[go: up one dir, main page]

CN102045571B - Fast iterative search algorithm for stereo video coding - Google Patents

Fast iterative search algorithm for stereo video coding Download PDF

Info

Publication number
CN102045571B
CN102045571B CN 201110007342 CN201110007342A CN102045571B CN 102045571 B CN102045571 B CN 102045571B CN 201110007342 CN201110007342 CN 201110007342 CN 201110007342 A CN201110007342 A CN 201110007342A CN 102045571 B CN102045571 B CN 102045571B
Authority
CN
China
Prior art keywords
current block
vector
iteration
block
disparity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201110007342
Other languages
Chinese (zh)
Other versions
CN102045571A (en
Inventor
贾克斌
邓智玭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN 201110007342 priority Critical patent/CN102045571B/en
Publication of CN102045571A publication Critical patent/CN102045571A/en
Application granted granted Critical
Publication of CN102045571B publication Critical patent/CN102045571B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

The invention discloses a fast iterative search algorithm for stereo video coding, which is characterized in that a stereo-motion constraint model is defined according to the relation between the motion vector and disparity vector of the stereo image pair of the adjacent images of the left viewpoint and right viewpoint of a stereo video. The fast iterative search method for stereo video coding comprises the following steps: initializing, adjusting the RSR (rank sum ration) of an amending search window, carrying out iterative search, and suspending: calculating the initial motion vector and initial disparity vector of a current module by adopting an iterative search strategy, and designing the adaptive amending search window according to the error of the stereo-motion constraint model to amend the motion vector and disparity vector of the current module so that the optimum motion vector and optimum disparity vector of the current module can be finally predicted rapidly. Compared with the traditional full search algorithm, the fast iterative search algorithm provided by the invention can ensure the coding quality and save the coding time by over 96 percent.

Description

一种立体视频编码快速迭代搜索方法A Fast Iterative Search Method for Stereo Video Coding

技术领域 technical field

本发明涉及视频编码领域,尤其是涉及一种立体视频编码中的运动矢量和视差矢量快速搜索算法。The invention relates to the field of video coding, in particular to a fast search algorithm for motion vectors and disparity vectors in stereoscopic video coding.

背景技术 Background technique

立体视频蕴含景物的深度信息,在自然场景的表征上更具有真实感,在3D电视、移动设备的立体视觉系统以及具有临场感的可视会议等领域展现了广阔的应用前景。Stereoscopic video contains the depth information of the scene, and is more realistic in the representation of natural scenes. It has shown broad application prospects in the fields of 3D TV, stereoscopic vision system of mobile devices, and visual conferencing with a sense of presence.

立体视频包含左右两个视频通道,典型的IPPPP预测结构如图1所示,水平方向为时间方向,垂直方向为视点方向。令左视点为参考视点,即左视点先编码,左视点的第一帧为I帧,在编码时,不需要参考其它帧的信息,直接进行DCT变换,线性量化,游程长编码,最后送入算术编码器。左视点除第一帧以外的其它帧都是P帧,通过参考左视点前一个时刻的已编码帧来进行运动估计。右视点为预测视点,第一帧为P帧,既允许它参考左视点的第一帧进行视差估计,又允许帧内预测编码,从二者中选取更优的编码方式,保证了编码效率。右视点的其余P帧都包含两个参考帧,不仅要参考时间方向的参考帧(即,右视点前一个时刻的已编码帧)来进行运动估计,还要参考视点方向的参考帧(即,左视点相同时刻的已编码帧)进行视差估计。传统的立体视频压缩通过全搜索方法,采用大搜索窗口来分别进行运动估计和视差估计,以消除同一视点内部的时间空间冗余和左右视点之间的交叉冗余,并且比较运动矢量和视差矢量的率失真代价,选择使率失真代价最小的作为当前块的最终预测矢量。其中,率失真代价通过RDCost(mv)=SAD(c,r)+λ×R(mv-p)计算得到,mv表示当前块的运动/视差矢量,c表示当前块,r表示预测块,λ表示拉格朗日乘子,p表示当前块的运动/视差矢量的预测值,R(mv-p)表示编码运动/视差矢量和预测值的差值所需的比特数,SAD(c,r)表示当前块和预测块的绝对误差和,

Figure BDA0000043764290000021
B1,B2分别表示块的水平和垂直像素数,[i,j]表示像素的坐标,c[i,j]表示当前块像素值;r[i-mvx,j-mvy]表示预测块的像素值,(mvx,mvy)表示当前块的运动/视差矢量的水平和垂直分量大小。传统的全搜索算法在得到高率失真性能的同时带来了巨大的运算量,限制了立体视频的实时应用。Stereoscopic video includes left and right video channels. A typical IPPPP prediction structure is shown in Figure 1. The horizontal direction is the time direction, and the vertical direction is the viewpoint direction. Let the left viewpoint be the reference viewpoint, that is, the left viewpoint is coded first, and the first frame of the left viewpoint is an I frame. When coding, there is no need to refer to the information of other frames, and the DCT transformation, linear quantization, and run-length coding are performed directly, and finally sent to arithmetic coder. All frames except the first frame of the left view are P frames, and the motion estimation is performed by referring to the coded frame at the previous moment of the left view. The right view is the predictive view, and the first frame is a P frame, which not only allows it to perform disparity estimation with reference to the first frame of the left view, but also allows intra-frame prediction coding, and selects a better coding method from the two to ensure coding efficiency. The rest of the P frames of the right view contain two reference frames, which not only refer to the reference frame in the time direction (that is, the coded frame at the previous moment of the right view) for motion estimation, but also refer to the reference frame in the view direction (that is, The coded frame at the same moment of the left view) is used for disparity estimation. The traditional stereoscopic video compression uses a large search window to perform motion estimation and disparity estimation respectively through the full search method to eliminate the time-space redundancy within the same viewpoint and the cross redundancy between the left and right viewpoints, and compare the motion vector and disparity vector The rate-distortion cost, choose the one that minimizes the rate-distortion cost as the final predictor of the current block. Among them, the rate-distortion cost is calculated by RDCost(mv)=SAD(c,r)+λ×R(mv-p), mv represents the motion/disparity vector of the current block, c represents the current block, r represents the predicted block, λ Represents the Lagrangian multiplier, p represents the predictor of the motion/disparity vector of the current block, R(mv-p) represents the number of bits required to encode the difference between the motion/disparity vector and the predictor, SAD(c,r ) represents the absolute error sum of the current block and the predicted block,
Figure BDA0000043764290000021
B 1 and B 2 represent the number of horizontal and vertical pixels of the block respectively, [i, j] represents the coordinates of the pixel, c[i, j] represents the pixel value of the current block; r[i-mv x , j-mv y ] represents The pixel value of the predicted block, (mv x , mv y ) represents the size of the horizontal and vertical components of the motion/disparity vector of the current block. The traditional full search algorithm brings a huge amount of calculation while obtaining high rate-distortion performance, which limits the real-time application of stereoscopic video.

目前,立体视频快速编码算法大体可分为两大类:一类是基于预测矢量的编码算法,先用全搜索算法对某一域(视差域或运动域)计算视差或运动矢量,然后利用“立体图像对”在相邻时刻视差矢量的一致性或者相邻视点运动矢量一致性原理,对另一域(运动域或视差域)采用快速算法进行预测[1-2]。这类算法能得到较好的编码性能,但是由于下一域(运动域或视差域)预测矢量的准确性取决于前一域(视差域或运动域)的预测结果,因此前一域往往采用穷尽的全搜索算法来保证结果的准确性,编码速度仍然有待提高。另一类是运动和视差联合估计算法,根据立体视频的序列相关性原理,运动域和视差域的信息可以互相利用,由相邻图像的运动和视差矢量关系直接预测得到当前块的运动/视差矢量,从而最大限度降低编码复杂度[3-4]。但是目前这类算法的研究大多只针对像素域或者基于MPEG标准,不能与当前主流的基于块的H.264/AVC视频编码标准兼容,并且,直接利用相邻图像的运动和视差矢量关系求得预测矢量容易陷入局部极小值,编码质量得不到保证。At present, the stereoscopic video fast coding algorithm can be roughly divided into two categories: one is the coding algorithm based on the predictive vector, first use the full search algorithm to calculate the disparity or motion vector for a certain domain (disparity domain or motion domain), and then use the " Based on the principle of the consistency of disparity vectors at adjacent moments or the consistency of motion vectors at adjacent viewpoints for a stereo image pair, a fast algorithm is used to predict another domain (motion domain or disparity domain) [1-2]. This type of algorithm can get better coding performance, but because the accuracy of the prediction vector in the next domain (motion domain or disparity domain) depends on the prediction result of the previous domain (disparity domain or motion domain), the previous domain often uses An exhaustive full search algorithm is used to ensure the accuracy of the results, and the encoding speed still needs to be improved. The other is the motion and disparity joint estimation algorithm. According to the sequence correlation principle of stereoscopic video, the information of the motion domain and the disparity domain can be used mutually, and the motion/disparity of the current block can be directly predicted by the relationship between the motion and disparity vector of the adjacent image. vector, thereby minimizing the coding complexity [3-4]. However, most of the current research on such algorithms only focuses on the pixel domain or is based on the MPEG standard, which is not compatible with the current mainstream block-based H.264/AVC video coding standard, and directly uses the motion and disparity vector relationship of adjacent images to obtain The prediction vector is easy to fall into local minimum, and the coding quality cannot be guaranteed.

本发明基于H.264/AVC标准,提出一种基于立体-运动约束模型的立体视频编码快速迭代搜索算法,在保证高压缩率的前提下大大减少编码复杂度,是非常有意义的。Based on the H.264/AVC standard, the present invention proposes a fast iterative search algorithm for stereoscopic video coding based on a stereo-motion constraint model, which greatly reduces coding complexity under the premise of ensuring a high compression rate, which is very meaningful.

附:参考文献Attachment: References

[1]Ding L F,Chien S Y,Chen L G.Joint prediction algorithm and architecturefor stereo video hybrid coding systems[J]IEEE Transactions on Circuits andSystems for Video Technology,2006,16(11):1324-1337[1] Ding L F, Chien S Y, Chen L G. Joint prediction algorithm and architecture for stereo video hybrid coding systems [J] IEEE Transactions on Circuits and Systems for Video Technology, 2006, 16(11): 1324-1337

[2]Lai P,Ortega A.Predictive fast motion/disparity search for multiview videocoding[C]//SPIE.Proceedings of SPIE.San Jose:Visual Communications andImage Processing,2006,6077:607709[2]Lai P, Ortega A. Predictive fast motion/disparity search for multiview videocoding[C]//SPIE.Proceedings of SPIE.San Jose: Visual Communications and Image Processing, 2006, 6077: 607709

[3]Paras I,Alvertos N,Tziritas G.Joint disparity and motion field estimation instereoscopic image sequences[C]//IEEE.Proceedings of 13th InternationalConference on Pattern Recognition.Vienna:ICPR,1996:359-363[3] Paras I, Alvertos N, Tziritas G. Joint disparity and motion field estimation instereoscopic image sequences[C]//IEEE. Proceedings of 13th International Conference on Pattern Recognition. Vienna: ICPR, 1996: 359-363

[4]Kim Y,Lee J,Park C,et al.MPEG-4 compatible stereoscopic sequence codec forstereo broadcasting[J]IEEE Transactions on Consumer Electronics,2005,51(4):1227-1236[4] Kim Y, Lee J, Park C, et al. MPEG-4 compatible stereoscopic sequence codec forstereo broadcasting [J] IEEE Transactions on Consumer Electronics, 2005, 51(4): 1227-1236

发明内容 Contents of the invention

本发明的目的在于,通过提供一种立体视频编码快速迭代搜索方法,以解决立体视频右视点除第一帧以外的图像帧编码复杂度高的问题,实现低复杂度的立体视频编码。The purpose of the present invention is to provide a fast iterative search method for stereoscopic video coding to solve the problem of high coding complexity of image frames except the first frame of the stereoscopic video right view, and to realize low-complexity stereoscopic video coding.

本发明解决上述技术问题采取的技术方案为:The technical scheme that the present invention solves above-mentioned technical problem to take is:

一种立体视频编码快速迭代搜索方法,令右视点t时刻图像中的宏块MBr,t为当前块,i为迭代步数,δ为立体-运动约束模型的模型误差,mvr,t(MBr,t)表示当前块的最优运动矢量,dvr,t(MBr,t)表示当前块的最优视差矢量,

Figure BDA0000043764290000031
为第i次迭代修正后的当前块的运动矢量的率失真代价,
Figure BDA0000043764290000032
为第i-1次迭代修正后的当前块的运动矢量的率失真代价,
Figure BDA0000043764290000033
为第i次迭代修正后的当前块的视差矢量的率失真代价,
Figure BDA0000043764290000034
为第i-1次迭代修正后的当前块的视差矢量的率失真代价,包括以下步骤:A fast iterative search method for stereoscopic video coding, let the macroblock MB r, t in the image at the moment t of the right viewpoint be the current block, i be the number of iteration steps, δ be the model error of the stereo-motion constraint model, mv r, t ( MB r, t ) represents the optimal motion vector of the current block, dv r, t (MB r, t ) represents the optimal disparity vector of the current block,
Figure BDA0000043764290000031
is the rate-distortion cost of the motion vector of the current block corrected for the i-th iteration,
Figure BDA0000043764290000032
The rate-distortion cost of the motion vector of the current block corrected for the i-1th iteration,
Figure BDA0000043764290000033
is the rate-distortion cost of the disparity vector of the current block corrected for the i-th iteration,
Figure BDA0000043764290000034
The rate-distortion cost of the disparity vector of the current block corrected for the i-1th iteration includes the following steps:

1.1、初始化;确定当前块的运动矢量搜索起始点

Figure BDA0000043764290000035
和当前块的视差矢量搜索起始点得到修正后的当前块的运动矢量搜索起始点
Figure BDA0000043764290000037
和修正后的当前块的视差矢量搜索起始点
Figure BDA0000043764290000038
保存修正后的当前块的运动和视差矢量搜索起始点的率失真代价;1.1. Initialization; determine the starting point of the motion vector search of the current block
Figure BDA0000043764290000035
and the disparity vector search starting point of the current block Get the modified motion vector search starting point of the current block
Figure BDA0000043764290000037
and the corrected disparity vector search starting point of the current block
Figure BDA0000043764290000038
Save the corrected motion of the current block and the rate-distortion cost of the disparity vector search starting point;

1.2、按照下式调整修正搜索窗口RSR的大小,1.2. Adjust the size of the modified search window RSR according to the following formula,

RSRRSR == RSRRSR MINMIN &delta;&delta; << TT 11 RSRRSR MINMIN ++ &delta;&delta; -- TT 11 TT 22 -- TT 11 (( RSRRSR MAXMAX -- RSRRSR MINMIN )) TT 11 &le;&le; &delta;&delta; &le;&le; TT 22 RSRRSR MAXMAX &delta;&delta; >> TT 22

其中,T1和T2表示两个阈值(T1<T2),RSRMIN为最小修正搜索窗口,RSRMAX为最大修正搜索窗口;Among them, T 1 and T 2 represent two thresholds (T 1 < T 2 ), RSR MIN is the minimum correction search window, RSR MAX is the maximum correction search window;

1.3、迭代搜索过程;确定第i次迭代当前块的视差矢量预测初值

Figure BDA00000437642900000310
进行矢量修正,得到第i次迭代修正后的当前块的视差矢量
Figure BDA00000437642900000311
确定第i次迭代当前块的运动矢量预测初值
Figure BDA00000437642900000312
进行矢量修正,得到第i次迭代修正后的当前块的运动矢量
Figure BDA00000437642900000313
保存第i次迭代修正后的当前块的运动矢量和视差矢量的率失真代价。1.3. Iterative search process; determine the initial value of the disparity vector prediction of the current block in the i-th iteration
Figure BDA00000437642900000310
Perform vector correction to obtain the disparity vector of the current block corrected by the i-th iteration
Figure BDA00000437642900000311
Determine the initial value of motion vector prediction for the current block in the ith iteration
Figure BDA00000437642900000312
Perform vector correction to obtain the motion vector of the current block corrected by the i-th iteration
Figure BDA00000437642900000313
Save the rate-distortion cost of the motion vector and disparity vector of the current block corrected by the i-th iteration.

1.4、中止准则:如果并且

Figure BDA0000043764290000042
则令第i-1次迭代修正后的当前块的运动矢量和视差矢量
Figure BDA0000043764290000044
分别作为当前块的最优运动矢量mvr,t(MBr,t)和当前块的最优视差矢量dvr,t(MBr,t),结束迭代搜索过程,否则,令i=i+1,由
Figure BDA0000043764290000045
重新计算并更新δ,跳转到步骤1.2,其中,
Figure BDA0000043764290000046
Figure BDA0000043764290000047
分别表示第i次迭代修正后的当前块的运动矢量和第i次迭代修正后的当前块的视差矢量;1.4. Suspension criteria: if and
Figure BDA0000043764290000042
Then let the motion vector of the current block corrected by the i-1th iteration and the disparity vector
Figure BDA0000043764290000044
respectively as the optimal motion vector mv r, t (MB r, t ) of the current block and the optimal disparity vector dv r, t (MB r, t ) of the current block, and end the iterative search process; otherwise, let i=i+ 1, by
Figure BDA0000043764290000045
Recalculate and update δ, jump to step 1.2, where,
Figure BDA0000043764290000046
and
Figure BDA0000043764290000047
respectively represent the motion vector of the current block corrected by the ith iteration and the disparity vector of the current block corrected by the ith iteration;

其中,

Figure BDA0000043764290000048
表示第i次迭代当前块在时间方向参考帧中的运动补偿块的视差矢量,第i次迭代当前块在视点方向参考帧中的视差补偿块的运动矢量。in,
Figure BDA0000043764290000048
Indicates the disparity vector of the motion-compensated block in the time-direction reference frame of the current block in the i-th iteration, The motion vector of the disparity compensation block of the current block in the reference frame in the view direction at the i-th iteration.

前述的步骤1.1包括:The aforementioned step 1.1 includes:

2.1、令i=0,δ=0;2.1. Let i=0, δ=0;

2.2、所述确定当前块的运动矢量搜索起始点和当前块的视差矢量搜索起始点通过候选矢量集

Figure BDA00000437642900000412
Figure BDA00000437642900000413
获得;2.2. The determination of the motion vector search starting point of the current block and the disparity vector search starting point of the current block by candidate vector set
Figure BDA00000437642900000412
and
Figure BDA00000437642900000413
get;

其中,mva/dva,mvb/dvb和mvc/dvc分别表示当前块相邻的左边块a、上方块b和右上块c的运动或视差矢量,mvmed和dvmed分别表示当前块运动矢量的中值矢量和当前块视差矢量的中值矢量,mvl,t为当前块在视点方向参考帧中与当前块位置相同的块的运动矢量,dvr,t-1为当前块在时间方向参考帧中与当前块位置相同的块的视差矢量;Among them, mv a /dv a , mv b /dv b and mv c /dv c respectively represent the motion or disparity vectors of the left block a, the upper block b and the upper right block c adjacent to the current block, and mv med and dv med respectively represent The median vector of the motion vector of the current block and the median vector of the disparity vector of the current block, mv l, t is the motion vector of the block whose position is the same as that of the current block in the reference frame in the view direction of the current block, dv r, t-1 is the current block The disparity vector of the block at the same position as the current block in the time direction reference frame of the block;

2.3、所述的得到修正后的当前块的运动矢量搜索起始点

Figure BDA00000437642900000414
和修正后的当前块的视差矢量搜索起始点
Figure BDA00000437642900000415
分别以当前块的运动矢量搜索起始点
Figure BDA00000437642900000416
和当前块的视差矢量搜索起始点
Figure BDA00000437642900000417
为中心,划定一个RSRMIN×RSRMIN的修正搜索窗口,在这个搜索窗口内做矢量修正得到;所述的保存修正后的当前块的运动矢量搜索起始点的率失真代价,记作
Figure BDA00000437642900000418
所述的保存修正后的当前块的视差矢量搜索起始点的率失真代价,记作
Figure BDA00000437642900000419
令i=i+1。2.3. The motion vector search starting point of the modified current block
Figure BDA00000437642900000414
and the corrected disparity vector search starting point of the current block
Figure BDA00000437642900000415
Search the starting point with the motion vector of the current block respectively
Figure BDA00000437642900000416
and the disparity vector search starting point of the current block
Figure BDA00000437642900000417
As the center, define a modified search window of RSR MIN ×RSR MIN , and perform vector correction in this search window; the rate-distortion cost of saving the modified motion vector search starting point of the current block is denoted as
Figure BDA00000437642900000418
The rate-distortion cost of saving the corrected disparity vector search starting point of the current block is denoted as
Figure BDA00000437642900000419
Let i=i+1.

前述的步骤1.2中的阈值T1为5,阈值T2为20,RSRMIN为2,RSRMAX为96。The threshold T 1 in the aforementioned step 1.2 is 5, the threshold T 2 is 20, the RSR MIN is 2, and the RSR MAX is 96.

前述的步骤1.3包括:The aforementioned step 1.3 includes:

4.1、第i次迭代当前块的视差矢量预测初值

Figure BDA0000043764290000051
计算;4.1. The initial value of the disparity vector prediction of the current block in the i-th iteration
Figure BDA0000043764290000051
Depend on calculate;

其中,

Figure BDA0000043764290000054
表示第i-1次迭代得到的当前块的运动矢量;
Figure BDA0000043764290000055
表示由当前块在时间方向参考帧中的运动补偿块覆盖的已编码块的视差矢量,u表示被覆盖的已编码块的个数,将使
Figure BDA0000043764290000056
最小的
Figure BDA0000043764290000057
作为第i次迭代当前块在时间方向参考帧中的运动补偿块的视差矢量,记作
Figure BDA0000043764290000058
Figure BDA0000043764290000059
为第i-1次迭代得到的当前块在视点方向参考帧中的视差补偿块的运动矢量;in,
Figure BDA0000043764290000054
Indicates the motion vector of the current block obtained by the i-1th iteration;
Figure BDA0000043764290000055
Represents the disparity vector of the coded block covered by the motion compensation block in the time direction reference frame of the current block, u represents the number of covered coded blocks, will make
Figure BDA0000043764290000056
the smallest
Figure BDA0000043764290000057
As the disparity vector of the motion compensation block of the current block in the time direction reference frame in the i-th iteration, denoted as
Figure BDA0000043764290000058
Figure BDA0000043764290000059
The motion vector of the parallax compensation block in the reference frame in the view direction of the current block obtained for the i-1th iteration;

Figure BDA00000437642900000510
为中心,划定一个RSR×RSR的搜索窗口,在这个搜索窗口中进行矢量修正,得到第i次迭代修正后的当前块的视差矢量
Figure BDA00000437642900000511
保存第i次迭代修正后的当前块的视差矢量的率失真代价,记作 by
Figure BDA00000437642900000510
As the center, define a search window of RSR×RSR, and perform vector correction in this search window to obtain the disparity vector of the current block after the i-th iteration correction
Figure BDA00000437642900000511
Save the rate-distortion cost of the disparity vector of the current block corrected by the i-th iteration, denoted as

4.2、第i次迭代当前块的运动矢量预测初值

Figure BDA00000437642900000513
通过
Figure BDA00000437642900000514
计算;4.2. The initial value of the motion vector prediction of the current block in the i-th iteration
Figure BDA00000437642900000513
pass
Figure BDA00000437642900000514
calculate;

其中,

Figure BDA00000437642900000515
表示步骤4.1中得到的第i次迭代修正后的当前块的视差矢量,
Figure BDA00000437642900000517
表示由当前块在视点方向参考帧中的视差补偿块覆盖的已编码块的视差矢量,v表示被覆盖的已编码块的个数,将使
Figure BDA00000437642900000518
最小的
Figure BDA00000437642900000519
作为第i次迭代当前块在视点方向参考帧中的视差补偿块的运动矢量,记作
Figure BDA00000437642900000520
表示步骤4.1中得到的第i次迭代当前块在时间方向参考帧中的运动补偿块的视差矢量;in,
Figure BDA00000437642900000515
Indicates the disparity vector of the current block corrected by the i-th iteration obtained in step 4.1,
Figure BDA00000437642900000517
Indicates the disparity vector of the coded block covered by the disparity compensation block in the view direction reference frame of the current block, v represents the number of covered coded blocks, which will make
Figure BDA00000437642900000518
the smallest
Figure BDA00000437642900000519
As the motion vector of the disparity compensation block of the current block in the reference frame in the view direction for the i-th iteration, denoted as
Figure BDA00000437642900000520
Indicates the disparity vector of the motion compensation block of the i-th iteration current block in the time direction reference frame obtained in step 4.1;

为中心,划定一个RSR×RSR的搜索窗口,在这个搜索窗口中进行矢量修正,得到第i次迭代修正后的当前块的运动矢量

Figure BDA00000437642900000523
保存第i次迭代修正后的当前块的运动矢量的率失真代价,记作
Figure BDA0000043764290000061
by As the center, define a search window of RSR×RSR, perform vector correction in this search window, and obtain the motion vector of the current block after the i-th iteration correction
Figure BDA00000437642900000523
Save the rate-distortion cost of the motion vector of the current block corrected by the i-th iteration, denoted as
Figure BDA0000043764290000061

与现有技术相比,本发明的优点在于:传统的立体视频编码算法分别在时间方向参考帧和视点方向参考帧中采用大搜索窗口独立搜索运动矢量和视差矢量,没有利用“立体图像对”之间的矢量关系,本发明通过建立立体-运动约束模型,并且根据模型误差的大小发明一种自适应修正窗口的迭代搜索策略,该方法可以在保持编码质量的同时,极大降低立体视频编码的复杂度,提高编码速度。Compared with the prior art, the advantage of the present invention is that the traditional stereoscopic video coding algorithm uses a large search window to independently search the motion vector and the disparity vector in the reference frame in the time direction and the reference frame in the viewpoint direction, and does not use the "stereo image pair" The vector relationship between, the present invention establishes the stereo-motion constraint model, and invents an iterative search strategy for adaptively correcting the window according to the size of the model error. This method can greatly reduce the stereoscopic video coding while maintaining the coding quality. complexity and improve encoding speed.

实验结果证明本发明的方法能够在基本不降低编码质量的同时节省平均96.43%的编码时间。Experimental results prove that the method of the present invention can save an average of 96.43% of the encoding time while basically not reducing the encoding quality.

附图说明 Description of drawings

图1是立体视频编码结构示意图;FIG. 1 is a schematic diagram of a stereoscopic video encoding structure;

图2是立体-运动约束模型示意图;Fig. 2 is a schematic diagram of a stereo-motion constraint model;

图3是本发明方法的流程图;Fig. 3 is a flow chart of the inventive method;

图4是相邻块的预测矢量示意图;Fig. 4 is a schematic diagram of prediction vectors of adjacent blocks;

图5是求运动矢量预测初值的示意图;Fig. 5 is a schematic diagram of seeking an initial value of motion vector prediction;

图6是求视差矢量预测初值的示意图;Fig. 6 is a schematic diagram of calculating the initial value of the disparity vector prediction;

图7是“Ballroom”序列不同算法的率失真曲线示意。Fig. 7 shows the rate-distortion curves of different algorithms of the "Ballroom" sequence.

具体实施方式 Detailed ways

以下结合附图实施例对本发明作进一步详细阐述。The present invention will be further described in detail below in conjunction with the accompanying drawings.

图2为立体-运动约束模型示意图,立体视频左右视点相邻时刻的4幅图像称为一个“立体图像对”,其中,右视点t时刻图像Fr,t为当前帧,MBr,t表示当前帧,Fr,t中的当前块。Fl,t表示当前块MBr,t在视点方向的参考帧,Fr,t-1表示当前块MBr,t在时间方向的参考帧,Fl,t-1表示DCMBl,t在时间方向的参考帧,Fl,t-1也是MCMBr,t-1在视点方向的参考帧,其中,DCMBl,t表示当前块MBr,t在Fl,t中的视差补偿块,MCMBl,t-1表示DCMBl,t在Fl,t-1中的运动补偿块,MCMBr,t-1表示当前块MBr,t在Fr,t-1中的运动补偿块,DCMBl,t-1表示MCMBr,t-1在Fl,t-1中的视差补偿块。Figure 2 is a schematic diagram of the stereo-motion constraint model. The four images at the adjacent moments of the left and right viewpoints of the stereo video are called a "stereo image pair", where the image F r, t of the right viewpoint at time t is the current frame, and MB r, t represents Current frame, F r, current block in t . F l, t represents the reference frame of the current block MB r, t in the view direction, F r, t-1 represents the reference frame of the current block MB r, t in the time direction, F l, t-1 represents the DCMB l, t in The reference frame in the time direction, F l, t-1 is also the reference frame of MCMB r, t-1 in the view direction, where DCMB l, t represents the disparity compensation block of the current block MB r, t in F l, t , MCMB l,t-1 indicates the motion compensated block of DCMB l,t in F l,t-1 , MCMB r,t-1 indicates the motion compensated block of current block MB r,t in F r,t-1 , DCMB l,t-1 denotes the disparity compensation block of MCMB r,t-1 in F l,t-1 .

“立体图像对”的运动矢量和视差矢量关系可以由下式表示,The relationship between the motion vector and the disparity vector of a "stereo image pair" can be expressed by the following formula,

δ=‖mvr,t(MBr,t)+dvr,t-1(MCMBr,t-1)-dvr,t(MBr,t)-mvl,t(DCMBl,t)‖δ=∥mv r,t (MB r,t )+dv r,t-1 (MCMB r,t-1 )-dv r,t (MB r,t )-mv l,t (DCMB l,t ) ‖

其中,‖v‖表示v的范数,δ为立体-运动约束模型的模型误差,mvr,t(MBr,t)为当前块MBr,t的最优运动矢量,dvr,t(MBr,t)为当前块MBr,t的最优视差矢量,dvr,t-1(MCMBr,t-1)为MCMBr,t-1的视差矢量,mvl,t(DCMBl,t)为DCMBl,t的运动矢量。Among them, ‖v‖ represents the norm of v, δ is the model error of the stereo-motion constraint model, mv r,t (MB r,t ) is the optimal motion vector of the current block MB r,t , dv r,t ( MB r, t ) is the optimal disparity vector of the current block MB r, t , dv r, t-1 (MCMB r, t-1 ) is the disparity vector of MCMB r, t-1 , mv l, t (DCMB l , t ) is the motion vector of DCMB l, t .

当且仅当MCMBl,t-1和DCMBl,t-1为同一个物体在不同3D表面的真实汇聚点时,上式中的δ等于0,即,If and only if MCMB l, t-1 and DCMB l, t-1 are the real convergence points of the same object on different 3D surfaces, δ in the above formula is equal to 0, that is,

mvr,t(MBr,t)+dvr,t-1(MCMBr,t-1)=dvr,t(MBr,t)+mvl,t(DCMBl,t)mv r,t (MB r,t )+dv r,t-1 (MCMB r,t-1 )=dv r,t (MB r,t )+mv l,t (DCMB l,t )

本发明针对立体视频右视点除第一帧以外的所有帧的编码块设计运动矢量和视差矢量的快速预测方法,右视点第一帧仍然采用全搜索算法来保证搜索精度。图3为本发明方法的流程图,分为初始化、调整修正搜索窗口大小、迭代搜索,和中止准则四个步骤。假设右视点t时刻图像中的宏块MBr,t为当前块,i表示迭代步数,δ为立体-运动约束模型的模型误差,mvr,t(MBr,t)和dvr,t(MBr,t)分别表示当前块的最优运动矢量和当前块的最优视差矢量,本发明的方法步骤如下:The present invention designs a fast prediction method for motion vectors and disparity vectors for coding blocks of all frames except the first frame of the right view of the stereoscopic video, and the first frame of the right view still uses a full search algorithm to ensure search accuracy. Fig. 3 is a flowchart of the method of the present invention, which is divided into four steps of initialization, adjusting and correcting the size of the search window, iterative search, and stopping criteria. Assume that the macroblock MB r, t in the image at the right viewpoint t is the current block, i represents the number of iteration steps, δ is the model error of the stereo-motion constraint model, mv r, t (MB r, t ) and dv r, t (MB r, t ) respectively represent the optimal motion vector of the current block and the optimal disparity vector of the current block, and the method steps of the present invention are as follows:

第一步,初始化:The first step, initialization:

1)令i=0,δ=0;1) Let i=0, δ=0;

2)由候选矢量集

Figure BDA0000043764290000071
Figure BDA0000043764290000072
确定当前块的运动矢量搜索起始点和当前块的视差矢量搜索起始点
Figure BDA0000043764290000074
其中,mva/dva,mvb/dvb和mvc/dvc分别表示当前块相邻的左边块a、上方块b和右上块c的运动或视差矢量,mvmed和dvmed分别表示当前块的运动矢量和视差矢量的中值矢量,中值矢量mvmed的水平分量和垂直分量分别等于mva,mvb和mvc水平分量和垂直分量的中值,中值矢量dvmed的水平分量和垂直分量分别等于dva,dvb和dvc水平分量和垂直分量的中值,mvl,t为当前块在视点方向参考帧中与当前块位置相同的块的运动矢量,dvr,t-1为当前块在时间方向参考帧中与当前块位置相同的块的视差矢量,如图4所示。由于当前块的相邻块已经完成编码,每个相邻块都只有运动矢量或者视差矢量,例如,对于当前块左边的相邻块a来说,只存在mva或者dva,因此,如果a是以视差估计方式进行编码的话,mva就不存在。在这种情况下,我们用(0,0)代替mva来计算中值矢量mvmed。比较各个候选预测矢量的率失真代价,分别选取使率失真代价最小的作为当前块的运动和视差矢量搜索起始点
Figure BDA0000043764290000081
Figure BDA0000043764290000082
2) From the candidate vector set
Figure BDA0000043764290000071
and
Figure BDA0000043764290000072
Determine the motion vector search starting point for the current block and the disparity vector search starting point of the current block
Figure BDA0000043764290000074
Among them, mv a /dv a , mv b /dv b and mv c /dv c respectively represent the motion or disparity vectors of the left block a, the upper block b and the upper right block c adjacent to the current block, and mv med and dv med respectively represent The median vector of the motion vector and the disparity vector of the current block, the horizontal and vertical components of the median vector mv med are equal to the median of the horizontal and vertical components of mv a , mv b and mv c respectively, the horizontal and vertical components of the median vector dv med component and vertical component are equal to dv a , dv b and dv c median value of the horizontal component and vertical component respectively, mv l, t is the motion vector of the block with the same position as the current block in the view direction reference frame of the current block, dv r, t-1 is the disparity vector of the block at the same position as the current block in the reference frame in the time direction of the current block, as shown in FIG. 4 . Since the adjacent blocks of the current block have been coded, each adjacent block only has a motion vector or a disparity vector. For example, for the adjacent block a to the left of the current block, there is only mv a or dv a , therefore, if a If it is encoded in the way of disparity estimation, mv a does not exist. In this case, we substitute (0,0) for mv a to compute the median vector mv med . Compare the rate-distortion cost of each candidate prediction vector, and select the one that minimizes the rate-distortion cost as the starting point of the search for the motion and disparity vector of the current block
Figure BDA0000043764290000081
and
Figure BDA0000043764290000082

3)分别以当前块的运动矢量搜索起始点和当前块的视差矢量搜索起始点为中心,划定一个RSRMIN×RSRMIN的修正搜索窗口,在这个搜索窗口内做矢量修正,得到修正后的当前块的运动矢量和视差矢量搜索起始点

Figure BDA0000043764290000085
保存修正后的当前块的运动矢量搜索起始点的率失真代价,记作
Figure BDA0000043764290000087
保存修正后的当前块的视差矢量搜索起始点的率失真代价,记作令i=i+1。3) Search the starting point with the motion vector of the current block respectively and the disparity vector search starting point of the current block As the center, define a modified search window of RSR MIN × RSR MIN , do vector correction in this search window, and obtain the modified motion vector and disparity vector search starting point of the current block
Figure BDA0000043764290000085
and Save the rate-distortion cost of the modified motion vector search starting point of the current block, denoted as
Figure BDA0000043764290000087
Save the rate-distortion cost of the disparity vector search starting point of the current block after correction, denoted as Let i=i+1.

第二步,按照下式调整修正搜索窗口RSR的大小。In the second step, the size of the modified search window RSR is adjusted according to the following formula.

RSRRSR == RSRRSR MINMIN &delta;&delta; << TT 11 RSRRSR MINMIN ++ &delta;&delta; -- TT 11 TT 22 -- TT 11 (( RSRRSR MAXMAX -- RSRRSR MINMIN )) TT 11 &le;&le; &delta;&delta; &le;&le; TT 22 RSRRSR MAXMAX &delta;&delta; >> TT 22

其中,RSRMIN为最小的修正搜索窗口(通常为2×2个像素),RSRMAX为最大的修正搜索窗口(通常取全搜索算法的搜索窗口大小,即96×96),T1和T2表示两个阈值(T1<T2),用来控制修正搜索窗口的大小,当模型误差δ大于阈值T2时(T2通常为20),当前块很可能为运动遮挡区域,需要采用大的修正搜索窗口RSRMAX来保证搜索精度;当模型误差δ小于阈值T1时,T1通常取5,说明当前迭代过程中得到的当前块的运动/视差矢量已经非常接近当前块的最优运动/视差矢量,于是,采用较小的修正搜索窗口RSRMIN,就足以保证搜索精度;反之,根据模型误差δ的大小来设计一个自适应大小的修正搜索窗口。Among them, RSR MIN is the smallest modified search window (usually 2×2 pixels), RSR MAX is the largest modified search window (usually the search window size of the full search algorithm, namely 96×96), T 1 and T 2 Indicates two thresholds (T 1 <T 2 ), which are used to control the size of the modified search window. When the model error δ is greater than the threshold T 2 (T 2 is usually 20), the current block is likely to be a motion occlusion area, and a large The modified search window RSR MAX is used to ensure the search accuracy; when the model error δ is smaller than the threshold T 1 , T 1 usually takes 5, indicating that the motion/disparity vector of the current block obtained in the current iteration process is very close to the optimal motion of the current block / disparity vector, therefore, using a smaller modified search window RSR MIN is sufficient to ensure the search accuracy; otherwise, an adaptively sized modified search window is designed according to the size of the model error δ.

第三步,迭代搜索过程:The third step is to iterate the search process:

1)由

Figure BDA00000437642900000810
计算第i次迭代过程中当前块的视差矢量预测初值
Figure BDA00000437642900000811
其中,
Figure BDA00000437642900000813
表示第i-1次迭代过程中得到的当前块的运动矢量;
Figure BDA00000437642900000814
表示由当前块在时间方向参考帧中的运动补偿块覆盖的已编码块的视差矢量,u表示被覆盖的已编码块的个数,如图5所示,将使最小的
Figure BDA00000437642900000816
作为第i次迭代过程中当前块在时间方向参考帧中的运动补偿块的视差矢量,记作
Figure BDA0000043764290000091
Figure BDA0000043764290000092
为第i-1次迭代过程中得到的当前块在视点方向参考帧中的视差补偿块的运动矢量。1) by
Figure BDA00000437642900000810
Calculate the initial value of the disparity vector prediction of the current block in the iterative process
Figure BDA00000437642900000811
in,
Figure BDA00000437642900000813
Indicates the motion vector of the current block obtained during the i-1th iteration;
Figure BDA00000437642900000814
Represents the disparity vector of the coded block covered by the motion compensation block in the time direction reference frame of the current block, u represents the number of covered coded blocks, as shown in Figure 5, will make the smallest
Figure BDA00000437642900000816
As the disparity vector of the motion compensation block of the current block in the time direction reference frame in the iterative process, denoted as
Figure BDA0000043764290000091
Figure BDA0000043764290000092
is the motion vector of the disparity compensation block of the current block in the reference frame in the view direction obtained in the iterative process of i-1.

Figure BDA0000043764290000093
为中心,划定一个RSR×RSR的搜索窗口,在这个搜索窗口中进行矢量修正,得到第i次迭代过程中修正后的当前块的视差矢量
Figure BDA0000043764290000094
保存第i次迭代过程中修正后的当前块的视差矢量的率失真代价,记作 by
Figure BDA0000043764290000093
As the center, define a RSR×RSR search window, and perform vector correction in this search window to obtain the corrected disparity vector of the current block in the i-th iteration process
Figure BDA0000043764290000094
Save the rate-distortion cost of the disparity vector of the current block corrected in the i-th iteration, denoted as

2)由

Figure BDA0000043764290000096
计算第i次迭代过程中当前块的运动矢量预测初值
Figure BDA0000043764290000097
其中,
Figure BDA0000043764290000098
表示第三步步骤1)中得到的第i次迭代过程中修正后的当前块的视差矢量,
Figure BDA00000437642900000910
表示由当前块在视点方向参考帧中的视差补偿块覆盖的已编码块的视差矢量,v表示被覆盖的已编码块的个数,如图6所示,将使最小的
Figure BDA00000437642900000912
作为第i次迭代过程中当前块在视点方向参考帧中的视差补偿块的运动矢量,记作
Figure BDA00000437642900000913
Figure BDA00000437642900000914
表示第三步步骤1)中得到的第i次迭代过程中当前块在时间方向参考帧中的运动补偿块的视差矢量。2) by
Figure BDA0000043764290000096
Calculate the initial value of the motion vector prediction of the current block during the i-th iteration
Figure BDA0000043764290000097
in,
Figure BDA0000043764290000098
Represents the disparity vector of the current block corrected in the i-th iteration process obtained in step 1) of the third step,
Figure BDA00000437642900000910
Represents the disparity vector of the coded block covered by the disparity compensation block in the reference frame of the current block in the view direction, v represents the number of coded blocks covered, as shown in Figure 6, will make the smallest
Figure BDA00000437642900000912
As the motion vector of the parallax compensation block of the current block in the reference frame in the view direction during the iterative process, denoted as
Figure BDA00000437642900000913
Figure BDA00000437642900000914
Represents the disparity vector of the motion compensation block of the current block in the reference frame in the time direction obtained in step 1) of the third step in the iterative process.

Figure BDA00000437642900000915
为中心,划定一个RSR×RSR的搜索窗口,在这个搜索窗口中进行矢量修正,得到第i次迭代过程中修正后的当前块的运动矢量
Figure BDA00000437642900000916
保存第i次迭代过程中修正后的当前块的运动矢量的率失真代价,记作
Figure BDA00000437642900000917
by
Figure BDA00000437642900000915
As the center, define a RSR×RSR search window, and perform vector correction in this search window to obtain the corrected motion vector of the current block in the i-th iteration process
Figure BDA00000437642900000916
Save the rate-distortion cost of the motion vector of the current block corrected during the i-th iteration, denoted as
Figure BDA00000437642900000917

第四步,中止准则:表示第i次迭代过程修正后的当前块的运动矢量的率失真代价,

Figure BDA00000437642900000919
表示第i-1次迭代过程修正后的当前块的运动矢量的率失真代价,
Figure BDA00000437642900000920
表示第i次迭代过程修正后的当前块的视差矢量的率失真代价,
Figure BDA00000437642900000921
表示第i-1次迭代过程修正后的当前块的视差矢量的率失真代价,如果
Figure BDA00000437642900000922
并且
Figure BDA00000437642900000923
则分别令第i-1次迭代过程中修正后的当前块的运动矢量和视差矢量
Figure BDA00000437642900000924
Figure BDA00000437642900000925
作为当前块的最优运动矢量mvr,t(MBr,t)和当前块的最优视差矢量dvr,t(MBr,t),结束迭代搜索过程。否则,令i=i+1,由
Figure BDA00000437642900000926
重新计算并更新δ,跳转到步骤B,其中,
Figure BDA0000043764290000102
分别表示第i次迭代过程中修正后的当前块的运动矢量和第i次迭代过程中修正后的当前块的视差矢量,
Figure BDA0000043764290000103
表示第i次迭代过程中当前块在时间方向参考帧中的运动补偿块的视差矢量,
Figure BDA0000043764290000104
第i次迭代过程中当前块在视点方向参考帧中的视差补偿块的运动矢量。The fourth step, the suspension criterion: Indicates the rate-distortion cost of the motion vector of the current block corrected by the iterative process,
Figure BDA00000437642900000919
Indicates the rate-distortion cost of the motion vector of the current block corrected by the iterative process of the i-1th time,
Figure BDA00000437642900000920
Indicates the rate-distortion cost of the disparity vector of the current block corrected by the iterative process,
Figure BDA00000437642900000921
Indicates the rate-distortion cost of the disparity vector of the current block corrected by the iterative process of the i-1th time, if
Figure BDA00000437642900000922
and
Figure BDA00000437642900000923
Then respectively let the motion vector and disparity vector of the current block corrected in the iterative process of i-1
Figure BDA00000437642900000924
and
Figure BDA00000437642900000925
As the optimal motion vector mv r,t (MB r,t ) of the current block and the optimal disparity vector dv r,t (MB r,t ) of the current block, the iterative search process ends. Otherwise, let i=i+1, by
Figure BDA00000437642900000926
Recalculate and update δ, jump to step B, where, and
Figure BDA0000043764290000102
respectively represent the motion vector of the current block corrected in the ith iteration process and the disparity vector of the current block corrected in the ith iteration process,
Figure BDA0000043764290000103
Indicates the disparity vector of the motion compensation block of the current block in the time direction reference frame during the i-th iteration,
Figure BDA0000043764290000104
The motion vector of the disparity compensation block of the current block in the reference frame in the view direction during the iterative process.

为了检验本发明所提出的方法的性能,将本发明的方法与全搜索方法进行比较。实验平台为JMVM8.0,运动估计和视差估计搜索窗口大小为32×32,宏块模式为Inter16×16,从“Ballroom”,“Exit”,“Vassar”,“Racel”,“Rena”序列的视点0,视点1中各取100帧图像分别作为左视点和右视点,左视点采用传统的h.264编码方法先进行编码,右视点采用本发明的立体视频编码快速迭代搜索方法进行编码,各序列分辨率为640×480。所有实验在配置为Intel(R)Core(TM)2 Extreme X9650 2.99GHzCPU,4GB RAM的PC上独立执行。In order to examine the performance of the proposed method in the present invention, the method of the present invention is compared with the full search method. The experimental platform is JMVM8.0, the motion estimation and disparity estimation search window size is 32×32, the macroblock mode is Inter16×16, from the sequence of “Ballroom”, “Exit”, “Vassar”, “Racel”, “Rena” Take 100 frames of images from viewpoint 0 and viewpoint 1 respectively as the left viewpoint and right viewpoint. The left viewpoint is first encoded using the traditional h. The sequence resolution is 640×480. All experiments are performed independently on a PC configured with Intel(R) Core(TM)2 Extreme X9650 2.99GHz CPU, 4GB RAM.

表1为不同算法的编码结果比较。图7为“Ballroom”序列不同算法的率失真曲线示意。可以看出,本文算法与JMVM全搜索相比,峰值信噪比的变化在-0.33dB到+0.01dB之间,平均码率的变化范围在-10.93%到+0.07%之间,基本上看不出编码质量的下降,并且本文算法能够节省96%以上的编码时间。Table 1 compares the coding results of different algorithms. Figure 7 shows the rate-distortion curves of different algorithms for the "Ballroom" sequence. It can be seen that, compared with the JMVM full search, the algorithm in this paper has a change in peak signal-to-noise ratio between -0.33dB and +0.01dB, and an average code rate between -10.93% and +0.07%. There is no decline in encoding quality, and the algorithm in this paper can save more than 96% of encoding time.

表1不同算法的编码结果与JMVM全搜索算法比较Table 1 Encoding results of different algorithms compared with JMVM full search algorithm

Figure BDA0000043764290000105
Figure BDA0000043764290000105

Claims (3)

1.一种立体视频编码快速迭代搜索方法,令右视点t时刻图像中的宏块MBr,t为当前块,i为迭代步数,δ为立体-运动约束模型的模型误差,mvr,t(MBr,t)表示当前块的最优运动矢量,dvr,t(MBr,t)表示当前块的最优视差矢 量,
Figure FDA0000140126620000011
为第i次迭代修正后的当前块的运动矢量的率失真代价,
Figure FDA0000140126620000012
为第i-1次迭代修正后的当前块的运动矢量的率失真代价,
Figure FDA0000140126620000013
为第i次迭代修正后的当前块的视差矢量的率失真代价,
Figure FDA0000140126620000014
为第i-1次迭代修正后的当前块的视差矢量的率失真代价,T1和T2表示两个阈值,T1<T2,RSRMIN为最小修正搜索窗口,RSRMAX为最大修正搜索窗口,T1为5,T2为20,RSRMIN为2,RSRMAX为96,其特征在于包括以下步骤:
1. A fast iterative search method for stereoscopic video coding, let the macroblock MB r in the image at the moment t of the right viewpoint, t be the current block, i be the number of iteration steps, and δ be the model error of the stereo-motion constraint model, mv r, t (MB r, t ) represents the optimal motion vector of the current block, dv r, t (MB r, t ) represents the optimal disparity vector of the current block,
Figure FDA0000140126620000011
is the rate-distortion cost of the motion vector of the current block corrected for the i-th iteration,
Figure FDA0000140126620000012
The rate-distortion cost of the motion vector of the current block corrected for the i-1th iteration,
Figure FDA0000140126620000013
is the rate-distortion cost of the disparity vector of the current block corrected for the i-th iteration,
Figure FDA0000140126620000014
is the rate-distortion cost of the disparity vector of the current block corrected in the i-1th iteration, T 1 and T 2 represent two thresholds, T 1 < T 2 , RSR MIN is the minimum correction search window, RSR MAX is the maximum correction search Window, T 1 is 5, T 2 is 20, RSR MIN is 2, RSR MAX is 96, it is characterized in that comprising the following steps:
1.1、初始化;确定当前块的运动矢量搜索起始点
Figure FDA0000140126620000015
和当前块的视差矢量搜索起始点
Figure FDA0000140126620000016
分别以当前块的运动矢量搜索起始点
Figure FDA0000140126620000017
和当前块的视差矢量搜索起始点
Figure FDA0000140126620000018
为中心,划定一个RSRMIN×RSRMIN的修正搜索窗口,在这个搜索窗口内做矢量修正,得到修正后的当前块的运动矢量搜索起始点
Figure FDA0000140126620000019
和修正后的当前块的视差矢量搜索起始点保存修正后的当前块的运动和视差矢量搜索起始点的率失真代价;
1.1. Initialization; determine the starting point of the motion vector search of the current block
Figure FDA0000140126620000015
and the disparity vector search starting point of the current block
Figure FDA0000140126620000016
Search the starting point with the motion vector of the current block respectively
Figure FDA0000140126620000017
and the disparity vector search starting point of the current block
Figure FDA0000140126620000018
As the center, define a modified search window of RSR MIN × RSR MIN , do vector correction in this search window, and obtain the modified motion vector search starting point of the current block
Figure FDA0000140126620000019
and the corrected disparity vector search starting point of the current block Save the corrected motion of the current block and the rate-distortion cost of the disparity vector search starting point;
1.2、按照下式调整修正搜索窗口RSR的大小,1.2. Adjust the size of the modified search window RSR according to the following formula, RSRRSR == RSRRSR MINMIN &delta;&delta; << TT 11 RSRRSR MINMIN ++ &delta;&delta; -- TT 11 TT 22 -- TT 11 (( RSRRSR MAXMAX -- RSRRSR MINMIN )) TT 11 &le;&le; &delta;&delta; &le;&le; TT 22 RSRRSR MAXMAX &delta;&delta; >> TT 22 1.3、迭代搜索过程;确定第i次迭代当前块的视差矢量预测初值
Figure FDA00001401266200000112
进行矢量修正,得到第i次迭代修正后的当前块的视差矢量
Figure FDA00001401266200000113
确定第i次迭代当前块的运动矢量预测初值进行矢量修正,得到第i次迭代修正后的当前块的运动矢量保存第i次迭代修正后的当前块的运动矢量和视差矢量的率失真代价;
1.3. Iterative search process; determine the initial value of the disparity vector prediction of the current block in the i-th iteration
Figure FDA00001401266200000112
Perform vector correction to obtain the disparity vector of the current block corrected by the i-th iteration
Figure FDA00001401266200000113
Determine the initial value of motion vector prediction for the current block in the ith iteration Perform vector correction to obtain the motion vector of the current block corrected by the i-th iteration Save the rate-distortion cost of the motion vector and disparity vector of the current block corrected by the i-th iteration;
1.4、中止准则:如果 RDCost ( m&nu; r , t i ( MB r , t ) ) &GreaterEqual; RDCost ( m&nu; r , t i - 1 ( MB r , t ) ) 并且 RDCost ( d&nu; r , t i ( MB r , t ) ) &GreaterEqual; RDCost ( d&nu; r , t i - 1 ( MB r , t ) ) , 则令第i-1次迭代修正后的当前块的运动矢量
Figure FDA0000140126620000021
和视差矢量
Figure FDA0000140126620000022
分别作为当前块的最优运动矢量mvr,t(MBr,t)和当前块的最优视差矢量dvr,t(MBr,t),结束迭代搜索过程,否则,令i=i+1,由 &delta; = | | m&nu; r , t i ( MB r , t ) + d&nu; r , t - 1 i ( MCMB r , t - 1 ) - d&nu; r , t i ( MB r , t ) - m&nu; l , t i ( DCMB l , t ) | | 重新计算并更新δ,跳转到步骤1.2,其中,
Figure FDA0000140126620000024
分别表示第i次迭代修正后的当前块的运动矢量和第i次迭代修正后的当前块的视差矢量;
1.4. Suspension criteria: if RDCost ( m&nu; r , t i ( MB r , t ) ) &Greater Equal; RDCost ( m&nu; r , t i - 1 ( MB r , t ) ) and RDCost ( d&nu; r , t i ( MB r , t ) ) &Greater Equal; RDCost ( d&nu; r , t i - 1 ( MB r , t ) ) , Then let the motion vector of the current block corrected by the i-1th iteration
Figure FDA0000140126620000021
and the disparity vector
Figure FDA0000140126620000022
respectively as the optimal motion vector mv r, t (MB r, t ) of the current block and the optimal disparity vector dv r, t (MB r, t ) of the current block, and end the iterative search process; otherwise, let i=i+ 1, by &delta; = | | m&nu; r , t i ( MB r , t ) + d&nu; r , t - 1 i ( MCMB r , t - 1 ) - d&nu; r , t i ( MB r , t ) - m&nu; l , t i ( DCMB l , t ) | | Recalculate and update δ, jump to step 1.2, where,
Figure FDA0000140126620000024
and respectively represent the motion vector of the current block corrected by the ith iteration and the disparity vector of the current block corrected by the ith iteration;
其中,表示第i次迭代当前块在时间方向参考帧中的运动补偿块的视差矢量,
Figure FDA0000140126620000027
第i次迭代当前块在视点方向参考帧中的视差补偿块的运动矢量。
in, Indicates the disparity vector of the motion-compensated block in the time-direction reference frame of the current block in the i-th iteration,
Figure FDA0000140126620000027
The motion vector of the disparity compensation block of the current block in the reference frame in the view direction at the i-th iteration.
2.根据权利要求1所述的立体视频编码快速迭代搜索方法,其特征在于,所述步骤1.1包括:2. The fast iterative search method for stereoscopic video coding according to claim 1, wherein said step 1.1 comprises: 2.1、令i=0,δ=0;2.1. Let i=0, δ=0; 2.2、所述确定当前块的运动矢量搜索起始点
Figure FDA0000140126620000028
和当前块的视差矢量搜索起始点
Figure FDA0000140126620000029
通过候选矢量集 Bm&nu; r , t 0 ( MB r , t ) : { m&nu; l , t , m&nu; med , m&nu; a , m&nu; b , m&nu; c , 0 &RightArrow; } Bd&nu; r , t 0 ( MB r , t ) : { d&nu; r , t - 1 , d&nu; med , d&nu; a , d&nu; b , d&nu; c , 0 &RightArrow; } 获得;
2.2. The determination of the motion vector search starting point of the current block
Figure FDA0000140126620000028
and the disparity vector search starting point of the current block
Figure FDA0000140126620000029
by candidate vector set Bm&nu; r , t 0 ( MB r , t ) : { m&nu; l , t , m&nu; med , m&nu; a , m&nu; b , m&nu; c , 0 &Right Arrow; } and Bd&nu; r , t 0 ( MB r , t ) : { d&nu; r , t - 1 , d&nu; med , d&nu; a , d&nu; b , d&nu; c , 0 &Right Arrow; } get;
其中,mva/dva,mvb/dvb和mvc/dvc分别表示当前块相邻的左边块a、上方块b和右上块c的运动或视差矢量,mvmed和dvmed分别表示当前块运动矢量的中值矢量和当前块视差矢量的中值矢量,mvl,t为当前块在视点方向参考帧中与当前块位置相同的块的运动矢量,dvr,t-1为当前块在时间方向参考帧中与当前块位置相同的块的视差矢量;Among them, mv a /dv a , mv b /dv b and mv c /dv c respectively represent the motion or disparity vectors of the left block a, the upper block b and the upper right block c adjacent to the current block, and mv med and dv med respectively represent The median vector of the motion vector of the current block and the median vector of the disparity vector of the current block, mv l, t is the motion vector of the block whose position is the same as that of the current block in the reference frame in the view direction of the current block, dv r, t-1 is the current block The disparity vector of the block at the same position as the current block in the time direction reference frame of the block; 2.3、所述的保存修正后的当前块的运动矢量搜索起始点的率失真代价,记作
Figure FDA00001401266200000212
所述的保存修正后的当前块的视差矢量搜索起始点的率失真代价,记作
Figure FDA00001401266200000213
令i=i+1。
2.3. The rate-distortion cost of saving the modified motion vector search starting point of the current block is denoted as
Figure FDA00001401266200000212
The rate-distortion cost of saving the corrected disparity vector search starting point of the current block is denoted as
Figure FDA00001401266200000213
Let i=i+1.
3.根据权利要求1所述的立体视频编码快速迭代搜索方法,其特征在于,所述步骤1.3包括:3. The fast iterative search method for stereoscopic video coding according to claim 1, wherein said step 1.3 comprises: 3.1、第i次迭代当前块的视差矢量预测初值
Figure FDA00001401266200000214
Min 1 &le; &mu; &le; 4 ( RDCost ( Bd&nu; r , t i , u ( MB r , t ) ) ) 计算;
3.1. The initial value of the disparity vector prediction of the current block in the i-th iteration
Figure FDA00001401266200000214
Depend on Min 1 &le; &mu; &le; 4 ( RDCost ( Bd&nu; r , t i , u ( MB r , t ) ) ) calculate;
其中, Bd&nu; r , t i , u ( MB r , t ) = m&nu; r , t i - 1 ( MB r , t ) + d&nu; r , t - 1 i , u ( MCMB r , t - 1 ) - m&nu; l , t i - 1 ( DCMB l , t ) ,
Figure FDA0000140126620000031
表示第i-1次迭代得到的当前块的运动矢量;
Figure FDA0000140126620000032
表示由当前块在时间方向参考帧中的运动补偿块覆盖的已编码块的视差矢量,u表示被覆盖的已编码块,将使
Figure FDA0000140126620000033
最小的
Figure FDA0000140126620000034
作为第i次迭代当前块在时间方向参考帧中的运动补偿块的视差矢量,记作
Figure FDA0000140126620000035
为第i-1次迭代得到的当前块在视点方向参考帧中的视差补偿块的运动矢量;
in, Bd&nu; r , t i , u ( MB r , t ) = m&nu; r , t i - 1 ( MB r , t ) + d&nu; r , t - 1 i , u ( MCMB r , t - 1 ) - m&nu; l , t i - 1 ( DCMB l , t ) ,
Figure FDA0000140126620000031
Indicates the motion vector of the current block obtained by the i-1th iteration;
Figure FDA0000140126620000032
Represents the disparity vector of the coded block covered by the motion compensation block of the current block in the time direction reference frame, u represents the covered coded block, will make
Figure FDA0000140126620000033
the smallest
Figure FDA0000140126620000034
As the disparity vector of the motion compensation block of the current block in the time direction reference frame in the i-th iteration, denoted as
Figure FDA0000140126620000035
The motion vector of the parallax compensation block in the reference frame in the view direction of the current block obtained for the i-1th iteration;
Figure FDA0000140126620000036
为中心,划定一个RSR×RSR的搜索窗口,在这个搜索窗口中进行矢量修正,得到第i次迭代修正后的当前块的视差矢量
Figure FDA0000140126620000037
保存第i次迭代修正后的当前块的视差矢量的率失真代价,记作
Figure FDA0000140126620000038
by
Figure FDA0000140126620000036
As the center, define a search window of RSR×RSR, and perform vector correction in this search window to obtain the disparity vector of the current block after the i-th iteration correction
Figure FDA0000140126620000037
Save the rate-distortion cost of the disparity vector of the current block corrected by the i-th iteration, denoted as
Figure FDA0000140126620000038
3.2、第i次迭代当前块的运动矢量预测初值通过 Min 1 &le; v &le; 4 ( RDCost ( Bm&nu; r , t i , &nu; ( MB r , t ) ) 计算;3.2. The initial value of the motion vector prediction of the current block in the i-th iteration pass Min 1 &le; v &le; 4 ( RDCost ( Bm&nu; r , t i , &nu; ( MB r , t ) ) calculate; 其中, Bm&nu; r , t i , &nu; ( MB r , t ) = d&nu; r , t i ( MB r , t ) + m&nu; l , t i , &nu; ( DCMB l , t ) - d&nu; r , t - 1 i ( MCMB r , t - 1 )
Figure FDA00001401266200000312
表示步骤3.1中得到的第i次迭代修正后的当前块的视差矢量,
Figure FDA00001401266200000313
表示由当前块在视点方向参考帧中的视差补偿块覆盖的已编码块的视差矢量,v表示被覆盖的已编码块,将使
Figure FDA00001401266200000314
最小的
Figure FDA00001401266200000315
作为第i次迭代当前块在视点方向参考帧中的视差补偿块的运动矢量,记作
Figure FDA00001401266200000316
表示步骤3.1中得到的第i次迭代当前块在时间方向参考帧中的运动补偿块的视差矢量;
in, Bm&nu; r , t i , &nu; ( MB r , t ) = d&nu; r , t i ( MB r , t ) + m&nu; l , t i , &nu; ( DCMB l , t ) - d&nu; r , t - 1 i ( MCMB r , t - 1 )
Figure FDA00001401266200000312
Indicates the disparity vector of the current block corrected by the i-th iteration obtained in step 3.1,
Figure FDA00001401266200000313
Represents the disparity vector of the coded block covered by the disparity compensation block in the view direction reference frame of the current block, v represents the coded block covered, will make
Figure FDA00001401266200000314
the smallest
Figure FDA00001401266200000315
As the motion vector of the disparity compensation block of the current block in the reference frame in the view direction for the i-th iteration, denoted as
Figure FDA00001401266200000316
Indicates the disparity vector of the motion compensation block of the i-th iteration current block in the reference frame in the time direction obtained in step 3.1;
Figure FDA00001401266200000317
为中心,划定一个RSR×RSR的搜索窗口,在这个搜索窗口中进行矢量修正,得到第i次迭代修正后的当前块的运动矢量
Figure FDA00001401266200000318
保存第i次迭代修正后的当前块的运动矢量的率失真代价,记作
Figure FDA00001401266200000319
by
Figure FDA00001401266200000317
As the center, define a search window of RSR×RSR, perform vector correction in this search window, and obtain the motion vector of the current block after the i-th iteration correction
Figure FDA00001401266200000318
Save the rate-distortion cost of the motion vector of the current block corrected by the i-th iteration, denoted as
Figure FDA00001401266200000319
CN 201110007342 2011-01-13 2011-01-13 Fast iterative search algorithm for stereo video coding Expired - Fee Related CN102045571B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110007342 CN102045571B (en) 2011-01-13 2011-01-13 Fast iterative search algorithm for stereo video coding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110007342 CN102045571B (en) 2011-01-13 2011-01-13 Fast iterative search algorithm for stereo video coding

Publications (2)

Publication Number Publication Date
CN102045571A CN102045571A (en) 2011-05-04
CN102045571B true CN102045571B (en) 2012-09-05

Family

ID=43911273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110007342 Expired - Fee Related CN102045571B (en) 2011-01-13 2011-01-13 Fast iterative search algorithm for stereo video coding

Country Status (1)

Country Link
CN (1) CN102045571B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130163880A1 (en) * 2011-12-23 2013-06-27 Chao-Chung Cheng Disparity search methods and apparatuses for multi-view videos
CN102595164A (en) * 2012-02-27 2012-07-18 中兴通讯股份有限公司 Method, device and system for sending video image
WO2013159326A1 (en) * 2012-04-27 2013-10-31 Mediatek Singapore Pte. Ltd. Inter-view motion prediction in 3d video coding
US10277844B2 (en) * 2016-04-20 2019-04-30 Intel Corporation Processing images based on generated motion data
CN108419082B (en) * 2017-02-10 2020-09-11 北京金山云网络技术有限公司 Motion estimation method and device
CN117426095A (en) * 2021-06-04 2024-01-19 抖音视界有限公司 Method, apparatus and medium for video processing
CN115908170B (en) * 2022-11-04 2023-11-21 浙江华诺康科技有限公司 Noise reduction method and device for binocular image, electronic device and storage medium
CN115630191B (en) * 2022-12-22 2023-03-28 成都纵横自动化技术股份有限公司 Time-space data set retrieval method and device based on full-dynamic video and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101600108A (en) * 2009-06-26 2009-12-09 北京工业大学 A joint motion and disparity estimation method in multi-view video coding
CN101895749A (en) * 2010-06-29 2010-11-24 宁波大学 Quick parallax estimation and motion estimation method
CN101917619A (en) * 2010-08-20 2010-12-15 浙江大学 A fast motion estimation method for multi-view video coding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090167843A1 (en) * 2006-06-08 2009-07-02 Izzat Hekmat Izzat Two pass approach to three dimensional Reconstruction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101600108A (en) * 2009-06-26 2009-12-09 北京工业大学 A joint motion and disparity estimation method in multi-view video coding
CN101895749A (en) * 2010-06-29 2010-11-24 宁波大学 Quick parallax estimation and motion estimation method
CN101917619A (en) * 2010-08-20 2010-12-15 浙江大学 A fast motion estimation method for multi-view video coding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邓智玭,贾克斌,陈锐霖,伏长虹,萧允治.面向立体视频的视差-运动同步联立预测算法.《计算机辅助设计与图形学学报》.2010,第22卷(第10期), *

Also Published As

Publication number Publication date
CN102045571A (en) 2011-05-04

Similar Documents

Publication Publication Date Title
CN102045571B (en) Fast iterative search algorithm for stereo video coding
CN101600108B (en) Joint estimation method for movement and parallax error in multi-view video coding
CN110087087B (en) VVC inter-frame coding unit prediction mode early decision and block division early termination method
CN107027029B (en) High-performance video coding improvement method based on frame rate conversion
CN101860748B (en) System and method for generating side information based on distributed video coding
CN103533359B (en) One is bit rate control method H.264
CN100463527C (en) A method for disparity estimation of multi-viewpoint video images
CN103051894B (en) A kind of based on fractal and H.264 binocular tri-dimensional video compression &amp; decompression method
CN104469336B (en) Coding method for multi-view depth video signals
US20230042575A1 (en) Methods and systems for estimating motion in multimedia pictures
CN102752588A (en) Video encoding and decoding method using space zoom prediction
CN101895749B (en) Quick parallax estimation and motion estimation method
CN110557646B (en) Intelligent inter-view coding method
CN101304529A (en) Method and device for selecting macroblock mode
CN102291579A (en) Rapid fractal compression and decompression method for multi-cast stereo video
CN103327327A (en) Selection method of inter-frame predictive coding units for HEVC
CN107071421A (en) A kind of method for video coding of combination video stabilization
TWI489876B (en) A Multi - view Video Coding Method That Can Save Decoding Picture Memory Space
CN102316323B (en) A Fast Fractal Compression and Decompression Method for Binocular Stereo Video
CN101867818B (en) Selection method and device of macroblock mode
Yan et al. CTU layer rate control algorithm in scene change video for free-viewpoint video
CN101557519B (en) Multi-view video coding method
CN102263953B (en) Quick fractal compression and decompression method for multicasting stereo video based on object
CN114827616B (en) Compressed video quality enhancement method based on space-time information balance
CN113507607B (en) Compressed video multi-frame quality enhancement method without motion compensation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120905

Termination date: 20150113

EXPY Termination of patent right or utility model