CN102045162A - Personal identification system of permittee with tri-modal biometric characteristic and control method thereof - Google Patents
Personal identification system of permittee with tri-modal biometric characteristic and control method thereof Download PDFInfo
- Publication number
- CN102045162A CN102045162A CN2009101679254A CN200910167925A CN102045162A CN 102045162 A CN102045162 A CN 102045162A CN 2009101679254 A CN2009101679254 A CN 2009101679254A CN 200910167925 A CN200910167925 A CN 200910167925A CN 102045162 A CN102045162 A CN 102045162A
- Authority
- CN
- China
- Prior art keywords
- fingerprint
- feature
- face
- terminal
- identity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000004927 fusion Effects 0.000 claims abstract description 40
- 238000007405 data analysis Methods 0.000 claims abstract description 5
- 239000013598 vector Substances 0.000 claims description 38
- 238000012795 verification Methods 0.000 claims description 36
- 238000000605 extraction Methods 0.000 claims description 18
- 238000004891 communication Methods 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 13
- 238000004364 calculation method Methods 0.000 claims description 12
- 238000001228 spectrum Methods 0.000 claims description 7
- 230000009466 transformation Effects 0.000 claims description 7
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- 230000001815 facial effect Effects 0.000 claims description 6
- 230000002452 interceptive effect Effects 0.000 claims description 5
- 238000007781 pre-processing Methods 0.000 claims description 4
- 230000011218 segmentation Effects 0.000 claims description 4
- 238000013475 authorization Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 230000014509 gene expression Effects 0.000 claims description 3
- 230000008676 import Effects 0.000 claims description 2
- 238000002372 labelling Methods 0.000 claims description 2
- 238000007500 overflow downdraw method Methods 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims description 2
- 238000004088 simulation Methods 0.000 claims description 2
- 230000001131 transforming effect Effects 0.000 claims description 2
- 238000005065 mining Methods 0.000 claims 1
- 230000003595 spectral effect Effects 0.000 claims 1
- 230000006870 function Effects 0.000 abstract description 9
- 230000005236 sound signal Effects 0.000 abstract description 2
- 230000003068 static effect Effects 0.000 abstract description 2
- 238000012549 training Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000036544 posture Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Collating Specific Patterns (AREA)
Abstract
本发明涉及一种三模态生物特征持证人身份鉴别系统及其控制方法。包括用于身份鉴别的终端设备硬件装置、终端管理软件、终端服务软件和中心服务软件四大部分。终端设备主要用于采集个人的身份证信息、静态指纹特征图像、声音信号和视频人脸图像;终端管理软件主要负责终端管理、指纹登记、人脸登记、语音特征登记、采集身份证信息和数据分析等功能;终端服务软件主要负责对指纹、语音和人脸特征进行比对并给出基于三模态融合的身份鉴别结果;中心服务软件主要负责存取指纹、语音和人脸特征数据,向终端设备提供检索服务,以及对终端设备的各类服务请求进行控制。该系统可以使用户获得高质量、高可靠性的持证人身份鉴别服务。
The invention relates to a three-modal biological feature certificate holder identification system and a control method thereof. It includes four parts: terminal equipment hardware device for identity authentication, terminal management software, terminal service software and center service software. Terminal equipment is mainly used to collect personal ID card information, static fingerprint feature images, sound signals and video face images; terminal management software is mainly responsible for terminal management, fingerprint registration, face registration, voice feature registration, and collection of ID card information and data analysis and other functions; the terminal service software is mainly responsible for comparing fingerprints, voice and face features and providing identification results based on three-modal fusion; the central service software is mainly responsible for accessing fingerprint, voice and face feature data, and providing The terminal device provides retrieval services and controls various service requests of the terminal device. The system can enable users to obtain high-quality, high-reliability certificate holder identification services.
Description
技术领域technical field
本发明涉及生物特征识别技术领域,具体涉及一种基于指纹、语音和人脸的三模态持证人身份鉴别系统及其控制方法。 The invention relates to the technical field of biological feature identification, in particular to a three-mode certificate holder identity identification system based on fingerprints, voice and human face and a control method thereof. the
背景技术Background technique
随着对社会安全和身份鉴别的准确性和可靠性要求的日益提高,单一的生物特征识别技术已经不能满足社会的应用需求,进而阻碍了该领域更广泛的应用。由于没有任何一个单一的生物特征识别系统能提供足够精确和可靠的识别,因此多生物特征识别系统的出现将是一个有效的可选策略,比如语音与人脸、语音与指纹,或者如本项目中提出的使用语音、人脸和指纹的结合来进行综合识别,可以极大地提高系统的准确性和可靠性,以及复杂环境下的鲁棒性。就生物特征识别技术而言,其发展趋势将是从依靠单一模式的识别阶段逐步过渡到依靠多种生物特征进行综合识别的阶段。 With the increasing requirements for the accuracy and reliability of social security and identification, a single biometric identification technology can no longer meet the application needs of society, which hinders the wider application of this field. Since no single biometric system can provide sufficiently accurate and reliable identification, the emergence of multiple biometric systems would be an effective alternative strategy, such as voice and face, voice and fingerprint, or as in this project The combination of voice, face and fingerprint proposed in the paper for comprehensive recognition can greatly improve the accuracy and reliability of the system, as well as the robustness in complex environments. As far as biometric identification technology is concerned, its development trend will be to gradually transition from the stage of identification relying on a single pattern to the stage of comprehensive identification relying on multiple biometric features. the
近年来迅速发展的数据融合技术为多生物特征识别提供了坚实的理论基础,国际上许多学者已广泛致力于多生物特征的身份识别技术研究。Roberto在1995年便提出了利用多个生物特征来进行个人身份认证的方法,他把声音分类器和人脸图像分类器分别用加权几何平均和超基函数网络融合识别,取得了较好效果。Bigun等(1997)提出利用监督学习并结合Bayes理论的方法融合声音与脸像进行身份鉴别,达到了很高的正确率。Dieckmann等人采用声音和唇动信息这两种动态特征和人脸图像这种静态特征来进行融合身份识别,他们利用简单的投票算法判断单个分类器的决策是否与其它两个分类器一致。Verlinde等于1997年提出用K-NN方法融合声纹和视觉特征,也取得了较好的结果。Jain等人于1998年提出将指纹与人脸识别的结果融合,并从理论上定量地证明了多生物特征认证系统相对于单种生物特征认证系统在实现效率上的提高,于1999年从理论上证明了多生物特征的融合可提高认证率,并在2000年提出确定每个用 户的特定参数的方法将指纹、脸像和手形的识别结果融合。Kittler等人提出了融合理论框架并将其分为三层,同时比较了加法准则和乘法准则等算法在融合中的优缺点。Maes等第一次实现了一个结合生物特征(指纹)和非生物特征(密码)的系统。除此之外,在很多公开文献中还展示了许多其它的多生物特征识别方法以及结合生物特征和非生物特征进行身份识别的方法,都取得了比较好的识别效果。虽然多生物特征身份识别技术还处在初步阶段,但很多的研究成果也已经被商业公司应用到实践中,其中最著名系统就是DCSAG公司的BioID系统,它使用了脸像、声音和唇动三个基本的生物特征融合来识别个体身份,也已经取得了比较好的综合识别结果。 The rapid development of data fusion technology in recent years has provided a solid theoretical basis for multi-biometric identification, and many scholars in the world have been extensively devoted to the research of multi-biometric identification technology. In 1995, Roberto proposed the method of using multiple biometrics for personal identity authentication. He used the weighted geometric mean and super basis function network fusion recognition for the voice classifier and face image classifier respectively, and achieved good results. Bigun et al. (1997) proposed to use supervised learning combined with Bayes theory to fuse voice and face for identity identification, which achieved a high accuracy rate. Dieckmann et al. used two dynamic features of voice and lip movement information and static features of face image for fusion identity recognition. They used a simple voting algorithm to judge whether the decision of a single classifier was consistent with the other two classifiers. Verlinde et al. proposed in 1997 to use the K-NN method to fuse voiceprint and visual features, and achieved good results. In 1998, Jain et al. proposed to fuse the results of fingerprint and face recognition, and theoretically and quantitatively proved the improvement of the efficiency of the multi-biometric authentication system compared with the single biometric authentication system. In 1999, from the theory It has been proved that the fusion of multiple biometric features can improve the authentication rate, and in 2000, a method to determine the specific parameters of each user was proposed to fuse the recognition results of fingerprints, face images and hand shapes. Kittler et al. proposed a fusion theoretical framework and divided it into three layers, and compared the advantages and disadvantages of algorithms such as addition criterion and multiplication criterion in fusion. For the first time, Maes et al. realized a system combining biometrics (fingerprints) and non-biometrics (passwords). In addition, many other multi-biometric feature identification methods and identification methods combining biological features and non-biological features have been shown in many open literatures, all of which have achieved relatively good identification results. Although the multi-biometric identification technology is still in the initial stage, many research results have been applied to practice by commercial companies. The most famous system is DCSAG's BioID system, which uses three components: face, voice and lip movement. The fusion of two basic biometric features to identify individual identities has also achieved relatively good comprehensive identification results. the
国内己经有以中科院、清化华大学等为代表的一批科研单位涉足这一研究领域,并取得了大量的研究成果。中科院自动化所模式识别国家重点实验室谭铁牛、王蕴红等领导的课题小组已经研制成功通过虹膜、脸像和声音等多种人体生物特征进行身份鉴别的新技术。清华大学自主研制的多模生物特征身份认证识别系统“TH-ID”包括两大部分内容:四个基于人脸(TH-FaceID)、笔迹(TH-writerlD)、签字(TH-SignID)和虹膜(TH-IrisID)生物特征身份认证(包括识别和验证)的子系统和利用多种生物特征的多模态生物特征融合身份认证系统,这个系统构建了基于统一数据库的人脸、笔迹、签字、虹膜四种生物特征的多模生物特征身份识别认证系统,可以进行融合模式的选择,进行各种可能的模式融合。 In China, a group of scientific research units represented by the Chinese Academy of Sciences and Tsinghua University have set foot in this research field and achieved a large number of research results. The research team led by Tan Tieniu and Wang Yunhong of the State Key Laboratory of Pattern Recognition of the Institute of Automation, Chinese Academy of Sciences has successfully developed a new technology for identification through various human biological characteristics such as iris, face and voice. The multi-mode biometric identification system "TH-ID" independently developed by Tsinghua University includes two parts: four based on face (TH-FaceID), handwriting (TH-writerlD), signature (TH-SignID) and iris (TH-IrisID) Subsystem of biometric identity authentication (including identification and verification) and a multi-modal biometric fusion identity authentication system using multiple biometric features. This system builds a unified database based on face, handwriting, signature, The multi-mode biometric identification and authentication system of the four iris biometrics can select the fusion mode and perform various possible mode fusions. the
目前,基于生物特征的身份鉴别系统还主要停留在单一生物特征这个层次,基于多种生物特征的成熟系统并不多见,而综合利用指纹特征信息、语音特征信息和人脸特征信息来对身份证持证人进行身份鉴别的成熟应用系统在国内外几乎都没有公开的报道。 At present, the identity authentication system based on biometric features still mainly stays at the level of a single biometric feature. There are few mature systems based on multiple biometric features. There is almost no public report on the mature application system for identity authentication of the certificate holder at home and abroad. the
发明内容Contents of the invention
本发明所要解决的技术问题是综合利用终端设备采集得到的指纹、语音和人脸特征信息来对身份证持证人的真实身份进行鉴别,并据此提出了一种基于三模态的身份鉴别系统及其控制方法。 The technical problem to be solved by the present invention is to comprehensively utilize the fingerprint, voice and face feature information collected by the terminal equipment to identify the real identity of the ID card holder, and accordingly propose a three-modal identity authentication system and its control method. the
本发明解决技术问题的具体方案是:提供了一种三模态生物特征持证人身份鉴别系统,包括用于身份鉴别的终端设备硬件装置、终端管理软件模块、终端服务软件模块和中心服务软件模块四大部分,其特征在于,终端设备硬件装置主要用于采集个人的身份证信息、指纹特征、语音和人脸特征;终端管理软件模块主要负责终端管理、指纹登记、语音登记、人脸登记、采集身份证信息和数据分析等;终端服务软件模块主要负责对指纹、声音和人脸特征进行比对并给出基于融合的融合身份鉴别结果;中心服务软件模块主要负责存取指纹、声音和人脸特征数据,以及对终端设备的使用进行控制。 The specific solution of the present invention to solve the technical problem is to provide a three-mode biometric identity authentication system for the bearer, including a terminal device hardware device for identity authentication, a terminal management software module, a terminal service software module and a central service software Four parts of the module, characterized in that the hardware device of the terminal equipment is mainly used to collect personal ID card information, fingerprint features, voice and face features; the terminal management software module is mainly responsible for terminal management, fingerprint registration, voice registration, face registration , collecting ID card information and data analysis, etc.; the terminal service software module is mainly responsible for comparing fingerprints, voice and face features and giving fusion-based identification results; the central service software module is mainly responsible for accessing fingerprints, voice and face features. Facial feature data, and control the use of terminal equipment. the
对应的还提供了一种三模态生物特征持证人身份鉴别系统的控制方法,包括用于身份鉴别的终端设备硬件装置、终端管理软件模块、终端服务软件模块和中心服务软件模块四大部分,其特征在于,所述控制方法包括步骤: Correspondingly, a control method of a three-modal biometric certificate holder identity authentication system is provided, including four parts: a terminal device hardware device for identity authentication, a terminal management software module, a terminal service software module, and a central service software module , is characterized in that, described control method comprises the step:
(1)终端设备通过网络通信接口接入系统并连接中心服务器,终端设备身份经过的合法性验证以后,获得相应的服务请求授权,拒绝未经授权的终端设备接入系统向中心服务器请求特征数据; (1) The terminal device accesses the system through the network communication interface and connects to the central server. After the legality of the terminal device’s identity is verified, it obtains the corresponding service request authorization, and rejects unauthorized terminal devices accessing the system to request characteristic data from the central server. ;
(2)采集持证人的身份证信息、指纹信息、声音和视频人脸信息,进行模式分类和噪声去除等初步处理; (2) Collect the ID card information, fingerprint information, voice and video face information of the cardholder, and perform preliminary processing such as pattern classification and noise removal;
(3)将上述步骤(2)经过初步处理后的指纹、声音和人脸数据再分别进行预处理并提取相应的特征; (3) Preprocess the fingerprint, voice and face data after the preliminary processing in the above step (2) and extract corresponding features;
(4)终端服务软件根据身份证读卡器采集到的身份证编号检索本地数据库LDB,获取相应的指纹、声音和人脸特征模版数据; (4) The terminal service software retrieves the local database LDB according to the ID card number collected by the ID card reader, and obtains the corresponding fingerprint, voice and face feature template data;
(5)指纹、声音和人脸特征比对模块根据系统当前选配的匹配算法检索数据库,记录每次比对得到的相似度分值,其值分别为v1、v2和v3; (5) The fingerprint, voice and face feature comparison module retrieves the database according to the matching algorithm currently selected by the system, and records the similarity scores obtained by each comparison, and the values are v1, v2 and v3 respectively;
(6)分别得到指纹、声音和人脸特征的匹配分值以后,再对v1、v2和v3值进行决策级融合,计算融合以后的匹配结果。 (6) After obtaining the matching scores of the fingerprint, voice and face features, the decision-level fusion is performed on the values of v1, v2 and v3, and the matching result after fusion is calculated. the
本发明的有益效果是:通过对多种单一生物特征对身份进行融合鉴别,可以有效防止因某种生物特征失效而引起系统鉴别结论错误的问题,从而大大提 高身份鉴别系统的可用性、适应性和鉴别结果的可靠性。该身份鉴别系统及其控制方法还能提供在线\离线的、终端可扩展的、可独立运行也可以联网运行的身份鉴别服务,可以使用户在不需要投入大量资金和设备的情况下,获得高质量和高可靠性的持证人身份认证服务。 The beneficial effects of the present invention are: through fusion and identification of a variety of single biological features, the problem of system identification conclusion error caused by failure of certain biological features can be effectively prevented, thereby greatly improving the usability and adaptability of the identity identification system and the reliability of the identification results. The identity authentication system and its control method can also provide online/offline, terminal-expandable identity authentication services that can operate independently or on the Internet, enabling users to obtain high-quality services without investing a lot of money and equipment. Quality and reliability of certificate holder identification services. the
附图说明Description of drawings
图1是本发明所提供的系统的拓扑结构图。 Fig. 1 is a topological structure diagram of the system provided by the present invention. the
图2是本发明的功能模块结构图。 Fig. 2 is a structural diagram of functional modules of the present invention. the
图3是本发明的终端设备外形图。 Fig. 3 is an outline view of the terminal device of the present invention. the
图4是本发明的独立运行模式结构图。 Fig. 4 is a structural diagram of the independent operation mode of the present invention. the
图5是本发明的联网运行模式结构图。 Fig. 5 is a structural diagram of the networking operation mode of the present invention. the
图6是本发明的身份验证的数据流图。 Fig. 6 is a data flow diagram of identity verification in the present invention. the
图7是本发明的系统内各子系统元素之间的接口安排图。 Fig. 7 is a diagram of the interface arrangement among the subsystem elements in the system of the present invention. the
图8是本发明的终端设备合法性验证流程图。 Fig. 8 is a flow chart of the terminal device legality verification in the present invention. the
图9是本发明的身份鉴别处理详细流程图。 Fig. 9 is a detailed flow chart of identity authentication processing in the present invention. the
具体实施方式Detailed ways
下面结合附图和具体的实施例对本发明做进一步详细的说明: Below in conjunction with accompanying drawing and specific embodiment the present invention is described in further detail:
本发明所要解决的技术问题是如何综合利用终端设备采集得到的指纹、语音和人脸特征信息来对身份证持证人的真实身份进行鉴别,并据此构建一种基于三模态的身份鉴别系统及其控制方法,该身份鉴别系统克服现有技术的缺陷,能提供在线\离线的、终端可扩展的、可独立运行也可以联网运行的身份鉴别服务,可以使用户在不需要投入大量资金和设备的情况下,获得高质量和高可靠性的持证人身份认证服务。 The technical problem to be solved by the present invention is how to comprehensively utilize the fingerprint, voice and face feature information collected by the terminal equipment to identify the real identity of the ID card holder, and accordingly construct a three-modal identity authentication The system and its control method, the identity authentication system overcomes the defects of the prior art, and can provide identity authentication services that are online/offline, terminal expandable, independent or networked, and enable users to operate without investing a lot of money. Get high-quality and reliable bearer identity authentication services in the case of devices and devices. the
如图1、图2、图3、图4、图5、图6和图7所示,本发明所提出的技术问题是这样解决的:提供一种持证人身份鉴别系统,包括采集指纹、声音、人脸和身份证信息的终端设备(具体见图3)、终端管理软件、终端服务软件和中心服务软件共四个部分(具体见图7),这种解决思路其特征在于,终端设备由 身份证读卡器、指纹仪器、麦克风、视频摄像装置等部件组成,主要用来读取身份证信息、指纹、声音和人脸特征信号;终端管理软件主要由系统管理、身份信息采集、指纹登记、语音登记、人脸登记和模拟验证等功能模块组成,主要负责系统参数配置、读取身份证信息、登记并存储指纹特征、声音特征和人脸特征,以及对持证人身份的模拟验证和系统运行数据统计分析等功能;终端服务软件主要由通信模块、特征采集模块、特征验证模块和决策融合模块等组成,主要负责完成采集指纹、声音和人脸特征数据、检索数据库、验证指纹、声音和人脸特征以及计算决策级融合结果等功能;中心服务软件主要由终端权限验证、数据存取和交互通信模块组成,主要负责中心服务器与终端设备间的网络通信、对终端设备接入与服务请求的合法性验证,以及存取指纹和人脸特征数据以及身份证信息等功能。 As shown in Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6 and Fig. 7, the technical problem proposed by the present invention is solved in this way: a kind of certificate holder identification system is provided, including collecting fingerprint, Voice, face and ID card information terminal equipment (see Figure 3 for details), terminal management software, terminal service software and center service software are four parts (see Figure 7 for details). This solution is characterized in that the terminal equipment It is composed of ID card reader, fingerprint instrument, microphone, video camera device and other components, and is mainly used to read ID card information, fingerprints, voice and facial feature signals; the terminal management software is mainly composed of system management, identity information collection, fingerprint It consists of functional modules such as registration, voice registration, face registration and simulation verification. It is mainly responsible for system parameter configuration, reading ID card information, registering and storing fingerprint features, voice features and face features, and simulated verification of the identity of the cardholder. and system operation data statistical analysis and other functions; the terminal service software is mainly composed of communication module, feature collection module, feature verification module and decision fusion module, etc. It is mainly responsible for collecting fingerprint, voice and face feature data, searching database, verifying fingerprint, Functions such as voice and face features and calculation of decision-level fusion results; the central service software is mainly composed of terminal authority verification, data access and interactive communication modules, and is mainly responsible for network communication between the central server and terminal equipment, terminal equipment access and Validation of the legitimacy of service requests, as well as access to fingerprint and facial feature data and ID card information and other functions. the
其中,终端管理软件具体由以下几个功能模块构成(具体见图2): Among them, the terminal management software is specifically composed of the following functional modules (see Figure 2 for details):
①系统管理模块:为登记合法的终端设备信息、为本系统的使用操作人员授权、设置系统中重要的运行参数值等。 ① System management module: to register legal terminal equipment information, to authorize the operators of the system, to set important operating parameter values in the system, etc. the
②身份信息录入模块:手工添加、删除、修改录入人员身份基本信息(按身份证显示的内容),以及大批量身份信息的EXCEL方式导入。 ②Identity information entry module: manually add, delete, and modify the basic identity information of the entered personnel (according to the content displayed on the ID card), and import large quantities of identity information in EXCEL. the
②指纹登记模块:登记人的指纹特征信息,并将登记信息保存入数据库(本地数据库或者系统数据库)。 ②Fingerprint registration module: the fingerprint feature information of the registrant, and save the registration information into the database (local database or system database). the
③声音登记模块:登记人的声音特征信息,并将所登记的特征信息保存入数据库(本地数据库或者系统数据库)。 ③Voice registration module: register the person's voice characteristic information, and save the registered characteristic information into the database (local database or system database). the
⑤人脸登记模块:登记人的人脸特征信息,并将登记信息保存入数据库(本地数据库或者系统数据库)。 ⑤ face registration module: register the face feature information of the person, and save the registration information into the database (local database or system database). the
⑥模拟验证模块:在管理工作站上输入身份信息后,模拟运行基于指纹和人脸特征的双模态持证人身份融合鉴别系统流程。 ⑥Simulation verification module: After inputting the identity information on the management workstation, the process of the dual-modal identity fusion identification system based on fingerprint and face features will be simulated. the
⑦数据分析模块:对整个系统的运行数据进行统计、分析,挖掘有价值的潜在信息,如系统运行日志记录数据和身份鉴别记录数据等等。 ⑦Data analysis module: to conduct statistics and analysis on the operation data of the whole system, and to dig out valuable potential information, such as system operation log record data and identity identification record data, etc. the
终端服务软件具体由以下几个功能模块构成: The terminal service software is specifically composed of the following functional modules:
①交互通信模块:主要负责与“验证服务中心软件”的交互通信模块交换数据,以完成终端设备的合法性验证、上传提取到的生物特征数据,以及接收从中心服务器下载的生物特征数据。 ①Interactive communication module: mainly responsible for exchanging data with the interactive communication module of the "verification service center software" to complete the legality verification of terminal equipment, upload the extracted biometric data, and receive the biometric data downloaded from the central server. the
②数据采集模块:主要完成基于身份证读卡器的身份证信息自动采集和手工录入、基于指纹仪器的指纹特征采集和基于摄像装置的人脸视频图像采集等。 ②Data collection module: mainly complete the automatic collection and manual entry of ID card information based on the ID card reader, the collection of fingerprint features based on the fingerprint instrument, and the collection of face video images based on the camera device, etc. the
③指纹\声音\人脸特征验证模块:负责将采集到的指纹、声音和人脸数据进行预处理、提取特征信息,完成与存储的模板特征进行1:1验证。 ③Fingerprint\sound\face feature verification module: responsible for preprocessing the collected fingerprint, voice and face data, extracting feature information, and completing 1:1 verification with the stored template features. the
④融合决策模块:在人脸、声音和指纹特征单独匹配基础之后,进行决策级融合,依据融合后的分值鉴别持证人身份是否与所持证件一致。 ④Fusion decision-making module: After the face, voice and fingerprint features are individually matched, the decision-level fusion is carried out, and the identity of the certificate holder is identified according to the fused score. the
中心服务软件具体由以下几个功能模块构成: The central service software is specifically composed of the following functional modules:
①交互通信模块:主要负责接收终端设备发送的设备合法性验证信息,如图8所示,以确定当前设备的接入请求是否合法,以及负责接收合法终端上传和下载的生物特征及其辅助数据。 ①Interactive communication module: mainly responsible for receiving the device legitimacy verification information sent by the terminal device, as shown in Figure 8, to determine whether the access request of the current device is legal, and responsible for receiving the biometric features and auxiliary data uploaded and downloaded by the legal terminal . the
②数据存取模块:负责存储通过通信模块接收到的终端数据(存储到系统数据库,SDB),以及按身份证信息检索终端请求的生物特征数据并回送交给通信模块向终端设备下传。 ②Data access module: responsible for storing the terminal data received through the communication module (stored in the system database, SDB), and retrieving the biometric data requested by the terminal according to the ID card information and sending it back to the communication module for downloading to the terminal equipment. the
③终端设备权限验证模块:依据接收到的终端设备编码等信息来验证所接入服务中心系统的终端设备是否合法,并依据验证结果为终端分配权限。 ③Terminal device authority verification module: Verify whether the terminal device connected to the service center system is legal according to the received terminal device code and other information, and assign rights to the terminal according to the verification result. the
一种基于指纹、声音和人脸特征的持证人身份鉴别系统及其控制方法,其特征在于,包括以下几个步骤(具体见图6和图9): A kind of cardholder identification system and control method thereof based on fingerprint, sound and facial feature, it is characterized in that, comprises following several steps (see Fig. 6 and Fig. 9 specifically):
(1)终端设备通过网络通信接口接入系统并连接中心服务器,终端设备身份经过的合法性验证以后,获得相应的服务请求授权,拒绝未经授权的终端设备接入系统向中心服务器请求特征数据(图8); (1) The terminal device accesses the system through the network communication interface and connects to the central server. After the legality of the terminal device’s identity is verified, it obtains the corresponding service request authorization, and rejects unauthorized terminal devices accessing the system to request characteristic data from the central server. (Figure 8);
(2)采集持证人的身份证信息、指纹信息、声音和视频人脸信息,进行模式分类和噪声去除等初步处理; (2) Collect the ID card information, fingerprint information, voice and video face information of the cardholder, and perform preliminary processing such as pattern classification and noise removal;
(3)将步骤(2)经过初步处理后的指纹、声音和人脸数据再分别进行预 处理并提取相应的特征。 (3) Preprocess the fingerprint, voice and face data after preliminary processing in step (2) and extract corresponding features. the
其中,对指纹的处理主要包括以下几个步骤: Among them, the processing of fingerprints mainly includes the following steps:
①指纹有效区域分割:将指纹图像分成一系列16×16非交叉的图像块,各块分别标记为B(1,1),B(1,2),…,B(i,j),然后利用下列公式v(i,j) ①Fingerprint effective area segmentation: Divide the fingerprint image into a series of 16×16 non-intersecting image blocks, each block is marked as B(1,1), B(1,2),…, B(i,j), and then Using the following formula v(i, j)
来计算各图像块的像素灰度值方差,其中xn和x分别表示该图快中像素的灰度值,N表示图块中包含的像素数量,设置分割阈值vθ=11.5,分别将各图块的方差值与vθ比较,如果v(i,j)>vθ,则该图块B(i,j)被判定为有效的指纹区域,否则被判定为指纹的背景区域; to calculate the pixel gray value variance of each image block, where x n and x respectively represent the gray value of the pixels in the image block, N represents the number of pixels contained in the block, set the segmentation threshold v θ = 11.5, respectively divide each The variance value of the block is compared with v θ , if v(i, j) > v θ , then the block B(i, j) is judged as a valid fingerprint area, otherwise it is judged as the background area of the fingerprint;
②指纹的方向场计算:分别计算图块B(i,j)中每一个像素在x和y方向上的梯度Gx和Gy,利用公式d(i,j) ②Fingerprint direction field calculation: Calculate the gradients G x and G y of each pixel in the block B(i, j) in the x and y directions respectively, using the formula d(i, j)
分别计算图块B(i,j)的局部方向,式中(i′b,j′b)表示图块中像素的坐标,w表示图块的像素宽度,计算得到的图块局部方向值只取四个分量值0、π/4、π/3和3π/4中最近似的一个值,图块最终的局部方向d(i,j)∈{0,4π/4,π,3π/4},通过方向场的一致性特征修正方向场计算结果,在图块B(i,j)的5×5的邻域D范围内,计算其一致性值C(i,j) Calculate the local direction of the block B(i, j) respectively, where (i′ b , j′ b ) represents the coordinates of the pixels in the block, w represents the pixel width of the block, and the calculated local direction value of the block is only Taking the closest one of the four component values 0, π/4, π/3, and 3π/4, the final local direction d(i, j) ∈ {0, 4π/4, π, 3π/4 }, correct the calculation result of the direction field by the consistency feature of the direction field, and calculate its consistency value C(i, j) within the 5×5 neighborhood D of the block B(i, j)
此公式中有 这里d=mod(d(i′,j′)-d(i,j)+2π) This formula has Here d=mod(d(i′,j′)-d(i,j)+2π)
如果C(i,j)<0.35,则将图块B(i,j)的局部方向调整为邻域D内局部方向最显著的方向,否则图块B(i,j)的局部方向保持不变; If C(i, j) < 0.35, adjust the local direction of the block B(i, j) to the direction with the most significant local direction in the neighborhood D, otherwise the local direction of the block B(i, j) remains unchanged Change;
③使用M-PCNN网络对预处理以后的图像进行滤波; ③Use the M-PCNN network to filter the preprocessed image;
④对指纹图像进行特征提取,包括全局特征提取和细节特征提取: ④ Feature extraction of fingerprint images, including global feature extraction and detail feature extraction:
全局特征提取为傅里叶频谱特征:首先将输入的指纹图像分割成32×32的图像块,并对图块做二维离散傅里叶变换,公式为 The global feature is extracted as a Fourier spectrum feature: firstly, the input fingerprint image is divided into 32×32 image blocks, and two-dimensional discrete Fourier transform is performed on the blocks, the formula is
公式中,(m,n)是像素的值域坐标,(i,k)是像素对应的频域坐标,每个子图块经过傅立叶变换以后,便得到了全图的傅立叶频谱图,将其按规则量化成指纹的全局特征向量; In the formula, (m, n) is the value domain coordinate of the pixel, (i, k) is the frequency domain coordinate corresponding to the pixel, and after each sub-block undergoes Fourier transform, the Fourier spectrum map of the whole image is obtained, which is pressed by The rules are quantized into global feature vectors of fingerprints;
细节特征提取,包括核心点、分叉点和端点,所用的细节特征提取模板分别如下表: Detailed feature extraction, including core points, bifurcation points and endpoints, the detailed feature extraction templates used are as follows:
其中, in,
如果m=1则表示P为端点,否则P为分杈点。 If m=1, it means that P is an end point, otherwise P is a branch point. the
对视频人脸图像的ASM模型处理主要包括以下几个步骤: The ASM model processing of video face images mainly includes the following steps:
①对灰度人脸图像采样获得形状向量和轮廓点特征信息。 ① Sampling the grayscale face image to obtain the shape vector and contour point feature information. the
首先,建立模型需要手工标定训练图像。本发明中,为了确保识别的准确 度,选择256幅人脸图像(包括多个人的不同表情和姿态),每一幅图像手工标定68个轮廓点作为训练数据。轮廓点一般标定在能够代表目标轮廓的地方,本发明中选择的轮廓点标记在脸的外部轮廓和器官的边缘。 First, building a model requires manual calibration of training images. In the present invention, in order to ensure the accuracy of recognition, 256 face images (including different expressions and postures of multiple people) are selected, and each image is manually marked with 68 contour points as training data. Contour points are generally marked at places that can represent the target contour, and the contour points selected in the present invention are marked on the outer contour of the face and the edges of organs. the
相关的标定点为: The relevant calibration points are:
Si=(xi,1,yi,1,xi,2,yi,2,...,xi,68,yi,68)T,i=1,2,...,256 S i =(xi ,1 ,y i,1 ,xi ,2 ,y i,2 ,...,xi ,68 ,y i,68 ) T , i=1,2,..., 256
其中,(xij,yij)代表第i幅图像的第j个(1≤j≤68)轮廓点的坐标;每一幅图像的Si代表一个形状向量。并获取每一个标定点(轮廓点)附近的特征信息,这些特征是利用ASM模型进行匹配的主要依据。 Among them, (xij, yij) represents the coordinates of the jth (1≤j≤68) contour point of the i-th image; Si of each image represents a shape vector. And obtain the feature information near each calibration point (contour point), these features are the main basis for matching using the ASM model. the
②建立人脸的ASM模型。 ②Establish the ASM model of the face. the
由于各个样本图像拍摄条件、分辨率的差异,得到形状向量的坐标具有不同的比例尺寸,因此还要对样本图像的形状向量归一化,通过旋转、平移、缩放使得它们在同一坐标系中表示时具有一致性。本发明中利用下述方法对两个形状向量进行能够对齐:min D=[T(x)-x′]° Due to the differences in shooting conditions and resolutions of each sample image, the coordinates of the obtained shape vectors have different scales, so the shape vectors of the sample images must be normalized, and they are represented in the same coordinate system by rotating, translating, and scaling when consistent. In the present invention, the following method is used to align two shape vectors: min D=[T(x)-x′]°
其中所使用的变换规则T(x)定义为: The transformation rule T(x) used in it is defined as:
然后再转变每一个形状向量到均值的正切空间(xt-x)·xt=0,这样就正好将x放大了1/(x.xt)倍,这里有|xt|=1。 Then transform each shape vector to the mean tangent space (x t -x)·x t =0, so that x is exactly magnified by 1/(x.xt) times, where |xt|=1.
形状向量对齐以后,按以下步骤对人脸形状进行ASM建模: After the shape vectors are aligned, follow the steps below to perform ASM modeling on the face shape:
首先计算256个样本中各形状向量的均值x,再利用下列公式计算256个形状向量的协方差S,具体的方法如下: First calculate the mean value x of each shape vector in 256 samples, and then use the following formula to calculate the covariance S of 256 shape vectors, the specific method is as follows:
再计算特征向量φi,和相应的特征值λi,在这些计算结果之上,按统一规则估算任意形状向量的近似值,x≈x+Φib其中b是一个180维的向量由公式b=Φi T(x-x)计算得到。除此之外,还需要通过从训练集中估计b的分布概率P(b)的方式将b规约到
其中常量参数const选取为样本的均值,λi为相应的特征值分量。 The constant parameter const is selected as the mean value of the sample, and λi is the corresponding eigenvalue component. the
此外,对声音信号的处理主要包括以下几个步骤: In addition, the processing of the sound signal mainly includes the following steps:
①语音信号的预处理,包括预滤波、预加重和分帧。预滤波采用的是60Hz到7.8Hz的带通滤波器。滤波后的信号通过一个预加重滤波器,然后使用16ms帧长和8ms帧移进行分帧; ① Preprocessing of speech signals, including pre-filtering, pre-emphasis and framing. What pre-filtering adopts is the band-pass filter of 60Hz to 7.8Hz. The filtered signal is passed through a pre-emphasis filter, and then framed using a 16ms frame length and 8ms frame shift;
②语音特征提取,语音特征采用14阶线性预测倒谱(linear predictivecoding cep strum,LPCC)系数。在训练阶段,从两遍训练语音(被识别人念出自己的名字)逐帧提取的倒谱系数特征以矢量序列的形式存放为语音特征模板,并将特征模板存储到数据库。在确认阶段,从一遍语音(被识别人念出自己的名字)中提取14阶线性预测倒谱系数作为输入的说话人语音特征; ② Speech feature extraction, the speech feature uses 14th-order linear predictive cepstrum (linear predictive coding cepstrum, LPCC) coefficients. In the training phase, the cepstral coefficient features extracted frame by frame from the two-pass training speech (recognized person reads his name) are stored as speech feature templates in the form of vector sequences, and the feature templates are stored in the database. In the confirmation stage, the 14th-order linear predictive cepstral coefficient is extracted from a speech (the person being recognized reads his name) as the input speaker's voice feature;
③语音特征匹配,假设模板的特征矢量序列是X=(X1,X2,…,XT),输入的说话人语音特征矢量序列是Y=(Y1,Y2,…,YT),计算两者的平均距离,即 ③ speech feature matching, assuming that the feature vector sequence of the template is X=(X1, X2, ..., XT), the input speaker's voice feature vector sequence is Y=(Y1, Y2, ..., YT), and calculates the average of the two distance, that is
其中:d(t)是第t帧的匹配距离;Q(t)是一个单调时间弯曲整数函数,Q(1)=1,Q(T)=T,匹配算法给出Q(t)在其他点的值使得平均匹配距离达到最小。 Among them: d(t) is the matching distance of the tth frame; Q(t) is a monotonic time warping integer function, Q(1)=1, Q(T)=T, the matching algorithm gives Q(t) in other The value of the point minimizes the average matching distance. the
其中帧间匹配距离采用欧氏距离的平方: The matching distance between frames is the square of the Euclidean distance:
其中:Xi=(xi,1,xi,2,…,xi,N),Yj=(yj,1,yj,2,…,yj,N),N特征矢量维数,在本专利中N=14(即14阶)。输入语音Y与模板X的匹配距离计算为D(X,Y)。 Wherein: Xi=(xi, 1, xi, 2,..., xi, N), Yj=(yj, 1, yj, 2,..., yj, N), N feature vector dimension, in this patent, N= 14 (that is, 14th order). The matching distance between input speech Y and template X is calculated as D(X, Y). the
④计算相似度分值,将匹配过程得到的距离D(X,Y)转换为相似度分值V3,这里的V3按下列规则进行转换: ④ Calculate the similarity score, and convert the distance D (X, Y) obtained during the matching process into a similarity score V3, where V3 is converted according to the following rules:
其中,maxD和minD分别表示实验得到的矢量最大距离和最小距离,分别为 14和1。 Among them, maxD and minD represent the maximum distance and minimum distance of the vector obtained in the experiment, which are 14 and 1 respectively. the
(4)终端服务软件根据身份证读卡器采集到的身份证编号检索本地数据库(即LDB),获取相应的指纹、声音和人脸特征模版数据。 (4) The terminal service software retrieves the local database (that is, LDB) according to the ID card number collected by the ID card reader, and obtains corresponding fingerprint, voice and face feature template data. the
(5)指纹、声音和人脸特征比对模块根据系统当前选配的匹配算法检索数据库,记录每次比对得到的相似度分值,其值分别为V1、V2和V3。 (5) The fingerprint, voice and face feature comparison module retrieves the database according to the matching algorithm currently selected by the system, and records the similarity scores obtained by each comparison, and the values are V1, V2 and V3 respectively. the
(6)分别得到指纹、声音和人脸特征的匹配分值以后,再对V1和V2、V3值进行决策级融合,计算融合以后的匹配结果。 (6) After obtaining the matching scores of the fingerprint, voice and face features, the decision-level fusion of V1, V2, and V3 values is carried out to calculate the matching result after fusion. the
在本发明中,采用的是最优Bayes决策融合方法。首先对V1、V2和V3进行向量归一化处理,形成一个3维向量V作为Bayes决策网络的输入向量,根据此分类器的输出结果,得到最终的决策级融合结果。可以自适应地搜索最优的多模态融合规则,使得Bayes风险值达到最小值,从而构造一个最优的多模态生物特征融合系统。 In the present invention, an optimal Bayesian decision fusion method is adopted. First, V1, V2, and V3 are vector-normalized to form a 3-dimensional vector V as the input vector of the Bayesian decision network. According to the output of this classifier, the final decision-level fusion result is obtained. The optimal multimodal fusion rule can be searched adaptively, so that the Bayesian risk value reaches the minimum value, so as to construct an optimal multimodal biometric fusion system. the
具体的步骤如下: The specific steps are as follows:
①计算单模态生物特征(指纹、声音和人脸)的FAR、FRR ① Calculate the FAR and FRR of single-mode biometrics (fingerprint, voice and face)
指纹和人脸单模态生物特征识别方法的错误接收率和错误拒绝率是采用统计方法获得的,即统计实验所用的全部个体中有多少非法个体被鉴定为合法(FAR),以及有多少合法个体被鉴定为非法(FRR)。 The false acceptance rate and false rejection rate of fingerprint and face single-modal biometric identification methods are obtained by statistical methods, that is, how many illegal individuals are identified as legitimate (FAR) and how many legitimate Instance is Recognized as Illegal (FRR). the
在生物特征识别的匹配阶段,识别方法将待识别的生物特征与数据库中的模板进行比对,找出与待验证的个体最类似的模板。然后,进一步判断待验证的个体是否存在于数据库中,如果是一个非法个体,系统能够拒绝该个体的访问要求。为此,应该设置相应的阈值对个体特征进行划分(合法的或者非法的)。 In the matching phase of biometric identification, the identification method compares the biometrics to be identified with the templates in the database, and finds the template most similar to the individual to be verified. Then, further judge whether the individual to be verified exists in the database, if it is an illegal individual, the system can deny the individual's access request. For this reason, corresponding thresholds should be set to classify individual features (legal or illegal). the
计算生物特征识别的阈值 Calculate the threshold for biometric identification
假设,模板数据库中存在M个个体,每个个体拥有K个特征样本。于是,整个数据库可以表示成X={xmk:m=1,2,...,M;k=1,2,...,K}。记两个生物特征x、y之间的相似程度为l(x,y)。若需要鉴定个体x的身份,且已找到与x相似程度最高的特征模板 根据以下规则鉴定个体的合法性: Assume that there are M individuals in the template database, and each individual has K feature samples. Therefore, the entire database can be expressed as X={x mk : m=1, 2, . . . , M; k=1, 2, . . . , K}. Record the degree of similarity between two biometric features x, y as l(x, y). If the identity of individual x needs to be identified, and the feature template with the highest similarity to x has been found The legitimacy of an individual is determined according to the following rules:
有些生物特征识别系统为每个个体设置两个阈值:一个低阈值Lm和一个高阈值Um(m=1,2,...,M),系统的鉴定规则变为以下形式[i]: Some biometric identification systems set two thresholds for each individual: a low threshold L m and a high threshold U m (m=1, 2, ..., M), and the identification rules of the system become the following form [i] :
在上述规则中,低阈值用于确定待验证个体特征x是否与特征模板 “足够接近”:若两者匹配程度足够高,则鉴定x的身份为m*。高阈值用于明确排除两个个体之间的相关性,当相似度超过高阈值,则认为是非法个体。当两个个体之间的距离 介于高低阈值之间时,则需要采用别的方法,如启发式方法判定个体的身份。 In the above rules, the low threshold is used to determine whether the individual feature x to be verified is consistent with the feature template "Close enough": If the degree of matching between the two is high enough, then identify the identity of x as m * . The high threshold is used to explicitly exclude the correlation between two individuals, and when the similarity exceeds the high threshold, it is considered an illegal individual. when the distance between two individuals When it is between the high and low thresholds, other methods, such as heuristic methods, are required to determine the identity of the individual.
将阈值计算过程分为以下几步: The threshold calculation process is divided into the following steps:
首先,将生物特征数据库划分为两部分:合法个体训练集X和非法个体训练集Y。数据集X用于调节识别系统对合法个体的鉴别和分类能力;数据集Y用于调节系统拒绝合法个体的能力。再将训练集X划分为互不相交的两部分:X1和X2,假设训练集中每个个体有K个特征样本,则X1和X2分别表示为下面的形式:X1={xmk∈X:m=1,2,...,M;k=1,2,...,K/2}X2={xmk∈X:m=1,2,...,M;k=K/2+1,...,K} First, the biometric database is divided into two parts: legal individual training set X and illegal individual training set Y. Data set X is used to adjust the recognition system's ability to identify and classify legal individuals; data set Y is used to adjust the system's ability to reject legal individuals. Then divide the training set X into two disjoint parts: X 1 and X 2 , assuming that each individual in the training set has K feature samples, then X 1 and X 2 are respectively expressed as the following forms: X 1 ={x mk ∈ X: m=1, 2, ..., M; k = 1, 2, ..., K/2}X 2 = {x mk ∈ X: m = 1, 2, ..., M ;k=K/2+1,...,K}
接着,计算训练集X的类内距离:对于类内的个体m,选择个体m在X1中的一个特征xmk,依次计算xmk与X2中所有同类个体m的特征之间的距离。再计算这些距离的平均值,并把这个平均值作为识别系统针对个体m的低阈值Lm。 Next, calculate the intra-class distance of the training set X: For individual m in the class, select a feature x mk of individual m in X 1 , and calculate the distance between x mk and all features of the same type of individual m in X 2 in turn. Then calculate the average value of these distances, and use this average value as the low threshold L m of the recognition system for individual m.
最后,计算训练集X和Y之间的类间距离:选择X中的一个生物特征xmk,依次计算特征xmk与Y中的每一个特征之间的距离。将这些距离中的最小值作为识别系统针对个体m的高阈值Um。 Finally, calculate the inter-class distance between the training set X and Y: select a biological feature x mk in X, and calculate the distance between the feature x mk and each feature in Y in turn. The minimum of these distances is taken as the high threshold U m of the recognition system for individual m.
注意,实际计算中可能出现Lm>Um的情况,需要对Um进行调整,例如令Um=Lm×1.2。一般可以根据实际需要进行调整。 Note that L m > U m may occur in actual calculation, and U m needs to be adjusted, for example, U m = L m × 1.2. Generally, it can be adjusted according to actual needs.
③计算融合系统的全局FAR、FRR ③ Calculate the global FAR and FRR of the fusion system
融合系统的全局错误率FARfus和FRRfus可以通过融合规则和各单模态的FAR、FRR计算获得。假设,决策规则用f表示,双模态生物特征融合系统的决策规则简化为如下: The global error rate FAR fus and FRR fus of the fusion system can be calculated by fusion rules and FAR and FRR of each single mode. Assuming that the decision rule is denoted by f, the decision rule of the bimodal biometric fusion system is simplified as follows:
上表中d1,d2分别代表两种单模态识别方法,各单模态识别的结果或者是0(个体非法)或者是1(个体合法),相应融合系统的输出fi(i∈{0,1,2,3})也是0或1。融合系统的全局错误率FARfus和FRRfus可以表示成f的函数: In the above table, d 1 and d 2 respectively represent two single-modal recognition methods. The results of each single-modal recognition are either 0 (individual illegal) or 1 (individual legal), and the output f i (i∈ {0, 1, 2, 3}) is also 0 or 1. The global error rate FAR fus and FRR fus of the fusion system can be expressed as a function of f:
其中: in:
上述公式中的变量S代表融合规则的长度,在本发明的指纹人脸双模态生物特征融合系统中,S取的固定值为4。 The variable S in the above formula represents the length of the fusion rule. In the fingerprint-face dual-modal biometric fusion system of the present invention, the fixed value of S is 4. the
(7)显示当前持证人身份验证结果,通过或不通过。 (7) Display the current certificate holder identity verification result, pass or fail. the
按照本发明所提供的指纹识别的控制方法,其特征在于,步骤(3)中指纹细节特征提取步骤,核心点提取是在指纹方向场的基础上,利用poincare方法提取的,该值 其中Δ(k)符合 According to the control method of fingerprint identification provided by the present invention, it is characterized in that, in step (3), in the fingerprint minutiae feature extraction step, the core point extraction is based on the fingerprint direction field, utilizing the poincare method to extract, the value where Δ(k) corresponds to
δ(k)=O′(ψx(i′),ψy(i′))-O′(ψx(i),ψy(i)), δ(k)=O'(ψ x (i'), ψ y (i'))-O'(ψ x (i), ψ y (i)),
i′=(i+1)mod Nψ, i'=(i+1)mod N ψ ,
计算结束后,再判断p(i,j)的值,如果P(i,j)=0.5,则为核心点;分叉点和端点的提取是通过滑动模板法检测得到的,首先定义分叉点和端点的像素结构模板,分别将该模板按从左到右、从上到下的顺序遍历全图。模板每滑动一次,便计算模板与图像对应区域的符合程度,当符合值大于0.7时,就判定图像的当前像素与使用模板对应的细节特征一致,即如果符合分叉模板,则该像素点是分叉点,如果符合端点模板,则该像素就是端点。 After the calculation, judge the value of p(i, j), if P(i, j) = 0.5, it is the core point; the extraction of bifurcation points and endpoints is obtained by sliding template method detection, first define the bifurcation The pixel structure templates of points and endpoints are used to traverse the whole image in order from left to right and top to bottom respectively. Every time the template slides once, the matching degree between the template and the corresponding area of the image is calculated. When the matching value is greater than 0.7, it is determined that the current pixel of the image is consistent with the detailed features corresponding to the used template. A bifurcation point, if it conforms to the endpoint template, the pixel is an endpoint. the
按照本发明所提供的指纹特征鉴别方法,其特征在于,步骤(6)中,指纹特征比对包括以下步骤: According to fingerprint feature identification method provided by the present invention, it is characterized in that, in step (6), fingerprint feature comparison comprises the following steps:
①指纹对齐:输入指纹特征点集合Vi={v1,v2,…,Vn},其中vi=(x,y,θ),Tj={t1,t2,…tm}为模板指纹的特征点集合,首先对核心点对齐,对齐以后,Vi点集的坐标做如下变换: ①Fingerprint alignment: input fingerprint feature point set Vi={v1, v2,...,Vn}, where vi=(x, y, θ), Tj={t1, t2,...tm} is the feature point set of the template fingerprint, First align the core points, after alignment, the coordinates of the Vi point set are transformed as follows:
x′i=xi+(xto-xio)和y′i=yi+(yto-yio), x' i = x i +(x to -x io ) and y' i =y i +(y to -y io ),
其中(xto,yto)和(xio,yio)分别模板指纹和输入指纹的核心点;然后再旋转对齐,而旋转对齐则是通过求一个反射变换t而得到的: Among them (x to , y to ) and (x io , y io ) are the core points of the template fingerprint and the input fingerprint respectively; and then rotate and align, and the rotate alignment is obtained by calculating a reflection transformation t:
在上述变换中,核心点对齐,Δx和Δy已经确定,a通过使表达式|vt-t(vi)|2<θ成立,求Vi和Vt匹配点对数最大来得到的,其中θ是一个设定的阈值,设置为0.05; In the above transformation, the core points are aligned, Δx and Δy have been determined, a is obtained by making the expression |v t -t(v i )| 2 <θ established, and finding the maximum logarithm of Vi and Vt matching points, where θ is a set threshold, set to 0.05;
②相似度计算:对于全局特征匹配,其输入指纹和模板指纹的特征是傅立 叶频谱特征,特征向量就是频谱图像素串行化结果,两者之间的相似度是通过计算不等长向量之间的欧氏距离来实现的,相似度按下列计算: ②Similarity calculation: For global feature matching, the features of the input fingerprint and template fingerprint are Fourier spectrum features, and the feature vector is the serialization result of the spectrogram pixels. The similarity between the two is calculated by calculating unequal length vectors The Euclidean distance between them is realized, and the similarity is calculated as follows:
公式中,dis是两者的欧氏距离值,max(vi,vt)表示取输入向量和模板向量中最大的向量长度;对于细节特征匹配,是以模板为基准,将输入点集Vi按(Δx,Δy,a)变换投影到模板点集Vt上后,计算在距离误差小于5个像素位置内,所有的匹配点对数量来确定的,此时的相似度值按下列公式计算: In the formula, dis is the Euclidean distance value between the two, and max(v i , v t ) means to take the largest vector length between the input vector and the template vector; for detailed feature matching, the template is used as the benchmark, and the input point set Vi After transforming and projecting onto the template point set Vt according to (Δx, Δy, a), calculate the number of all matching point pairs within a distance error of less than 5 pixels. The similarity value at this time is calculated according to the following formula:
公式中,ncouple表示成功配对的点的数量,max(vi,vt)仍然表示输入点集和模板点集中最大的细节点数目; In the formula, n couple represents the number of successfully paired points, and max(v i , v t ) still represents the maximum number of detail points in the input point set and the template point set;
③指纹验证:计算得出输入指纹和模板指纹之间的相似度数据S以后,再将S与预设的识别阈值Ts比较,这里的Ts是根据不同的安全性要求加以调整,如果S≥Ts则判定两个指纹成功匹配,即来自于同一手指,否则判定两个指纹不是来自于同一手指。 ③Fingerprint verification: After calculating the similarity data S between the input fingerprint and the template fingerprint, compare S with the preset recognition threshold T s , where T s is adjusted according to different security requirements, if S ≥T s means that the two fingerprints are successfully matched, that is, they come from the same finger; otherwise, it is judged that the two fingerprints are not from the same finger.
按照本发明所提供的人脸特征鉴别方法,其特征在于,步骤(6)中,人脸特征比对包括以下步骤: According to the facial feature identification method provided by the present invention, it is characterized in that, in step (6), the comparison of human face feature comprises the following steps:
①用均值Viola Jones人脸监测器检测视频序列中的人脸图像,自动完成68个特征点的标注。 ① Use the mean Viola Jones face detector to detect the face images in the video sequence, and automatically complete the labeling of 68 feature points. the
②在人脸图像中每个特征点法线方向以特征点位中心各取7个点(即总共2K+1个点,K=7),这15个点形成一个向量gi,人脸图像上的68个特征点对应的向量gi形成一组向量序列g1、g2、…、g68。 ② Take 7 points in the normal direction of each feature point in the face image and the center of the feature point (that is, a total of 2K+1 points, K=7), these 15 points form a vector gi, and the face image The vectors gi corresponding to the 68 feature points form a set of vector sequences g1, g2, ..., g68. the
归一化向量序列gi,计算均值g和协方差Sg。 Normalizes the sequence of vectors gi, computes the mean g and covariance Sg. the
迭代地按公式f(gs)=(gs-g)TSg -1(gs-g)计算输入样本与数据库中身份证编号对应的人脸特征模板的马氏距离值。 Iteratively calculate the Mahalanobis distance value between the input sample and the face feature template corresponding to the ID card number in the database according to the formula f(g s )=(g s -g) T S g -1 (g s -g).
如果最最小马氏距离小于给定阈值T,则人脸特征比对成功,否则特征比对 失败,即当前持证人与特征登记人不是同一人。 If the minimum Mahalanobis distance is less than the given threshold T, the face feature comparison is successful, otherwise the feature comparison fails, that is, the current certificate holder and the feature registrant are not the same person. the
按照本发明所提供的持证人身份鉴别系统,其特征在于,身份鉴别系统提供两种运行模式,即独立运行模式(具体见图4)和联网运行模式(具体见图5): According to the certificate holder identification system provided by the present invention, it is characterized in that the identification system provides two operating modes, i.e. an independent operating mode (see Figure 4 for details) and a networked operating mode (see Figure 5 for details):
①独立运行模式:在终端独立完成特征数据采集、本地存储、数据检索和特征数据的匹配验证,并给出融合以后的验证结论。 ① Independent operation mode: The terminal independently completes feature data collection, local storage, data retrieval, and feature data matching verification, and gives the verification conclusion after fusion. the
②联网运行模式:终端和远程验证服务中心连接,独立提取生物特征数据,登记时的特征数据分别进行本地存储和提交给中心服务器远程存储,验证时如本地数据库LDB中无登记信息,则通过中心服务软件查询系统数据SDB并下载指纹和人脸特征数据至终端设备,再进行特征验证处理。 ②Networked operation mode: the terminal is connected to the remote verification service center, and the biometric data is extracted independently. The characteristic data during registration are stored locally and submitted to the central server for remote storage. The service software queries the system data SDB and downloads the fingerprint and face feature data to the terminal device, and then performs feature verification processing. the
按照本发明所提供的持证人身份鉴别系统,其特征在于,系统运行于以下的软硬件环境(具体见图1): According to the certificate holder identification system provided by the present invention, it is characterized in that the system operates in the following software and hardware environment (see Fig. 1 for details):
终端管理端软件、终端服务软件和中心服务软件都支持Windows 2000/XP/vista操作系统,需要的辅助软件支撑环境是MS SQL SERVER2000和OFFICE2000;终端管理端软件的硬件运行环境是普通台式计算机,中心服务软件的硬件环境是高性能PC服务器,终端服务软件运行于终端设备,而终端设备由平板电脑(带触摸屏)、指纹采集仪、摄像头和身份证读卡器等部件构成。 The terminal management software, terminal service software and center service software all support Windows 2000/XP/vista operating system, and the auxiliary software support environment required is MS SQL SERVER2000 and OFFICE2000; the hardware operating environment of the terminal management software is an ordinary desktop computer, and the center The hardware environment of the service software is a high-performance PC server, and the terminal service software runs on the terminal device, which is composed of a tablet computer (with touch screen), a fingerprint collector, a camera, and an ID card reader. the
本发明主要提供一种利用指纹、人脸和证身份证编号来进行持证人身份验证的应用系统,其主要特点归纳如下: The present invention mainly provides an application system for verifying the identity of the holder by using fingerprints, faces and ID card numbers. Its main features are summarized as follows:
①通过指纹、人脸特征信息来对持证人身份进行有效验证。 ①Verify the identity of the certificate holder effectively through fingerprint and face feature information. the
②系统的工作模式可切换,既可以配置工作于单一生物特征验证模式,也可以工作于两种生物特征融合验证模式; ②The working mode of the system can be switched, and it can be configured to work in a single biometric verification mode, or in two biometric fusion verification modes;
③系统既可以单机工作,也可以联网工作; ③The system can work both stand-alone and networked;
④终端设备和中心服务器可通过互连网进行连接; ④The terminal equipment and the central server can be connected through the Internet;
⑤中心服务器提供对终端设备进行合法性验证的功能,避免非授权的终端设备接入系统,以及中心服务器负荷超载。 ⑤ The central server provides the function of verifying the legitimacy of the terminal equipment to avoid unauthorized terminal equipment accessing the system and overloading of the central server. the
⑥系统的管理端和服务端分离,由终端管理软件单独完成身份信息登记、 生物特征采集、运行数据分析、监控系统的运行状态,以及配置重要的系统运行参数等功能,由终端服务软件完成身份鉴别,登记和验证分离。 ⑥The management end of the system is separated from the server end, and the terminal management software independently completes functions such as identity information registration, biometric collection, operation data analysis, monitoring system operating status, and configuration of important system operating parameters, and the terminal service software completes identity Authentication, registration and verification are separated. the
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为发明的保护范围并不局限于这样的特别陈述和实施例。凡是根据上述描述做出各种可能的等同替换或改变,均被认为属于本发明的权利要求的保护范围。 Those skilled in the art will appreciate that the embodiments described herein are to help readers understand the principles of the present invention, and it should be understood that the protection scope of the invention is not limited to such specific statements and embodiments. All possible equivalent replacements or changes made according to the above descriptions are deemed to belong to the protection scope of the claims of the present invention. the
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101679254A CN102045162A (en) | 2009-10-16 | 2009-10-16 | Personal identification system of permittee with tri-modal biometric characteristic and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101679254A CN102045162A (en) | 2009-10-16 | 2009-10-16 | Personal identification system of permittee with tri-modal biometric characteristic and control method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102045162A true CN102045162A (en) | 2011-05-04 |
Family
ID=43910984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009101679254A Pending CN102045162A (en) | 2009-10-16 | 2009-10-16 | Personal identification system of permittee with tri-modal biometric characteristic and control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102045162A (en) |
Cited By (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102184416A (en) * | 2011-05-19 | 2011-09-14 | 汉王科技股份有限公司 | Method and device for registering biometric sample |
CN102270273A (en) * | 2011-05-25 | 2011-12-07 | 朱昭 | Patient information storage device |
CN102521570A (en) * | 2011-11-30 | 2012-06-27 | 上海博泰悦臻电子设备制造有限公司 | Biological characteristics recognition login device of vehicle-mounted information system |
CN102855754A (en) * | 2011-06-30 | 2013-01-02 | 由田新技股份有限公司 | Vehicle management monitoring system and method thereof |
CN103021053A (en) * | 2012-11-22 | 2013-04-03 | 成都江法科技有限公司 | Security system for human face recognition |
CN103475490A (en) * | 2013-09-29 | 2013-12-25 | 广州网易计算机系统有限公司 | Identity authentication method and device |
CN103634118A (en) * | 2013-12-12 | 2014-03-12 | 山东神思电子技术股份有限公司 | Survival authentication method on basis of identification cards and composite biological feature recognition |
CN104392221A (en) * | 2014-11-28 | 2015-03-04 | 曾嵘 | Multi-element identity recognition system and multidimensional multi-element identity recognition method |
CN104408798A (en) * | 2014-11-25 | 2015-03-11 | 苏州福丰科技有限公司 | Access identity verification system based on three-dimensional face recognition |
CN104573462A (en) * | 2015-01-30 | 2015-04-29 | 北京得意音通技术有限责任公司 | Fingerprint and voiceprint dual-authentication method and fingerprint and voiceprint collector |
CN104604219A (en) * | 2013-07-12 | 2015-05-06 | 欧姆龙株式会社 | Image processing device, image processing method, and image processing program |
CN104598795A (en) * | 2015-01-30 | 2015-05-06 | 科大讯飞股份有限公司 | Authentication method and system |
CN104700014A (en) * | 2015-02-16 | 2015-06-10 | 北京海鑫科金高科技股份有限公司 | Verification device |
CN104821023A (en) * | 2015-04-24 | 2015-08-05 | 成都腾悦科技有限公司 | Method for applying safety door control systems |
CN104835222A (en) * | 2015-04-24 | 2015-08-12 | 成都腾悦科技有限公司 | Entrance guard control method based on voice recognition, facial recognition and fingerprint recognition |
CN104835223A (en) * | 2015-04-24 | 2015-08-12 | 成都腾悦科技有限公司 | Entrance guard system based on voice recognition, facial recognition and fingerprint recognition |
CN105117817A (en) * | 2015-07-27 | 2015-12-02 | 上海原能细胞医学技术有限公司 | Biological sample library application management system |
CN105450412A (en) * | 2014-08-19 | 2016-03-30 | 阿里巴巴集团控股有限公司 | Identity authentication method and device |
CN105810199A (en) * | 2014-12-30 | 2016-07-27 | 中国科学院深圳先进技术研究院 | Identity verification method and device for speakers |
CN105814904A (en) * | 2014-11-07 | 2016-07-27 | 华为技术有限公司 | Media resource sharing method and device |
CN106056839A (en) * | 2016-06-30 | 2016-10-26 | 武汉斑马快跑科技有限公司 | Security monitoring system and method for internet-based car hailing service |
CN106131828A (en) * | 2016-06-30 | 2016-11-16 | 维沃移动通信有限公司 | A kind of WiFi password sharing method, mobile terminal and Cloud Server |
CN106503143A (en) * | 2016-10-21 | 2017-03-15 | 广东工业大学 | A kind of image search method and device |
CN106603940A (en) * | 2016-12-29 | 2017-04-26 | 上海集成电路研发中心有限公司 | Global pixel iris identification image sensor |
CN106599164A (en) * | 2010-09-17 | 2017-04-26 | 甲骨文国际公司 | Support for a parameterized query/view in complex event processing |
CN106652112A (en) * | 2016-09-24 | 2017-05-10 | 成都创慧科达科技有限公司 | Intelligent multifunctional door lock, control system and control method |
CN106850648A (en) * | 2015-02-13 | 2017-06-13 | 腾讯科技(深圳)有限公司 | Auth method, client and service platform |
CN107079024A (en) * | 2014-11-12 | 2017-08-18 | 高通股份有限公司 | The mobile device that enhanced security is provided is inputted based on context sensor |
CN107295812A (en) * | 2014-12-29 | 2017-10-24 | 李到训 | Encoding and identification system of fingerprint information and its operation method |
CN107294730A (en) * | 2017-08-24 | 2017-10-24 | 北京无线电计量测试研究所 | A kind of multi-modal biological characteristic identity identifying method, apparatus and system |
CN107393554A (en) * | 2017-06-20 | 2017-11-24 | 武汉大学 | In a kind of sound scene classification merge class between standard deviation feature extracting method |
CN107438854A (en) * | 2015-02-06 | 2017-12-05 | 维里迪乌姆Ip有限责任公司 | The system and method that the image captured using mobile device performs the user authentication based on fingerprint |
CN107633048A (en) * | 2017-09-15 | 2018-01-26 | 国网重庆市电力公司电力科学研究院 | A kind of image labeling discrimination method and system |
CN107658012A (en) * | 2017-11-15 | 2018-02-02 | 吉林医药学院 | A kind of intelligent hospital management system |
CN107844957A (en) * | 2017-11-15 | 2018-03-27 | 吉林医药学院 | A kind of Human Resources Management System based on interface |
CN107856628A (en) * | 2017-07-07 | 2018-03-30 | 安徽摩尼电子科技有限公司 | A kind of vehicle-mounted child detection alarm device |
WO2018099376A1 (en) * | 2016-12-01 | 2018-06-07 | 中兴通讯股份有限公司 | Access method and server |
CN108197553A (en) * | 2017-12-28 | 2018-06-22 | 郑州畅想高科股份有限公司 | Anti- detection method and the system of drinking of practising fraud of engine drivers in locomotive depot based on iris tracking |
CN108197445A (en) * | 2016-10-11 | 2018-06-22 | 新疆信息产业有限责任公司 | Computer user's identity recognition device and application method |
CN108205834A (en) * | 2017-12-15 | 2018-06-26 | 深圳市商汤科技有限公司 | Access control management method and access control system |
CN108389348A (en) * | 2017-06-27 | 2018-08-10 | 武汉普惠海洋光电技术有限公司 | The system of smart home security based on smart mobile phone |
CN105740682B (en) * | 2016-01-12 | 2018-08-31 | 黑河学院 | The personal identification method and system of a kind of computer system and its user |
CN108596127A (en) * | 2018-04-28 | 2018-09-28 | 北京旷视科技有限公司 | A kind of fingerprint identification method, auth method and device and identity veritify machine |
CN108682424A (en) * | 2018-07-13 | 2018-10-19 | 广州势必可赢网络科技有限公司 | A kind of audio collecting device and method |
CN108880815A (en) * | 2017-05-12 | 2018-11-23 | 阿里巴巴集团控股有限公司 | Auth method, device and system |
CN108959874A (en) * | 2017-05-17 | 2018-12-07 | 武汉默联股份有限公司 | Information Authentication method and device |
CN109034212A (en) * | 2018-07-04 | 2018-12-18 | 中国信息通信研究院 | A kind of terminal bio-identification performance test methods and device |
CN109272429A (en) * | 2018-09-14 | 2019-01-25 | 郑称德 | Information-pushing method and system based on Internet of Things campus administration |
WO2019020014A1 (en) * | 2017-07-28 | 2019-01-31 | Oppo广东移动通信有限公司 | Unlocking control method and related product |
CN109344722A (en) * | 2018-09-04 | 2019-02-15 | 阿里巴巴集团控股有限公司 | A kind of user identity determines method, apparatus and electronic equipment |
CN105243303B (en) * | 2014-07-03 | 2019-03-12 | 恩智浦有限公司 | The method and apparatus of user for business identified safely |
CN109547476A (en) * | 2018-12-26 | 2019-03-29 | 浙江大学常州工业技术研究院 | A kind of self power generation outdoor moving identification system |
WO2019062080A1 (en) * | 2017-09-28 | 2019-04-04 | 平安科技(深圳)有限公司 | Identity recognition method, electronic device, and computer readable storage medium |
CN109936584A (en) * | 2017-12-15 | 2019-06-25 | 天津铂创国茂电子科技发展有限公司 | The method of fingerprint recognition and speech recognition based on cloud branch server |
CN112182538A (en) * | 2020-09-30 | 2021-01-05 | 徐福淋 | A method for cracking biometric systems based on bionic components |
CN112215919A (en) * | 2020-09-16 | 2021-01-12 | 电子科技大学 | A method for generating an electronic album and an electronic device |
CN112328995A (en) * | 2020-07-08 | 2021-02-05 | 德能森智能科技(成都)有限公司 | Social management system based on TOF image sensor verification |
CN112769872A (en) * | 2021-04-07 | 2021-05-07 | 北京电信易通信息技术股份有限公司 | Conference system access method and system based on audio and video feature fusion |
CN112818798A (en) * | 2021-01-26 | 2021-05-18 | 支付宝(杭州)信息技术有限公司 | Identity verification method and device |
CN113408556A (en) * | 2020-03-16 | 2021-09-17 | 杭州海康威视数字技术股份有限公司 | Identity recognition method and device |
CN113449275A (en) * | 2020-03-24 | 2021-09-28 | 深圳法大大网络科技有限公司 | User identity authentication method and device and terminal equipment |
CN113672889A (en) * | 2020-05-14 | 2021-11-19 | 华为技术有限公司 | Device enabling method and device, and storage medium |
CN113822308A (en) * | 2020-06-20 | 2021-12-21 | 北京眼神智能科技有限公司 | Comparison score fusion method, device, medium and equipment for multi-modal biological recognition |
CN113947376A (en) * | 2019-01-16 | 2022-01-18 | 北京影谱科技股份有限公司 | C/S card punching method and device based on multiple biological characteristics |
US11263432B2 (en) | 2015-02-06 | 2022-03-01 | Veridium Ip Limited | Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices |
CN116405635A (en) * | 2023-06-02 | 2023-07-07 | 山东正中信息技术股份有限公司 | Multi-mode conference recording method and system based on edge calculation |
CN118885085A (en) * | 2024-07-30 | 2024-11-01 | 深圳市美高电子设备有限公司 | Mini computer operation status information interactive control method and system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1304114A (en) * | 1999-12-13 | 2001-07-18 | 中国科学院自动化研究所 | Identity identification method based on multiple biological characteristics |
US6636620B1 (en) * | 1997-11-28 | 2003-10-21 | Nec Corporation | Personal identification authenticating with fingerprint identification |
CN1635543A (en) * | 2003-12-29 | 2005-07-06 | 佳能株式会社 | Method and apparatus for detecting human face |
CN1776711A (en) * | 2005-12-15 | 2006-05-24 | 上海交通大学 | A Method of Searching for New Locations of Feature Points Using Support Vector Machine Multiclass Classifier |
CN101414351A (en) * | 2008-11-03 | 2009-04-22 | 章毅 | Fingerprint recognition system and control method |
-
2009
- 2009-10-16 CN CN2009101679254A patent/CN102045162A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6636620B1 (en) * | 1997-11-28 | 2003-10-21 | Nec Corporation | Personal identification authenticating with fingerprint identification |
CN1304114A (en) * | 1999-12-13 | 2001-07-18 | 中国科学院自动化研究所 | Identity identification method based on multiple biological characteristics |
CN1635543A (en) * | 2003-12-29 | 2005-07-06 | 佳能株式会社 | Method and apparatus for detecting human face |
CN1776711A (en) * | 2005-12-15 | 2006-05-24 | 上海交通大学 | A Method of Searching for New Locations of Feature Points Using Support Vector Machine Multiclass Classifier |
CN101414351A (en) * | 2008-11-03 | 2009-04-22 | 章毅 | Fingerprint recognition system and control method |
Non-Patent Citations (2)
Title |
---|
ANIL JAIN 等: "A MultimodalBiometric System Using Fingerprint,face,and Speech", 《PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON AVBPA》 * |
马保峰: "《中国优秀硕士学位论文全文数据库信息科技辑》", 31 July 2008 * |
Cited By (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106599164A (en) * | 2010-09-17 | 2017-04-26 | 甲骨文国际公司 | Support for a parameterized query/view in complex event processing |
CN102184416A (en) * | 2011-05-19 | 2011-09-14 | 汉王科技股份有限公司 | Method and device for registering biometric sample |
CN102270273A (en) * | 2011-05-25 | 2011-12-07 | 朱昭 | Patient information storage device |
CN102855754A (en) * | 2011-06-30 | 2013-01-02 | 由田新技股份有限公司 | Vehicle management monitoring system and method thereof |
CN102521570A (en) * | 2011-11-30 | 2012-06-27 | 上海博泰悦臻电子设备制造有限公司 | Biological characteristics recognition login device of vehicle-mounted information system |
CN103021053A (en) * | 2012-11-22 | 2013-04-03 | 成都江法科技有限公司 | Security system for human face recognition |
CN104604219B (en) * | 2013-07-12 | 2019-04-12 | 欧姆龙株式会社 | Image processing apparatus and image processing method |
CN104604219A (en) * | 2013-07-12 | 2015-05-06 | 欧姆龙株式会社 | Image processing device, image processing method, and image processing program |
CN103475490A (en) * | 2013-09-29 | 2013-12-25 | 广州网易计算机系统有限公司 | Identity authentication method and device |
CN103634118B (en) * | 2013-12-12 | 2016-11-23 | 神思依图(北京)科技有限公司 | Existence authentication method based on card and compound bio feature identification |
CN103634118A (en) * | 2013-12-12 | 2014-03-12 | 山东神思电子技术股份有限公司 | Survival authentication method on basis of identification cards and composite biological feature recognition |
CN105243303B (en) * | 2014-07-03 | 2019-03-12 | 恩智浦有限公司 | The method and apparatus of user for business identified safely |
CN105450412B (en) * | 2014-08-19 | 2019-04-30 | 阿里巴巴集团控股有限公司 | Identity identifying method and device |
CN105450412A (en) * | 2014-08-19 | 2016-03-30 | 阿里巴巴集团控股有限公司 | Identity authentication method and device |
CN105814904B (en) * | 2014-11-07 | 2019-07-23 | 华为技术有限公司 | Media resource sharing method and equipment |
CN105814904A (en) * | 2014-11-07 | 2016-07-27 | 华为技术有限公司 | Media resource sharing method and device |
CN107079024A (en) * | 2014-11-12 | 2017-08-18 | 高通股份有限公司 | The mobile device that enhanced security is provided is inputted based on context sensor |
CN104408798A (en) * | 2014-11-25 | 2015-03-11 | 苏州福丰科技有限公司 | Access identity verification system based on three-dimensional face recognition |
CN104392221B (en) * | 2014-11-28 | 2018-11-06 | 曾嵘 | A kind of diverse identities identifying system and multidimensional diverse identities recognition methods |
CN104392221A (en) * | 2014-11-28 | 2015-03-04 | 曾嵘 | Multi-element identity recognition system and multidimensional multi-element identity recognition method |
CN107295812A (en) * | 2014-12-29 | 2017-10-24 | 李到训 | Encoding and identification system of fingerprint information and its operation method |
CN105810199A (en) * | 2014-12-30 | 2016-07-27 | 中国科学院深圳先进技术研究院 | Identity verification method and device for speakers |
CN104598795A (en) * | 2015-01-30 | 2015-05-06 | 科大讯飞股份有限公司 | Authentication method and system |
CN104573462A (en) * | 2015-01-30 | 2015-04-29 | 北京得意音通技术有限责任公司 | Fingerprint and voiceprint dual-authentication method and fingerprint and voiceprint collector |
CN104573462B (en) * | 2015-01-30 | 2017-05-03 | 北京得意音通技术有限责任公司 | Fingerprint and voiceprint dual-authentication method |
US12288414B2 (en) | 2015-02-06 | 2025-04-29 | Veridium Ip Limited | Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices |
US11188734B2 (en) | 2015-02-06 | 2021-11-30 | Veridium Ip Limited | Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices |
US11263432B2 (en) | 2015-02-06 | 2022-03-01 | Veridium Ip Limited | Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices |
CN107438854A (en) * | 2015-02-06 | 2017-12-05 | 维里迪乌姆Ip有限责任公司 | The system and method that the image captured using mobile device performs the user authentication based on fingerprint |
US12223760B2 (en) | 2015-02-06 | 2025-02-11 | Veridium Ip Limited | Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices |
CN106850648A (en) * | 2015-02-13 | 2017-06-13 | 腾讯科技(深圳)有限公司 | Auth method, client and service platform |
CN106850648B (en) * | 2015-02-13 | 2020-10-16 | 腾讯科技(深圳)有限公司 | Identity verification method, client and service platform |
CN104700014A (en) * | 2015-02-16 | 2015-06-10 | 北京海鑫科金高科技股份有限公司 | Verification device |
CN104835222A (en) * | 2015-04-24 | 2015-08-12 | 成都腾悦科技有限公司 | Entrance guard control method based on voice recognition, facial recognition and fingerprint recognition |
CN104821023A (en) * | 2015-04-24 | 2015-08-05 | 成都腾悦科技有限公司 | Method for applying safety door control systems |
CN104835223A (en) * | 2015-04-24 | 2015-08-12 | 成都腾悦科技有限公司 | Entrance guard system based on voice recognition, facial recognition and fingerprint recognition |
CN105117817A (en) * | 2015-07-27 | 2015-12-02 | 上海原能细胞医学技术有限公司 | Biological sample library application management system |
CN105740682B (en) * | 2016-01-12 | 2018-08-31 | 黑河学院 | The personal identification method and system of a kind of computer system and its user |
CN106056839A (en) * | 2016-06-30 | 2016-10-26 | 武汉斑马快跑科技有限公司 | Security monitoring system and method for internet-based car hailing service |
CN106131828A (en) * | 2016-06-30 | 2016-11-16 | 维沃移动通信有限公司 | A kind of WiFi password sharing method, mobile terminal and Cloud Server |
CN106652112A (en) * | 2016-09-24 | 2017-05-10 | 成都创慧科达科技有限公司 | Intelligent multifunctional door lock, control system and control method |
CN108197445A (en) * | 2016-10-11 | 2018-06-22 | 新疆信息产业有限责任公司 | Computer user's identity recognition device and application method |
CN106503143B (en) * | 2016-10-21 | 2020-02-07 | 广东工业大学 | Image retrieval method and device |
CN106503143A (en) * | 2016-10-21 | 2017-03-15 | 广东工业大学 | A kind of image search method and device |
WO2018099376A1 (en) * | 2016-12-01 | 2018-06-07 | 中兴通讯股份有限公司 | Access method and server |
CN106603940A (en) * | 2016-12-29 | 2017-04-26 | 上海集成电路研发中心有限公司 | Global pixel iris identification image sensor |
CN108880815A (en) * | 2017-05-12 | 2018-11-23 | 阿里巴巴集团控股有限公司 | Auth method, device and system |
CN108959874A (en) * | 2017-05-17 | 2018-12-07 | 武汉默联股份有限公司 | Information Authentication method and device |
CN107393554A (en) * | 2017-06-20 | 2017-11-24 | 武汉大学 | In a kind of sound scene classification merge class between standard deviation feature extracting method |
CN107393554B (en) * | 2017-06-20 | 2020-07-10 | 武汉大学 | A feature extraction method based on fusion of inter-class standard deviations in acoustic scene classification |
CN108389348A (en) * | 2017-06-27 | 2018-08-10 | 武汉普惠海洋光电技术有限公司 | The system of smart home security based on smart mobile phone |
CN107856628A (en) * | 2017-07-07 | 2018-03-30 | 安徽摩尼电子科技有限公司 | A kind of vehicle-mounted child detection alarm device |
WO2019020014A1 (en) * | 2017-07-28 | 2019-01-31 | Oppo广东移动通信有限公司 | Unlocking control method and related product |
CN107294730A (en) * | 2017-08-24 | 2017-10-24 | 北京无线电计量测试研究所 | A kind of multi-modal biological characteristic identity identifying method, apparatus and system |
CN107633048A (en) * | 2017-09-15 | 2018-01-26 | 国网重庆市电力公司电力科学研究院 | A kind of image labeling discrimination method and system |
WO2019062080A1 (en) * | 2017-09-28 | 2019-04-04 | 平安科技(深圳)有限公司 | Identity recognition method, electronic device, and computer readable storage medium |
CN107658012A (en) * | 2017-11-15 | 2018-02-02 | 吉林医药学院 | A kind of intelligent hospital management system |
CN107844957A (en) * | 2017-11-15 | 2018-03-27 | 吉林医药学院 | A kind of Human Resources Management System based on interface |
CN109936584A (en) * | 2017-12-15 | 2019-06-25 | 天津铂创国茂电子科技发展有限公司 | The method of fingerprint recognition and speech recognition based on cloud branch server |
CN108205834A (en) * | 2017-12-15 | 2018-06-26 | 深圳市商汤科技有限公司 | Access control management method and access control system |
CN108197553A (en) * | 2017-12-28 | 2018-06-22 | 郑州畅想高科股份有限公司 | Anti- detection method and the system of drinking of practising fraud of engine drivers in locomotive depot based on iris tracking |
CN108596127A (en) * | 2018-04-28 | 2018-09-28 | 北京旷视科技有限公司 | A kind of fingerprint identification method, auth method and device and identity veritify machine |
CN108596127B (en) * | 2018-04-28 | 2021-06-22 | 北京旷视科技有限公司 | Fingerprint identification method, identity verification method and device and identity verification machine |
CN109034212B (en) * | 2018-07-04 | 2021-07-09 | 中国信息通信研究院 | A kind of terminal biometric identification performance testing method and device |
CN109034212A (en) * | 2018-07-04 | 2018-12-18 | 中国信息通信研究院 | A kind of terminal bio-identification performance test methods and device |
CN108682424A (en) * | 2018-07-13 | 2018-10-19 | 广州势必可赢网络科技有限公司 | A kind of audio collecting device and method |
CN109344722A (en) * | 2018-09-04 | 2019-02-15 | 阿里巴巴集团控股有限公司 | A kind of user identity determines method, apparatus and electronic equipment |
US11244199B2 (en) | 2018-09-04 | 2022-02-08 | Advanced New Technologies Co., Ltd. | User identity determining method, apparatus, and device |
US10997460B2 (en) | 2018-09-04 | 2021-05-04 | Advanced New Technologies Co., Ltd. | User identity determining method, apparatus, and device |
CN109272429A (en) * | 2018-09-14 | 2019-01-25 | 郑称德 | Information-pushing method and system based on Internet of Things campus administration |
CN109547476A (en) * | 2018-12-26 | 2019-03-29 | 浙江大学常州工业技术研究院 | A kind of self power generation outdoor moving identification system |
CN109547476B (en) * | 2018-12-26 | 2021-10-22 | 浙江大学常州工业技术研究院 | A self-generated outdoor mobile identification system |
CN113947376B (en) * | 2019-01-16 | 2024-06-18 | 北京影谱科技股份有限公司 | C/S (computer/subscriber line) card punching method and device based on multiple biological characteristics |
CN113947376A (en) * | 2019-01-16 | 2022-01-18 | 北京影谱科技股份有限公司 | C/S card punching method and device based on multiple biological characteristics |
CN113408556A (en) * | 2020-03-16 | 2021-09-17 | 杭州海康威视数字技术股份有限公司 | Identity recognition method and device |
CN113408556B (en) * | 2020-03-16 | 2023-08-22 | 杭州海康威视数字技术股份有限公司 | Identity recognition method and device |
CN113449275A (en) * | 2020-03-24 | 2021-09-28 | 深圳法大大网络科技有限公司 | User identity authentication method and device and terminal equipment |
CN113449275B (en) * | 2020-03-24 | 2023-07-07 | 深圳法大大网络科技有限公司 | User identity authentication method and device and terminal equipment |
US20230076085A1 (en) * | 2020-05-14 | 2023-03-09 | Huawei Technologies Co., Ltd. | Device enabling method and apparatus, and storage medium |
CN113672889A (en) * | 2020-05-14 | 2021-11-19 | 华为技术有限公司 | Device enabling method and device, and storage medium |
CN113822308A (en) * | 2020-06-20 | 2021-12-21 | 北京眼神智能科技有限公司 | Comparison score fusion method, device, medium and equipment for multi-modal biological recognition |
CN113822308B (en) * | 2020-06-20 | 2024-04-05 | 北京眼神智能科技有限公司 | Multi-mode biological recognition comparison score fusion method, device, medium and equipment |
CN112328995B (en) * | 2020-07-08 | 2023-04-14 | 德能森智能科技(成都)有限公司 | Social management system based on TOF image sensor verification |
CN112328995A (en) * | 2020-07-08 | 2021-02-05 | 德能森智能科技(成都)有限公司 | Social management system based on TOF image sensor verification |
CN112215919A (en) * | 2020-09-16 | 2021-01-12 | 电子科技大学 | A method for generating an electronic album and an electronic device |
CN112182538A (en) * | 2020-09-30 | 2021-01-05 | 徐福淋 | A method for cracking biometric systems based on bionic components |
CN112818798A (en) * | 2021-01-26 | 2021-05-18 | 支付宝(杭州)信息技术有限公司 | Identity verification method and device |
CN112769872A (en) * | 2021-04-07 | 2021-05-07 | 北京电信易通信息技术股份有限公司 | Conference system access method and system based on audio and video feature fusion |
CN112769872B (en) * | 2021-04-07 | 2021-06-22 | 北京电信易通信息技术股份有限公司 | Conference system access method and system based on audio and video feature fusion |
CN116405635A (en) * | 2023-06-02 | 2023-07-07 | 山东正中信息技术股份有限公司 | Multi-mode conference recording method and system based on edge calculation |
CN118885085A (en) * | 2024-07-30 | 2024-11-01 | 深圳市美高电子设备有限公司 | Mini computer operation status information interactive control method and system |
CN118885085B (en) * | 2024-07-30 | 2025-04-01 | 深圳市美高电子设备有限公司 | Mini computer operation status information interactive control method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102045162A (en) | Personal identification system of permittee with tri-modal biometric characteristic and control method thereof | |
Abozaid et al. | Multimodal biometric scheme for human authentication technique based on voice and face recognition fusion | |
Chen et al. | A new algorithm for distorted fingerprints matching based on normalized fuzzy similarity measure | |
Sun et al. | Improving iris recognition accuracy via cascaded classifiers | |
Sahoo et al. | Multimodal biometric person authentication: A review | |
Yang et al. | A fingerprint verification algorithm using tessellated invariant moment features | |
CN102332084B (en) | Identity identification method based on palm print and human face feature extraction | |
US9189686B2 (en) | Apparatus and method for iris image analysis | |
Majekodunmi et al. | A review of the fingerprint, speaker recognition, face recognition and iris recognition based biometric identification technologies | |
Xu et al. | Combine crossing matching scores with conventional matching scores for bimodal biometrics and face and palmprint recognition experiments | |
Mane et al. | Review of multimodal biometrics: applications, challenges and research areas | |
CN108875907A (en) | A kind of fingerprint identification method and device based on deep learning | |
Zhang et al. | Advanced biometrics | |
Dewangan | Human authentication using biometric recognition | |
CN118644920A (en) | Iris recognition control opening and closing method based on smart lock | |
Daramola et al. | Algorithm for fingerprint verification system | |
Khan et al. | Investigating linear discriminant analysis (LDA) on dorsal hand vein images | |
Padmajadevi et al. | A review of handwritten signature verification systems and methodologies | |
Zhang et al. | Research on finger vein recognition based on feature fusion of multimode local encoding | |
Beritelli et al. | Performance Evaluation of Multimodal Biometric Systems based on Mathematical Models and Probabilistic Neural Networks. | |
Huang et al. | Long sequence biometric hashing authentication based on 2D-SIMM and CQCC cosine values | |
Ozkaya et al. | Intelligent face border generation system from fingerprints | |
Soltane | Face, voice and signature multi-modal biometric verification fusion systems | |
Ozkaya et al. | Intelligent face mask prediction system | |
Wang et al. | Iris-face fusion and security analysis based on fisher discriminant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110504 |