CN102052922A - Disturbing gravity compensation method for impacts of actual gravity field on inertial navigation system - Google Patents
Disturbing gravity compensation method for impacts of actual gravity field on inertial navigation system Download PDFInfo
- Publication number
- CN102052922A CN102052922A CN 201010552882 CN201010552882A CN102052922A CN 102052922 A CN102052922 A CN 102052922A CN 201010552882 CN201010552882 CN 201010552882 CN 201010552882 A CN201010552882 A CN 201010552882A CN 102052922 A CN102052922 A CN 102052922A
- Authority
- CN
- China
- Prior art keywords
- inertial navigation
- gravity
- acceleration
- orientation
- north
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Navigation (AREA)
Abstract
本发明公开了一种实际重力场影响惯性导航系统扰动重力补偿方法,包括采集惯导东向及北向加速度;扰动重力分离得到扰动重力东向及北向分量;惯性导航东向加速度与扰动重力东向分量相加得到经过扰动重力补偿的惯导东向加速度;惯性导航北向加速度与扰动重力北向分量相加得到经过扰动重力补偿的惯导北向加速度;对经过扰动重力补偿的惯导东向和北向加速度二次积分,得到惯导东向和北向位移;惯导东向位移加上惯导北向位移,得到惯导新的输出位置;采用正常重力公式,得到惯导新的输出位置的正常重力;得到惯导所处位置处的实际重力;用实际重力矢量减去正常重力矢量,得到扰动重力在东向和北向的分量。本发明提高了惯性导航系统的精度。
The invention discloses a method for compensating for the disturbance gravity of the inertial navigation system affected by the actual gravity field, which includes collecting the eastward and northward accelerations of the inertial navigation; separating the disturbance gravity to obtain the eastward and northward components of the disturbance gravity; Add the components to get the inertial navigation east acceleration after the disturbance gravity compensation; add the inertial navigation north acceleration and the disturbance gravity north component to get the inertial navigation north acceleration after the disturbance gravity compensation; for the inertial navigation east and north acceleration after the disturbance gravity compensation Integrate twice to obtain the eastward and northward displacements of the inertial navigation; add the eastward displacement of the inertial navigation to the northward displacement of the inertial navigation to obtain the new output position of the inertial navigation; use the normal gravity formula to obtain the normal gravity of the new output position of the inertial navigation; The actual gravity at the position of the inertial navigation system; the normal gravity vector is subtracted from the actual gravity vector to obtain the components of the disturbed gravity in the east and north directions. The invention improves the precision of the inertial navigation system.
Description
技术领域technical field
本发明涉及惯性导航技术领域,具体地指实际重力场影响惯性导航系统扰动重力补偿方法。The invention relates to the technical field of inertial navigation, in particular to a method for compensating the gravity disturbance of an inertial navigation system affected by an actual gravity field.
技术背景technical background
由于海水的覆盖,地面或空中成功应用的卫星导航、天文导航等方式在水下航行器上无法正常使用,而国内外对基于海洋物理场匹配导航的方式(如重力场匹配导航、磁场匹配导航、地形匹配导航等方式)寄予厚望,但目前这一方式离工程化应用尚有一定的距离,这使得当前惯性导航系统仍然是水下航行器安全航行的重要保障手段。Due to the coverage of seawater, satellite navigation and astronomical navigation, which are successfully applied on the ground or in the air, cannot be used normally on underwater vehicles. , terrain matching navigation, etc.) have high hopes, but at present, this method still has a certain distance from engineering application, which makes the current inertial navigation system still an important guarantee for the safe navigation of underwater vehicles.
一直以来惯性导航系统的误差随时间积累是制约惯导系统水下长途航行时高精度的重要因素,其根本原因是由于重力扰动(空间同一点实际重力与正常重力之差)的存在。对于中低精度的惯性导航系统,由于其传感器的自身误差(陀螺漂移、加速度计漂移等)相对较大,一般采用正常重力进行重力补偿已能够满足要求。而随着高精度惯性导航系统的发展,惯性传感器的自身精度已得到极大的提高,重力扰动已经成为惯性导航系统中最主要的误差源,惯性导航系统精度的进一步提高将主要取决于对重力场的了解程度,由于地形起伏的原因,地面上实际重力与通过正常重力公式计算的重力值之间存在较大的差别,因此以往在惯性导航力学方程编排中使用正常重力的做法已经不满足实际应用需求。The accumulation of errors of inertial navigation systems over time has always been an important factor restricting the high precision of inertial navigation systems during long-distance underwater navigation. The root cause is the existence of gravity disturbance (the difference between the actual gravity and the normal gravity at the same point in space). For the inertial navigation system with medium and low precision, due to the relatively large errors of its sensors (gyro drift, accelerometer drift, etc.), generally using normal gravity for gravity compensation can meet the requirements. With the development of high-precision inertial navigation systems, the accuracy of inertial sensors has been greatly improved, and gravity disturbance has become the most important source of error in inertial navigation systems. The further improvement of inertial navigation system accuracy will mainly depend on the gravity Due to the undulations of the terrain, there is a large difference between the actual gravity on the ground and the gravity value calculated by the normal gravity formula. Therefore, the previous practice of using normal gravity in the inertial navigation mechanics equations is no longer satisfactory. Application requirements.
发明内容Contents of the invention
本发明的目的就是要提供一种能提高惯性导航系统精度的实际重力场影响惯性导航系统扰动重力补偿方法。The purpose of the present invention is to provide a method for compensating the gravity disturbance of the inertial navigation system by the actual gravity field which can improve the accuracy of the inertial navigation system.
为实现上述目的,本发明所设计一种实际重力场影响惯性导航系统扰动重力补偿方法,它包括如下步骤:In order to achieve the above object, the present invention designs a kind of actual gravitational field influence inertial navigation system disturbance gravity compensation method, and it comprises the following steps:
步骤S11:采集惯性导航系统的东向加速度计的输出量,得到惯性导航东向加速度;Step S11: Collect the output of the eastward accelerometer of the inertial navigation system to obtain the eastward acceleration of the inertial navigation;
步骤S51:通过扰动重力分离得到扰动重力东向分量;Step S51: Obtain the eastward component of the disturbance gravity through the separation of the disturbance gravity;
步骤S21:采集惯性导航系统的北向加速度计的输出量,得到惯性导航北向加速度;Step S21: Collect the output of the northward accelerometer of the inertial navigation system to obtain the northward acceleration of the inertial navigation system;
步骤S52:通过扰动重力分离得到扰动重力北向分量;Step S52: Obtain the northward component of the disturbance gravity through the separation of the disturbance gravity;
步骤S12:将所述惯性导航东向加速度与扰动重力东向分量相加得到经过扰动重力补偿的惯导东向加速度S13;Step S12: adding the eastward acceleration of the inertial navigation to the eastward component of the disturbance gravity to obtain the eastward acceleration S13 of the inertial navigation after compensation for the disturbance gravity;
步骤S22:将所述惯性导航北向加速度与扰动重力北向分量相加得到经过扰动重力补偿的惯导北向加速度S23;Step S22: adding the northward acceleration of the inertial navigation and the northward component of the disturbance gravity to obtain the northward acceleration S23 of the inertial navigation after compensation for the disturbance gravity;
步骤S14:对所述经过扰动重力补偿的惯导东向加速度积分,得到惯导东向速度;Step S14: Integrate the eastward acceleration of the inertial navigation system after the disturbance gravity compensation to obtain the eastward velocity of the inertial navigation system;
步骤S24:对所述经过扰动重力补偿的惯导北向加速度积分,得到惯导北向速度;Step S24: Integrate the northward acceleration of the inertial navigation system after the disturbance gravity compensation to obtain the northward speed of the inertial navigation system;
步骤S15:对所述惯导东向速度积分,得到惯导东向位移S16;Step S15: integrating the eastward speed of the inertial navigation system to obtain the eastward displacement S16 of the inertial navigation system;
步骤S25:对所述惯导北向速度积分,得到惯导北向位移S26;Step S25: Integrate the northward speed of the inertial navigation system to obtain the northward displacement S26 of the inertial navigation system;
步骤S3:将所述惯导东向位移加上惯导北向位移,得到惯导新的输出位置S31;Step S3: adding the eastward displacement of the inertial navigation to the northward displacement of the inertial navigation to obtain a new output position S31 of the inertial navigation;
步骤S32:采用正常重力公式,得到在所述惯导新的输出位置处的正常重力S33;Step S32: using the normal gravity formula to obtain the normal gravity S33 at the new output position of the inertial navigation;
步骤S41:用重力传感器测量惯导所处位置处的实际重力S42;Step S41: Measure the actual gravity S42 at the position of the inertial navigation with the gravity sensor;
步骤S5:用所述实际重力矢量减去正常重力矢量,得到扰动重力,并分别得到所述步骤S51中扰动重力在东向的分量和所述步骤S52中扰动重力在北向的分量。Step S5: Subtract the normal gravity vector from the actual gravity vector to obtain the disturbed gravity, and respectively obtain the eastward component of the disturbed gravity in step S51 and the northward component of the disturbed gravity in step S52.
优选的,它还包括步骤S6:采集所述惯导新的输出位置S31处的惯导位置数据,将所述惯导位置数据加上惯导东向位移S16和惯导北向位移S26,得到进一步的惯导新的输出位置S31。Preferably, it also includes step S6: collecting the inertial navigation position data at the new output position S31 of the inertial navigation, adding the inertial navigation eastward displacement S16 and the inertial navigation northward displacement S26 to the inertial navigation position data, to obtain further The inertial navigation new output position S31.
本发明的优点在于:通过在惯导位置的解算中结合实际重力信息,能够得到更为准确的定位结果,提高了惯性导航系统的精度。The invention has the advantages that more accurate positioning results can be obtained by combining the actual gravity information in the calculation of the inertial navigation position, and the precision of the inertial navigation system is improved.
附图说明Description of drawings
图1为实际重力场影响惯性导航系统扰动重力补偿方法的原理图;Fig. 1 is the schematic diagram of the actual gravitational field influence inertial navigation system disturbance gravity compensation method;
图2为实际重力场影响惯性导航系统扰动重力补偿方法的示意图。Fig. 2 is a schematic diagram of a method for compensating the disturbance gravity of the inertial navigation system affected by the actual gravity field.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步的详细描述:Below in conjunction with accompanying drawing and specific embodiment the present invention will be described in further detail:
如图1~2所述的一种实际重力场影响惯性导航系统扰动重力补偿方法,它包括如下步骤:A kind of actual gravitational field influence inertial navigation system disturbance gravity compensation method as described in Fig. 1~2, it comprises the following steps:
步骤S11:采集惯性导航系统的东向加速度计的输出量,得到惯性导航东向加速度;Step S11: Collect the output of the eastward accelerometer of the inertial navigation system to obtain the eastward acceleration of the inertial navigation;
步骤S51:通过扰动重力分离得到扰动重力东向分量;Step S51: Obtain the eastward component of the disturbance gravity through the separation of the disturbance gravity;
步骤S21:采集惯性导航系统的北向加速度计的输出量,得到惯性导航北向加速度;Step S21: Collect the output of the northward accelerometer of the inertial navigation system to obtain the northward acceleration of the inertial navigation system;
步骤S52:通过扰动重力分离得到扰动重力北向分量;Step S52: Obtain the northward component of the disturbance gravity through the separation of the disturbance gravity;
步骤S12:将所述惯性导航东向加速度与扰动重力东向分量相加得到经过扰动重力补偿的惯导东向加速度S13;Step S12: adding the eastward acceleration of the inertial navigation to the eastward component of the disturbance gravity to obtain the eastward acceleration S13 of the inertial navigation after compensation for the disturbance gravity;
步骤S22:将所述惯性导航北向加速度与扰动重力北向分量相加得到经过扰动重力补偿的惯导北向加速度S23;Step S22: adding the northward acceleration of the inertial navigation and the northward component of the disturbance gravity to obtain the northward acceleration S23 of the inertial navigation after compensation for the disturbance gravity;
步骤S14:对所述经过扰动重力补偿的惯导东向加速度积分,得到惯导东向速度;Step S14: Integrate the eastward acceleration of the inertial navigation system after the disturbance gravity compensation to obtain the eastward velocity of the inertial navigation system;
步骤S24:对所述经过扰动重力补偿的惯导北向加速度积分,得到惯导北向速度;Step S24: Integrate the northward acceleration of the inertial navigation system after the disturbance gravity compensation to obtain the northward speed of the inertial navigation system;
步骤S15:对所述惯导东向速度积分,得到惯导东向位移S16;Step S15: integrating the eastward speed of the inertial navigation system to obtain the eastward displacement S16 of the inertial navigation system;
步骤S25:对所述惯导北向速度积分,得到惯导北向位移S26;Step S25: Integrate the northward speed of the inertial navigation system to obtain the northward displacement S26 of the inertial navigation system;
步骤S3:将所述惯导东向位移加上惯导北向位移,得到惯导新的输出位置S31;Step S3: adding the eastward displacement of the inertial navigation to the northward displacement of the inertial navigation to obtain a new output position S31 of the inertial navigation;
步骤S32:采用正常重力公式,得到在所述惯导新的输出位置处的正常重力S33;Step S32: using the normal gravity formula to obtain the normal gravity S33 at the new output position of the inertial navigation;
本发明的正常重力公式由1979年17届IUGG大会推荐的常数导出,其表示形式为:The normal gravity formula of the present invention is derived by the constant recommended by the 17th IUGG General Assembly in 1979, and its expression form is:
γ0=978032.7(1+0.005302sin2B-0.0000058sin22B)×10-5ms-2式中,B为纬度,m为米,s为秒。γ 0 =978032.7(1+0.005302sin 2 B-0.0000058sin 2 2B)×10 -5 ms -2 In the formula, B is the latitude, m is the meter, and s is the second.
步骤S41:用重力传感器测量惯导所处位置处的实际重力S42;Step S41: Measure the actual gravity S42 at the position of the inertial navigation with the gravity sensor;
步骤S5:用所述实际重力矢量减去正常重力矢量,得到扰动重力,并分别得到所述步骤S51中扰动重力在东向的分量和所述步骤S52中扰动重力在北向的分量。Step S5: Subtract the normal gravity vector from the actual gravity vector to obtain the disturbed gravity, and respectively obtain the eastward component of the disturbed gravity in step S51 and the northward component of the disturbed gravity in step S52.
上述技术方案中,它还包括步骤S6:采集所述惯导新的输出位置S31处的惯导位置数据,将所述惯导位置数据加上惯导东向位移S16和惯导北向位移S26,得到进一步的惯导新的输出位置S31。In the above technical solution, it also includes step S6: collecting the inertial navigation position data at the new output position S31 of the inertial navigation, adding the inertial navigation eastward displacement S16 and the inertial navigation northward displacement S26 to the inertial navigation position data, A new output position S31 of further inertial navigation is obtained.
上述技术方案中,步骤S31中的惯导新的输出位置即为扰动重力补偿后的惯性导航系统精确的位置。In the above technical solution, the new output position of the inertial navigation in step S31 is the precise position of the inertial navigation system after the disturbance gravity compensation.
本发明的原理为如图1所示,由重力传感器测得当前位置重力进而得到当前位置的扰动重力;由正常重力计算公式计算得到当前位置正常重力;根据当前位置扰动重力、正常重力和惯性导航加速度计输出地加速度确定当前位置的真实加速度;对当前位置的真实加速度二次积分得到新的定位位置。上述整个操作步骤是在PC1044嵌入式计算机中完成的。The principle of the present invention is as shown in Figure 1, the gravity of the current position is measured by the gravity sensor and then the disturbance gravity of the current position is obtained; the normal gravity of the current position is calculated by the normal gravity calculation formula; the disturbance gravity, normal gravity and inertial navigation are obtained according to the current position The acceleration output by the accelerometer determines the real acceleration of the current position; the real acceleration of the current position is integrated twice to obtain a new positioning position. The above-mentioned whole operation steps are completed in the PC1044 embedded computer.
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。The above description is a preferred embodiment of the present invention, and it should be pointed out that for those skilled in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications are also considered Be the protection scope of the present invention.
本说明书未作详细描述的内容属于本领域专业技术人员公知的现有技术。The content not described in detail in this specification belongs to the prior art known to those skilled in the art.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010552882 CN102052922A (en) | 2010-11-19 | 2010-11-19 | Disturbing gravity compensation method for impacts of actual gravity field on inertial navigation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010552882 CN102052922A (en) | 2010-11-19 | 2010-11-19 | Disturbing gravity compensation method for impacts of actual gravity field on inertial navigation system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102052922A true CN102052922A (en) | 2011-05-11 |
Family
ID=43957487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010552882 Pending CN102052922A (en) | 2010-11-19 | 2010-11-19 | Disturbing gravity compensation method for impacts of actual gravity field on inertial navigation system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102052922A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102788578A (en) * | 2012-07-25 | 2012-11-21 | 中国人民解放军海军工程大学 | Matching navigation method based on local gravity field approximation |
CN105258699A (en) * | 2015-10-22 | 2016-01-20 | 北京航空航天大学 | Inertial navigation method based on real-time gravity compensation |
CN105606093A (en) * | 2016-01-29 | 2016-05-25 | 北京航空航天大学 | Inertial navigation method and device based on real-time gravity compensation |
CN107677292A (en) * | 2017-09-28 | 2018-02-09 | 中国人民解放军国防科技大学 | Vertical line deviation compensation method based on gravity field model |
CN108398126A (en) * | 2018-01-19 | 2018-08-14 | 中国人民解放军92859部队 | A kind of high-precision air-sea gravity measurement platform inclination correction model |
CN109085655A (en) * | 2018-09-19 | 2018-12-25 | 中国船舶重工集团公司第七0七研究所 | A kind of underwater platform gravity measurement scheme and verification method |
CN109470241A (en) * | 2018-11-23 | 2019-03-15 | 中国船舶重工集团公司第七0七研究所 | A kind of inertial navigation system and method having the autonomous compensation function of gravity disturbance |
CN112965123A (en) * | 2021-02-08 | 2021-06-15 | 中国人民解放军92859部队 | Method for calculating north component of external disturbance gravity based on gravity anomaly |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000007134A1 (en) * | 1998-07-29 | 2000-02-10 | Litton Systems, Inc. | Method and apparatus for generating navigation data |
US6185502B1 (en) * | 1998-12-23 | 2001-02-06 | The United States Of America As Represented By The Secretary Of The Navy | Passive position fix system |
CN101109959A (en) * | 2007-08-06 | 2008-01-23 | 北京航空航天大学 | An Attitude Determining System Applicable to Microsystems with Arbitrary Motion |
CN101424535A (en) * | 2007-10-30 | 2009-05-06 | 武汉大学 | Vehicle positioning method and device |
-
2010
- 2010-11-19 CN CN 201010552882 patent/CN102052922A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000007134A1 (en) * | 1998-07-29 | 2000-02-10 | Litton Systems, Inc. | Method and apparatus for generating navigation data |
US6185502B1 (en) * | 1998-12-23 | 2001-02-06 | The United States Of America As Represented By The Secretary Of The Navy | Passive position fix system |
CN101109959A (en) * | 2007-08-06 | 2008-01-23 | 北京航空航天大学 | An Attitude Determining System Applicable to Microsystems with Arbitrary Motion |
CN101424535A (en) * | 2007-10-30 | 2009-05-06 | 武汉大学 | Vehicle positioning method and device |
Non-Patent Citations (1)
Title |
---|
《大地测量与地球动力学》 20100630 李珊珊等 扰动重力矢量对惯性导航系统的误差影响 142-146 1 第30卷, 第3期 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102788578B (en) * | 2012-07-25 | 2015-04-22 | 中国人民解放军海军工程大学 | Matching navigation method based on local gravity field approximation |
CN102788578A (en) * | 2012-07-25 | 2012-11-21 | 中国人民解放军海军工程大学 | Matching navigation method based on local gravity field approximation |
CN105258699A (en) * | 2015-10-22 | 2016-01-20 | 北京航空航天大学 | Inertial navigation method based on real-time gravity compensation |
CN105606093B (en) * | 2016-01-29 | 2018-04-03 | 北京航空航天大学 | Inertial navigation method and device based on gravity real-Time Compensation |
CN105606093A (en) * | 2016-01-29 | 2016-05-25 | 北京航空航天大学 | Inertial navigation method and device based on real-time gravity compensation |
CN107677292B (en) * | 2017-09-28 | 2019-11-15 | 中国人民解放军国防科技大学 | Compensation Method for Perpendicular Deviation Based on Gravity Field Model |
CN107677292A (en) * | 2017-09-28 | 2018-02-09 | 中国人民解放军国防科技大学 | Vertical line deviation compensation method based on gravity field model |
CN108398126A (en) * | 2018-01-19 | 2018-08-14 | 中国人民解放军92859部队 | A kind of high-precision air-sea gravity measurement platform inclination correction model |
CN109085655A (en) * | 2018-09-19 | 2018-12-25 | 中国船舶重工集团公司第七0七研究所 | A kind of underwater platform gravity measurement scheme and verification method |
CN109085655B (en) * | 2018-09-19 | 2020-06-19 | 中国船舶重工集团公司第七0七研究所 | Underwater platform gravity measurement scheme and verification method |
CN109470241A (en) * | 2018-11-23 | 2019-03-15 | 中国船舶重工集团公司第七0七研究所 | A kind of inertial navigation system and method having the autonomous compensation function of gravity disturbance |
CN112965123A (en) * | 2021-02-08 | 2021-06-15 | 中国人民解放军92859部队 | Method for calculating north component of external disturbance gravity based on gravity anomaly |
CN112965123B (en) * | 2021-02-08 | 2022-04-19 | 中国人民解放军92859部队 | Method for calculating north component of external disturbance gravity based on gravity anomaly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102052922A (en) | Disturbing gravity compensation method for impacts of actual gravity field on inertial navigation system | |
KR101739390B1 (en) | Method for improving the accuracy of self-alignment about the inertial navigation system through gravitational error compensation | |
CN103900571B (en) | A kind of carrier posture measuring method based on the rotary-type SINS of inertial coodinate system | |
CN101858748A (en) | Multi-sensor fault-tolerant autonomous navigation method for high-altitude and long-haul UAV | |
CN105021192A (en) | Realization method of combined navigation system based on zero-speed correction | |
CN109470241B (en) | Inertial navigation system with gravity disturbance autonomous compensation function and method | |
CN104864874B (en) | A kind of inexpensive single gyro dead reckoning navigation method and system | |
CN101696883A (en) | Damping method of fiber option gyroscope (FOG) strap-down inertial navigation system | |
CN104359496B (en) | The high-precision attitude modification method compensated based on the deviation of plumb line | |
RU2380656C1 (en) | Integrated strapdown inertial and satellite navigation system on coarse sensors | |
CN201955092U (en) | Platform type inertial navigation device based on geomagnetic assistance | |
CN114739425A (en) | Coal mining machine positioning calibration system based on RTK-GNSS and total station and application method | |
CN111722295B (en) | Underwater strapdown gravity measurement data processing method | |
CN102207386A (en) | North-finding method based on orientation effect error compensation | |
CN102257358A (en) | Method for determining a heading in the direction of true north using an inertial measurement unit | |
CN101183004A (en) | A Method for Eliminating Oscillation Errors of Fiber Optic Gyro Strapdown Inertial Navigation System Online and Real Time | |
CN103453903A (en) | Pipeline flaw detection system navigation and location method based on IMU (Inertial Measurement Unit) | |
CN107677292B (en) | Compensation Method for Perpendicular Deviation Based on Gravity Field Model | |
CN103697878A (en) | Rotation-modulation north-seeking method utilizing single gyroscope and single accelerometer | |
JP2018052489A (en) | System and method for compensating for absence of sensor measurement in heading measuring system | |
CN103630123B (en) | A kind of Wave Sensor | |
CN106403999A (en) | GNSS-based real-time compensation method for inertial navigation accelerometer drifting | |
CN104567888A (en) | Attitude measurement method of inertial navigation vehicle based on online velocity correction | |
CN103901496A (en) | Gravity measuring method based on fiber-optic gyroscope SINS and Big Dipper | |
CN101187558A (en) | North finder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20110511 |