11为降压放电状态,在每一个周期中没有重复出现相同的状态,换言之,本发明的控制电路54最佳化开关SWA、SWB、SWC及SWD的切换顺序,因而减少切换损失。在本实施例中虽然仅说明由降压模式进入升降压模式时的操作,但本领域的技术人员可以很轻易的由本实施例推得由升压模式进入升降压模式时的操作,故于此不再赘述。7 shows the waveform diagram of the signal in FIG. 3, wherein the waveform 90 is the error signal Vcomp', the waveform 92 is the sawtooth signal Vramp, the waveform 94 is the first signal Di, and the waveform 96 is the inductor current IL passing through the inductor L. Referring to FIG. 3 and FIG. 7, in the step-down mode, the dynamic duty cycle generator 64 is closed, so the first signal Di is zero, so the switch SWC remains closed and the switch SWD remains open, and the error signal Vcomp' and the sawtooth signal Vramp are Control the switching of switches SWA and SWB to control the rise and fall of the inductor current IL, as shown in waveforms 90, 92 and 96, during the step-down charging period D2', such as time t6 to t7, the switch SWA is turned on and the switch SWB is turned off. The inductor current IL increases, and during the step-down discharge cycle D3', such as time t7 to t8, the switch SWA is turned off and the switch SWB is turned on, so the inductor current IL decreases. When entering the buck-boost mode from the buck mode, as shown at time t8, the mode selector 68 sends the enable signal EN to enable the dynamic duty cycle generator 64, so the first signal Di is not zero, as shown in the waveform 94 , so the boost charging cycle D1 is generated, such as time t8 to t9, since the first signal Di changes with the detection signal S2, the boost charging cycle D1 also changes with the signal S2, in order to avoid the large output ripple, the dynamic duty cycle generator 64 sends a compensation signal DDC to the duty cycle compensator 62 so that the error signal Vcomp' decreases with the rise of the first signal Di, as shown in waveforms 90 and 94, so the step-down charging cycle is formed by D2' is reduced to D2 and the step-down discharge cycle is increased from D3' to D3, so that the start level and end level of the inductor current IL in each cycle are the same, as shown in time t8 and t11, so large output ripple can be avoided Wave. From the waveform 96 in Figure 7, it can be seen that the time t8 to t11 can be regarded as a cycle, wherein the time t8 to t9 is the boost charging state, the time t9 to t10 is the step-down charging state, and the time t10 to t11 is the step-down discharging state. The same state does not appear repeatedly in each cycle, in other words, the control circuit 54 of the present invention optimizes the switching sequence of the switches SWA, SWB, SWC and SWD, thereby reducing switching losses. In this embodiment, although only the operation when entering the buck-boost mode from the buck mode is described, those skilled in the art can easily deduce the operation when entering the buck-boost mode from the boost mode from this embodiment, so No more details here.
图8显示图3中信号的波形图,其中波形100为误差信号Vcomp’,波形102为锯齿波信号Vramp,波形104为第一信号Di,波形106为通过电感L的电感电流IL。在目前的电源转换器中都设有省电模式以节约能源,例如脉冲省略模式(Pulse Skipping Mode;PSM),当传统的升降压式电源转换器要由省电模式回到升降压模式时,必须先进入降压模式,接着等待误差信号Vcomp由零上升至一临界值后才能进入升降压模式,而误差信号Vcomp要由零上升至所述临界值可能需要数个周期。参照图8,当应用本发明的升降压式电源转换器50要由省电模式回到升降压模式时,在第一个周期中由省电模式回到降压模式,由于脉冲省略模式箝制检测器66可以根据检测信号S1动态箝制误差信号Vcomp的准位,因此误差信号Vcomp不用从零慢慢上升,又在降压模式时动态工作周期产生器64关闭,故误差信号Vcomp’=Vcomp,也就是说误差信号Vcomp’被箝制在接近所述临界值的准位,如波形100所示,因此在第二个周期时升降压式电源转换器50立即由降压模式进入升降压模式,并于第三个周期结束瞬时响应。换言之,控制电路54中的脉冲省略模式箝制检测器66可以加速由省电模式回到升降压模式的瞬时响应。8 shows a waveform diagram of the signal in FIG. 3, wherein the waveform 100 is the error signal Vcomp', the waveform 102 is the sawtooth signal Vramp, the waveform 104 is the first signal Di, and the waveform 106 is the inductor current IL passing through the inductor L. In the current power converters, there are power-saving modes to save energy, such as pulse skipping mode (Pulse Skipping Mode; PSM), when the traditional buck-boost power converter returns from power-saving mode to buck-boost mode , it must first enter the buck mode, and then wait for the error signal Vcomp to rise from zero to a critical value before entering the buck-boost mode, and it may take several cycles for the error signal Vcomp to rise from zero to the critical value. Referring to Fig. 8, when the buck-boost power converter 50 of the present invention is to return to the buck-boost mode from the power-saving mode, it returns to the buck mode from the power-saving mode in the first cycle, because the pulse omission mode The clamp detector 66 can dynamically clamp the level of the error signal Vcomp according to the detection signal S1, so the error signal Vcomp does not need to rise slowly from zero, and the dynamic duty cycle generator 64 is turned off in the step-down mode, so the error signal Vcomp'=Vcomp , that is to say, the error signal Vcomp' is clamped at a level close to the critical value, as shown in the waveform 100, so in the second cycle, the buck-boost power converter 50 immediately enters the buck-boost mode from the buck mode mode, and the transient response ends at the third cycle. In other words, the pulse omission mode clamp detector 66 in the control circuit 54 can speed up the transient response from the power saving mode back to the buck-boost mode.
图9显示图3中信号的波形图,其中波形110为误差信号Vcomp’,波形112为锯齿波信号Vramp,波形114为第一信号Di,波形116为通过电感L的电感电流IL,波形118为电感电流IL的平均电流。在升降压模式中,当第一信号Di上升时,如波形114所示,升压充电周期D1增加,故电感电流IL的平均电流跟着上升,如波形118所示,同时动态工作周期产生器64将输出补偿信号DDC至工作周期补偿器62以使误差信号Vcomp’下降,如波形110所示。当第一信号Di改变时,电感电流IL的平均电流将跟着变化,因此控制电路54无需藉由误差信号Vcomp来调节电感电流IL。9 shows a waveform diagram of the signal in FIG. 3, wherein waveform 110 is the error signal Vcomp', waveform 112 is the sawtooth signal Vramp, waveform 114 is the first signal Di, waveform 116 is the inductor current IL passing through the inductor L, and waveform 118 is The average current of the inductor current IL. In the buck-boost mode, when the first signal Di rises, as shown in waveform 114, the boost charging cycle D1 increases, so the average current of the inductor current IL rises, as shown in waveform 118, and the dynamic duty cycle generator 64 will output the compensation signal DDC to the duty cycle compensator 62 to reduce the error signal Vcomp′, as shown by the waveform 110 . When the first signal Di changes, the average current of the inductor current IL will change accordingly, so the control circuit 54 does not need to use the error signal Vcomp to adjust the inductor current IL.
图10显示图3中工作周期补偿器62的实施例,其中来自误差放大器70的误差信号Vcomp分别经缓冲器120及124传送至分压电路122及电阻R3,由多个电阻RD1~RDN及多个开关SW1~SWN组成的分压电路122分压误差信号Vcomp产生电压Vd,所述多个开关SW1~SWN受控于来自动态工作周期产生器64的补偿信号DDC,电压电流转换器126将电压Vd转换为电流Id,电流Id通过电阻R3产生电压VR3,误差信号Vcomp减去电压VR3后得到误差信号Vcomp’。FIG. 10 shows an embodiment of the duty cycle compensator 62 in FIG. 3, wherein the error signal Vcomp from the error amplifier 70 is sent to the voltage divider circuit 122 and the resistor R3 through the buffers 120 and 124 respectively, and is composed of multiple resistors RD1-RDN and multiple resistors. A voltage divider circuit 122 composed of switches SW1-SWN divides the voltage error signal Vcomp to generate a voltage Vd. The multiple switches SW1-SWN are controlled by the compensation signal DDC from the dynamic duty cycle generator 64, and the voltage-to-current converter 126 converts the voltage to Vd. Vd is converted into a current Id, and the current Id generates a voltage VR3 through the resistor R3, and the error signal Vcomp' is obtained by subtracting the voltage VR3 from the error signal Vcomp.
图11显示图3中逻辑电路56、动态工作周期产生器64及模式选择器68的实施例。在图11中由开关M2、电流源Ich及电容C组成的锯齿波产生器130提供锯齿波信号Vramp。逻辑电路56包括反相器140及144以及与非门142,在逻辑电路56中,以来自比较器58的信号S4作为控制信号VB,反相器140反相控制信号VB后产生控制信号VA,与非门142根据信号S3及S5产生信号VD,反相器144反相信号VD后产生信号VC。动态工作周期产生器64包括模拟数字转换器132及数位模拟转换器134,在动态工作周期产生器64中,信号S2经模拟数字转换器132转换为数字的补偿信号DDC后,数字模拟转换器134再将补偿信号DDC转换为模拟的第一信号Di。模式选择器68包括比较器138比较检测信号S2及临界值VTH产生信号S3,临界值VTH系供判断是否将电源转换器50切换至升降压模式,其中临界值VTH可以是定值或是由电感电流IL或输出电压Vo的变化量决定。动态的临界值VTH可以改善电源转换器50的效能以及输出电压Vo的涟波,此外还可以加速负载或电源瞬时响应。在临界值VTH随电感电流IL变化的情况下,当负载较重且电感电流较大时,临界值VTH加大使升降压式电源转换器50工作在升降压模式,此时充电放电较为快速,因而能避免有过大的涟波产生。在临界值VTH随输出电压Vo之变化量变化的情况下,当输出电压Vo之变化量增加时,临界值VTH增加,因此加大进入升降压模式的工作区,此时电感电流IL易充易放,故可减少输出电压Vo的涟波。FIG. 11 shows an embodiment of logic circuit 56 , dynamic duty cycle generator 64 and mode selector 68 in FIG. 3 . In FIG. 11, the sawtooth wave generator 130 composed of the switch M2, the current source Ich and the capacitor C provides the sawtooth wave signal Vramp. The logic circuit 56 includes inverters 140 and 144 and a NAND gate 142. In the logic circuit 56, the signal S4 from the comparator 58 is used as the control signal VB, and the inverter 140 inverts the control signal VB to generate the control signal VA. The NAND gate 142 generates a signal VD according to the signals S3 and S5 , and the inverter 144 inverts the signal VD to generate a signal VC. The dynamic duty cycle generator 64 includes an analog-to-digital converter 132 and a digital-to-analog converter 134. In the dynamic duty-cycle generator 64, after the signal S2 is converted into a digital compensation signal DDC by the analog-to-digital converter 132, the digital-to-analog converter 134 Then the compensation signal DDC is converted into an analog first signal Di. The mode selector 68 includes a comparator 138 to compare the detection signal S2 and the threshold value VTH to generate a signal S3. The threshold value VTH is used to judge whether to switch the power converter 50 to the buck-boost mode, wherein the threshold value VTH can be a fixed value or determined by The variation of the inductor current IL or the output voltage Vo is determined. The dynamic threshold VTH can improve the efficiency of the power converter 50 and the ripple of the output voltage Vo, and can also speed up the load or power transient response. Under the condition that the critical value VTH changes with the inductor current IL, when the load is heavy and the inductor current is large, the critical value VTH is increased to make the buck-boost power converter 50 work in the buck-boost mode, and the charging and discharging are relatively fast at this time. , so that excessive ripple can be avoided. In the case that the critical value VTH changes with the change of the output voltage Vo, when the change of the output voltage Vo increases, the critical value VTH increases, so the working area of the buck-boost mode is increased, and the inductor current IL is easy to charge Easy to release, it can reduce the ripple of the output voltage Vo.
在其它实施例中也可以使用提供固定信号的固定工作周期产生器取代动态工作周期产生器64。In other embodiments, a fixed duty cycle generator providing a fixed signal may be used instead of the dynamic duty cycle generator 64 .
以上实施例仅供说明本发明之用,而非对本发明的限制,有关技术领域的技术人员,在不脱离本发明的精神和范围的情况下,还可以作出各种变换或变化。因此,所有等同的技术方案也应该属于本发明的范畴,应由各权利要求限定。The above embodiments are only for illustrating the present invention, rather than limiting the present invention. Those skilled in the relevant technical field can also make various transformations or changes without departing from the spirit and scope of the present invention. Therefore, all equivalent technical solutions should also belong to the category of the present invention and should be defined by each claim.
Claims (17)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910209285.9A CN102055334B (en) | 2009-10-28 | 2009-10-28 | Control circuit and method of buck-boost power converter |
CN201410147695.6A CN103986324B (en) | 2009-10-28 | 2009-10-28 | Control circuit and method of buck-boost power converter |
CN201410147913.6A CN103973113B (en) | 2009-10-28 | 2009-10-28 | Control circuit and method of buck-boost power converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910209285.9A CN102055334B (en) | 2009-10-28 | 2009-10-28 | Control circuit and method of buck-boost power converter |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410147674.4A Division CN103973112B (en) | 2009-10-28 | 2009-10-28 | Control circuit and method of buck-boost power converter |
CN201410147695.6A Division CN103986324B (en) | 2009-10-28 | 2009-10-28 | Control circuit and method of buck-boost power converter |
CN201410147913.6A Division CN103973113B (en) | 2009-10-28 | 2009-10-28 | Control circuit and method of buck-boost power converter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102055334A CN102055334A (en) | 2011-05-11 |
CN102055334B true CN102055334B (en) | 2015-03-04 |
Family
ID=43959370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910209285.9A Active CN102055334B (en) | 2009-10-28 | 2009-10-28 | Control circuit and method of buck-boost power converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102055334B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103683932B (en) * | 2012-09-11 | 2016-08-03 | 晶豪科技股份有限公司 | Voltage Converter and Switching Method in Pulse Width Modulation Mode or Pulse Skip Mode |
CN103874271B (en) * | 2012-12-18 | 2015-08-19 | 立锜科技股份有限公司 | Power converter, related control circuit and method |
CN103872933B (en) * | 2012-12-18 | 2015-09-02 | 立锜科技股份有限公司 | Power converter, related control circuit and method |
US9647557B2 (en) * | 2014-09-25 | 2017-05-09 | Maxim Integrated Products, Inc. | Three phases controller for buck-boost regulators |
US9882488B2 (en) * | 2015-09-14 | 2018-01-30 | Intersil Americas LLC | Enhanced power mode transitions in buck-boost converters |
CN105553007B (en) * | 2015-12-29 | 2018-05-22 | 成都芯源系统有限公司 | Buck-boost battery charging circuit and control method thereof |
CN105610216B (en) * | 2015-12-29 | 2018-05-22 | 成都芯源系统有限公司 | High-capacity battery charging circuit and control method thereof |
TWI634728B (en) * | 2017-09-08 | 2018-09-01 | 茂達電子股份有限公司 | Control circuit operating in pulse skip mode (psm) and voltage converter having the same |
CN108183611B (en) * | 2017-12-26 | 2019-12-06 | 成都芯源系统有限公司 | control device and method of bidirectional switch circuit |
CN115800745B (en) * | 2023-01-29 | 2023-07-07 | 禹创半导体(深圳)有限公司 | Reverse buck-boost converter and power supply device of OLED equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6166527A (en) * | 2000-03-27 | 2000-12-26 | Linear Technology Corporation | Control circuit and method for maintaining high efficiency in a buck-boost switching regulator |
US7268525B2 (en) * | 2005-09-30 | 2007-09-11 | Matsushita Electric Industrial Co., Ltd. | Buck-boost converter |
US7518346B2 (en) * | 2006-03-03 | 2009-04-14 | Texas Instruments Deutschland Gmbh | Buck-boost DC/DC converter with overlap control using ramp shift signal |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7545134B2 (en) * | 2007-07-12 | 2009-06-09 | Semiconductor Components Industries, L.L.C. | Power supply controller and method therefor |
-
2009
- 2009-10-28 CN CN200910209285.9A patent/CN102055334B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6166527A (en) * | 2000-03-27 | 2000-12-26 | Linear Technology Corporation | Control circuit and method for maintaining high efficiency in a buck-boost switching regulator |
US7268525B2 (en) * | 2005-09-30 | 2007-09-11 | Matsushita Electric Industrial Co., Ltd. | Buck-boost converter |
US7518346B2 (en) * | 2006-03-03 | 2009-04-14 | Texas Instruments Deutschland Gmbh | Buck-boost DC/DC converter with overlap control using ramp shift signal |
Also Published As
Publication number | Publication date |
---|---|
CN102055334A (en) | 2011-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI422127B (en) | Control circuit and method for a buck-boost power converter | |
CN102055334B (en) | Control circuit and method of buck-boost power converter | |
TWI387191B (en) | Voltage mode switching regulator and control circuit and method therefor | |
US7501805B2 (en) | Circuit and method for soft start from a residual voltage | |
CN102761249B (en) | Current Mode DC Converter | |
US8669748B2 (en) | Device for synchronous DC-DC conversion and synchronous DC-DC converter | |
US7751471B2 (en) | Pulse width modulation regulator system with automatically switching pulse skipping mode | |
US7872458B2 (en) | DC-to-DC converter | |
US10212783B2 (en) | Systems and methods for overvoltage protection for LED lighting | |
KR100913571B1 (en) | Switching regulator, control circuit of switching regulator, and method of controlling operation of switching regulator | |
US12136877B2 (en) | Switched capacitor voltage converter circuit and switched capacitor voltage conversion method | |
JP3829753B2 (en) | DC-DC converter | |
TWI384741B (en) | Switching regulator with transient control function and control circuit and method therefor | |
JP2010516223A (en) | Power converter with snubber | |
US20050219871A1 (en) | Piecewise on-time modulation apparatus and method for a power factor corrector | |
US10075078B2 (en) | Control circuit for maintaining a switching frequency for constant on time converter | |
US8294433B2 (en) | Constant current supply type of switching regulator | |
CN103973113B (en) | Control circuit and method of buck-boost power converter | |
CN101447732A (en) | Reverse current protection device for synchronous switching voltage converter | |
CN103986324B (en) | Control circuit and method of buck-boost power converter | |
US20200235658A1 (en) | Dc/dc converter and operation method thereof | |
CN103973112B (en) | Control circuit and method of buck-boost power converter | |
US10797580B1 (en) | Detection circuit, switching regulator having the same and control method | |
TWI460974B (en) | Dc-dc converter providing output voltage overshoot prevention | |
TWI714204B (en) | Three quarter bridge for buck-derived switch-mode power supplies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |