CN102044659B - Electrode including ring stopper - Google Patents
Electrode including ring stopper Download PDFInfo
- Publication number
- CN102044659B CN102044659B CN201010519800.6A CN201010519800A CN102044659B CN 102044659 B CN102044659 B CN 102044659B CN 201010519800 A CN201010519800 A CN 201010519800A CN 102044659 B CN102044659 B CN 102044659B
- Authority
- CN
- China
- Prior art keywords
- support
- interlayer
- electrode
- substrate
- filament
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
- H01M4/0423—Physical vapour deposition
- H01M4/0426—Sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
- H01M4/0428—Chemical vapour deposition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
相关申请的交叉引用Cross References to Related Applications
本申请要求于2009年10月22日提交的、名称为“ElectrodesIncludingCollarStop”的美国临时专利申请No.61/254,090的权益和优先权;并且本申请是于2009年2月25日提交的、名称为“HighCapacityElectrodes”的美国专利申请No.12/392,525的部分继续申请,该美国专利No.12/392,525要求于2008年2月25日提交的美国临时专利申请61/067,018和于2008年6月2日提交的美国临时专利申请61/130,679的优先权和权益。在此通过引用而并入所有上述临时和非临时专利申请。 This application claims the benefit of and priority to U.S. Provisional Patent Application No. 61/254,090, filed October 22, 2009, entitled "Electrodes Including CollarStop"; and filed February 25, 2009, entitled A continuation-in-part of U.S. Patent Application No. 12/392,525 for "High Capacity Electrodes," which claims U.S. Provisional Patent Application 61/067,018 filed February 25, 2008 and filed in June 2008 Priority and benefit to U.S. Provisional Patent Application 61/130,679 filed on 2nd. All of the aforementioned provisional and non-provisional patent applications are hereby incorporated by reference.
技术领域 technical field
本发明属于电极技术领域。 The invention belongs to the technical field of electrodes.
发明内容 Contents of the invention
本发明的各种实施方式包括一种电极,该电极包括:衬底;耦合至衬底的支持丝(filament);包括供体受体材料的夹层,该供体受体材料配置用于接收电化学反应的反应物(例如,离子、电子、电荷供体和/或电荷受体),供体受体材料沿支持丝的长度方向布置;以及接近于衬底的夹层区域,并且相对于远离衬底的夹层区域,其包括较少量的供体受体材料。 Various embodiments of the invention include an electrode comprising: a substrate; a support filament coupled to the substrate; an interlayer comprising a donor acceptor material configured to receive electrical The reactants of the chemical reaction (for example, ions, electrons, charge donors and/or charge acceptors), the donor acceptor material is arranged along the length direction of the support filament; and the interlayer region close to the substrate and relatively far away from the substrate The sandwich region of the bottom, which includes a lesser amount of donor acceptor material.
本发明的各种实施方式包括一种产生电极的方法,该方法包括:接收衬底;生长耦合至衬底的支持丝的第一区域;在支持丝的第一区域中远离衬底的末端生长环形挡件,该环形挡件配置用于减小到达第一区域的供体受体材料的量;从环形挡件生长支持丝的第二区域,环形挡件的第二区域具有比环形挡件小的直径;以及将供体受体材料应用至支持丝,以使得在支持丝的第二区域中相对于在支持丝的第一区域中淀积较大厚度的供体受体材料。 Various embodiments of the invention include a method of producing an electrode comprising: receiving a substrate; growing a first region of a support filament coupled to the substrate; growing an end of the support filament remote from the substrate in the first region of the support filament an annular stop configured to reduce the amount of donor-receptor material reaching the first region; a second region of support filaments grown from the annular stop, the second region of the annular stop having a ratio of a small diameter; and applying the donor acceptor material to the support filament such that a greater thickness of the donor acceptor material is deposited in the second region of the support filament relative to the first region of the support filament.
本发明的各种实施方式包括一种电池,该电池包括第一电极以及第二电极,第二电极包括:衬底;耦合至该衬底的支持丝;配置用于接收电化学反应的反应物的夹层,该夹层布置在支持丝上;以及用于创建接近于衬底的夹层区域的、相对于远离衬底的夹层区域包括较少量的供体受体材料的装置。 Various embodiments of the invention include a battery comprising a first electrode and a second electrode comprising: a substrate; a support wire coupled to the substrate; a reactant configured to receive an electrochemical reaction and means for creating a sandwich region close to the substrate comprising a lower amount of donor-receptor material relative to a region of the sandwich farther from the substrate.
附图说明 Description of drawings
图1示出了根据本发明各种实施方式的支持帽电极设计。 Figure 1 shows a support cap electrode design according to various embodiments of the invention.
图2示出了根据本发明各种实施方式的支持环电极设计。 Figure 2 shows a support ring electrode design according to various embodiments of the invention.
图3示出了根据本发明各种实施方式的环形挡件电极设计。 Figure 3 shows a ring stopper electrode design according to various embodiments of the invention.
图4示出了根据本发明各种实施方式的支持帽和支持环电极设计。 Figure 4 shows a support cap and support ring electrode design according to various embodiments of the invention.
图5示出了根据本发明各种实施方式的支持帽和环形挡件电极设计。 Figure 5 shows a support cap and ring stopper electrode design according to various embodiments of the invention.
图6示出了根据本发明各种实施方式的支持环和环形挡件电极设计。 Figure 6 shows a support ring and ring stopper electrode design according to various embodiments of the invention.
图7A、图7B和图7C示出了根据本发明各种实施方式的包括夹入材料的电极。 7A, 7B and 7C illustrate electrodes including intercalation materials according to various embodiments of the invention.
图8示出了根据本发明各种实施方式的创建电极延伸的方法。 Figure 8 illustrates a method of creating electrode extensions according to various embodiments of the invention.
图9A、图9B示出了根据本发明各种实施方式的所测量电荷容量与夹入材料厚度的关系。 9A, 9B illustrate measured charge capacity versus intercalation material thickness according to various embodiments of the invention.
图10示出了根据本发明各种实施方式的电池循环寿命与夹入材料厚度的关系。 Figure 10 shows battery cycle life versus sandwich material thickness according to various embodiments of the invention.
图11示出了根据本发明各种实施方式的一种电池。 Figure 11 shows a battery according to various embodiments of the invention.
图12A和图12B示出了根据本发明各种实施方式的在铜衬底上生长的碳纳米纤维。 12A and 12B illustrate carbon nanofibers grown on copper substrates according to various embodiments of the invention.
图13A和图13B示出了根据本发明各种实施方式的涂覆有夹入材料的、在铜衬底上生长的碳纳米纤维。 13A and 13B illustrate carbon nanofibers grown on a copper substrate coated with an intercalation material according to various embodiments of the invention.
图14示出了根据本发明各种实施方式的用于收集针对图9A、图9B和图10的数据的无夹层750的电极的截面图。 Figure 14 shows a cross-sectional view of an electrode without interlayer 750 used to collect the data for Figures 9A, 9B, and 10, according to various embodiments of the invention.
具体实施方式 detailed description
图1示出了包括支持丝110的电极。支持丝110包括支持帽150。支持帽150可选地是支持丝110的延伸,并且具有大于支持丝直径112大约1%、2.5%、10%、25%、40%或者高达60%的支持帽宽度157。支持丝高度114包括支持帽高度155。在一些实施方式中,支持帽高度155至少是250纳米、500纳米、2000纳米或者5000纳米。在其他实施方式中,支持帽高度155至少是丝高度114的百分之1、5、20、30或者50。支持帽宽度157至少可以是起始点分隔距离126的百分之1、5、15、40或者75。起始点是种子层122上开始生长支持丝的位置。支持帽150(如图1所示)的横截面形状可以是矩形、三角形、方形、圆形或者菱形。其他形状也是可能的。支持帽150可以配置用于防止夹层750(图7)滑出支持丝110的未连接端。 FIG. 1 shows an electrode comprising a support wire 110 . The support wire 110 includes a support cap 150 . Support cap 150 is optionally an extension of support wire 110 and has a support cap width 157 that is approximately 1%, 2.5%, 10%, 25%, 40%, or up to 60% greater than support wire diameter 112 . Support wire height 114 includes support cap height 155 . In some embodiments, support cap height 155 is at least 250 nanometers, 500 nanometers, 2000 nanometers, or 5000 nanometers. In other embodiments, the support cap height 155 is at least 1, 5, 20, 30, or 50 percent of the wire height 114 . The support cap width 157 can be at least 1, 5, 15, 40 or 75 percent of the starting point separation distance 126 . The starting point is the location on the seed layer 122 where the growth of supportive filaments begins. The cross-sectional shape of the support cap 150 (shown in FIG. 1 ) may be rectangular, triangular, square, circular or rhombus. Other shapes are also possible. Support cap 150 may be configured to prevent interlayer 750 ( FIG. 7 ) from sliding off the unattached end of support wire 110 .
支持丝110可以是碳纳米管(CNT)、碳纳米纤维(CNF)或者纳米线(NW),或者其他纳米级结构。包括CNT的材料通常是碳,并且可以包括其他材料,诸如在CNT的生长期间在给料气体中输入的金属、半导体和绝缘体。另外,CNT可以是单壁或者多壁的。包括CNF的材料通常是碳,并且可以包括其他材料,诸如在CNF的生长期间在给料气体中输入的金属、半导体和绝缘体。CNT通常描述为具有至少2nm、5nm、10nm、30nm或者50nm的直径。CNF通常描述为具有至少30nm、50nm、150nm、250nm、500nm或者750nm的直径。纳米线(NW)可以包括金属(诸如金、铜或者锡)或者半导体(诸如硅、锗、Inp、GaN、GaP、ZnO)或者氧化物,诸如MnO2、铟锡氧化物、ZnO、SnO2、Fe2O3、In2O3或者Ga2O3。其他材料也是可能的。 The supporting filament 110 may be carbon nanotubes (CNTs), carbon nanofibers (CNFs) or nanowires (NWs), or other nanoscale structures. The material comprising CNTs is typically carbon and may include other materials such as metals, semiconductors and insulators that are input in the feed gas during the growth of the CNTs. Additionally, CNTs can be single-walled or multi-walled. The material comprising CNFs is typically carbon and may include other materials such as metals, semiconductors and insulators that are input in the feed gas during the growth of the CNFs. CNTs are generally described as having a diameter of at least 2 nm, 5 nm, 10 nm, 30 nm, or 50 nm. CNFs are generally described as having a diameter of at least 30 nm, 50 nm, 150 nm, 250 nm, 500 nm, or 750 nm. Nanowires (NWs) may comprise metals such as gold, copper or tin, or semiconductors such as silicon, germanium, Inp, GaN, GaP, ZnO, or oxides such as MnO2 , indium tin oxide, ZnO, SnO2 , Fe 2 O 3 , In 2 O 3 or Ga 2 O 3 . Other materials are also possible.
图2示出了一个包括支持丝110的电极,该支持丝110包括支持环210。支持环210可选地是支持丝110的延伸,其具有大于支持丝直径112至少1%、2.5%、10%、25%、40%或者60%的直径。在一些实施方式中,支持环高度214至少是100、250、500、2000或者5000纳米,可能更大,并且可以小至50纳米,可能更小。在一些实施方式中,支持环高度214至少是支持丝高度114的百分之1、5、15、40或者75。支持环宽度212可以至少是起始点分隔距离126的1%、5%、15%、40%或者75%。支持环210的形状可以是矩形、方形、圆形、三角形、环形、菱形、弯曲的等。其他形状也是可能的。支持环基本距离216可选地至少是支持丝高度114的一半。环基本距离216是支持丝高度114的10%、30%或者75%是可能的。基本距离216可以从起始点120延伸至少500、1000、2500、5000或者12500纳米。附加地,基本距离216在丝延伸尖端152的若干微米内结束是可能的。 FIG. 2 shows an electrode comprising a support wire 110 including a support ring 210 . Support ring 210 is optionally an extension of support wire 110 having a diameter that is at least 1%, 2.5%, 10%, 25%, 40%, or 60% greater than support wire diameter 112 . In some embodiments, support ring height 214 is at least 100, 250, 500, 2000, or 5000 nanometers, possibly greater, and may be as small as 50 nanometers, possibly less. In some embodiments, support ring height 214 is at least 1, 5, 15, 40, or 75 percent of support wire height 114 . Support ring width 212 may be at least 1%, 5%, 15%, 40%, or 75% of origin separation distance 126 . The shape of the support ring 210 may be rectangular, square, circular, triangular, circular, diamond, curved, and the like. Other shapes are also possible. The support ring base distance 216 is optionally at least half the support wire height 114 . It is possible for the ring base distance 216 to be 10%, 30%, or 75% of the support wire height 114 . The base distance 216 may extend from the starting point 120 by at least 500, 1000, 2500, 5000, or 12500 nanometers. Additionally, it is possible for the base distance 216 to end up within a few microns of the wire extension tip 152 .
图3示出了一个包括支持丝110的电极,该支持丝110包括环形挡件310。环形挡件310是由大于支持丝110的其他区域直径的直径表征的支持丝110的一个区域。在一些实施方式中,环形挡件310的直径至少大于在支持丝110的一个或多个其他区域中的支持丝110直径(例如,支持丝直径112)的百分之1、2.5、10、25、40或者60。控制环形挡件310的直径和环形挡件间隔312来创建主干350。该主干350将造成供体受体材料(DAM)减少的区域。DAM减少区域是其中相对于支持丝的其他区域存在减少量的夹入材料但未必是完全没有夹入材料的区域。例如,在各种实施方式中,DAM区域可以包括相对于支持丝110的其他区域小于百分之75、50、25、10或者5(支持丝110的每单位面积的重量)的夹入材料。(出于描述的目的,夹入材料定义为供应或者接受电荷以完成电极的外部电路的材料。夹入材料配置用于与周围的电解液交换电荷载流子、电荷供体和/或电荷接收体。夹入材料可选地能渗透这些物质)。环形挡件间隔312可以接近于0,或者至少是起始点126之间的距离的百分之10、50、75或者95。环形挡件310可以沿支持丝110的长度上的任意位置生长,例如,在一些实施方式中,环形挡件310可以布置在起始点120的10000、5000、2000、1000、750、250、100、25或者5纳米内。 FIG. 3 shows an electrode comprising a support wire 110 including an annular stopper 310 . Annular stop 310 is a region of support wire 110 characterized by a diameter that is greater than the diameter of other regions of support wire 110 . In some embodiments, the diameter of the annular stopper 310 is at least 1, 2.5, 10, 25 percent greater than the diameter of the support wire 110 (e.g., support wire diameter 112) in one or more other regions of the support wire 110 , 40 or 60. The diameter of the ring stops 310 and the ring stop spacing 312 are controlled to create the backbone 350 . This backbone 350 will result in a region of reduced donor acceptor material (DAM). A region of reduced DAM is a region where there is a reduced amount of entrapped material relative to other regions of the support filament, but not necessarily completely free of entrapped material. For example, in various embodiments, the DAM region may comprise less than 75, 50, 25, 10, or 5 percent (weight per unit area of support filament 110 ) of entrapped material relative to other regions of support filament 110 . (For purposes of this description, an intercalation material is defined as a material that supplies or accepts electrical charge to complete the external circuit of the electrode. An intercalation material is configured to exchange charge carriers, charge donors, and/or charge acceptors with the surrounding electrolyte. body. The inclusion material is optionally permeable to these substances). Ring stop spacing 312 may be close to zero, or at least 10, 50, 75, or 95 percent of the distance between starting points 126 . The annular stopper 310 can grow anywhere along the length of the support wire 110, for example, in some embodiments, the annular stopper 310 can be placed at 10000, 5000, 2000, 1000, 750, 250, 100, within 25 or 5 nanometers.
创建环形挡件310的方法通常类似于创建支持环210或者支持帽150的方法。控制支持环210、支持帽150和/或环形挡件310的直径的方法可以包括改变给料气体、衬底或者反应室(或者三个的组合)的温度,或者改变各种给料气体的流速。例如,在支持丝110的生长期间改变给料气体的组成也可以控制这些直径。控制支持丝110、环形挡件310、支持环210和/或支持帽150的直径的另一方法是施加静态或者动态电场,施加静态或者动态磁场,或者施加电场和磁场的组合。控制这些直径的其他方法对本领域普通技术人员将是易见的。 The method of creating ring stop 310 is generally similar to the method of creating support ring 210 or support cap 150 . Methods of controlling the diameter of the support ring 210, the support cap 150, and/or the annular stopper 310 may include varying the temperature of the feed gas, the substrate, or the reaction chamber (or a combination of the three), or varying the flow rates of the various feed gases . For example, varying the composition of the feed gas during growth of support filament 110 can also control these diameters. Another method of controlling the diameter of the support wire 110, annular stopper 310, support ring 210, and/or support cap 150 is to apply a static or dynamic electric field, apply a static or dynamic magnetic field, or apply a combination of electric and magnetic fields. Other methods of controlling these diameters will be readily apparent to those of ordinary skill in the art.
环形挡件310、支持环210和支持帽150可选地与支持丝110是相同的材料,但是取决于所实现的具体工艺,可以使用其他材料及其比率。例如,不同的给料气体可以在不同的处理时间使用,诸如利用乙炔、乙烯或者乙醇来代替甲烷(在CNT/CNF生长的情况下)。另外,不同的生产气体可以在不同的时间使用。例如,氩可以利用诸如氨、氮或者氢之类的生产气体来代替。根据所期望的效果可以使用不同的气体混合。CNT/CNF生长领域内的技术人员可以理解,可以使用其他给料气体和生产气体。 Ring stopper 310, support ring 210 and support cap 150 are optionally the same material as support wire 110, but other materials and their ratios may be used depending on the particular process being implemented. For example, different feedstock gases can be used at different processing times, such as using acetylene, ethylene or ethanol instead of methane (in the case of CNT/CNF growth). Additionally, different process gases can be used at different times. For example, argon may be replaced with a process gas such as ammonia, nitrogen or hydrogen. Different gas mixtures can be used depending on the desired effect. Those skilled in the art of CNT/CNF growth will appreciate that other feed and process gases may be used.
环形挡件厚度314通常将小于若干微米,但是可以是支持丝高度114的百分之1、5、10、26、50或者75。在一些实施方式中,环形挡件厚度314小于支持丝高度114的百分之40、20、5、2或者0.25。根据支持丝110的生长速率,如图3的平面所示的环形挡件310的横截面可以是椭圆形、菱形或者方形。其他横截面形状是可能的。支持帽150和支持环210以及环形挡件310可选地具有这些形状和尺寸。 Annular stop thickness 314 will typically be less than several microns, but can be 1, 5, 10, 26, 50, or 75 percent of support wire height 114 . In some embodiments, annular stopper thickness 314 is less than 40, 20, 5, 2, or 0.25 percent of support wire height 114 . Depending on the growth rate of the support filament 110, the cross-section of the annular stopper 310 as shown in the plane of FIG. 3 may be oval, rhombus, or square. Other cross-sectional shapes are possible. Support cap 150 and support ring 210 and ring stop 310 optionally have these shapes and dimensions.
环形挡件直径316由选择用于创建环形挡件310的工艺方法来控制。例如,在环形挡件310的生长期间,可以改变反应室的温度以加速或者减慢创建支持丝110的反应,由此创建直径大于支持丝110的其他区域的支持丝110的区域。例如,支持丝110可以包括由具有相对较大直径的环形挡件310隔开的较窄直径区域。备选地,支持丝可以包括在衬底124与环形挡件310之间的具有相对较大的直径的区域(环形挡件310可以小于或者接近于该区域的相同直径),以及远离衬底124的具有较小直径的区域。支持丝直径112定义为沿支持丝的最小直径。 Ring stop diameter 316 is controlled by the process method chosen to create ring stop 310 . For example, during growth of annular stopper 310 , the temperature of the reaction chamber may be varied to speed up or slow down the reaction creating support filament 110 , thereby creating regions of support filament 110 that are larger in diameter than other regions of support filament 110 . For example, support wire 110 may include narrower diameter regions separated by annular stops 310 having a relatively larger diameter. Alternatively, the support wire may include a region between the substrate 124 and the annular stopper 310 with a relatively larger diameter (the annular stopper 310 may be smaller than or close to the same diameter of this region), and a region away from the substrate 124. regions with smaller diameters. The support wire diameter 112 is defined as the smallest diameter along the support wire.
环形挡件间隔312由起始点间隔126和环形挡件直径316来控制。环形挡件310的尺寸选择为,使得相对于远离衬底124的支持丝110的区域,在环形挡件310与衬底124之间发生减小的DAM附加。单个支持丝110可以包括不止一个环形挡件310和/或不止一个支持环210。 Ring stop spacing 312 is controlled by starting point spacing 126 and ring stop diameter 316 . The dimensions of the ring stop 310 are selected such that a reduced DAM attachment occurs between the ring stop 310 and the substrate 124 relative to the area of the support wire 110 remote from the substrate 124 . A single support wire 110 may include more than one annular stopper 310 and/or more than one support ring 210 .
在示出的实施方式中,主干350是将基本不具有DAM材料或者相对于支持丝110在环形挡件310之上(远离衬底124)的部分具有减少量的DAM材料的区域。这将通过环形挡件直径316和环形挡件间隔312的适当选择来完成。例如,环形挡件间隔312和环形挡件直径316可以选择为,使得特定环形挡件310刚刚接触其最接近的相邻环形挡件,以有效地创建等于0的环形挡件间隔312。备选地,环形挡件间隔312可以大于0。环形挡件310形成相对于支持丝110的其他部分减少了到达支持丝110在环形挡件310与衬底124之间的区域的DAM量的阻挡层。 In the illustrated embodiment, the backbone 350 is a region that will have substantially no DAM material or a reduced amount of DAM material relative to the portion of the support wire 110 above the annular stop 310 (away from the substrate 124 ). This will be accomplished by proper selection of the ring stop diameter 316 and the ring stop spacing 312 . For example, ring stop spacing 312 and ring stop diameter 316 may be selected such that a particular ring stop 310 just contacts its closest adjacent ring stop, effectively creating ring stop spacing 312 equal to zero. Alternatively, annular stop spacing 312 may be greater than zero. The ring stop 310 forms a barrier that reduces the amount of DAM reaching the region of the support wire 110 between the ring stop 310 and the substrate 124 relative to the rest of the support wire 110 .
图4示出了本发明的各种实施方式,其中支持丝110具有支持帽150和支持环210,但不具有环形挡件310。 FIG. 4 shows various embodiments of the present invention in which a support wire 110 has a support cap 150 and a support ring 210 but does not have an annular stopper 310 .
图5示出了本发明的各种实施方式,其中支持丝110具有支持帽150和环形挡件310,但是不具有支持环210。 FIG. 5 shows various embodiments of the invention in which the support wire 110 has the support cap 150 and the ring stopper 310 but does not have the support ring 210 .
图6示出了本发明的各种实施方式,其中支持丝110具有支持环210和环形挡件310,但是不具有支持帽150。图4-图6示出了支持丝110上可以包括的支持帽150、支持环210和环形挡件310的任意组合。这些组合可以包括这些元件中的一个、两个、三个或者更多个。单个支持丝110可以包括不止一个环形挡件310和/或不止一个支持环210。支持环210和环形挡件310的位置可以在支持丝110的长度上相对于图中示出的位置向上或者向下改变。环形挡件310和支持环210通常围绕支持丝110的纵轴圆柱对称。 FIG. 6 shows various embodiments of the invention in which a support wire 110 has a support ring 210 and an annular stop 310 , but without a support cap 150 . 4-6 illustrate any combination of support cap 150 , support ring 210 and ring stopper 310 that may be included on support wire 110 . These combinations may include one, two, three or more of these elements. A single support wire 110 may include more than one annular stopper 310 and/or more than one support ring 210 . The position of the support ring 210 and the annular stopper 310 can be varied up or down the length of the support wire 110 relative to the positions shown in the figures. Annular stop 310 and support ring 210 are generally cylindrically symmetrical about the longitudinal axis of support wire 110 .
图7A示出了包括DAM的夹层750、环形挡件310、支持帽150和支持环210。该图示图形地表示了环形挡件310上的基本功能,例如,夹层750基本上在支持帽150与环形挡件310之间的支持丝110上部上沉积/生长,而不在(或者较少)在环形挡件310以下的区域上淀积/生长,由此创建了夹入材料相对较少或者基本没有夹入材料的DAM减少区域720。通过适当选择环形挡件直径316以及环形挡件间隔312,创建了掩膜,使得最少的(或者较少)夹入材料到达衬底124。 FIG. 7A shows a sandwich 750 comprising a DAM, an annular stopper 310 , a support cap 150 and a support ring 210 . This illustration graphically represents the basic function on the ring stopper 310, e.g., the interlayer 750 is deposited/grown substantially on the upper portion of the support wire 110 between the support cap 150 and the ring stopper 310, and not (or less) Deposits/grows on the area below the annular stopper 310, thereby creating a DAM-reduced region 720 with relatively little or substantially no entrapped material. By proper selection of the ring stop diameter 316 and the ring stop spacing 312 , a mask is created such that minimal (or less) trapped material reaches the substrate 124 .
DAM减少区域720是支持丝110上防止夹层750沉积的区域。通常,DAM减少区域720邻近种子层122。 The DAM reduction region 720 is an area on the support filament 110 that prevents deposition of the interlayer 750 . Typically, the DAM reduced region 720 is adjacent to the seed layer 122 .
图7A还示出了支持帽150和支持环210的使用。支持帽150和支持环210都由大于支持丝110的其他部分的直径112的直径表征。在一些实施方式中,假设夹层750在电极操作期间膨胀,则夹层将与支持丝110的直径分开。在一些实施方式中,只要支持环宽度212和/或支持帽宽度157的直径大于膨胀的夹入材料的内径,夹层750就将机械地约束至支持丝110,由此确保夹入材料将不会与支持丝110分开。 FIG. 7A also shows the use of support cap 150 and support ring 210 . Both the support cap 150 and the support ring 210 are characterized by a diameter that is greater than the diameter 112 of the rest of the support wire 110 . In some embodiments, the interlayer will separate from the diameter of the support wire 110 provided that the interlayer 750 expands during operation of the electrode. In some embodiments, as long as the diameter of the support ring width 212 and/or support cap width 157 is greater than the inner diameter of the expanded insert material, the sandwich 750 will be mechanically constrained to the support wire 110, thereby ensuring that the insert material will not Separated from support wire 110.
环形挡件310和支持环210可选地大小和/或形状相似。环形挡件310与支持环210之间的一个差别在于支持环210布置在支持丝110的某个位置上(或者以其他方式配置为)使得其支持夹层750附接到支持丝110上。例如,支持环210配置用于防止夹层750滑出支持丝110的未连接端。相反,环形挡件310布置(或者以其他方式配置)在支持丝110的某个位置,使得其在环形挡件310与衬底124之间的支持丝110区域中产生相对于支持丝110的其他部分具有减少的夹层750的区域。在较小的程度上,支持环210还可以产生略微减少的夹层750的区域。 Ring stop 310 and support ring 210 are optionally similar in size and/or shape. One difference between the ring stopper 310 and the support ring 210 is that the support ring 210 is arranged at a position on the support wire 110 (or is otherwise configured) such that its support sandwich 750 is attached to the support wire 110 . For example, the support ring 210 is configured to prevent the interlayer 750 from sliding off the unattached ends of the support wires 110 . Instead, the ring stop 310 is arranged (or otherwise configured) at a position on the support wire 110 such that it creates an additional gap relative to the support wire 110 in the region of the support wire 110 between the ring stop 310 and the substrate 124. Some have reduced interlayer 750 area. To a lesser extent, support ring 210 may also create a slightly reduced area of interlayer 750 .
自由夹入材料710是在夹层750的沉积/生长期间不被环形挡件310阻止的材料。用于夹层750的沉积/生长的材料源通常视作来自支持丝110之上(页面上方),如图7A-图7C所示。 Free intercalation material 710 is material that is not stopped by annular stopper 310 during deposition/growth of interlayer 750 . The source of material for the deposition/growth of the interlayer 750 is generally viewed as coming from above the support filament 110 (above the page), as shown in Figures 7A-7C.
图7C示出了支持丝110的备选实施方式。这些实施方式包括具有不止一个支持环和锥形的支持丝的示例。图7B和图7C所示的支持丝110的各种不同示例通常不在相同的电极上。一个电极通常包括一种类型的支持丝110、支持环210、支持帽150和环形挡件310,因为所有的支持丝一起生成。在此所示的变体仅用于示例的目的。图7A-图7C所示的夹层750的厚度也仅为了说明的目的。在典型的实施方式中,夹层750显著地比支持丝110厚。随着充电物质被吸收和释放,夹层750的厚度也将改变。还需要注意,在此描述的夹层750厚度针对没有充电物质被夹层750吸收或者释放的情况。 An alternate embodiment of support wire 110 is shown in FIG. 7C . These embodiments include examples with more than one support ring and tapered support wires. The various instances of support wire 110 shown in Figures 7B and 7C are generally not on the same electrode. An electrode typically includes one type of support wire 110, support ring 210, support cap 150, and ring stopper 310, since all support wires are produced together. The variants shown here are for example purposes only. The thickness of the interlayer 750 shown in FIGS. 7A-7C is also for illustrative purposes only. In typical embodiments, interlayer 750 is substantially thicker than support wire 110 . As the charged species is absorbed and released, the thickness of the interlayer 750 will also change. It should also be noted that the thickness of the interlayer 750 described herein is for the case where no charging species is absorbed or released by the interlayer 750 .
图8示出了用于制造具有夹层750的支持丝的方法。第一步骤801是接收衬底124。衬底124在阳极的情况下可选地是铜,或者在阴极的情况下可选地是铝。根据所期望的应用,衬底可以是其他材料。例如,可以将不锈钢或者石墨用作衬底。根据所期望的应用,电池设计领域技术人员还可以指定其他材料。 FIG. 8 shows a method for manufacturing a support wire with an interlayer 750 . The first step 801 is to receive a substrate 124 . Substrate 124 is optionally copper in the case of an anode, or aluminum in the case of a cathode. The substrate can be other materials depending on the desired application. For example, stainless steel or graphite can be used as the substrate. Other materials may be specified by those skilled in the art of battery design, depending on the desired application.
可选的第二步骤803是清理衬底。清理803衬底的目的在于为随后工艺步骤中的材料的后续沉积和生长而准备衬底。这意味着去除任何有机物、氧化物和存在于当前集电极上的其他污染物。清理衬底的方法的范围可以包括物理的(例如使用研磨以去除已经暴露于污染物的材料薄层)、化学的(使用溶剂,诸如丙酮、异丙醇、TCE或者甲醇)和/或化学刻蚀(柠檬酸浸泡/冲洗,在铜的情况下,其溶解了部分实际衬底),或者物理和化学方法的任意组合,从而为后续的工艺步骤准备表面。 An optional second step 803 is to clean the substrate. The purpose of cleaning 803 the substrate is to prepare the substrate for subsequent deposition and growth of materials in subsequent process steps. This means removing any organics, oxides and other contaminants present on the current collector. Methods for cleaning substrates can range from physical (such as using grinding to remove thin layers of material that have been exposed to contaminants), chemical (using solvents such as acetone, isopropanol, TCE, or methanol) and/or chemical etching. etch (citric acid soak/rinse, which dissolves part of the actual substrate in the case of copper), or any combination of physical and chemical methods to prepare the surface for subsequent process steps.
第三步骤805是可选的种子层沉积。种子层沉积805是创建用于支持丝110生长的基层或者种子层122的工艺步骤。该工艺步骤可以通过气相(物理或者化学)沉积/生长、液相沉积/生长或者固相沉积/生长或其任意组合来实现。 The third step 805 is optional seed layer deposition. Seed layer deposition 805 is a process step that creates a base layer or seed layer 122 for supporting filament 110 growth. This process step can be achieved by vapor phase (physical or chemical) deposition/growth, liquid phase deposition/growth or solid phase deposition/growth or any combination thereof.
物理气相沉积技术(其中要沉积的材料以气相从源输送至衬底)可以包括:热蒸发、电子束蒸发、DC溅射、DC磁控管溅射、RF溅射、脉冲激光沉积、阴极弧沉积等。使用反应物理汽相沉积和以下方法也是可能的,该方法通过在生长工艺期间将“污染气体”注入到室中,从而随着其生长将其自身并入到层中。 Physical vapor deposition techniques (where the material to be deposited is transported in the gas phase from the source to the substrate) can include: thermal evaporation, electron beam evaporation, DC sputtering, DC magnetron sputtering, RF sputtering, pulsed laser deposition, cathodic arc deposition etc. It is also possible to use reactive physical vapor deposition and a method that incorporates itself into the layer as it grows by injecting a "contaminating gas" into the chamber during the growth process.
化学气相沉积技术(其中化学前驱以气相输送到表面,并且随后继而在表面处经历化学反应)可以包括低压化学汽相沉积、等离子体增强化学汽相沉积、大气压化学汽相沉积、金属有机物化学汽相沉积、热线化学汽相沉积、甚高频等离子体增强化学汽相沉积、微波等离子体增强化学汽相沉积等。 Chemical vapor deposition techniques (in which chemical precursors are delivered to a surface in the gas phase and subsequently undergo chemical reactions at the surface) can include low pressure chemical vapor deposition, plasma enhanced chemical vapor deposition, atmospheric pressure chemical vapor deposition, metalorganic chemical vapor deposition phase deposition, hot wire chemical vapor deposition, very high frequency plasma enhanced chemical vapor deposition, microwave plasma enhanced chemical vapor deposition, etc.
创建种子层122的液相沉积技术可以包括镀覆、电镀或者化学溶液沉积等。固相沉积技术可以包括聚焦离子束沉积。沉积的另一可能性是包含液体和悬浮适当大小的粒子的溶液,其喷洒在当前集电极上,并且继而衬底随后“固化”,使得载流子溶液被去除,而粒子被完整地留在衬底表面上。 Liquid deposition techniques for creating seed layer 122 may include plating, electroplating, or chemical solution deposition, among others. Solid phase deposition techniques may include focused ion beam deposition. Another possibility for deposition is a solution containing a liquid and suspending particles of appropriate size, which is sprayed on the current collector, and then the substrate is subsequently "cured" such that the carrier solution is removed while the particles are left intact on the substrate surface.
以上工艺步骤的任意组合可以用于创建适当的种子层122,以用于创建用于支持丝110生长的起始点。 Any combination of the above process steps may be used to create a suitable seed layer 122 for creating an initiation point for supporting filament 110 growth.
工艺中的第四步骤815是创建起始点。该步骤取决于所选择的用于创建种子层122的方法。例如,起始点分隔距离126可以由所选择的用于种子层沉积805的厚度和材料来确定。例如,3000埃镍/300埃铬的种子层将产生每平方厘米特定数目的起始点。如果镍的厚度减少至2000埃,则每平方厘米的起始点数目将与3000埃厚度的镍不同。如果选择另一材料,诸如铁来代替镍,则所产生的每平方厘米的起始点也将不同。步骤815可选地是步骤805的一部分。 The fourth step 815 in the process is to create a starting point. This step depends on the method chosen for creating the seed layer 122 . For example, the starting point separation distance 126 may be determined by the thickness and material selected for the seed layer deposition 805 . For example, a seed layer of 3000 angstrom nickel/300 angstrom chrome will produce a specific number of onsets per square centimeter. If the thickness of nickel is reduced to 2000 angstroms, the number of starting points per square centimeter will be different from that of 3000 angstroms thick nickel. If another material is chosen, such as iron, instead of nickel, the resulting starting point per square centimeter will also be different. Step 815 is optionally part of step 805 .
固相沉积技术可以允许控制每平方厘米的起始点。这可以是聚焦离子束沉积,其中起始点/cm2直接由聚焦离子束沉积其材料的位置来控制;或者可以是纳米粒子悬浮,其中起始点/cm2由给定悬浮体积中包含的纳米粒子的数目来控制。起始点的数目还可以由聚焦离子束沉积点的大小或者溶液中纳米粒子的大小等来控制。 Solid phase deposition techniques can allow control of the onset point per square centimeter. This could be focused ion beam deposition, where the onset point/ cm2 is directly controlled by where the focused ion beam deposits its material, or nanoparticle suspension, where the onset point/ cm2 is controlled by the nanoparticles contained in a given suspension volume number to control. The number of starting sites can also be controlled by the size of the focused ion beam deposition spot or the size of the nanoparticles in solution, etc.
通常在其中制造电极的反应物到达与适合的给料气体流的适合反应温度,并且给料气体开始催化种子层122时,创建起始点。由此已经创建了起始点,并且开始支持丝110生长。 An inception point is typically created when the reactants making the electrode reach a suitable reaction temperature with a suitable feed gas flow, and the feed gas begins to catalyze the seed layer 122 . The starting point has thus been created and the growth of the supporting filament 110 has begun.
第五步骤820是生长支持丝110。生长支持丝110存在众多可用的生长工艺。例如,化学汽相沉积、热化学汽相沉积、汽相-液体-固体生长(CVD的一种类型)和等离子体增强化学汽相沉积是通过其可以实现碳纳米管(CNT)、碳纳米纤维(CNF)和纳米线(NW)生长的工艺。丝生长领域技术人员将认识到,存在其他可用的生长方法。 The fifth step 820 is to grow supportive filaments 110 . There are numerous growth processes available for growth support filaments 110 . For example, chemical vapor deposition, thermal chemical vapor deposition, vapor-liquid-solid growth (a type of CVD), and plasma-enhanced chemical vapor deposition are by which carbon nanotubes (CNTs), carbon nanofibers (CNF) and nanowire (NW) growth processes. Those skilled in the art of filament growth will recognize that there are other growth methods available.
可以用于生长CNT/CNF的给料气体的示例是一氧化碳、甲烷、乙烷、乙烯、乙炔等。使用其他碳氢化合物或者无机化合物用于生长工艺也是可能的。 Examples of feedstock gases that can be used to grow CNTs/CNFs are carbon monoxide, methane, ethane, ethylene, acetylene, and the like. It is also possible to use other hydrocarbon or inorganic compounds for the growth process.
感兴趣的是等离子体增强化学汽相沉积(CVD)方法,由于支持丝110的生长与等离子体的电场对准,所以允许产生垂直对准的支持丝110。在特定工艺条件下,热CVD也可以产生垂直对准的支持丝110。另外,水辅助CVD使得具有非常高的纵横比的垂直对准支持丝(长度/直径大约等于1,000,000)成为可能,允许产生非常高的支持丝。 Of interest is the plasma-enhanced chemical vapor deposition (CVD) method, which allows the creation of vertically aligned support filaments 110 since the growth of support filaments 110 is aligned with the electric field of the plasma. Under certain process conditions, thermal CVD can also produce vertically aligned support filaments 110 . In addition, water-assisted CVD enables vertically aligned support filaments with very high aspect ratios (length/diameter approximately equal to 1,000,000), allowing the creation of very tall support filaments.
还示出,适当改变的细菌和病毒已经生长为纳米线结构。此类技术可以用于创建支持丝110。 It has also been shown that appropriately altered bacteria and viruses have grown as nanowire structures. Such techniques can be used to create support wire 110 .
通过适当地选择材料,一次可以一起使用若干技术。例如,在施加电场的情况下,细菌/病毒可以用于生长CNT/CNF/NW,用以产生垂直对准的支持丝。支持丝110生长的另一方法是在VLS生长期间施加电场和/或磁场,以控制生长CNT/CNF/NW的轨迹,这控制支持丝110的三维形状。另一技术是利用在PECVD模式中操作的反应物来开始CNT/CNF/NW支持丝110的生长;在指定时间之后,反应物可以转换到热CVD模式;并且继而再次在指定时间之后,反应物转换回PECVD模式。CNT/CNF/NW生长领域的技术人员可以理解,存在其他可能的组合允许支持丝110的适当生长控制。 With proper choice of materials, several techniques can be used together at one time. For example, bacteria/viruses can be used to grow CNTs/CNFs/NWs with an applied electric field to produce vertically aligned support filaments. Another method to support the growth of the filament 110 is to apply electric and/or magnetic field during VLS growth to control the trajectory of the growing CNT/CNF/NW, which controls the three-dimensional shape of the support filament 110. Another technique is to start the growth of CNT/CNF/NW support filament 110 with reactants operating in PECVD mode; after a specified time, the reactants can be switched to thermal CVD mode; and then again after a specified time, the reactants Switch back to PECVD mode. Those skilled in the art of CNT/CNF/NW growth will understand that there are other possible combinations that allow proper growth control of the support filaments 110 .
支持丝110的高度114通常由生长工艺的持续时间确定。反应物的温度、所使用的给料气体以及所施加的电场和磁场(或者其不存在)的组合和强度可以影响丝生长的速度和量。 The height 114 of the support filament 110 is generally determined by the duration of the growth process. The temperature of the reactants, the feed gas used, and the combination and strength of the applied electric and magnetic fields (or their absence) can affect the rate and amount of filament growth.
如果纳米粒子悬浮方法被选择用于创建种子层122,则支持丝110的直径112通常由种子层122的厚度或者包含在悬浮中的纳米粒子的大小来确定,或者如果聚焦离子束沉积被选择用于创建种子层122,则由离子束的大小来确定支持丝110的直径112。反应物的温度、所使用的给料气体以及所施加的电场和磁场(或者其不存在)的组合和强度也可以影响支持丝110的直径。 The diameter 112 of the support filament 110 is typically determined by the thickness of the seed layer 122 or the size of the nanoparticles contained in the suspension if the nanoparticle suspension method is selected for creating the seed layer 122, or if focused ion beam deposition is selected for To create the seed layer 122, the diameter 112 of the support filament 110 is determined by the size of the ion beam. The temperature of the reactants, the feed gas used, and the combination and strength of the applied electric and magnetic fields (or their absence) can also affect the diameter of the support filament 110 .
在支持丝110的生长步骤820期间,可能实现子步骤820a,其中生长环形挡件310。这可以通过改变反应物的温度、所使用的给料气体及其相对组成和流动速率、以及所施加的电场和磁场(或者其不存在)的方向和强度来实现。改变的持续时间隐式确定环形挡件厚度314和环形挡件直径316。环形挡件间隔由上述参数改变到就绪状态的持续时间(以及改变自身的持续时间)来控制,以及通过起始点间隔距离126来控制。子步骤820a可以被重复。 During the growing step 820 of the support wire 110, it is possible to implement a sub-step 820a in which the annular stopper 310 is grown. This can be accomplished by varying the temperature of the reactants, the feedstock gases used and their relative compositions and flow rates, and the direction and strength of the applied electric and magnetic fields (or their absence). The duration of the change implicitly determines the ring stop thickness 314 and the ring stop diameter 316 . The ring stop spacing is controlled by the duration of the above parameter change to the ready state (and the duration of the change itself), as well as by the starting point separation distance 126 . Sub-step 820a may be repeated.
在支持丝110的生长步骤820期间,可能实现子步骤820b,其中生长支持环210;如果步骤820b发生,则这将在步骤820a之后发生。子步骤820b通过改变反应物的温度、改变所使用的给料气体及其相对组成、以及改变所施加的电场和磁场(或者其不存在)的组合和强度来实现。支持环210的直径、厚度和高度较大程度上由上述参数的改变来控制。 During the growth step 820 of the support filament 110, a sub-step 820b may be implemented in which the support ring 210 is grown; if step 820b occurs, this will occur after step 820a. Sub-step 820b is accomplished by varying the temperature of the reactants, varying the feedstock gases used and their relative compositions, and varying the combination and strength of the applied electric and magnetic fields (or their absence). The diameter, thickness and height of the support ring 210 are largely controlled by changes in the above parameters.
在支持丝110的生长步骤820期间,可能实现子步骤820c,其中生长支持帽150;如果步骤820c发生,则这将在步骤820b之后发生。这可以通过改变反应物的温度,改变所使用的给料气体及其相对组成,以及改变所施加的电场和磁场(或者其不存在)的组合、方向和强度来实现。支持帽150的直径、厚度和高度可选地由上述参数的改变来控制。 During the growth step 820 of the support filament 110, a sub-step 820c may be implemented in which the support cap 150 is grown; if step 820c occurs, this will occur after step 820b. This can be achieved by changing the temperature of the reactants, changing the feed gas used and its relative composition, and changing the combination, direction and strength of the applied electric and magnetic fields (or their absence). The diameter, thickness and height of the support cap 150 are optionally controlled by changes in the above parameters.
可以实现三个步骤820a、820b和820c中的任意步骤,无论其他步骤820a、820b和820c存在还是不存在。例如,可以执行步骤820a而不执行步骤820b或者步骤820c。备选地,可以执行步骤820a和820c,而不执行步骤820b,或者可以决定执行步骤820b,而不执行步骤820a或者820c。备选地,可以决定不实现子步骤820a、820b和820c中的任何步骤,由此创建沿其长度具有最小化直径改变的支持丝110。 Any of the three steps 820a, 820b, and 820c may be implemented regardless of the presence or absence of the other steps 820a, 820b, and 820c. For example, step 820a may be performed without performing step 820b or step 820c. Alternatively, steps 820a and 820c may be performed instead of step 820b, or it may be decided to perform step 820b instead of steps 820a or 820c. Alternatively, it may be decided not to implement any of the sub-steps 820a, 820b, and 820c, thereby creating a support wire 110 with minimal diameter change along its length.
第六步骤825是创建DAM减少区域720,注意,DAM减少区域720对应于主干350。(元件350与370之间的区别的原因在于DAM减少区域720在夹层750的沉积期间创建,而主干350与支持丝110的形状共同定义。当添加夹层750时,主干350将成为DAM减少区域720。具体地,主干350是支持丝110的一部分,而DAM减少区域720是指其中减少或者不存在夹入材料750的区域)。DAM区域创建工艺步骤825可以通过若干方法来实现,包括但不限于使用环形挡件310。此类方法的示例包括在夹入材料的生长和定向沉积(诸如蒸发或者离子束沉积)期间,控制支持丝110的纵横比。附加的方法包括底层处的电沉积和无电沉积,以隔离主干350。可能执行掩膜层的溅射/光刻蚀,以向夹层750生长/沉积打开支持丝110,或者备选地,可以修改支持丝110的生长参数以实现有益的纵横比(诸如树状结构)。这可以通过改变生长期间使用的给料和生产气体的组成来进行。另一可能的方法是创建DAM减少区域720,以执行夹入材料的沉积和定向回蚀(例如反应离子刻蚀),以免除支持丝110被夹层750覆盖。DAM减少区域729的创建取决于选择用于CNT/CNF/NW生长的方法和结构,以及被选择用于夹层沉积的方法和结构。例如,在已经沉积夹层750之后,例如经由适合的定向刻蚀(诸如反应离子刻蚀或者感应耦合等离子体刻蚀)创建DAM减少区域720可以是可能的。 The sixth step 825 is to create the DAM reduced area 720 , note that the DAM reduced area 720 corresponds to the backbone 350 . (The reason for the difference between elements 350 and 370 is that the DAM reduced region 720 is created during the deposition of the interlayer 750, while the backbone 350 is co-defined with the shape of the support filament 110. When the interlayer 750 is added, the backbone 350 will become the DAM reduced region 720 In particular, the backbone 350 is a portion of the support filament 110, while the DAM-reduced region 720 refers to the region in which the intervening material 750 is reduced or absent). DAM region creation process step 825 can be accomplished by several methods including, but not limited to, using ring stopper 310 . Examples of such methods include controlling the aspect ratio of the support filaments 110 during growth and directional deposition of sandwiched material, such as evaporation or ion beam deposition. Additional methods include electrodeposition and electroless deposition at the bottom layer to isolate the backbone 350 . It is possible to perform sputtering/photolithography of the mask layer to open the support filament 110 to the growth/deposition of the interlayer 750, or alternatively, the growth parameters of the support filament 110 can be modified to achieve a beneficial aspect ratio (such as a tree structure) . This can be done by varying the composition of the feedstock and process gases used during growth. Another possible approach is to create a DAM-reduced region 720 to perform deposition and directed etch-back (eg reactive ion etching) of the intercalation material so that the support filament 110 is not covered by the interlayer 750 . The creation of the DAM reduced region 729 depends on the method and structure chosen for CNT/CNF/NW growth, and the method and structure chosen for interlayer deposition. For example, after the interlayer 750 has been deposited, it may be possible to create the DAM reduced region 720, for example via a suitable directional etch such as reactive ion etching or inductively coupled plasma etching.
第八工艺步骤830是沉积/生长夹层750。(注意,DAM是指在电池充电和放电期间供应或者接受离子的材料,其中夹层750包括DAM以及可以提供附着的其他层,或者可以提供增加吸收的层,或者可以改善导电性的层。层的其他目的是可能的。这些附加层可以在沉积的DAM之上或者之下)。 An eighth process step 830 is to deposit/grow an interlayer 750 . (Note that DAM refers to a material that supplies or accepts ions during battery charge and discharge, where interlayer 750 includes DAM and other layers that may provide adhesion, or may provide layers that increase absorption, or may improve conductivity. Layers of Other purposes are possible. These additional layers can be above or below the deposited DAM).
夹层750的生长可以通过气相(物理或者化学)沉积/生长、液相沉积/生长或者固相沉积/生长或其任意组合来实现。 Growth of the interlayer 750 can be achieved by vapor phase (physical or chemical) deposition/growth, liquid phase deposition/growth or solid phase deposition/growth or any combination thereof.
物理气相沉积技术(其中要沉积的材料以气相从源输送至衬底)可以包括:热蒸发、电子束蒸发、DC溅射、DC磁控管溅射、RF溅射、脉冲激光沉积、阴极弧沉积等。使用反应物理汽相沉积和以下方法也是可能的,该方法通过在生长工艺期间将“污染气体”注入到室中,从而随着其生长将其自身并入到层中。 Physical vapor deposition techniques (where the material to be deposited is transported in the gas phase from the source to the substrate) can include: thermal evaporation, electron beam evaporation, DC sputtering, DC magnetron sputtering, RF sputtering, pulsed laser deposition, cathodic arc deposition etc. It is also possible to use reactive physical vapor deposition and a method that incorporates itself into the layer as it grows by injecting a "contaminating gas" into the chamber during the growth process.
化学气相沉积技术(其中化学前驱以气相输送到表面,并且随后继而在表面处经历化学反应)可以包括低压化学汽相沉积、等离子体增强化学汽相沉积、大气压化学汽相沉积、金属有机物化学汽相沉积、热线化学汽相沉积、甚高频等离子体增强化学汽相沉积、微波等离子体增强化学汽相沉积等。 Chemical vapor deposition techniques (in which chemical precursors are delivered to a surface in the gas phase and subsequently undergo chemical reactions at the surface) can include low pressure chemical vapor deposition, plasma enhanced chemical vapor deposition, atmospheric pressure chemical vapor deposition, metalorganic chemical vapor deposition phase deposition, hot wire chemical vapor deposition, very high frequency plasma enhanced chemical vapor deposition, microwave plasma enhanced chemical vapor deposition, etc.
注意,在任何沉积阶段,可以同时沉积不止一种材料。例如,可以同时沉积/生长两种(或者更多种)不同类型的金属,诸如锡(Sn)和金(Au);可以沉积/生长两种(或者更多种)不同类型的半导体,诸如硅(Si)和锗(Ge);可以生长/沉积两种(或者更多种)不同类型的氧化物,诸如磷酸锂铁(LiFePO4)和锂镍钴锰氧化物(Li(NiCoMn)O2)。另外,可能对材料类型进行混合,诸如金属和半导体,或者半导体和氧化物,或者金属和氧化物,或者金属、半导体和氧化物。示例包括硅(Si)和锂(Li)共沉积,硅(Si)和LiO2(或者SiO2)共沉积,以及硅(Si)、锂(Li)和LiO2(或者SiO2)共沉积。也可以期望共沉积绝缘材料,诸如二氧化硅(SiO2)或者氮化硅(Si3N4)。另外,也可以期望共沉积碳(C)。 Note that at any deposition stage, more than one material can be deposited simultaneously. For example, two (or more) different types of metals, such as tin (Sn) and gold (Au), can be deposited/grown simultaneously; two (or more) different types of semiconductors, such as silicon, can be deposited/grown (Si) and germanium (Ge); two (or more) different types of oxides can be grown/deposited, such as lithium iron phosphate (LiFePO 4 ) and lithium nickel cobalt manganese oxide (Li(NiCoMn)O 2 ) . In addition, it is possible to mix material types, such as metal and semiconductor, or semiconductor and oxide, or metal and oxide, or metal, semiconductor and oxide. Examples include silicon (Si) and lithium (Li) co-deposition, silicon (Si) and LiO 2 (or SiO 2 ) co-deposition, and silicon (Si), lithium (Li) and LiO 2 (or SiO 2 ) co-deposition. It may also be desirable to co-deposit insulating materials such as silicon dioxide (SiO 2 ) or silicon nitride (Si 3 N 4 ). In addition, co-deposition of carbon (C) may also be desired.
夹层750可选地由液相工艺创建,液相工艺诸如无电沉积或者电镀。通过利用包含悬浮在粘合剂溶剂基质中的夹入材料(诸如硅(Si)或者锡(Sn))来涂覆支持丝从而创建夹层也是可能的。在适当的处理之后,将溶剂驱逐出基质之外,仅保留粘合剂和夹入材料,由此创建了包括支持丝110和夹入材料的电极。该技术也可以应用于阴极。夹层可以包括气凝胶。当夹层750根据液体工艺生成时,DAM减少区域720可选地可以通过在主干350中包括排斥该液体的材料而生成。例如,如果使用水,则疏水物质可以包括在主干350的区域中。这些物质可以并入支持丝110或者涂覆在支持丝110的表面上。 Interlayer 750 is optionally created by a liquid phase process, such as electroless deposition or electroplating. It is also possible to create interlayers by coating support wires with an intercalation material such as silicon (Si) or tin (Sn) suspended in a binder solvent matrix. After proper processing, the solvent is driven out of the matrix, leaving only the binder and intercalation material, thereby creating an electrode comprising support wire 110 and intercalation material. This technique can also be applied to cathodes. The interlayer may comprise aerogel. When the interlayer 750 is produced according to a liquid process, the DAM reduced region 720 can optionally be produced by including a material in the backbone 350 that repels the liquid. For example, if water is used, a hydrophobic substance may be included in the region of the backbone 350 . These substances may be incorporated into the support filament 110 or coated on the surface of the support filament 110 .
在一些实施方式中,夹层750的导电性由适当地选择沉积和生长技术来控制。例如,在溅射的情况下,使用重掺杂p+或者n+的硅相对于使用不掺杂硅将创建相对导电的体硅夹层(例如,高掺杂硅是10’sohm-cm,而纯硅是10000’sohm-cm)。在使用硅烷的CVD硅沉积的情况下,可选地可以使用添加磷化氢或者砷化氢来增加沉积/生长的硅的导电性。在各种实施方式中,掺杂剂包括硼(B)、镓(Ga)、砷(As)、磷(P)、锑(Sb)、铟(In)、铊(Th)和/或铋(Bi)。其他掺杂剂是可能的。 In some embodiments, the conductivity of interlayer 750 is controlled by appropriate selection of deposition and growth techniques. For example, in the case of sputtering, using heavily p+ or n+ doped silicon versus undoped silicon will create a relatively conductive bulk silicon interlayer (for example, highly doped silicon is 10'sohm-cm, while pure silicon is 10000'sohm-cm). In the case of CVD silicon deposition using silane, the addition of phosphine or arsine may optionally be used to increase the conductivity of the deposited/grown silicon. In various embodiments, dopants include boron (B), gallium (Ga), arsenic (As), phosphorus (P), antimony (Sb), indium (In), thallium (Th), and/or bismuth ( Bi). Other dopants are possible.
在一些实施方式中,通过在沉积/生长硅时沉积金属(诸如但不限于金(Au)、锡(Sn)、银(Ag)、锂(Li)或者铝(Al)),可以增加夹层750的导电性。在一些实施方式中,夹层750的导电性经由离子注入来控制。这些方法使用选择用于夹层750的其他材料(诸如锗(Ge))也是可能的。在各种实施方式中,所产生的夹层750的电阻率小于1ohm-cm,小于10ohm-cm,小于500ohm-cm,小于2000ohm-cm,或者小于12000ohm-cm。在其他实施方式中,电阻率大于12000ohm-cm。 In some embodiments, the interlayer 750 can be added by depositing a metal such as, but not limited to, gold (Au), tin (Sn), silver (Ag), lithium (Li), or aluminum (Al) while depositing/growing silicon. conductivity. In some embodiments, the conductivity of interlayer 750 is controlled via ion implantation. These methods are also possible using other materials selected for interlayer 750, such as germanium (Ge). In various embodiments, the resulting interlayer 750 has a resistivity of less than 1 ohm-cm, less than 10 ohm-cm, less than 500 ohm-cm, less than 2000 ohm-cm, or less than 12000 ohm-cm. In other embodiments, the resistivity is greater than 12000 ohm-cm.
在一些实施方式中,步骤830包括对沉积的夹层750的后处理。该后处理可以改变夹层750的晶体结构。例如,在一些实施方式中,非晶硅被沉积为夹层750,而后续工艺步骤对非晶硅进行适当的退火,由此在夹层750上创建多晶硅的层和/或表面。产生的结构可以包括外表面上的多晶硅层以及在多晶硅层与支持丝110之间的非晶硅层。两个硅层都视为夹层750的一部分。该退火工艺可以通过使用高功率激光器或者某些其他快速高温热源来实现。该沉积之后的后退火方法可选地可以应用于阴极和/或阳极材料。 In some embodiments, step 830 includes post-processing the deposited interlayer 750 . This post-processing can change the crystal structure of the interlayer 750 . For example, in some embodiments, amorphous silicon is deposited as interlayer 750 , and subsequent process steps appropriately anneal the amorphous silicon, thereby creating a layer and/or surface of polysilicon on interlayer 750 . The resulting structure may include a polysilicon layer on the outer surface and an amorphous silicon layer between the polysilicon layer and the support wire 110 . Both silicon layers are considered part of interlayer 750 . This annealing process can be accomplished by using a high power laser or some other rapid high temperature heat source. A post-annealing method after this deposition can optionally be applied to the cathode and/or anode material.
在一些实施方式中,沉积的夹层750是钝化的。在硅的情况下,钝化可以通过在本文中的别处讨论的退火来实现,或者通过沉积大约小于5、10、40、100或者250纳米的氧化物、氮化物和/或碳化物层来实现。该氧化物、碳化物或者氮化物层被视作夹层750的一部分,并且可以作为生长支持丝步骤820的一部分来生成。氧化物或者氮化物可以通过热处理方法以及标准CVD和PECVD技术来生长或者沉积。例如,表面钝化可选地可以通过在夹层750的表面上生长碳化物来实现。该生长可以通过执行种子层沉积步骤805、创建起始点步骤815以及生长支持丝步骤820来实现,其中碳化物、氧化物和/氮化物在步骤820中生长。在一些实施方式中,在夹层750上生长的CNT/CNF/NW高度最大是几微米,并且通常小于250nm。 In some embodiments, the deposited interlayer 750 is passivated. In the case of silicon, passivation can be achieved by annealing as discussed elsewhere herein, or by depositing oxide, nitride and/or carbide layers of approximately less than 5, 10, 40, 100 or 250 nanometers . This oxide, carbide or nitride layer is considered part of the interlayer 750 and may be produced as part of the growing support filament step 820 . Oxide or nitride can be grown or deposited by heat treatment methods as well as standard CVD and PECVD techniques. Surface passivation can optionally be achieved by growing carbides on the surface of the interlayer 750, for example. This growth can be achieved by performing a seed layer deposition step 805 , a create starting point step 815 , and a growing support filament step 820 in which carbides, oxides and/nitrides are grown. In some embodiments, the CNT/CNF/NW height grown on the interlayer 750 is a few microns at most, and typically less than 250 nm.
由于支持丝110、环形挡件310、支持环210和支持帽150的形状,沿支持丝110的长度在不同位置处沉积不同量的夹入材料。用于创建夹层750的沉积/生长方法可选地依赖于用于起始和继续生长过程的表面反应。如果减少了反应物到支持丝110的表面的流量,则夹层750的沉积/生长速率将相应减少。 Due to the shape of the support wire 110 , annular stopper 310 , support ring 210 and support cap 150 , different amounts of trapped material are deposited at different locations along the length of the support wire 110 . The deposition/growth method used to create interlayer 750 optionally relies on surface reactions for initiating and continuing the growth process. If the flux of reactants to the surface of support filament 110 is reduced, the deposition/growth rate of interlayer 750 will be correspondingly reduced.
通过示例的方式,并且参考图7A-图7C,如果环形挡件间隔312是0,则基本上没有或者只有最少量的反应物将到达支持丝110在环形挡件310之下的表面,这产生了DAM减少区域720,与支持丝110的其他部分相比,其具有相对很少的夹层750。 By way of example, and with reference to FIGS. 7A-7C , if the annular stopper spacing 312 is 0, substantially no or only a minimal amount of reactant will reach the surface of the support wire 110 below the annular stopper 310, which produces A DAM-reduced region 720 is provided, which has relatively little interlayer 750 compared to the rest of the support wire 110.
保证沿支持丝110的长度沉积/生长不同量的夹层750的另一方式依赖于支持丝高度114与起始点分隔126的较大纵横比。该纵横比的量级可以近似于5∶1、10∶1、100∶1、1000∶1、10000∶1或者高至1000000∶1,可能更大。因为较大的纵横比意味着随着反应物向衬底124移动,支持丝的横向表面具有难以察觉的较小立体角,沿支持丝的生长量相应减少,由此产生了具有很少或者没有夹层750的DAM减少区域720。以这种方式产生DAM减少区域720不需要环形挡件310。 Another way to ensure deposition/growth of different amounts of interlayer 750 along the length of support filament 110 relies on a larger aspect ratio of support filament height 114 to starting point separation 126 . The aspect ratio may be of the order of approximately 5:1, 10:1, 100:1, 1000:1, 10000:1 or as high as 1000000:1, possibly greater. Since a larger aspect ratio means that the lateral surfaces of the support filaments have an imperceptibly smaller solid angle as the reactants move toward the substrate 124, the amount of growth along the support filaments is correspondingly reduced, resulting in little or no DAM reduced region 720 of interlayer 750 . Creating the DAM-reduced region 720 in this manner does not require the annular stop 310 .
在步骤840,可以完成电极制造。电极可选地包括在电池内。 At step 840, electrode fabrication may be completed. Electrodes are optionally included in the battery.
图9A和图9B示出了使用在此描述的工艺创建的阳极的测量容量,其中支持丝110是碳纳米纤维,而夹层750是硅。图9A示出了随夹层750的厚度增加的电极的容量。在图9B中,线910示出了仅石墨涂层的计算容量,而线920示出了使用非晶和多晶硅的混合物的实验结果。测量在半电池设置(half-cellsetup)中进行。图9B示出了与纯石墨基的阳极相比,电荷存储容量具有的5到7倍的改进。改进的量取决于夹层750的厚度和材料类型。 Figures 9A and 9B show the measured capacity of an anode created using the process described herein, where the support filaments 110 are carbon nanofibers and the interlayer 750 is silicon. FIG. 9A shows the capacity of the electrodes as the thickness of the interlayer 750 increases. In Figure 9B, line 910 shows the calculated capacity of graphite coating only, while line 920 shows the experimental results using a mixture of amorphous and polycrystalline silicon. Measurements were performed in a half-cell setup. Figure 9B shows a 5 to 7 fold improvement in charge storage capacity compared to a pure graphite based anode. The amount of improvement depends on the thickness and material type of interlayer 750 .
图10示出了与工业标准电极相比较,使用利用在此描述的工艺创建的阳极的电池的循环寿命与夹层的温度和厚度的关系。支持丝110是碳纳米纤维,而夹层750是硅。测量可以在全电池设置(full-cellsetup)中在两个不同的温度下进行,并且以C/2速率执行循环。数据显示,相对于现有技术,在提高温度下具有显著增强的循环寿命。 Figure 10 shows the cycle life of cells using anodes created using the process described herein as a function of interlayer temperature and thickness compared to industry standard electrodes. The support filaments 110 are carbon nanofibers and the interlayer 750 is silicon. Measurements can be performed at two different temperatures in a full-cell setup and cycling performed at a C/2 rate. The data show significantly enhanced cycle life at elevated temperatures relative to the prior art.
图11示出了根据本发明的各种实施方式的电池1100。电池1100包括诸如此处图1-图8所示的第一电极1110,以及第二电极1120。第二电极1120可以包括或者可以不包括图1-图8所示的特征。电池1100还包括导体(未示出),其配置用于在配置为向负载提供电功率的电路中耦合第一电极1110和第二电极1120。本领域普通技术人员将理解可以如何配置这些导体。电池1100通常是可充电的电池。第一电极可以配置用于作为阳极或者阴极操作。 FIG. 11 shows a battery 1100 according to various embodiments of the invention. Battery 1100 includes a first electrode 1110 such as shown in FIGS. 1-8 herein, and a second electrode 1120 . The second electrode 1120 may or may not include the features shown in FIGS. 1-8 . The battery 1100 also includes a conductor (not shown) configured to couple the first electrode 1110 and the second electrode 1120 in a circuit configured to provide electrical power to a load. Those of ordinary skill in the art will understand how these conductors can be configured. Battery 1100 is typically a rechargeable battery. The first electrode can be configured to operate as an anode or a cathode.
图12A是支持丝110的高度114是3.5微米的电极的示图。图12B是支持丝110的高度114是17.5微米的电极的示图。图12A和图12B中的这些支持丝不包括夹入材料。 Figure 12A is a diagram of an electrode in which the height 114 of the support wire 110 is 3.5 microns. Figure 12B is a diagram of an electrode in which the height 114 of the support wire 110 is 17.5 microns. The support filaments in Figures 12A and 12B do not include intercalated material.
图13A是支持丝110的高度114是3.5微米并且0.25微米的硅沉积为夹层750的电极的示图。数据指示,涂覆有0.25微米的夹层750(硅)的3.5微米支持丝110具有非常低的循环寿命(<10次循环)。 FIG. 13A is a diagram of an electrode in which the height 114 of the support wire 110 is 3.5 microns and 0.25 microns of silicon is deposited as the interlayer 750 . The data indicated that the 3.5 micron support wire 110 coated with the 0.25 micron interlayer 750 (silicon) had a very low cycle life (<10 cycles).
图13B是支持丝110的高度114是17.5微米并且0.25微米的硅沉积为夹层750的电极的示图。数据指示,涂覆有0.25微米夹层750(硅)的17.5微米支持丝110具有非常良好的循环寿命(>30次循环,<20%的容量衰减)。本发明的各种实施方式包括具有高度114至少为17.5微米(17.5x10-6米)以及具有至少0.1、0.25、0.35、0.5或者0.75微米的夹层750的支持丝110。 FIG. 13B is a diagram of an electrode where the height 114 of the support wire 110 is 17.5 microns and 0.25 microns of silicon is deposited as the interlayer 750 . The data indicates that the 17.5 micron support wire 110 coated with the 0.25 micron interlayer 750 (silicon) has very good cycle life (>30 cycles, <20% capacity fade). Various embodiments of the present invention include support filaments 110 having a height 114 of at least 17.5 microns (17.5 x 10 −6 meters) and having interlayers 750 of at least 0.1, 0.25, 0.35, 0.5, or 0.75 microns.
图14是支持丝的高度114是10微米并且不存在夹层的电极的横截面。该电极设计(具有线性测量的0.5微米、1.5微米和4.0微米的夹层材料沉积厚度)已经进行测试,并且产生了图9A、图9B和图10所呈现的数据。该结果指示,在提高的温度处具有增强的容量和改进的循环寿命(在60摄氏度时,300次循环,40%容量衰减,C/2速率)。本发明的各种实施方式包括具有至少10微米(10.0x10-6米)的高度114以及至少0.1、0.25、0.35、0.5或者0.75微米的夹层750的支持丝110。 Figure 14 is a cross-section of an electrode with a support filament height 114 of 10 microns and no interlayer present. This electrode design (with linearly measured interlayer material deposition thicknesses of 0.5 microns, 1.5 microns, and 4.0 microns) was tested and produced the data presented in FIGS. 9A , 9B and 10 . The results indicate enhanced capacity and improved cycle life at elevated temperatures (300 cycles at 60 degrees Celsius, 40% capacity fade, C/2 rate). Various embodiments of the invention include a support filament 110 having a height 114 of at least 10 microns (10.0×10 −6 meters) and an interlayer 750 of at least 0.1, 0.25, 0.35, 0.5, or 0.75 microns.
在此具体示出和/或描述了若干实施方式。然而,将理解,在不脱离所附权利要求的精神和保护范围的情况下,修改和变体由以上教导覆盖,并且在所要保护的范围内。例如,在此描述的电极可以在电池以外的设备中使用。 Several embodiments are specifically shown and/or described herein. It will be understood, however, that modifications and variations are covered by the above teaching and are within the scope of protection without departing from the spirit and scope of the appended claims. For example, the electrodes described herein may be used in devices other than batteries.
在此描述的实施方式是本发明的示例。因为参考示例描述了本发明的这些实施方式,所以所描述的方法和/或特定结构的各种修改和调整对本领域技术人员而言可以变得易见。依赖本发明的教导并且在这些教导上推进技术的所有此类修改、调整或者变体视为在本发明的精神和范围内。因此,这些描述和附图不应当解释为限制方式,应当理解本发明决不仅限于所示的实施方式。 The embodiments described here are examples of the present invention. As these embodiments of the invention have been described with reference to examples, various modifications and adaptations of the methods and/or specific structures described may become apparent to those skilled in the art. All such modifications, adaptations or variations that rely on the teachings of the invention and advance the art on those teachings are considered to be within the spirit and scope of the invention. Accordingly, these descriptions and drawings should not be interpreted in a limiting manner, it being understood that the invention is by no means limited to the embodiments shown.
Claims (45)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610681078.3A CN106450146A (en) | 2009-10-22 | 2010-10-22 | Electrode including ring stopper |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25409009P | 2009-10-22 | 2009-10-22 | |
US61/254,090 | 2009-10-22 | ||
US12/904,113 | 2010-10-13 | ||
US12/904,113 US8481214B2 (en) | 2008-02-25 | 2010-10-13 | Electrodes including support filament with collar stop |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610681078.3A Division CN106450146A (en) | 2009-10-22 | 2010-10-22 | Electrode including ring stopper |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102044659A CN102044659A (en) | 2011-05-04 |
CN102044659B true CN102044659B (en) | 2016-07-20 |
Family
ID=43910601
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010519800.6A Active CN102044659B (en) | 2009-10-22 | 2010-10-22 | Electrode including ring stopper |
CN201610681078.3A Pending CN106450146A (en) | 2009-10-22 | 2010-10-22 | Electrode including ring stopper |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610681078.3A Pending CN106450146A (en) | 2009-10-22 | 2010-10-22 | Electrode including ring stopper |
Country Status (3)
Country | Link |
---|---|
JP (2) | JP2011108639A (en) |
KR (1) | KR101863362B1 (en) |
CN (2) | CN102044659B (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8257866B2 (en) | 2009-05-07 | 2012-09-04 | Amprius, Inc. | Template electrode structures for depositing active materials |
US20100285358A1 (en) | 2009-05-07 | 2010-11-11 | Amprius, Inc. | Electrode Including Nanostructures for Rechargeable Cells |
US11996550B2 (en) | 2009-05-07 | 2024-05-28 | Amprius Technologies, Inc. | Template electrode structures for depositing active materials |
EP3644413A1 (en) * | 2012-02-27 | 2020-04-29 | Ronald Anthony Rojeski | Hybrid energy storage devices |
GB2581071B (en) * | 2012-07-03 | 2021-01-27 | Traverse Tech Corp | Hybrid energy storage devices including support filaments |
KR102535137B1 (en) * | 2014-05-12 | 2023-05-22 | 암프리우스, 인코포레이티드 | Structurally controlled deposition of silicon onto nanowires |
JP2018524782A (en) * | 2015-07-15 | 2018-08-30 | ネーデルランセ オルハニサチエ フォール トゥーヘパスト−ナツールウェーテンシャッペルック オンデルズク テーエヌオーNederlandse Organisatie voor toegepast−natuurwetenschappelijk onderzoek TNO | High aspect ratio structure apparatus and manufacturing method |
US10987735B2 (en) | 2015-12-16 | 2021-04-27 | 6K Inc. | Spheroidal titanium metallic powders with custom microstructures |
ES2964898T3 (en) | 2015-12-16 | 2024-04-10 | 6K Inc | Spheroidal dehydrogenated metals and metal alloy particles |
WO2020172564A1 (en) | 2019-02-22 | 2020-08-27 | Amprius, Inc. | Compositionally modified silicon coatings for use in a lithium ion battery anode |
US11311938B2 (en) | 2019-04-30 | 2022-04-26 | 6K Inc. | Mechanically alloyed powder feedstock |
WO2021118762A1 (en) | 2019-11-18 | 2021-06-17 | 6K Inc. | Unique feedstocks for spherical powders and methods of manufacturing |
US11590568B2 (en) | 2019-12-19 | 2023-02-28 | 6K Inc. | Process for producing spheroidized powder from feedstock materials |
EP4173060A1 (en) | 2020-06-25 | 2023-05-03 | 6K Inc. | Microcomposite alloy structure |
JP7561977B2 (en) | 2020-09-24 | 2024-10-04 | シックスケー インコーポレイテッド | Systems, devices and methods for initiating a plasma |
JP2023548325A (en) | 2020-10-30 | 2023-11-16 | シックスケー インコーポレイテッド | System and method for the synthesis of spheroidized metal powders |
KR20230164699A (en) | 2021-03-31 | 2023-12-04 | 6케이 인크. | Systems and methods for additive manufacturing of metal nitride ceramics |
WO2023229928A1 (en) | 2022-05-23 | 2023-11-30 | 6K Inc. | Microwave plasma apparatus and methods for processing materials using an interior liner |
US12040162B2 (en) | 2022-06-09 | 2024-07-16 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows |
WO2024044498A1 (en) | 2022-08-25 | 2024-02-29 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (pip) |
US12195338B2 (en) | 2022-12-15 | 2025-01-14 | 6K Inc. | Systems, methods, and device for pyrolysis of methane in a microwave plasma for hydrogen and structured carbon powder production |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000268813A (en) * | 1999-03-19 | 2000-09-29 | Toyota Motor Corp | Electrode structure of battery and capacitor, and method of manufacturing electrode |
US20050064291A1 (en) * | 2003-09-18 | 2005-03-24 | Matsushita Electric Industrial Co., Ltd. | Battery and non-aqueous electrolyte secondary battery using the same |
US20090169996A1 (en) * | 2008-01-02 | 2009-07-02 | Aruna Zhamu | Hybrid nano-filament anode compositions for lithium ion batteries |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3008269B2 (en) * | 1997-03-11 | 2000-02-14 | 脇原 将孝 | Rechargeable battery |
JP2001210315A (en) * | 2000-01-25 | 2001-08-03 | Sanyo Electric Co Ltd | Electrode for lithium secondary battery and lithium secondary battery using it |
GB2395059B (en) | 2002-11-05 | 2005-03-16 | Imp College Innovations Ltd | Structured silicon anode |
JP2004319390A (en) * | 2003-04-18 | 2004-11-11 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
NZ554830A (en) * | 2004-10-01 | 2010-10-29 | Univ Rutgers | Bismuth flouride based nanocomposites as electrode materials |
US7553341B2 (en) * | 2004-11-24 | 2009-06-30 | The Regents Of The University Of California | High power density supercapacitors with carbon nanotube electrodes |
FR2895572B1 (en) | 2005-12-23 | 2008-02-15 | Commissariat Energie Atomique | MATERIAL BASED ON CARBON AND SILICON NANOTUBES FOR USE IN NEGATIVE ELECTRODES FOR LITHIUM ACCUMULATOR |
KR101020909B1 (en) | 2006-01-25 | 2011-03-09 | 파나소닉 주식회사 | Lithium secondary battery provided with the negative electrode for lithium secondary batteries, its manufacturing method, and the negative electrode for lithium secondary batteries |
KR100801470B1 (en) * | 2007-02-15 | 2008-02-12 | 한국에너지기술연구원 | A method for producing a platinum nanocatalyst in which carbon nanotubes are directly grown on a surface of carbon paper, and platinum is supported on the surface of the carbon nanotubes by chemical vapor deposition, and the platinum nanocatalyst |
US7816031B2 (en) * | 2007-08-10 | 2010-10-19 | The Board Of Trustees Of The Leland Stanford Junior University | Nanowire battery methods and arrangements |
WO2009108731A2 (en) * | 2008-02-25 | 2009-09-03 | Ronald Anthony Rojeski | High capacity electrodes |
-
2010
- 2010-10-21 JP JP2010236771A patent/JP2011108639A/en active Pending
- 2010-10-22 CN CN201010519800.6A patent/CN102044659B/en active Active
- 2010-10-22 KR KR1020100103245A patent/KR101863362B1/en active Active
- 2010-10-22 CN CN201610681078.3A patent/CN106450146A/en active Pending
-
2015
- 2015-04-01 JP JP2015075220A patent/JP6389986B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000268813A (en) * | 1999-03-19 | 2000-09-29 | Toyota Motor Corp | Electrode structure of battery and capacitor, and method of manufacturing electrode |
US20050064291A1 (en) * | 2003-09-18 | 2005-03-24 | Matsushita Electric Industrial Co., Ltd. | Battery and non-aqueous electrolyte secondary battery using the same |
US20090169996A1 (en) * | 2008-01-02 | 2009-07-02 | Aruna Zhamu | Hybrid nano-filament anode compositions for lithium ion batteries |
Also Published As
Publication number | Publication date |
---|---|
JP2011108639A (en) | 2011-06-02 |
JP2015149292A (en) | 2015-08-20 |
CN102044659A (en) | 2011-05-04 |
KR20110044158A (en) | 2011-04-28 |
CN106450146A (en) | 2017-02-22 |
JP6389986B2 (en) | 2018-09-19 |
KR101863362B1 (en) | 2018-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102044659B (en) | Electrode including ring stopper | |
US8481214B2 (en) | Electrodes including support filament with collar stop | |
US10878977B2 (en) | Compositions including nano-particles and a nano-structured support matrix and methods of preparation as reversible high capacity anodes in energy storage systems | |
US11502292B2 (en) | Lithium-ion battery anode including preloaded lithium | |
KR101484688B1 (en) | Porous amorphous silicon-carbon nanotube composite based electrodes for battery applications | |
JP6082862B2 (en) | High capacity electrode | |
US8591990B2 (en) | Microfiber supported metal silicide nanowires | |
KR20120102680A (en) | Intermediate layers for electrode fabrication | |
JP5135746B2 (en) | Lithium ion secondary battery and manufacturing method thereof | |
US8070929B2 (en) | Catalyst particles on a tip | |
Park et al. | Self-supported multi-walled carbon nanotube-embedded silicon nanoparticle films for anodes of Li-ion batteries | |
Garcia et al. | One-step grown carbonaceous germanium nanowires and their application as highly efficient lithium-ion battery anodes | |
JP6265561B2 (en) | Positive electrode for lithium-sulfur secondary battery and method for forming the same | |
KR101487079B1 (en) | Electrode for lithium secondary battery, lithium secondary battery using the same and fabrication method thereof | |
US9620774B2 (en) | Method of manufacturing an electrode, corresponding electrode and battery comprising such an electrode | |
JP6210869B2 (en) | Positive electrode for lithium-sulfur secondary battery and method for forming the same | |
US11417885B1 (en) | Filled carbon nanotubes and methods of synthesizing the same | |
KR101242349B1 (en) | Carbon nanotube electronic device and manufacturing method for the same | |
Sourav et al. | Silicon nanowire anode for lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250325 Address after: 352100 Xingang Road, Zhangwan Town, Jiaocheng District, Ningde, Fujian 2 Patentee after: Contemporary Amperex Technology Co.,Ltd. Country or region after: China Address before: California, USA Patentee before: Ronald Anthony Rogersky Country or region before: U.S.A. |