CN102034928A - Phase-change memory device - Google Patents
Phase-change memory device Download PDFInfo
- Publication number
- CN102034928A CN102034928A CN2010105057474A CN201010505747A CN102034928A CN 102034928 A CN102034928 A CN 102034928A CN 2010105057474 A CN2010105057474 A CN 2010105057474A CN 201010505747 A CN201010505747 A CN 201010505747A CN 102034928 A CN102034928 A CN 102034928A
- Authority
- CN
- China
- Prior art keywords
- insulating pattern
- pattern
- horizontal surface
- layer
- preliminary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 claims abstract description 145
- 229910052751 metal Inorganic materials 0.000 claims abstract description 52
- 239000002184 metal Substances 0.000 claims abstract description 50
- 239000012782 phase change material Substances 0.000 claims abstract description 48
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 47
- 150000004767 nitrides Chemical class 0.000 claims abstract description 36
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 32
- 229910052796 boron Inorganic materials 0.000 claims abstract description 31
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 29
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 29
- 239000004065 semiconductor Substances 0.000 claims abstract description 28
- 239000010703 silicon Substances 0.000 claims abstract description 27
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000001301 oxygen Substances 0.000 claims abstract description 14
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 11
- 150000001875 compounds Chemical class 0.000 claims abstract description 7
- 239000002243 precursor Substances 0.000 claims description 52
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 40
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 26
- 238000010438 heat treatment Methods 0.000 claims description 26
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 13
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 13
- 239000010936 titanium Substances 0.000 claims description 12
- 229910021341 titanium silicide Inorganic materials 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 9
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- VYIRVGYSUZPNLF-UHFFFAOYSA-N n-(tert-butylamino)silyl-2-methylpropan-2-amine Chemical compound CC(C)(C)N[SiH2]NC(C)(C)C VYIRVGYSUZPNLF-UHFFFAOYSA-N 0.000 claims description 6
- AJSTXXYNEIHPMD-UHFFFAOYSA-N triethyl borate Chemical compound CCOB(OCC)OCC AJSTXXYNEIHPMD-UHFFFAOYSA-N 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 238000005121 nitriding Methods 0.000 claims description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 238000009832 plasma treatment Methods 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 147
- 238000000034 method Methods 0.000 description 50
- 239000012071 phase Substances 0.000 description 40
- 239000000758 substrate Substances 0.000 description 34
- 239000012535 impurity Substances 0.000 description 21
- 238000002955 isolation Methods 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 229910052814 silicon oxide Inorganic materials 0.000 description 11
- 238000005530 etching Methods 0.000 description 10
- 229910008484 TiSi Inorganic materials 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 150000004770 chalcogenides Chemical class 0.000 description 8
- 238000011065 in-situ storage Methods 0.000 description 8
- 230000007704 transition Effects 0.000 description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 7
- 229910010413 TiO 2 Inorganic materials 0.000 description 6
- 230000000737 periodic effect Effects 0.000 description 6
- 238000009751 slip forming Methods 0.000 description 6
- TUTOKIOKAWTABR-UHFFFAOYSA-N dimethylalumane Chemical compound C[AlH]C TUTOKIOKAWTABR-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 229910005900 GeTe Inorganic materials 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910021478 group 5 element Inorganic materials 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000007517 polishing process Methods 0.000 description 3
- 238000007669 thermal treatment Methods 0.000 description 3
- ITWBWJFEJCHKSN-UHFFFAOYSA-N 1,4,7-triazonane Chemical compound C1CNCCNCCN1 ITWBWJFEJCHKSN-UHFFFAOYSA-N 0.000 description 2
- 229910000763 AgInSbTe Inorganic materials 0.000 description 2
- 229910005542 GaSb Inorganic materials 0.000 description 2
- 229910005537 GaSeTe Inorganic materials 0.000 description 2
- 229910005872 GeSb Inorganic materials 0.000 description 2
- 229910005898 GeSn Inorganic materials 0.000 description 2
- -1 SaSi Inorganic materials 0.000 description 2
- 229910018321 SbTe Inorganic materials 0.000 description 2
- 229910018219 SeTe Inorganic materials 0.000 description 2
- 229910004491 TaAlN Inorganic materials 0.000 description 2
- 229910004166 TaN Inorganic materials 0.000 description 2
- 229910003071 TaON Inorganic materials 0.000 description 2
- 229910004200 TaSiN Inorganic materials 0.000 description 2
- 229910010037 TiAlN Inorganic materials 0.000 description 2
- 229910010060 TiBN Inorganic materials 0.000 description 2
- 229910010282 TiON Inorganic materials 0.000 description 2
- 229910008599 TiW Inorganic materials 0.000 description 2
- 229910008807 WSiN Inorganic materials 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 238000004380 ashing Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 2
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- FESBVLZDDCQLFY-UHFFFAOYSA-N sete Chemical compound [Te]=[Se] FESBVLZDDCQLFY-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- 101000651178 Homo sapiens Striated muscle preferentially expressed protein kinase Proteins 0.000 description 1
- 229910006913 SnSb Inorganic materials 0.000 description 1
- 102100027659 Striated muscle preferentially expressed protein kinase Human genes 0.000 description 1
- 229910003074 TiCl4 Inorganic materials 0.000 description 1
- 229910000086 alane Inorganic materials 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910021476 group 6 element Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- DAZXVJBJRMWXJP-UHFFFAOYSA-N n,n-dimethylethylamine Chemical compound CCN(C)C DAZXVJBJRMWXJP-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 238000000348 solid-phase epitaxy Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/231—Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/061—Shaping switching materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/826—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/882—Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
- H10N70/8825—Selenides, e.g. GeSe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/882—Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
- H10N70/8828—Tellurides, e.g. GeSbTe
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
Abstract
一种相变存储器器件,包括:下电极、电连接到所述下电极的相变材料图案以及电连接到所述相变材料图案的上电极。所述下电极可以包括:第一结构,所述第一结构包括金属半导体化合物;在所述第一结构上的第二结构,所述第二结构包括金属氮化物材料,并且包括具有比上部更大的宽度的下部;以及第三结构,所述第三结构包括含元素X的金属氮化物材料,所述第三结构位于所述第二结构上,所述元素X包括选自硅、硼、铝、氧和碳的组中的至少一个。
A phase-change memory device, comprising: a lower electrode, a phase-change material pattern electrically connected to the lower electrode, and an upper electrode electrically connected to the phase-change material pattern. The lower electrode may include: a first structure including a metal semiconductor compound; a second structure on the first structure including a metal nitride material and including a a lower portion of large width; and a third structure comprising a metal nitride material comprising an element X comprising an element X selected from the group consisting of silicon, boron, At least one selected from the group of aluminum, oxygen and carbon.
Description
技术领域technical field
示例实施例涉及一种包括相变材料的相变存储器器件,该相变材料的相通过热来改变。Example embodiments relate to a phase change memory device including a phase change material whose phase is changed by heat.
背景技术Background technique
相变存储器器件可以用于基于在该器件中的相变材料的状态来存储信息。期望功耗降低,以提供相变存储器的高度集成。Phase change memory devices can be used to store information based on the state of a phase change material in the device. Reduced power consumption is desired to provide high integration of phase change memories.
发明内容Contents of the invention
实施例的特征是提供具有下电极的相变存储器器件,该下电极包括具有低电阻的下部和具有高电阻的上部。A feature of an embodiment is to provide a phase change memory device having a lower electrode including a lower portion having a low resistance and an upper portion having a high resistance.
可以通过提供一种相变存储器器件来实现上述和其他特征以及优点中的至少一个,所述相变存储器器件包括:下电极、电连接到所述下电极的相变材料图案和电连接到所述相变材料图案的上电极。所述下电极可以包括:第一结构,所述第一结构包括金属半导体化合物;在所述第一结构上的第二结构,所述第二结构包括金属氮化物材料,并且包括具有比上部的宽度更大的宽度的下部;以及第三结构,所述第三结构包括含元素X的金属氮化物材料,所述第三结构位于所述第二结构上,所述元素X包括选自硅、硼、铝、氧和碳的组中的至少一个。At least one of the above and other features and advantages may be achieved by providing a phase change memory device comprising: a lower electrode, a phase change material pattern electrically connected to the lower electrode, and a phase change material pattern electrically connected to the lower electrode. The upper electrode of the phase change material pattern. The lower electrode may include: a first structure including a metal semiconductor compound; a second structure on the first structure including a metal nitride material and including a a lower portion of a greater width; and a third structure comprising a metal nitride material comprising an element X, said third structure being located on said second structure, said element X comprising a metal nitride material selected from the group consisting of silicon, At least one selected from the group of boron, aluminum, oxygen and carbon.
所述第二结构可以包括具有第一宽度的下部和具有比所述第一宽度小的第二宽度的上部,以及所述第二结构的所述上部可以从所述下部的顶表面垂直地延伸。The second structure may include a lower portion having a first width and an upper portion having a second width smaller than the first width, and the upper portion of the second structure may extend vertically from a top surface of the lower portion .
所述第二结构可以具有“L”的形状,并且所述第二结构可以包括:第一垂直表面;第一水平表面,所述第一水平表面从所述第一垂直表面的下部水平地延伸;第二水平表面,所述第二水平表面从所述第一垂直表面的上部水平地延伸;第三水平表面,所述第三水平表面与所述第二水平表面平行并且与其隔开预定间隔;第二垂直表面,所述第二垂直表面将所述第二水平表面连接到所述第三水平表面;以及第三垂直表面,所述第三垂直表面将所述第一水平表面连接到所述第三水平表面。The second structure may have an 'L' shape, and the second structure may include: a first vertical surface; a first horizontal surface extending horizontally from a lower portion of the first vertical surface a second horizontal surface extending horizontally from an upper portion of the first vertical surface; a third horizontal surface parallel to the second horizontal surface and spaced therefrom by a predetermined interval a second vertical surface connecting the second horizontal surface to the third horizontal surface; and a third vertical surface connecting the first horizontal surface to the the third horizontal surface.
所述第三结构可以在所述第二水平表面上。The third structure may be on the second horizontal surface.
所述器件可以进一步包括绝缘图案,所述绝缘图案与所述第一垂直表面和所述第三垂直表面相邻。所述绝缘图案的上部可以包括含元素X的氧化物材料或含元素X的氮化物材料。The device may further include an insulating pattern adjacent to the first vertical surface and the third vertical surface. The upper portion of the insulating pattern may include an element X-containing oxide material or an element X-containing nitride material.
所述绝缘图案的所述上部可以具有与所述第三结构相同的厚度和高度。The upper portion of the insulation pattern may have the same thickness and height as the third structure.
所述第三结构可以在所述第二垂直表面和所述第三水平表面上。The third structure may be on the second vertical surface and the third horizontal surface.
所述第一结构可以包括硅化钛,所述第二结构可以包括氮化钛材料,以及第三结构可以包括含元素X的氮化钛材料。The first structure may include titanium silicide, the second structure may include a titanium nitride material, and the third structure may include an X-containing titanium nitride material.
所述器件可以进一步包括第四结构,所述第四结构包括在所述第二结构和所述第三结构之间的金属氧化物材料。The device may further include a fourth structure including a metal oxide material between the second structure and the third structure.
所述第四结构可以包括氧化钛材料。The fourth structure may include a titanium oxide material.
所述器件可以进一步包括在所述第三结构上的第四结构,所述第四结构包括含元素Y的氮化钛材料。元素Y可以包括选自硅、硼、铝、氧和碳的组中的至少一个。The device may further include a fourth structure on the third structure, the fourth structure comprising a titanium nitride material containing the element Y. The element Y may include at least one selected from the group consisting of silicon, boron, aluminum, oxygen, and carbon.
元素Y可以与元素X不同。Element Y can be different from element X.
所述器件可以进一步包括在所述第一结构之下形成的下结构,并且所述下结构包括硅。可以通过在下结构上形成金属层并且对所得产物进行氮化来形成第一和第二结构。The device may further include a lower structure formed under the first structure, and the lower structure includes silicon. The first and second structures may be formed by forming a metal layer on the lower structure and nitriding the resultant.
所述金属层可以包括钛。The metal layer may include titanium.
通过对所述第二结构进行使用包含氮的第一前体和含元素X的第二前体的热处理或等离子体处理来形成所述第三结构。The third structure is formed by subjecting the second structure to heat treatment or plasma treatment using a first precursor including nitrogen and a second precursor including element X.
所述元素X可以是Si,并且所述第二前体可以包括选自SiH4、Si2H6、Si3H8、SiCl2H2和双(叔丁氨基)硅烷的组中的至少一个。The element X may be Si, and the second precursor may include at least one selected from the group consisting of SiH 4 , Si 2 H 6 , Si 3 H 8 , SiCl 2 H 2 and bis(t-butylamino)silane .
所述元素X可以是硼,以及所述第二前体可以包括选自B2H6和三乙基硼酸盐(triethylborate)的组中的至少一个。The element X may be boron, and the second precursor may include at least one selected from the group consisting of B 2 H 6 and triethylborate.
所述元素X可以是铝,以及所述第二前体可以包括选自AlCl3、四乙基甲基酰胺铪、二甲基铝氢化物和二甲基乙胺基铝烷(dimethylethylamine alane)的组中的至少一个。The element X may be aluminum, and the second precursor may include a compound selected from the group consisting of AlCl 3 , hafnium tetraethylmethylamide, dimethylaluminum hydride, and dimethylethylamine alane. At least one of the group.
所述元素X可以是氧,以及所述第二前体可以包括选自氧气和臭氧气体的组中的至少一个。The element X may be oxygen, and the second precursor may include at least one selected from the group consisting of oxygen and ozone gas.
所述元素X可以是碳,以及所述第二前体包括C2H4。 The element X may be carbon, and the second precursor includes C2H4 .
附图说明Description of drawings
通过参考附图详细描述示例实施例,上述和其他特征以及优点将变得对于本领域内的技术人员更明显,其中:The above and other features and advantages will become more apparent to those skilled in the art by describing in detail example embodiments with reference to the accompanying drawings, in which:
图1图示根据示例实施例的存储器器件的等效电路图。FIG. 1 illustrates an equivalent circuit diagram of a memory device according to example embodiments.
图2图示在图1中图示的存储器器件的平面图。FIG. 2 illustrates a plan view of the memory device illustrated in FIG. 1 .
图3图示根据示例实施例的存储器器件的横截面图。FIG. 3 illustrates a cross-sectional view of a memory device according to example embodiments.
图4图示根据另一示例实施例的相变存储器器件的示意横截面图。FIG. 4 illustrates a schematic cross-sectional view of a phase change memory device according to another example embodiment.
图5图示根据另一示例实施例的相变存储器器件的示意横截面图。FIG. 5 illustrates a schematic cross-sectional view of a phase change memory device according to another example embodiment.
图6图示根据另一示例实施例的相变存储器器件的示意横截面图。FIG. 6 illustrates a schematic cross-sectional view of a phase change memory device according to another example embodiment.
图7至16图示在形成图3中图示的相变存储器器件的方法中的阶段的示意横截面图。7 to 16 illustrate schematic cross-sectional views of stages in a method of forming the phase change memory device illustrated in FIG. 3 .
图18图示根据又一示例实施例的相变存储器器件的示意横截面图。FIG. 18 illustrates a schematic cross-sectional view of a phase change memory device according to yet another example embodiment.
图6至12和17图示形成在图18中图示的相变存储器器件的方法中的阶段的示意横截面图。6 to 12 and 17 illustrate schematic cross-sectional views of stages in a method of forming the phase change memory device illustrated in FIG. 18 .
图20图示根据又一示例实施例的相变存储器器件的示意横截面图。FIG. 20 illustrates a schematic cross-sectional view of a phase change memory device according to yet another example embodiment.
图6至12和19图示在形成在图20中图示的相变存储器器件的方法中的阶段的示意横截面图。6 to 12 and 19 illustrate schematic cross-sectional views of stages in a method of forming the phase change memory device illustrated in FIG. 20 .
图21图示传统相变存储器器件的过渡特性。FIG. 21 illustrates transition characteristics of a conventional phase change memory device.
图22图示根据第一示例实施例的相变存储器器件的过渡特性。FIG. 22 illustrates transition characteristics of the phase change memory device according to the first example embodiment.
图23图示根据第一示例实施例的相变存储器器件的耐久特性。FIG. 23 illustrates endurance characteristics of the phase change memory device according to the first example embodiment.
具体实施方式Detailed ways
在2009年9月29日向韩国知识产权局提交的、标题为“Phase-Change Memory Device”的韩国专利申请No.10-2009-0092615通过引用结合于此。Korean Patent Application No. 10-2009-0092615, filed with the Korean Intellectual Property Office on Sep. 29, 2009, and entitled "Phase-Change Memory Device," is hereby incorporated by reference.
以下参考附图更全面地描述示例实施例;然而,可以以不同的形式来体现该示例实施例,并且该示例实施例不应当被解释为限于在此提供的实施例。而是,这些实施例被提供成使得本公开将是彻底和完整的,并且向本领域内的技术人员传送本发明的范围。Example embodiments are described more fully below with reference to the accompanying drawings; however, example embodiments may be embodied in different forms and should not be construed as limited to the embodiments provided herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will convey the scope of the invention to those skilled in the art.
在附图中,为了清楚,可以夸大层和区域的尺寸。也可以明白,当层或元素被称作在另一层或衬底“上”时,其可以直接地在该另一层或衬底上,或也可以存在居间层。此外,可以明白,当层被称作在另一层“下”时,其可以直接地在下方,并且也可以存在一个或多个居间层。另外,也可以明白,当层被称作在两层“之间”时,其可以是在所述两层之间的唯一层,或也可以存在一个或多个居间层。在整个附图中,相似的附图标记表示相似的元件。In the drawings, the dimensions of layers and regions may be exaggerated for clarity. It will also be understood that when a layer or element is referred to as being "on" another layer or substrate, it can be directly on the other layer or substrate, or intervening layers may also be present. Further, it will be understood that when a layer is referred to as being 'under' another layer, it can be directly under, and one or more intervening layers may also be present. In addition, it will also be understood that when a layer is referred to as being "between" two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present. Like reference numerals refer to like elements throughout the drawings.
[第一示例实施例][First exemplary embodiment]
图1图示根据示例实施例的存储器器件的等效电路图,图2图示在图1中图示的存储器器件的平面图,以及图3图示根据示例实施例的存储器器件的横截面图。1 illustrates an equivalent circuit diagram of a memory device according to example embodiments, FIG. 2 illustrates a plan view of the memory device illustrated in FIG. 1 , and FIG. 3 illustrates a cross-sectional view of the memory device according to example embodiments.
根据示例实施例,在图1至3中图示的存储器器件是相变存储器器件。According to example embodiments, the memory devices illustrated in FIGS. 1 to 3 are phase change memory devices.
参见图1和2,所述存储器器件可以包括位线BL、字线WL、相变材料图案Rp和切换装置S。1 and 2, the memory device may include a bit line BL, a word line WL, a phase change material pattern Rp, and a switching device S. Referring to FIG.
位线BL中的每个可以在第一方向上延伸,并且可以以相同的间隔被布置在与延伸方向垂直的方向上。Each of the bit lines BL may extend in a first direction, and may be arranged at the same interval in a direction perpendicular to the extending direction.
字线WL中的每个可以在与第一方向不同的第二方向上延伸,并且可以以相同的间隔被布置在与延伸方向垂直的方向上。例如,第一方向可以与第二方向垂直。Each of the word lines WL may extend in a second direction different from the first direction, and may be arranged at the same interval in a direction perpendicular to the extending direction. For example, the first direction may be perpendicular to the second direction.
位线BL可以被形成为与字线WL相交。切换装置S可以被形成在位线BL和字线WL的相交处。Bit lines BL may be formed to intersect word lines WL. The switching device S may be formed at the intersection of the bit line BL and the word line WL.
切换装置S可以电连接到字线WL。The switching device S may be electrically connected to the word line WL.
相变材料图案Rp可以被形成在位线BL和切换装置S之间。相变材料图案Rp可以用作数据存储元件。此外,切换装置S可以经由下电极BEC彼此电连接,以对应于相变材料图案Rp。结果,位线BL可以经由相变材料图案Rp、下电极BEC和切换装置S电连接到字线WL。A phase change material pattern Rp may be formed between the bit line BL and the switching device S. Referring to FIG. The phase change material pattern Rp may be used as a data storage element. In addition, the switching devices S may be electrically connected to each other via the lower electrode BEC to correspond to the phase change material pattern Rp. As a result, the bit line BL may be electrically connected to the word line WL via the phase change material pattern Rp, the lower electrode BEC, and the switching device S. Referring to FIG.
下面进一步详细地描述存储器器件。The memory device is described in further detail below.
参见图3,存储器器件可以包括在衬底100上形成的字线104、以及切换装置120、绝缘图案108、130和138、下电极124、134和136、相变材料图案140和上电极142。Referring to FIG. 3 , a memory device may include a
衬底100可以包括场区和有源区。可以通过隔离图案102来形成场区。可以通过场区来限定有源区。例如,有源区可以具有在第一方向上延伸的线的形状。The
字线104可以被形成在衬底100中。根据示例实施例,字线104可以具有在第二方向上延伸的线的形状。在实施方式中,字线104可以被形成在衬底100中,并且字线104的顶表面可以具有与衬底100的高度基本上相同的高度。字线104可以由诸如掺杂杂质的硅、金属或金属化合物的导电材料形成。
缓冲层105和/或蚀刻停止层106可以被设置在隔离图案102上。A
切换装置120可以被形成为电连接到在衬底100上的字线104。The
根据示例实施例,切换装置120可以是二极管120。二极管120可以包括掺杂有第一杂质的下硅图案116和掺杂有第二杂质的上硅图案118。第一和第二杂质可以包括选自周期表中的III族元素或V族元素中的至少一个。第一和第二杂质可以基本上彼此不同。例如,当第一杂质包括选自周期表的III族元素中的至少一个时,第二杂质可以包括选自周期表的V族元素中的至少一个。此外,二极管120可以被形成为与字线104的顶表面接触。对于一个实例,二极管120可以具有比字线104的宽度基本上更窄的宽度。对于另一实例,切换装置120可以具有与字线104的宽度基本上相同的宽度。According to an example embodiment, the
根据其他示例实施例,切换装置120可以是晶体管(未示出)。晶体管可以包括栅绝缘层、栅电极和源/漏区。According to other example embodiments, the
下面的描述给出了使用二极管作为切换装置120的示例。然而,实施例不限于使用二极管来作为切换装置120。The following description gives an example of using a diode as the
绝缘图案108、130和138可以包括第一绝缘图案108、第二绝缘图案130和第三绝缘图案138。绝缘图案108、130和138可以包括氧化物材料、氮化物材料或氮氧化物材料。氧化物材料、氮化物材料和氮氧化物材料的示例分别包括氧化硅材料、氮化硅材料和氮氧化硅材料。根据示例实施例,第一绝缘图案108、第二绝缘图案130和第三绝缘图案138可以包括基本上相同的材料。根据其他示例实施例,第一绝缘图案108、第二绝缘图案130和第三绝缘图案138可以包括基本上不同的材料。The insulating
第一绝缘图案108可以被形成为在相邻的切换装置120之间绝缘。根据示例实施例,第一绝缘图案108可以被形成为被隔开切换装置120的宽度。此外,第一绝缘图案108可以被形成为覆盖隔离图案102和字线104的一部分。第一绝缘图案108的顶表面可以与下电极124、134和136的高度具有相同的高度。The first
根据其他示例实施例,参见图4,第一绝缘图案108可以包括上部137和下部109。上部137可以是含元素X的氧化物材料或氮化物材料。例如,第一绝缘图案108的上部137可以由含元素X的氧化硅材料或含元素X的氮化硅材料形成。元素X可以包括选自硅(Si)、硼(B)、铝(A1)、氧(O)和碳(C)的组中的至少一个。上部137的厚度和高度可以与下电极的第三结构136的厚度和高度基本上相同。下部109可以由例如氧化硅材料或氮化硅材料形成。另外,下部109可以进一步包括缓冲层105和/或蚀刻停止层106。According to other example embodiments, referring to FIG. 4 , the first
第二绝缘图案130可以被形成为与下电极124、134和136、第一绝缘图案108和第三绝缘图案138相邻。The second
第三绝缘图案138可以被形成为与下电极124、134和136、第一绝缘图案108和第二绝缘图案130相邻。可以根据第三绝缘图案138的深度和长度来确定下电极124、134和136的形状。The third
下电极124、134和136可以电连接到切换装置120。根据示例实施例,当切换装置120是二极管120时,下电极124、134和136可以被形成在二极管120上,并且下电极124、134和136可以被形成为与二极管120直接接触。根据另一示例实施例,当切换装置120是晶体管时,下电极124、134和136可以被形成为通过连接图案被电连接到晶体管。The
下电极124、134和136可以包括:包括金属硅化物的第一结构124;包括金属氮化物材料的第二结构134;以及包括含元素X的金属氮化物材料的第三结构136。根据示例实施例,第一结构124可以包括硅化钛(TiSi2),第二结构134可以包括氮化硅材料(TiN),以及第三结构136可以包括含元素X的氮化钛材料(TiXN)。The
第一结构124可以被形成为电连接到切换装置120。根据示例实施例,当切换装置120是二极管120时,第一结构124可以被形成为与二极管120的上部接触。此外,当从平面图观看时,第一结构124可以具有圆形形状,并且当从横截面图看时,它可以具有矩形形状。第一结构124的宽度可以与二极管120的宽度基本上相同。The
第二结构134可以被形成在第一结构124上,以及其下部的宽度可以大于其上部的宽度。第二结构134的下部的宽度可以基本上与第一结构124的下部的宽度相同。The
根据示例实施例,第二结构134可以包括具有第一宽度的下部和具有比第一宽度小的第二宽度的上部。第二结构134的上部可以从下部的顶表面垂直地延伸。例如,第二结构134可以具有“L”形状。在该情况下,第二结构134可以包括:与第一绝缘图案108接触的第一垂直表面V1;从第一垂直表面V1的下部水平地延伸的第一水平表面H1;从第一垂直表面V1的上部水平地延伸的第二水平表面H2;第三水平表面H3,所述第三水平表面H3与第二水平表面H2平行,并且与其相隔预定距离;第二垂直表面V2,所述第二垂直表面V2将第二水平表面H2连接到第三水平表面H3;以及第三垂直表面V3,所述第三垂直表面V3将第一水平表面H1连接到第三水平表面H3。According to example embodiments, the
根据另一示例实施例,第二结构134可以具有“J”形状。根据另一示例实施例,第二结构134可以具有圆柱、“U”或矩形的形状。According to another example embodiment, the
第三结构136可以被形成在第二结构134上。例如,当第二结构134具有“L”形状时,可以在第二结构134的第二水平表面H2上形成第三结构136。当从平面图观看时,第三结构136可以具有半圆的形状,以及当从截面看时,其可以具有矩形的形状。第三结构136的宽度可以与第二宽度基本上相同。The
第三结构136可以由具有比第一结构124和第二结构134更高的电阻的材料形成。根据示例实施例,第三结构136可以具有单层结构。第三结构136可以包括含元素X的氮化钛材料(TiXN),元素X可以包括选自Si、B、Al、O和C的组中的至少一个。The
根据另一示例实施例,如图5中所示,第三结构可以具有多层结构,其中,包括含元素X的氮化钛材料(TiXN)的下图案135和包括含元素Y的氮化钛材料(TiYN)的上图案136被堆叠。元素X和Y可以彼此不同,元素X和Y中的每个可以包括选自Si、B、Al、O和C的组中的至少一个。According to another exemplary embodiment, as shown in FIG. 5 , the third structure may have a multilayer structure in which a
根据另一示例实施例,如图6中所示,第三结构可以具有下述结构,其中,包括氧化钛材料(Ti02)的下图案135和包括含元素X的氮化钛材料(TiXN)的上图案136被堆叠。元素X可以包括选自Si、B、Al、O和C的组中的至少一个。According to another exemplary embodiment, as shown in FIG. 6 , the third structure may have a structure in which the
相变材料图案140可以电连接到下电极124、134和136。根据示例实施例,相变材料图案140可以被形成在下电极124、134和136和绝缘图案108、130和138上。相变材料图案140可以与下图案直接接触,以与其电连接。The phase
相变材料图案140可以由例如硫族化物形成,该硫族化物包括周期表的VI族材料中的至少一个。基于硫族化物的金属元素可以包括Ge、Se、Sb、Te、Sn和/或As。元素的组合可以使得能够形成硫族化物相变图案。例如,该组合可以是选自下组中的至少一个:GaSb、InSb、InSe、Sb2Te、SbSe、GeTe、Sb2Te、SbSe、GeTe、Ge2Sb2Te5、InSbTe、GaSeTe、SnSb2Te、InSbGe、AgInSbTe、(GeSn)SbTe、GeSb(SeTe)和Te81GeI5Sb2S2。此外,为了增强相变材料图案140的特性,除了基于硫族化物的金属元素之外,还可以混合元素Ag、In、Bi和Pb。The phase
上电极142可以被形成为电连接到相变材料图案140。根据示例实施例,上电极142可以与相变材料图案140接触以与其电连接。在实施方式中,上电极142的宽度可以与相变材料图案140的宽度基本上相同。在另一实施方式中,上电极142的宽度可以与相变材料图案140的宽度基本上不同。The
上电极142可以包括选自下组中的至少一个:Ti、TiSi、TiN、TiON、TiW、TiAlN、TiAlON、TiSIN、TiBN、W、WN、WON、WSiN、WBN、WCN、Si、Ta、SaSi、TaN、TaON、TaAlN、TaSiN、TaCN、Mo、MoN、MoSiN、MoAlN、ZrSiN、ZrAlN和RuCoSi。The
下面描述用于形成在图3中所示的半导体器件的方法。A method for forming the semiconductor device shown in FIG. 3 is described below.
图7至16图示在形成在图3中所示的相变存储器器件的方法中的阶段的示意横截面图。7 to 16 illustrate schematic cross-sectional views of stages in a method of forming the phase change memory device shown in FIG. 3 .
参见图7,可以在衬底100上形成隔离图案102。Referring to FIG. 7 ,
诸如硅晶片或SOI晶片的半导体衬底100可以被用作衬底100。衬底100可以包括第一杂质。第一杂质可以包括选自周期表的III族元素或V族元素中的至少一个。A
进一步详细地描述形成隔离图案102的处理,可以在衬底100上顺序地形成衬垫氧化物层(未示出)和第一掩模(未示出)。衬垫氧化物层可以包括氧化硅层,并且可以通过例如热氧化过程来形成。第一掩模可以具有其中顺序堆叠氮化物图案和光致抗蚀剂图案的结构。第一掩模可以被用作蚀刻掩模,以蚀刻衬垫氧化物层和衬底100,使得可以形成衬垫氧化物图案和沟槽。选择性地,可以沿着沟槽的内表面的表面轮廓来形成包括氧化硅材料和氮化硅材料的衬里。可以形成填充沟槽的隔离层,使得可以形成隔离图案102,即场区。场区可以限定有源区,例如,有源区可以具有在第一方向上延伸的线的形状。Describing the process of forming the
其后,可以在衬底100的有源区中形成字线104。字线104可以在与有源区的延伸方向基本上相同的第一方向上延伸。字线104可以包括掺杂杂质的硅、金属或金属化合物。根据本发明构思的示例实施例,可以通过向有源区中注入与第一杂质不同的第二杂质来形成字线104。Thereafter, word lines 104 may be formed in the active region of the
参见图8,可以在其中形成字线104和隔离图案102的衬底100上形成第一绝缘图案108。在形成第一绝缘图案108时,可以形成暴露字线104的上部的第一开口110。Referring to FIG. 8, a first
例如,在其中形成字线104和隔离图案102的衬底100上形成第一绝缘层。第一绝缘层可以被形成为覆盖衬底100的整个表面。在实施方式中,第一绝缘层可以由单层形成,该单层例如由氧化物层、氮化物层或氮氧化物层制成。氧化物层、氮化物层或氮氧化物层可以分别是氧化硅层、氮化硅层和氮氧化硅层。在另一实施方式中,绝缘层可以由多层形成,在该多层中,顺序地或交替地堆叠至少一个氧化物层、至少一个氮化物层和/或至少一个氮氧化物层。For example, a first insulating layer is formed on the
可以使用例如化学气相沉积(CVD)、低压CVD(LPCVD)、等离子体增强CVD(PECVD)或高密度等离子体CVD(HDP CVD)来形成第一绝缘层。The first insulating layer may be formed using, for example, chemical vapor deposition (CVD), low pressure CVD (LPCVD), plasma enhanced CVD (PECVD), or high density plasma CVD (HDP CVD).
根据示例实施例,在形成第一绝缘层之前,可以在其中形成隔离图案102和字线104的衬底100上顺序地形成缓冲层105和蚀刻停止层106。蚀刻停止层106可以包括相对于缓冲层105和绝缘层具有蚀刻选择性的材料。例如,当绝缘层和缓冲层105包括氧化硅材料时,蚀刻停止层106可以包括氮化硅材料。According to example embodiments, before forming the first insulating layer, the
可以在第一绝缘层上形成第二掩模(未示出)。第二掩模可以包括相对于第一绝缘层具有蚀刻选择性的材料。例如,第二掩模可以包括氮化物图案。A second mask (not shown) may be formed on the first insulating layer. The second mask may include a material having etch selectivity with respect to the first insulating layer. For example, the second mask may include a nitride pattern.
可以使用第二掩模作为蚀刻掩模来蚀刻第一绝缘层,以形成第一绝缘图案108。第一绝缘图案108可以覆盖隔离图案102和字线104的一部分,以部分地暴露字线104。在形成第一绝缘图案108时,可以形成部分地暴露字线104的第一开口110。The first insulating layer may be etched using the second mask as an etching mask to form the first
根据示例实施例,当在衬底100上形成缓冲层105和蚀刻停止层106时,在蚀刻第一绝缘层的同时,也可以蚀刻缓冲层105和蚀刻停止层106,使得可以形成缓冲层105和蚀刻停止层106。According to example embodiments, when the
在形成第一绝缘图案108后,可以从衬底100去除第二掩模。可以使用灰化处理和剥除处理来执行去除处理。After the first
参见图9,可以在其上形成第一绝缘图案108和字线104的衬底100上形成半导体层112。半导体层112可以包括例如单晶硅、非晶硅或多晶硅。Referring to FIG. 9 , a semiconductor layer 112 may be formed on the
根据示例实施例,可以通过利用使用字线104作为种子的选择性外延生长(SEG)技术来形成半导体层112。当字线104包括掺杂杂质的硅时,半导体层112也可以包括硅。根据另一示例实施例,可以使用固相外延生长(SPEG)技术来形成半导体层112。According to example embodiments, the semiconductor layer 112 may be formed by utilizing a selective epitaxial growth (SEG) technique using the
在实施方式中,半导体层112可以被形成为全部填充第一开口110。在另一实施方式中,半导体层112可以被形成为部分地填充第一开口110的下部。In an embodiment, the semiconductor layer 112 may be formed to completely fill the
参见图10,可以形成电连接到字线104的切换装置120。根据示例实施例,切换装置120可以是二极管。Referring to FIG. 10, a
详细描述形成二极管120的处理,首先,当半导体层112全部填充第一开口110时,可以部分地蚀刻半导体层112的上部以形成部分地填充第一开口110的下部的半导体层112。可以形成由半导体层112和第一绝缘图案108限定的第二开口114。第二开口114可以具有与第一开口110基本上相同的宽度,并且可以在比第一开口的高度更高的高度上具有底表面(参见图1的110)。Describing the process of forming the
其后,可以使用离子注入和扩散处理,以形成掺杂有第三杂质的第一半导体图案116和掺杂有第四杂质的第二半导体图案118。第三杂质可以与第二杂质不同,并且可以与第一杂质基本上相同。此外,第四杂质可以与第三杂质基本上不同,并且可以与第二杂质基本上相同。Thereafter, ion implantation and diffusion processes may be used to form the
结果,可以在第一开口110中形成其中顺序地堆叠第一半导体图案116和第二半导体图案118的二极管120。As a result, the
参见图11,可以在切换装置120和第一绝缘图案108上形成第一金属层122。第一金属层122可以包括Ti。可以沿着切换装置120和第一绝缘图案108的表面轮廓连续地形成第一金属层122,并且可以保形地形成第一金属层122,而不填充第二开口114。Referring to FIG. 11 , a first metal layer 122 may be formed on the
可以通过使用例如使用氯化钛(TiCl4)作为源的PECVD处理来形成第一金属层122。The first metal layer 122 may be formed by using, for example, a PECVD process using titanium chloride (TiCl 4 ) as a source.
根据示例实施例,在形成第一金属层122时,可以将包括硅的切换装置120的上部和第一金属层122的下部转换为硅化钛(TiSi2)。即,可以在切换装置120和第一金属层122的界面处形成TiSi2。According to example embodiments, when the first metal layer 122 is formed, an upper portion of the
参见图12,可以对于其上形成第一金属层122的衬底100执行氮化处理,使得可以在切换装置120上形成包括金属半导体化合物的第一结构124和包括金属氮化物材料的第二初步结构126。Referring to FIG. 12, a nitridation process can be performed on the
第一结构124可以包括TiSi2,以及第二初步结构126可以包括氮化钛材料(TiN)。The
根据示例实施例,氮化处理可以利用例如使用氨(NH3)或氮气(N2)气体作为源的热或等离子体处理。在执行氮化处理时,与切换装置120接触的第一金属层122的下部可以被转换为包括TiSi2的第一结构124。当从平面图观看时,第一结构124可以具有圆形形状,并且当从横截面图观看时,其可以具有矩形形状。According to example embodiments, the nitriding treatment may utilize, for example, thermal or plasma treatment using ammonia (NH 3 ) or nitrogen (N 2 ) gas as a source. When the nitridation process is performed, the lower portion of the first metal layer 122 in contact with the
此外,在执行氮化处理时,可以将第一金属层122的上部与氨或氮气的氮组合,以转换为包括TiN的第二初步结构126。可以沿着第一绝缘图案108和第一结构124的表面轮廓来连续地形成第二初步结构126,以及可以保形地形成第二初步结构126,而不填充第二开口114。In addition, when the nitriding process is performed, the upper portion of the first metal layer 122 may be combined with ammonia or nitrogen of nitrogen gas to be converted into the second
根据其他示例实施例(未示出),在形成第二初步结构126后,可以进一步在第二初步结构126上形成第二金属层。可以沿着第二初步结构126的表面轮廓来连续地形成第二金属层,以及可以保形地形成第二金属层,而不填充第二开口114。可以使用例如使用TiCl4作为源的PECVD处理来形成第二金属层。可以省略形成第二金属层的处理。According to other example embodiments (not shown), after forming the second
根据示例实施例,可以在基本上相同的原位腔室中执行形成第一金属层122的处理和形成第一结构124与第二初步结构126的处理。根据另一示例实施例,可以在不同的原位腔室中执行形成第一金属层122的处理和形成第一结构124与第二初步结构126的处理。According to example embodiments, the process of forming the first metal layer 122 and the process of forming the
参见图13,可以在第二初步结构126上形成第二绝缘层128。第二绝缘层128可以被形成为完全填充第二开口114。Referring to FIG. 13 , a second insulating
第二绝缘层128可以由氧化物材料、氮化物材料或氮氧化物材料形成。例如,可以分别是氧化硅材料、氮化硅材料或氮氧化硅材料。在实施方式中,第二绝缘层128可以包括与第一绝缘层基本上相同的材料。在另一实施方式中,第二绝缘层128可以包括与第一绝缘层基本上不同的材料。The second
参见图14,第二绝缘层128和第二初步结构(参见图13的126)可以被部分地蚀刻,以暴露第一绝缘图案108的顶表面,使得可以形成第二绝缘图案130。根据示例实施例,第二初步结构129可以具有“U”的形状的结构。Referring to FIG. 14 , the second insulating
可以使用例如化学机械抛光(CMP)处理和回蚀刻处理来部分地蚀刻第二绝缘层128和第二初步结构(参见图13的126)。第二绝缘图案130的顶表面和具有由上述处理形成的“U”形状的第二初步结构129的顶表面可以具有与第一绝缘图案108的高度基本上相同的高度。The second
根据其他实施例,可以进一步蚀刻第一绝缘图案108、“U”形状的第二初步结构129和第二绝缘图案130的上部。可以在基本上相同的高度上形成第一绝缘图案108、第二绝缘图案130和“U”形状的第二初步结构129的进一步蚀刻的上部。According to other embodiments, the first
参见图15,可以在第二初步结构129中形成包括含元素X的金属氮化物材料的第三初步结构132。第三初步结构132可以包括例如氮化钛材料(TiXN)。Referring to FIG. 15 , a third preliminary structure 132 including a metal nitride material containing an element X may be formed in the second
元素X可以包括选自Si、B、Al、O和C的组中的至少一个。The element X may include at least one selected from the group of Si, B, Al, O, and C.
根据示例实施例,将进一步详细地描述形成第三初步结构132的处理。可以对于其上形成“U”形状的第三初步结构132的衬底100执行使用含氮的第一前体和含元素X的第二前体的热处理或等离子体热处理。第一前体可以包括NH3或N2,并且第二前体的元素X可以包括选自Si、B、Al、O和C的组中的至少一个。According to example embodiments, the process of forming the third preliminary structure 132 will be described in further detail. Heat treatment or plasma heat treatment using a nitrogen-containing first precursor and an element X-containing second precursor may be performed on the
当元素X是硅时,第二前体可以包括例如选自SiH4、Si2H6、Si3H8、SiCl2H2和双(叔丁氨基)硅烷(BTBAS)的组中的至少一个。When the element X is silicon, the second precursor may include, for example, at least one selected from the group of SiH 4 , Si 2 H 6 , Si 3 H 8 , SiCl 2 H 2 and bis(tert-butylamino)silane (BTBAS) .
当元素X是硼时,第二前体可以包括例如选自B2H6和三乙基硼酸盐(TEB)的组中的至少一个。When the element X is boron, the second precursor may include, for example, at least one selected from the group consisting of B 2 H 6 and triethyl borate (TEB).
当元素X是铝时,第二前体可以包括例如选自AlCl3、四乙基甲基酰胺铪(TEMAH)、二甲基铝氢化物(DMAH)和二甲基乙胺基铝烷(DMEAA)的组中的至少一个。When the element X is aluminum, the second precursor may include, for example, selected from the group consisting of AlCl 3 , tetraethylmethylamide hafnium (TEMAH), dimethylaluminum hydride (DMAH) and dimethylethylaminoalane (DMEAA ) at least one of the group.
当元素X是氧时,第二前体可以包括例如选自氧(O2)气体和臭氧(O3)气体的组中的至少一个。When the element X is oxygen, the second precursor may include, for example, at least one selected from the group of oxygen (O 2 ) gas and ozone (O 3 ) gas.
当元素X是碳时,第二前体可以包括例如C2H4。When element X is carbon, the second precursor may include, for example , C2H4 .
当执行使用第一和第二前体的热处理或等离子体热处理时,可以将具有“U”形状的第二初步结构129的上部转换为含元素X的氮化钛材料(TiXN),使得可以在第二初步结构129上形成第三初步结构132。When heat treatment or plasma heat treatment using the first and second precursors is performed, the upper portion of the second
根据示例实施例,在执行使用第一和第二前体的热处理或等离子体热处理之前,可以在第一绝缘图案108和第二绝缘图案130上进一步形成第三掩模(未示出)。第三掩模可以用于在执行热处理或等离子体热处理的同时保护第一绝缘图案108和第二绝缘图案130。此外,可以在完成热处理或等离子体热处理后从衬底100去除第三掩模。According to example embodiments, a third mask (not shown) may be further formed on the first
参见图4,根据其他示例实施例,在执行使用第一和第二前体的热处理或等离子体热处理的同时,可以将第一绝缘图案108和第二绝缘图案130的上部转换为含元素X的氮化硅材料(SiXN)。Referring to FIG. 4 , according to other example embodiments, the upper portions of the first
根据示例实施例,在执行使用第一和第二前体的热处理或等离子体热处理的同时,可以进一步注射含钛(Ti)的第三前体。在该情况下,生成的产物可以是在“U”形状的第二初步结构129上的包括含元素X的氮化钛材料的第三初步结构132。第三初步结构132的Ti的含量可以较高。According to example embodiments, while performing heat treatment or plasma heat treatment using the first and second precursors, a third precursor containing titanium (Ti) may be further injected. In this case, the resulting product may be a third preliminary structure 132 comprising an X-containing titanium nitride material on a "U"-shaped second
根据其他示例实施例的在图5中图示的半导体器件可以进一步包括在第三初步结构132上的第四初步结构(未示出),该第四初步结构包括含元素Y的氮化钛材料。元素Y可以包括例如选自Si、B、Al、O和C的组中的至少一个。可以使用与形成第三初步结构132的处理基本上相同的处理来形成第四初步结构。此外,可以在与其中形成第三结构136的腔室基本上相同的原位腔室中形成第四初步结构。The semiconductor device illustrated in FIG. 5 according to other example embodiments may further include a fourth preliminary structure (not shown) on the third preliminary structure 132, the fourth preliminary structure including a titanium nitride material containing element Y. . The element Y may include, for example, at least one selected from the group of Si, B, Al, O, and C. The fourth preliminary structure may be formed using substantially the same process as that used to form the third preliminary structure 132 . Furthermore, the fourth preliminary structure may be formed in substantially the same in situ chamber as the chamber in which the
在根据另一示例实施例的图6中图示的器件中,在形成第三初步结构132之前,可以在“U”形状的第二初步结构129上进一步形成包括氧化钛材料(TiO2)的第四初步结构(未示出)。可以在与其中形成第三结构136的腔室基本上相同的原位腔室中形成第四初步结构。In the device illustrated in FIG. 6 according to another example embodiment, before forming the third preliminary structure 132, a titanium oxide material (TiO 2 ) may be further formed on the "U"-shaped second
参见图16,可以在第一绝缘图案108、第二绝缘图案130和第三初步结构132上形成第四掩模(未示出)。第四掩模可以被形成为部分地覆盖第三初步结构132。第四掩模可以包括相对于第一绝缘图案108、第二绝缘图案130、“U”形状的第二初步结构129和第三初步结构132具有蚀刻选择性的材料。Referring to FIG. 16 , a fourth mask (not shown) may be formed on the first
可以使用第四掩模作为蚀刻掩模来部分地蚀刻第三初步结构132、“U”形状的第二初步结构129、第一绝缘图案108和第二绝缘图案130,使得可以形成第三结构136和第二结构134。第二结构134可以具有依赖于第四掩模的蚀刻深度和位置的“L”或“J”形状。The third preliminary structure 132, the "U"-shaped second
根据示例实施例的第二结构134可以具有“L”的形状。在该情况下,第二结构134可以包括具有第一宽度的下部和具有第二宽度的上部。第一宽度可以基本上大于第二宽度。第二结构134可以包括:与第一绝缘图案108接触的第一垂直表面V1;从第一垂直表面V1的下部水平地延伸的第一水平表面H1;从第一垂直表面V1的上部水平地延伸的第二水平表面H2;与第二水平表面H2平行并且与其相隔预定间隔的第三水平表面H3;第二垂直表面V2,所述第二垂直表面V2将第二水平表面H2连接到第三水平表面H3;以及第三垂直表面V3,所述第三垂直表面V3将第一水平表面H1连接到第三水平表面H3。可以在第二水平表面H2上形成第三结构136。The
在使用第四掩模的蚀刻处理期间,可以通过第一绝缘图案108、第二绝缘图案130和第二结构134来形成第三开口(未示出)。可以在第一绝缘图案108、第二绝缘图案130和第二结构134上形成第三绝缘层(未示出)。第三绝缘层可以由氧化物材料、氮化物材料或氮氧化物材料形成,氧化物材料、氮化物材料或氮氧化物可以分别是氧化硅材料、氮化硅材料和氮氧化硅材料。During the etching process using the fourth mask, a third opening (not shown) may be formed through the first
可以去除第三绝缘层的上部,以暴露第一绝缘图案108、第二绝缘图案130和第三结构136的上部。可以通过例如抛光处理和回蚀刻处理来执行去除处理。第一绝缘图案108、第二绝缘图案130、第三绝缘图案138和第三结构136的上部可以具有基本上相同的高度。An upper portion of the third insulating layer may be removed to expose upper portions of the first
根据示例实施例,可以进一步蚀刻第一绝缘图案108、第二绝缘图案130、第三绝缘图案138和第三结构136的上部。第一绝缘图案108、第二绝缘图案130、第三绝缘图案138和第三结构136的进一步蚀刻的上部可以具有基本上相同的高度。According to example embodiments, upper portions of the first
返回参见图3,可以在第一绝缘图案108、第二绝缘图案130、第三绝缘图案138和第三结构136上形成相变材料层。相变材料层(未示出)可以被形成为电连接到第三结构136。Referring back to FIG. 3 , a phase change material layer may be formed on the first
相变材料层可以由例如硫族化物形成,该硫族化物包括周期表的VI族元素中的至少一个。基于硫族化物的金属元素的典型示例可以包括Ge、Se、Sb、Te、Sn、As等。元素的组合可以使得能够形成硫族化物相变图案。该组合可以包括例如选自下组中的至少一个:GaSb、InSb、InSe、Sb2Te、SbSe、GeTe、Sb2Te、SbSe、GeTe、Ge2Sb2Te5、InSbTe、GaSeTe、SnSb2Te、InSbGe、AgInSbTe、(GeSn)SbTe、GeSb(SeTe)和Te81GeI5Sb2S2。此外,为了增强相变材料层的特性,除了基于硫族化物的金属元素之外,还可以混合元素Ag、In、Bi和Pb。The phase change material layer may be formed of, for example, a chalcogenide including at least one of group VI elements of the periodic table. Typical examples of the chalcogenide-based metal element may include Ge, Se, Sb, Te, Sn, As, and the like. Combinations of elements may enable the formation of chalcogenide phase transition patterns. The combination may include, for example, at least one selected from the group consisting of GaSb, InSb, InSe, Sb2Te , SbSe, GeTe, Sb2Te , SbSe, GeTe , Ge2Sb2Te5 , InSbTe, GaSeTe, SnSb2Te , InSbGe, AgInSbTe, (GeSn)SbTe, GeSb(SeTe) and Te 81 GeI 5 Sb 2 S 2 . In addition, in order to enhance the characteristics of the phase change material layer, elements Ag, In, Bi, and Pb may be mixed in addition to the chalcogenide-based metal elements.
可以在相变材料层上形成导电层(未示出)。导电层可以被形成为电连接到相变材料层。A conductive layer (not shown) may be formed on the phase change material layer. A conductive layer may be formed to be electrically connected to the phase change material layer.
导电层可以包括选自下组中的至少一个:Ti、TiSi、TiN、TiON、TiW、TiAlN、TiAlON、TiSIN、TiBN、W、WN、WON、WSiN、WBN、WCN、Si、Ta、SaSi、TaN、TaON、TaAlN、TaSiN、TaCN、Mo、MoN、MoSiN、MoAlN、ZrSiN、ZrAlN和RuCoSi。The conductive layer may include at least one selected from the group consisting of Ti, TiSi, TiN, TiON, TiW, TiAlN, TiAlON, TiSIN, TiBN, W, WN, WON, WSiN, WBN, WCN, Si, Ta, SaSi, TaN , TaON, TaAlN, TaSiN, TaCN, Mo, MoN, MoSiN, MoAlN, ZrSiN, ZrAlN, and RuCoSi.
其后,导电层和相变材料层可以被部分地蚀刻,以在第一绝缘图案108、第二绝缘图案130、第三绝缘图案138和第三结构136上顺序地形成相变材料和上电极142。Thereafter, the conductive layer and the phase change material layer may be partially etched to sequentially form a phase change material and an upper electrode on the first
虽然未详细示出,可以在上电极142上进一步形成位线BL。Although not shown in detail, a bit line BL may be further formed on the
[第二示例实施例][Second exemplary embodiment]
图18图示根据另一示例实施例的相变存储器器件的示意横截面图。FIG. 18 illustrates a schematic cross-sectional view of a phase change memory device according to another example embodiment.
参见图18,存储器器件可以包括在衬底上形成的字线204、以及切换装置214、绝缘图案208、224和228、下电极216、226和230、相变材料图案232和上电极234。绝缘图案208、224和228可以包括第一绝缘图案208、第二绝缘图案224和第三绝缘图案228。Referring to FIG. 18 , the memory device may include a word line 204 formed on a substrate, and a switching device 214 , insulating patterns 208 , 224 and 228 , lower electrodes 216 , 226 and 230 , a phase change material pattern 232 and an upper electrode 234 . The insulating patterns 208 , 224 and 228 may include a first insulating pattern 208 , a second insulating pattern 224 and a third insulating pattern 228 .
衬底、字线204、切换装置214、绝缘图案208、224和228、相变材料图案232和上电极234可以与参考图1描述的那些基本上相同,并因此将不重复其详细说明。The substrate, word line 204, switching device 214, insulating patterns 208, 224, and 228, phase change material pattern 232, and upper electrode 234 may be substantially the same as those described with reference to FIG. 1, and thus detailed description thereof will not be repeated.
下电极216、226和230可以电连接到切换装置214。根据示例实施例,当切换装置214是二极管214时,下电极216、226和230可以形成在二极管214上,并且下电极216、226和230可以被形成为与二极管214基本上直接接触。根据另一示例实施例,当切换装置214是晶体管时,下电极216、226和230可以被形成为通过连接图案电连接到晶体管。The lower electrodes 216 , 226 and 230 may be electrically connected to the switching device 214 . According to example embodiments, when the switching device 214 is the diode 214 , the lower electrodes 216 , 226 and 230 may be formed on the diode 214 , and the lower electrodes 216 , 226 and 230 may be formed in substantially direct contact with the diode 214 . According to another example embodiment, when the switching device 214 is a transistor, the lower electrodes 216, 226, and 230 may be formed to be electrically connected to the transistor through a connection pattern.
下电极216、226和230可以包括:包括金属半导体化合物的第一结构216;包括金属氮化物材料的第二结构226;以及包括含元素X的金属氮化物材料的第三结构230。根据示例实施例,第一结构216可以包括硅化钛(TiSi2),第二结构226可以包括TiN,并且第三结构230可以包括含元素X的氮化钛材料(TiXN)。The lower electrodes 216, 226, and 230 may include: a first structure 216 including a metal semiconductor compound; a second structure 226 including a metal nitride material; and a third structure 230 including a metal nitride material including element X. According to example embodiments, the first structure 216 may include titanium silicide (TiSi 2 ), the second structure 226 may include TiN, and the third structure 230 may include an element X-containing titanium nitride material (TiXN).
第一结构216可以被形成为电连接到切换装置214。根据示例实施例,当切换装置214是二极管214时,第一结构216可以被形成为与二极管214的上部接触。此外,当从平面图观看时,第一结构216可以具有圆形形状,并且当从横截面图看时,其可以具有矩形形状。第一结构216的宽度可以与二极管214的宽度基本上相同。The first structure 216 may be formed to be electrically connected to the switching device 214 . According to example embodiments, when the switching device 214 is the diode 214 , the first structure 216 may be formed to contact an upper portion of the diode 214 . Also, the first structure 216 may have a circular shape when viewed from a plan view, and may have a rectangular shape when viewed from a cross-sectional view. The width of the first structure 216 may be substantially the same as the width of the diode 214 .
第二结构226可以被形成在第一结构216上,以及其下部可以具有比其上部更大的宽度。第二结构226的下部的宽度可以与第一结构216的宽度基本上相同。The second structure 226 may be formed on the first structure 216, and a lower portion thereof may have a greater width than an upper portion thereof. The width of the lower portion of the second structure 226 may be substantially the same as the width of the first structure 216 .
根据示例实施例,第二结构226可以包括具有第一宽度的下部和具有比第一宽度更小的第二宽度的上部。第二结构226的上部可以从下部的顶表面垂直地延伸。例如,其可以具有“L”形状。当第二结构226具有“L”的形状时,第二结构226可以包括具有第一宽度的下部和具有第二宽度的上部。第一宽度可以比第二宽度基本上更大。在该情况下,第二结构226可以包括:与第一绝缘图案208接触的第一垂直表面V1;从第一垂直表面V1的下部水平地延伸的第一水平表面H1;从第一垂直表面V1的上部水平地延伸的第二水平表面H2;与第二水平表面H2平行并且与其隔开预定间隔的第三水平表面H3;第二垂直表面V2,所述第二垂直表面V2将第二水平表面H2连接到第三水平表面H3;以及第三垂直表面V3,所述第三垂直表面V3将第一水平表面H1连接到第三水平表面H3。According to example embodiments, the second structure 226 may include a lower portion having a first width and an upper portion having a second width smaller than the first width. The upper portion of the second structure 226 may vertically extend from the top surface of the lower portion. For example, it may have an "L" shape. When the second structure 226 has an 'L' shape, the second structure 226 may include a lower portion having a first width and an upper portion having a second width. The first width may be substantially greater than the second width. In this case, the second structure 226 may include: a first vertical surface V1 in contact with the first insulating pattern 208; a first horizontal surface H1 extending horizontally from a lower portion of the first vertical surface V1; A second horizontal surface H2 extending horizontally on the upper portion of the second horizontal surface H2; a third horizontal surface H3 parallel to the second horizontal surface H2 and spaced therefrom by a predetermined interval; a second vertical surface V2 that divides the second horizontal surface H2 is connected to a third horizontal surface H3; and a third vertical surface V3 connecting the first horizontal surface H1 to the third horizontal surface H3.
根据另一示例实施例,第二结构226可以具有“J”的形状。根据又一示例实施例,第二结构226可以具有圆形、“U”或矩形的形状。According to another example embodiment, the second structure 226 may have a "J" shape. According to yet another example embodiment, the second structure 226 may have a circular, "U" or rectangular shape.
第三结构230可以被形成在第二结构226上。例如,当第二结构226具有“L”的形状时,第三结构230可以被形成在第二结构226的第二垂直表面V2和第三水平表面H3上。第三结构230可以具有“L”的形状。第三结构230的厚度可以比第二结构226的厚度基本上更小。The third structure 230 may be formed on the second structure 226 . For example, when the second structure 226 has an 'L' shape, the third structure 230 may be formed on the second vertical surface V2 and the third horizontal surface H3 of the second structure 226 . The third structure 230 may have an 'L' shape. The thickness of the third structure 230 may be substantially smaller than the thickness of the second structure 226 .
第三结构230可以由具有比第一结构216和第二结构226更高的电阻的材料形成。根据示例实施例,第三结构230可以具有单层结构。第三结构230可以包括含元素X的金属氮化物材料,例如,含元素X的氮化钛材料(TiXN)。元素X可以包括选自Si、B、Al、O和C的组中的至少一个。The third structure 230 may be formed of a material having a higher electrical resistance than the first structure 216 and the second structure 226 . According to example embodiments, the third structure 230 may have a single layer structure. The third structure 230 may include an element-X-containing metal nitride material, for example, an element-X-containing titanium nitride material (TiXN). The element X may include at least one selected from the group of Si, B, Al, O, and C.
根据另一示例实施例,如图5中图示,第三结构230可以具有多层结构,其中,堆叠了包括含元素X的氮化钛材料(TiXN)的下图案和包括含元素Y的氮化钛材料(TiYN)的上图案。元素X和Y可以彼此不同,并且每一个可以包括选自Si、B、Al、O和C的组中的至少一个。According to another exemplary embodiment, as illustrated in FIG. 5 , the third structure 230 may have a multi-layer structure in which a lower pattern including a titanium nitride material (TiXN) including element X and nitrogen including element Y are stacked. The upper pattern of titanium oxide material (TiYN). Elements X and Y may be different from each other, and each may include at least one selected from the group of Si, B, Al, O, and C.
根据另一示例实施例,如图6中图示,第三结构230可以具有下述结构,其中,堆叠了包括氧化钛材料(TiO2)的下图案和包括含元素X的氮化钛材料(TiXN)的上图案。元素X可以包括选自Si、B、Al、O和C的组中的至少一个。According to another example embodiment, as illustrated in FIG. 6 , the third structure 230 may have a structure in which a lower pattern including a titanium oxide material (TiO 2 ) and a titanium nitride material including an element X (TiO 2 ) are stacked. TiXN) on the pattern. The element X may include at least one selected from the group of Si, B, Al, O, and C.
下面将描述用于形成在图18中图示的半导体器件的方法。A method for forming the semiconductor device illustrated in FIG. 18 will be described below.
图7至12以及17图示在用于形成在图18中图示的半导体器件的方法中的阶段的示意横截面图。7 to 12 and 17 illustrate schematic cross-sectional views of stages in a method for forming the semiconductor device illustrated in FIG. 18 .
参见图7至12,可以在衬底200上形成隔离图案202、字线204、第一绝缘图案208和切换装置214,并且可以形成包括硅化钛的第一表面216和包括氮化钛材料的第二初步结构218。7 to 12, an isolation pattern 202, a word line 204, a first insulating pattern 208, and a switching device 214 may be formed on a
形成隔离图案202、字线204、第一绝缘图案208、切换装置214、第一结构216和第二初步结构218的处理可以与参考第一示例实施例的图7至12所述的处理基本上相同,因此,将不重复其说明。The process of forming the isolation pattern 202, the word line 204, the first insulating pattern 208, the switching device 214, the first structure 216, and the second preliminary structure 218 may be substantially the same as that described with reference to FIGS. 7 to 12 of the first example embodiment. Same, therefore, description thereof will not be repeated.
参见图17,可以在第二初步结构218上形成包括含元素X的金属氮化物材料的第三初步结构222。第三初步结构222可以包括例如氮化钛材料(TiXN)。元素X可以包括选自Si、B、Al、O和C的组中的至少一个。Referring to FIG. 17 , a third preliminary structure 222 including a metal nitride material containing element X may be formed on the second preliminary structure 218 . The third preliminary structure 222 may include, for example, a titanium nitride material (TiXN). The element X may include at least one selected from the group of Si, B, Al, O, and C.
可以沿着第二初步结构218的表面轮廓来连续地形成第三初步结构222。可以保形地形成第三初步结构222,而不填充由第二初步结构218限定的第一开口220。The third preliminary structure 222 may be continuously formed along the surface contour of the second preliminary structure 218 . The third preliminary structure 222 may be conformally formed without filling the first opening 220 defined by the second preliminary structure 218 .
根据示例实施例,将进一步详细地描述形成第三初步结构222的处理。可以对于其上形成第二初步结构218的衬底200执行使用含氮的第一前体和含元素X的第二前体的热处理或等离子体热处理。第一前体可以包括例如NH3或N2,并且第二前体的元素X可以包括例如选自Si、B、Al、O和C的组中的至少一个。According to example embodiments, the process of forming the third preliminary structure 222 will be described in further detail. Thermal treatment or plasma thermal treatment using the nitrogen-containing first precursor and the element X-containing second precursor may be performed on the
当元素X是硅时,第二前体可以包括例如选自SiH4、Si2H6、Si3H8、SiCl2H2和BTBAS的组中的至少一个。When the element X is silicon, the second precursor may include, for example, at least one selected from the group of SiH 4 , Si 2 H 6 , Si 3 H 8 , SiCl 2 H 2 , and BTBAS.
当元素X是硼时,第二前体可以包括例如选自B2H6和TEB的组中的至少一个。When the element X is boron, the second precursor may include, for example, at least one selected from the group of B 2 H 6 and TEB.
当元素X是铝时,第二前体可以包括例如选自AlCl3、TEMAH、DMAH和DMEAA的组中的至少一个。When the element X is aluminum, the second precursor may include, for example, at least one selected from the group consisting of AlCl 3 , TEMAH, DMAH, and DMEAA.
当元素X是氧时,第二前体可以包括例如选自O2气体和O3气体的组中的至少一个。When the element X is oxygen, the second precursor may include, for example, at least one selected from the group of O 2 gas and O 3 gas.
当元素X是碳时,第二前体可以包括例如C2H4。When element X is carbon, the second precursor may include, for example , C2H4 .
当执行使用第一和第二前体的热处理或等离子体热处理时,可以将第二初步结构218的上部转换为含元素X的氮化钛材料(TiXN),使得可以在第二初步结构218上形成第三初步结构222。When heat treatment or plasma heat treatment using the first and second precursors is performed, the upper part of the second preliminary structure 218 can be converted into a titanium nitride material (TiXN) containing the element X, so that the upper part of the second preliminary structure 218 can be A third preliminary structure 222 is formed.
根据示例实施例,在执行使用第一和第二前体的热处理或等离子体热处理的同时,可以进一步注射含Ti的第三前体。在该情况下,所生成的产物可以是在第二初步结构218上的、包括含元素X的氮化钛材料的第三初步结构222。第三初步结构222的Ti的含量可以较高。According to example embodiments, while performing heat treatment or plasma heat treatment using the first and second precursors, a third Ti-containing precursor may be further injected. In this case, the resulting product may be a third preliminary structure 222 comprising a titanium nitride material containing the element X on the second preliminary structure 218 . The Ti content of the third preliminary structure 222 may be higher.
根据另一示例实施例,可以在第三初步结构222上进一步形成包括含元素Y的氮化钛材料的第四初步结构(未示出)。可以沿着第三初步结构222的表面轮廓连续地形成第四初步结构。可以保形地形成第四初步结构,而不填充第一开口220。元素Y可以包括例如选自Si、B、Al、O和C的组中的至少一个。可以使用与形成第三初步结构222的处理基本上相同的处理来形成第四初步结构。此外,可以在与其中形成第三初步结构222的腔室基本上相同的原位腔室中形成第四初步结构。According to another example embodiment, a fourth preliminary structure (not shown) including a titanium nitride material containing element Y may be further formed on the third preliminary structure 222 . The fourth preliminary structure may be continuously formed along the surface contour of the third preliminary structure 222 . The fourth preliminary structure may be conformally formed without filling the first opening 220 . The element Y may include, for example, at least one selected from the group of Si, B, Al, O, and C. The fourth preliminary structure may be formed using substantially the same process as that used to form the third preliminary structure 222 . Furthermore, the fourth preliminary structure may be formed in substantially the same in situ chamber as the chamber in which the third preliminary structure 222 is formed.
根据另一示例实施例,在形成第三初步结构222之前,可以在第二初步结构上进一步形成包括氧化钛材料(TiO2)的第四初步结构(未示出)。可以在与其中形成第三初步结构222的腔室基本上相同的原位腔室中形成第四初步结构。According to another example embodiment, before forming the third preliminary structure 222 , a fourth preliminary structure (not shown) including a titanium oxide material (TiO 2 ) may be further formed on the second preliminary structure. The fourth preliminary structure may be formed in substantially the same in situ chamber as the chamber in which the third preliminary structure 222 is formed.
返回参见图18,可以在第三初步结构222上形成第二绝缘层(未示出)。可以形成第二绝缘层以完全地填充第二开口220。Referring back to FIG. 18 , a second insulating layer (not shown) may be formed on the third preliminary structure 222 . A second insulating layer may be formed to completely fill the second opening 220 .
第二绝缘层、第三初步结构222和第二初步结构218可以被部分地蚀刻,以暴露第一绝缘图案208的顶表面,使得可以形成第二绝缘图案224、“U”形状的第三初步结构(未示出)以及“U”形状的第二初步结构(未示出)。The second insulating layer, the third preliminary structure 222, and the second preliminary structure 218 may be partially etched to expose the top surface of the first insulating pattern 208, so that the second insulating pattern 224, the "U" shaped third preliminary structure, may be formed. structure (not shown) and a "U" shaped second preliminary structure (not shown).
可以例如使用CMP处理或回蚀刻处理来蚀刻第二绝缘层、第三初步结构222和第二初步结构218的一部分。通过上述处理形成的第二绝缘层224、“U”形状的第三初步结构和“U”形状的第二初步结构的顶表面可以具有与第一绝缘图案208的顶表面基本上相同的高度。Parts of the second insulating layer, the third preliminary structure 222 and the second preliminary structure 218 may be etched, for example, using a CMP process or an etch-back process. Top surfaces of the second insulating layer 224 , the 'U'-shaped third preliminary structure, and the 'U'-shaped second preliminary structure formed through the above process may have substantially the same height as the top surface of the first insulating pattern 208 .
根据其他示例实施例,可以进一步蚀刻第一绝缘图案208、第二绝缘图案224、“U”形状的第二初步结构以及“U”形状的第三初步结构的上部。可以在基本上相同的高度形成第一绝缘图案208、第二绝缘图案224、“U”形状的第二初步结构以及“U”形状的第三初步结构的进一步蚀刻的上部。According to other example embodiments, upper portions of the first insulating pattern 208 , the second insulating pattern 224 , the 'U'-shaped second preliminary structure, and the 'U'-shaped third preliminary structure may be further etched. Further etched upper portions of the first insulating pattern 208 , the second insulating pattern 224 , the 'U'-shaped second preliminary structure, and the 'U'-shaped third preliminary structure may be formed at substantially the same height.
可以在第一绝缘图案208、第二绝缘图案224、“U”形状的第二初步结构以及“U”形状的第三初步结构上形成掩模(未示出)。所述掩模可以被形成为部分地覆盖“U”形状的第二初步结构以及“U”形状的第三初步结构。可以使用掩模作为蚀刻掩模来部分地蚀刻“U”形状的第二初步结构和“U”形状的第三初步结构、第一绝缘图案208以及第二绝缘图案224,使得可以形成第三结构230和第二结构226。第二结构226和第三结构230可以依赖于蚀刻深度和位置而具有“L”或“J”的形状。A mask (not shown) may be formed on the first insulating pattern 208 , the second insulating pattern 224 , the 'U'-shaped second preliminary structure, and the 'U'-shaped third preliminary structure. The mask may be formed to partially cover the 'U'-shaped second preliminary structure and the 'U'-shaped third preliminary structure. The "U"-shaped second preliminary structure and the "U"-shaped third preliminary structure, the first insulating pattern 208, and the second insulating pattern 224 may be partially etched using the mask as an etching mask, so that the third structure may be formed. 230 and the second structure 226. The second structure 226 and the third structure 230 may have an "L" or "J" shape depending on the etching depth and position.
根据示例实施例的第二结构226可以具有“L”形状。在该情况下,第二结构226可以包括第一宽度的下部和第二宽度的上部。第一宽度可以基本上比第二宽度大。第二结构226可以包括:与第一绝缘图案208接触的第一垂直表面V1;从第一垂直表面V1的下部水平延伸的第一水平表面H1;从第一垂直表面V1的上部水平延伸的第二水平表面H2;第三水平表面H3,所述第三水平表面H3与第二水平表面H2平行并且与其隔开预定间隔;第二垂直表面V2,所述第二垂直表面V2将第二水平表面H2连接到第三水平表面H3;以及第三垂直表面V3,所述第三垂直表面V3将第一水平表面H1连接到第三水平表面H3。The second structure 226 according to example embodiments may have an 'L' shape. In this case, the second structure 226 may include a lower portion of the first width and an upper portion of the second width. The first width may be substantially greater than the second width. The second structure 226 may include: a first vertical surface V1 in contact with the first insulating pattern 208; a first horizontal surface H1 extending horizontally from a lower portion of the first vertical surface V1; a first horizontal surface H1 extending horizontally from an upper portion of the first vertical surface V1. Two horizontal surfaces H2; the third horizontal surface H3, the third horizontal surface H3 is parallel to the second horizontal surface H2 and separated from it by a predetermined interval; the second vertical surface V2, the second vertical surface V2 divides the second horizontal surface H2 is connected to a third horizontal surface H3; and a third vertical surface V3 connecting the first horizontal surface H1 to the third horizontal surface H3.
在该情况下,第三结构230也可以具有“L”的形状。例如,第三结构230可以被形成在第二结构226的第二垂直表面V2和第三水平表面H3上。In this case, the third structure 230 may also have an "L" shape. For example, the third structure 230 may be formed on the second vertical surface V2 and the third horizontal surface H3 of the second structure 226 .
在使用掩模的蚀刻处理期间,通过第一绝缘图案208、第二绝缘图案224、第二结构226和第三结构230形成第二开口(未示出)。可以在第一绝缘图案208、第二绝缘图案224、第二结构226和第三结构230上形成第三绝缘层(未示出),以填充第二开口。第三绝缘层可以由氧化物材料、氮化物材料或氮氧化物材料形成,氧化物材料、氮化物材料或氮氧化物材料可以分别是氧化硅材料、氮化硅材料和氮氧化硅材料。During the etching process using a mask, a second opening (not shown) is formed through the first insulating pattern 208 , the second insulating pattern 224 , the second structure 226 and the third structure 230 . A third insulating layer (not shown) may be formed on the first insulating pattern 208 , the second insulating pattern 224 , the second structure 226 and the third structure 230 to fill the second opening. The third insulating layer may be formed of oxide material, nitride material or oxynitride material, and the oxide material, nitride material or oxynitride material may be silicon oxide material, silicon nitride material and silicon oxynitride material, respectively.
可以去除第三绝缘层的上部,以暴露第一绝缘图案208、第二绝缘图案224、第二结构226和第三结构230的上部。可以通过例如抛光处理和回蚀刻处理来执行去除处理。第一绝缘图案208、第二绝缘图案224、第三绝缘图案228、第二结构226和第三结构230的上部可以具有基本上相同的高度。An upper portion of the third insulating layer may be removed to expose upper portions of the first insulating pattern 208 , the second insulating pattern 224 , the second structure 226 and the third structure 230 . The removal process can be performed by, for example, polishing process and etch-back process. Upper portions of the first insulating pattern 208, the second insulating pattern 224, the third insulating pattern 228, the second structure 226, and the third structure 230 may have substantially the same height.
根据示例实施例,可以进一步蚀刻第一绝缘图案208、第二绝缘图案224、第三绝缘图案228、第二结构226和第三结构230的上部。第一绝缘图案208、第二绝缘图案224、第三绝缘图案228、第二结构226和第三结构230的进一步蚀刻的上部可以具有基本上相同的高度。According to example embodiments, upper portions of the first insulating pattern 208 , the second insulating pattern 224 , the third insulating pattern 228 , the second structure 226 and the third structure 230 may be further etched. The further etched upper portions of the first insulating pattern 208 , the second insulating pattern 224 , the third insulating pattern 228 , the second structure 226 and the third structure 230 may have substantially the same height.
相变材料层可以被形成在第一绝缘图案208、第二绝缘图案224、第三绝缘图案228、第二结构226和第三结构230上。相变材料层(未示出)可以被形成为电连接到第二结构226和第三结构230。A phase change material layer may be formed on the first insulating pattern 208 , the second insulating pattern 224 , the third insulating pattern 228 , the second structure 226 and the third structure 230 . A layer of phase change material (not shown) may be formed to be electrically connected to the second structure 226 and the third structure 230 .
可以在相变材料层上形成导电层(未示出)。导电层可以被形成为电连接到相变材料层。A conductive layer (not shown) may be formed on the phase change material layer. A conductive layer may be formed to be electrically connected to the phase change material layer.
导电层和相变材料层可以被部分地蚀刻,使得可以在第一绝缘图案208、第二绝缘图案224、第三绝缘图案228、第二结构226和第三结构230上顺序地形成相变材料图案232和上电极234。The conductive layer and the phase change material layer may be partially etched such that the phase change material may be sequentially formed on the first insulating pattern 208 , the second insulating pattern 224 , the third insulating pattern 228 , the second structure 226 and the third structure 230 pattern 232 and upper electrode 234 .
虽然未详细示出,但是可以在上电极234上进一步形成位线BL。Although not shown in detail, a bit line BL may be further formed on the upper electrode 234 .
[第三示例实施例][Third exemplary embodiment]
图20图示根据另一示例实施例的相变存储器器件的示意横截面图。FIG. 20 illustrates a schematic cross-sectional view of a phase change memory device according to another example embodiment.
参见图20,存储器器件可以包括在衬底300中形成的字线304、切换装置314、绝缘图案308、322和328、下电极316、324和326、相变材料图案330和上电极332。绝缘图案308、322和328可以包括第一绝缘图案308、第二绝缘图案322和第三绝缘图案328。Referring to FIG. 20 , a memory device may include a
衬底300、字线304、切换装置314、绝缘图案308、322和328、相变材料图案330和上电极332可以与参考图1描述的那些基本上相同,因此,将不重复其详细说明。The
下电极316、324和326可以电连接到切换装置314。根据示例实施例,当切换装置314是二极管314时,下电极316、324和326可以形成在切换装置314上,并且下电极316、324和326可以被形成为与二极管314基本上直接接触。根据另一示例实施例,当切换装置314是晶体管时,下电极316、324和326可以被形成为通过连接图案电连接到晶体管。The
下电极316、324和326可以包括:包括金属半导体化合物的第一结构316;包括金属氮化物材料的第二结构324;以及包括含元素X的金属氮化物材料的第三结构326。根据示例实施例,第一材料316可以包括硅化钛(TiSi2),第二结构324可以包括TiN,并且第三结构326可以包括含元素X的氮化钛材料(TiXN)。The
第一结构316可以电连接到切换装置314。根据示例实施例,当切换装置314是二极管314时,第一结构316可以被形成为与二极管314的上部接触。此外,当从平面图观看时,第一结构316可以具有圆形形状,并且当从横截面图看时,其可以具有矩形形状。第一结构316的宽度可以与切换装置314的宽度基本上相同。The
第二结构324可以被形成在第一结构316上,其下部可以具有比其上部更大的宽度。第二结构324的下部的宽度可以与第一结构316的宽度基本上相同。The
根据示例实施例,第二结构324可以包括具有第一宽度的下部和具有比第一宽度更小的第二宽度的上部。第二结构324的上部可以从下部的顶表面垂直地延伸。例如,第二结构324可以具有“L”形状。当第二结构324具有“L”的形状时,第二结构324可以包括具有第一宽度的下部和具有第二宽度的上部。第一宽度可以比第二宽度更大。在该情况下,第二结构324可以包括:与第一绝缘图案308接触的第一垂直表面V1;从第一垂直表面V1的下部水平地延伸的第一水平表面H1;从第一垂直表面V1的上部水平地延伸的第二水平表面H2;与第二水平表面H2平行并且与其隔开预定间隔的第三水平表面H3;第二垂直表面V2,所述第二垂直表面V2将第二水平表面H2连接到第三水平表面H3;以及第三垂直表面V3,所述第三垂直表面V3将第一水平表面H1连接到第三水平表面H3。According to example embodiments, the
根据另一示例实施例,第二结构324可以具有“J”的形状。根据另一示例实施例,第二结构324可以具有圆形、“U”或矩形的形状。According to another example embodiment, the
第三结构326可以被形成在第二结构324上。更具体地,当第二结构324具有“L”的形状时,第三结构326可以被形成在第二结构324的第二水平表面H2、第二垂直表面V2和第三水平表面H3上。第三结构326的厚度可以比第二结构324的厚度基本上更小。The
第三结构326可以由具有比第一结构316和第二结构324更高的电阻的材料形成。根据示例实施例,第三结构326可以具有单层结构。第三结构326可以包括含元素X的金属氮化物材料,例如,含元素X的氮化钛材料。元素X可以包括选自Si、B、Al、O和C的组中的至少一个。The
根据另一示例实施例,第三结构326可以具有多层结构,其中,堆叠了包括含元素X的氮化钛材料的下图案和包括含元素Y的氮化钛材料的上图案。元素X和Y可以彼此不同,并且元素X和Y中的每个可以包括选自Si、B、Al、O和C的组中的至少一个。According to another example embodiment, the
根据又一示例实施例,第三结构326可以具有下述结构,其中,堆叠了包括氧化钛材料(TiO2)的下图案和包括含元素X的氮化钛材料的上图案。元素X可以包括选自Si、B、Al、O和C的组中的至少一个。According to still another example embodiment, the
下面将描述用于形成在图20中图示的半导体器件的方法。A method for forming the semiconductor device illustrated in FIG. 20 will be described below.
图7至16以及19图示在用于形成在图20中图示的半导体器件的方法中的阶段的示意横截面图。7 to 16 and 19 illustrate schematic cross-sectional views of stages in a method for forming the semiconductor device illustrated in FIG. 20 .
参见图7至12,可以在衬底300上形成隔离图案302、字线304、第一绝缘图案308和切换装置314,并且可以形成包括硅化钛的第一结构316和包括氮化钛材料的第二初步结构318。7 to 12, an
形成隔离图案302、字线304、第一绝缘图案308、切换装置314、第一结构316和第二初步结构318的处理可以与参考第一示例实施例的图7至12所述的处理基本上相同,因此,将不重复其说明。The process of forming the
可以在第二初步结构318上形成牺牲层(未示出)。可以形成牺牲层,以填充由第二初步结构318限定的第一开口(未示出)。牺牲层可以由例如氧化物材料或光致抗蚀剂来形成。A sacrificial layer (not shown) may be formed on the second
牺牲层和第二初步结构318可以被部分地蚀刻,以暴露第一绝缘图案308的顶表面,使得可以形成牺牲图案(未示出)和“U”形状的第二初步结构318。The sacrificial layer and the second
参见图19,可以从衬底300去除牺牲图案。可以使用例如灰化处理和剥除处理来去除牺牲图案。当去除牺牲图案时,可以形成由“U”形状的第二初步结构318限定的第一开口。Referring to FIG. 19 , the sacrificial pattern may be removed from the
可以在“U”形状的第二初步结构318上形成包括含元素X的金属氮化物材料的第三初步结构320。例如,第三初步结构320可以是氮化钛材料。元素X可以包括选自Si、B、Al、O和C的组中的至少一个。A third
可以沿着“U”形状的第二初步结构318的表面轮廓来连续地形成第三初步结构320。可以保形地形成第三初步结构320,而不填充由“U”形状的第二初步结构318限定的第一开口。The third
根据示例实施例,将进一步详细地描述形成第三初步结构320的处理。可以对于其上形成“U”形状的第二初步结构318的衬底300执行使用含氮的第一前体和含元素X的第二前体的热处理或等离子体热处理。第一前体可以包括例如NH3或N2,并且第二前体的元素X可以包括例如选自Si、B、Al、O和C的组中的至少一个。According to example embodiments, the process of forming the third
当元素X是硅时,第二前体可以包括例如选自SiH4、Si3H6、Si3H8、SiCl3H3和BTBAS的组中的至少一个。When the element X is silicon, the second precursor may include, for example, at least one selected from the group of SiH 4 , Si 3 H 6 , Si 3 H 8 , SiCl 3 H 3 , and BTBAS.
当元素X是硼时,第二前体可以包括例如选自B3H6和TEB的组中的至少一个。When the element X is boron, the second precursor may include, for example, at least one selected from the group of B 3 H 6 and TEB.
当元素X是铝时,第二前体可以包括例如选自AlCl3、TEMAH、DMAH和DMEAA的组中的至少一个。When the element X is aluminum, the second precursor may include, for example, at least one selected from the group consisting of AlCl 3 , TEMAH, DMAH, and DMEAA.
当元素X是氧时,第二前体可以包括例如选自O2气体和O3气体的组中的至少一个。When the element X is oxygen, the second precursor may include, for example, at least one selected from the group of O 2 gas and O 3 gas.
当元素X是碳时,第二前体可以包括例如C2H4。When element X is carbon, the second precursor may include, for example , C2H4 .
当执行使用第一和第二前体的热处理或等离子体热处理时,可以将“U”形状的第二初步结构318的上部转换为含元素X的氮化钛材料,使得可以在“U”形状的第二初步结构318上形成第三初步结构320。When heat treatment or plasma heat treatment using the first and second precursors is performed, the upper portion of the "U"-shaped second
根据示例实施例,在执行使用第一和第二前体的热处理或等离子体热处理的同时,可以进一步注射含Ti的第三前体。在该情况下,所生成的产物可以是在第二初步结构318上的、包括含元素X的氮化钛的第三初步结构320。第三初步结构320的Ti的含量可以较高。According to example embodiments, while performing heat treatment or plasma heat treatment using the first and second precursors, a third Ti-containing precursor may be further injected. In this case, the resulting product may be a third
根据另一示例实施例,可以在第三初步结构320上进一步形成包括含元素Y的氮化钛材料的第四初步结构(未示出)。可以沿着第三初步结构320的表面轮廓连续地形成第四初步结构。可以保形地形成第四初步结构,而不填充第一开口。元素Y可以包括例如选自Si、B、Al、O和C的组中的至少一个。可以使用与形成第三初步结构320的处理基本上相同的处理来形成第四初步结构。此外,可以在与其中形成第三结构326的腔室基本上相同的原位腔室中形成第四初步结构。According to another example embodiment, a fourth preliminary structure (not shown) including a titanium nitride material containing element Y may be further formed on the third
根据又一示例实施例,在形成第三初步结构320之前,可以在第二初步结构318上进一步形成包括TiO2的第四初步结构(未示出)。可以在与其中形成第三结构326的腔室基本上相同的原位腔室中形成第四初步结构。According to yet another example embodiment, before forming the third
可以在第三初步结构320上形成第二绝缘层(未示出)。可以形成第二绝缘层以完全地填充第一开口。A second insulating layer (not shown) may be formed on the third
第二绝缘层可以被部分地蚀刻,以暴露第三初步结构320的顶表面,使得可以形成第二绝缘图案322。第二绝缘图案322可以被形成为完全地填充由第三初步结构320限定的开口。The second insulating layer may be partially etched to expose the top surface of the third
第二绝缘图案322的顶表面可以位于与第三初步结构的高度基本上相同的高度上。A top surface of the second
返回参见图20,可以在第一绝缘图案308、第二绝缘图案322和第三初步结构320上形成掩模(未示出)。所述掩模可以被形成为部分地覆盖第三初步结构320。可以使用第四掩模作为蚀刻掩模来部分地蚀刻第三初步结构320、“U”形状的第二初步结构318、第一绝缘图案308和第二绝缘图案322,使得可以形成第三结构326和第二结构324。第二结构324和第三结构326可以依赖于蚀刻深度和位置而具有“L”或“J”的形状。Referring back to FIG. 20 , a mask (not shown) may be formed on the first
根据示例实施例,第二结构324可以具有“L”形状。在该情况下,第二结构324可以包括第一宽度的下部和第二宽度的上部。第一宽度可以基本上比第二宽度大。第二结构324可以包括:与第一绝缘图案308接触的第一垂直表面V1;从第一垂直表面V1的下部水平延伸的第一水平表面H1;从第一垂直表面V1的上部水平延伸的第二水平表面H2;第三水平表面H3,所述第三水平表面H3与第二水平表面H2平行并且与其隔开预定间隔;第二垂直表面V2,所述第二垂直表面V2将第二水平表面H2连接到第三水平表面H3;以及第三垂直表面V3,所述第三垂直表面V3将第一水平表面H1连接到第三水平表面H3。可以在第二结构324的第二水平表面H2、第二垂直表面V2和第三垂直表面V3上形成第三结构326。According to example embodiments, the
在使用掩模进行蚀刻处理时,可以通过第一绝缘图案308、第二绝缘图案322、第二结构324和第三结构326来形成第二开口(未示出)。可以在第一绝缘图案308、第二绝缘图案322、第二结构324和第三结构326上形成第三绝缘层(未示出)。第三绝缘层可以由氧化物材料、氮化物材料或氮氧化物材料形成,所述氧化物材料、氮化物材料或氮氧化物材料可以分别是氧化硅材料、氮化硅材料和氮氧化硅材料。A second opening (not shown) may be formed through the first
可以去除第三绝缘层的上部,以暴露第一绝缘图案308、第二绝缘图案322、第二结构324和第三结构326的上部。可以通过抛光处理和回蚀刻处理来执行去除处理。第一绝缘图案308、第二绝缘图案322、第三绝缘图案328和第三结构326的上部可以具有基本上相同的高度。An upper portion of the third insulating layer may be removed to expose upper portions of the first
相变材料层(未示出)可以被形成在第一绝缘图案308、第二绝缘图案322、第三绝缘图案328、第二结构324和第三结构326上。相变材料层可以被形成为电连接到第二结构324和第三结构326。A phase change material layer (not shown) may be formed on the first
可以在相变材料层上形成导电层(未示出)。导电层可以被形成为电连接到相变材料层。A conductive layer (not shown) may be formed on the phase change material layer. A conductive layer may be formed to be electrically connected to the phase change material layer.
导电层和相变材料层可以被部分地蚀刻,以在第一绝缘图案308、第二绝缘图案322、第三绝缘图案328和第三结构326上顺序地形成相变材料图案330和上电极332。The conductive layer and the phase change material layer may be partially etched to sequentially form the phase
虽然未详细示出,但是可以在上电极332上进一步形成位线BL。Although not shown in detail, a bit line BL may be further formed on the
下面的实验被提供,以便给出一个或多个示例实施例的具体细节。然而,可以明白,示例实施例不限于在实验中描述的具体细节,比较示例也不被解释为限制本发明的范围或必然在每一个方面都在本发明的范围之外。The following experiments are provided to give specific details of one or more example embodiments. It will be understood, however, that example embodiments are not limited to the specific details described in the experiments, nor are comparative examples to be construed as limiting the scope of the invention or necessarily falling outside the scope of the invention in every respect.
[实验示例][Experimental example]
图21图示传统的相变存储器器件的过渡特性,以及图22图示根据第一示例实施例的相变存储器的过渡特性。在图21和22的水平轴上以μA为单位绘制了向相变存储器器件施加的电流。在图21和22的垂直轴上以Ω为单位绘制了在相变存储器器件中测量的电阻。FIG. 21 illustrates transition characteristics of a conventional phase change memory device, and FIG. 22 illustrates transition characteristics of a phase change memory according to the first example embodiment. The applied current to the phase change memory device is plotted in μA on the horizontal axis of FIGS. 21 and 22 . The resistance measured in the phase change memory device is plotted in Ω on the vertical axis of FIGS. 21 and 22 .
参见图21,可以形成下电极,在所述下电极中,堆叠了包括具有大约15厚度的硅化钛的第一结构和包括具有大约80厚度的氮化钛材料的第二结构。包括该下电极的相变存储器器件的过渡特性被测试。如在图21中图示,相变存储器器件显示大约280μA的复位电流。Referring to FIG. 21 , a lower electrode may be formed, in which a stack comprising about 15 thickness of the first structure of titanium silicide and comprising approximately 80 thickness of the second structure of titanium nitride material. Transition characteristics of a phase change memory device including the bottom electrode were tested. As illustrated in FIG. 21 , the phase change memory device exhibited a reset current of approximately 280 μA.
参见图22,形成下电极,在所述下电极中,堆叠了包括具有大约20厚度的硅化钛的第一结构和包括包含具有大约80厚度的含硅的氮化钛材料的第二结构。包括该下电极的相变存储器器件的过渡特性被测试。如在图22中所示,相变存储器器件显示大约230μA的复位电流。Referring to FIG. 22, a lower electrode is formed, in which a stack comprising about 20 thickness of the first structure of titanium silicide and includes a structure having approximately 80 thickness of the second structure of silicon-containing titanium nitride material. Transition characteristics of a phase change memory device including the bottom electrode were tested. As shown in Figure 22, the phase change memory device exhibited a reset current of approximately 230 μA.
参见图21和22,观察到根据第一示例实施例的相变存储器器件的复位电流是大约230μA,与传统的相变存储器器件作比较,减少了差不多50μA。Referring to FIGS. 21 and 22 , it was observed that the reset current of the phase change memory device according to the first exemplary embodiment was about 230 μA, which was reduced by almost 50 μA compared with the conventional phase change memory device.
图23图示根据第一示例实施例的相变存储器器件的耐久特性。FIG. 23 illustrates endurance characteristics of the phase change memory device according to the first example embodiment.
参见图23,形成下电极,在所述下电极中,堆叠了包括具有大约20的厚度的硅化钛的第一结构、包括具有大约80厚度的氮化钛材料的第二结构以及包括具有大约15厚度的含硅的氮化钛材料的第三结构。包括该下电极的相变存储器器件的耐久特性被测试。在大约140℃的温度下执行耐久测试大约12小时。Referring to FIG. 23, a lower electrode is formed, in which a stack comprising about 20 The first structure of titanium silicide with a thickness of about 80 thickness of the second structure of titanium nitride material as well as comprising approximately 15 thickness of the third structure of silicon-containing titanium nitride material. Endurance characteristics of a phase change memory device including the lower electrode were tested. The durability test was performed at a temperature of about 140° C. for about 12 hours.
在图23的水平轴上以周期为单位来绘制对相变存储器器件执行的操作测试的数目。在图23的垂直轴上以Ω为单位来绘制在相变存储器器件中测量的电阻。如图23中图示,相变存储器器件通过大约107的周期的耐久测试。即,根据示例实施例的相变存储器器件具有良好的耐久性。The number of operation tests performed on the phase change memory device is plotted in units of cycles on the horizontal axis of FIG. 23 . The resistance measured in the phase change memory device is plotted in Ω on the vertical axis of FIG. 23 . As illustrated in FIG. 23 , the phase change memory device passed the endurance test for about 10 7 cycles. That is, the phase change memory device according to example embodiments has good endurance.
一般地,需要下电极的各种材料。具体地说,需要开发这样的下电极,在该下电极中,下部具有低电阻并因此由有利于电流供应的材料形成,上部由能够提高电阻率并且通过焦耳加热器改善热产生效率以减少复位电流的材料形成。Generally, various materials of the lower electrode are required. Specifically, there is a need to develop a lower electrode in which the lower part has low resistance and thus is formed of a material that facilitates current supply, and the upper part is made of a material that can increase resistivity and improve heat generation efficiency by a Joule heater to reduce resetting The current material is formed.
根据示例实施例,包括硅化钛的第一结构和包括氮化钛材料的第二结构形成低电阻的下电极的下部,使得能够有助于向相变存储器器件施加的电流的供应。此外,包括含元素X的氮化钛材料的第三结构形成显示高电阻率的下电极的上部,使得可以减少工作电流。According to example embodiments, the first structure including titanium silicide and the second structure including titanium nitride material form a lower portion of the lower electrode with low resistance, so that supply of current applied to the phase change memory device can be facilitated. In addition, the third structure including the titanium nitride material containing the element X forms the upper portion of the lower electrode exhibiting high resistivity, so that the operating current can be reduced.
已经在此公开了示例实施例,并且虽然使用特定的术语,但是仅在一般和说明性的含义上使用它们和解释它们,而不是用于限制。因此,本领域内的技术人员可以明白,在不偏离在所附权利要求中给出的本发明的精神和范围的情况下,可以进行在形式和细节上的各种改变。Example embodiments have been disclosed herein, and although specific terms are used, they are used and interpreted in a generic and descriptive sense only, and not for limitation. Accordingly, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the present invention as set forth in the appended claims.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090092615A KR20110035061A (en) | 2009-09-29 | 2009-09-29 | Phase change memory device |
KR10-2009-0092615 | 2009-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102034928A true CN102034928A (en) | 2011-04-27 |
Family
ID=43887529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010105057474A Pending CN102034928A (en) | 2009-09-29 | 2010-09-29 | Phase-change memory device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2011077526A (en) |
KR (1) | KR20110035061A (en) |
CN (1) | CN102034928A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104124337A (en) * | 2014-07-15 | 2014-10-29 | 中国科学院上海微系统与信息技术研究所 | Method for manufacturing phase change memory unit |
CN104576678A (en) * | 2013-10-15 | 2015-04-29 | 爱思开海力士有限公司 | Variable resistance memory apparatus, manufacturing method thereof |
CN105229786A (en) * | 2013-06-03 | 2016-01-06 | 美光科技公司 | Heat optimizes phase-changing memory unit and manufacture method thereof |
CN109216543A (en) * | 2017-07-06 | 2019-01-15 | 三星电子株式会社 | Semiconductor devices |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101907972B1 (en) | 2011-10-31 | 2018-10-17 | 주식회사 원익아이피에스 | Apparatus and Method for treating substrate |
KR101908062B1 (en) | 2012-03-29 | 2018-10-15 | 삼성전자주식회사 | Phase-change memory devices and methods of manufacturing the same |
US10903418B2 (en) | 2018-11-19 | 2021-01-26 | International Business Machines Corporation | Low resistance electrode for high aspect ratio confined PCM cell in BEOL |
WO2020255170A1 (en) * | 2019-06-21 | 2020-12-24 | Hero MotoCorp Limited | Speed deceleration system of vehicle |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020079483A1 (en) * | 2000-12-26 | 2002-06-27 | Charles Dennison | Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact |
CN101132048A (en) * | 2006-08-24 | 2008-02-27 | 财团法人工业技术研究院 | Phase change memory cell structure and manufacturing method thereof |
US20080142777A1 (en) * | 2006-12-13 | 2008-06-19 | Samsung Electronics Co., Ltd. | Phase change memory device including resistant material and method of fabricating the same |
CN101393965A (en) * | 2007-07-12 | 2009-03-25 | 三星电子株式会社 | Phase change memory device and methods of fabricating the same |
-
2009
- 2009-09-29 KR KR1020090092615A patent/KR20110035061A/en not_active Withdrawn
-
2010
- 2010-09-29 CN CN2010105057474A patent/CN102034928A/en active Pending
- 2010-09-29 JP JP2010219919A patent/JP2011077526A/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020079483A1 (en) * | 2000-12-26 | 2002-06-27 | Charles Dennison | Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact |
CN101132048A (en) * | 2006-08-24 | 2008-02-27 | 财团法人工业技术研究院 | Phase change memory cell structure and manufacturing method thereof |
US20080142777A1 (en) * | 2006-12-13 | 2008-06-19 | Samsung Electronics Co., Ltd. | Phase change memory device including resistant material and method of fabricating the same |
CN101393965A (en) * | 2007-07-12 | 2009-03-25 | 三星电子株式会社 | Phase change memory device and methods of fabricating the same |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105229786A (en) * | 2013-06-03 | 2016-01-06 | 美光科技公司 | Heat optimizes phase-changing memory unit and manufacture method thereof |
CN105229786B (en) * | 2013-06-03 | 2018-05-04 | 美光科技公司 | Heat optimization phase-changing memory unit and its manufacture method |
US10008668B2 (en) | 2013-06-03 | 2018-06-26 | Micron Technology, Inc. | Thermally optimized phase change memory cells and methods of fabricating the same |
US10305036B2 (en) | 2013-06-03 | 2019-05-28 | Micron Technology, Inc. | Thermally optimized phase change memory cells and methods of fabricating the same |
US10636966B2 (en) | 2013-06-03 | 2020-04-28 | Micron Technology, Inc. | Thermally optimized phase change memory cells and methods of fabricating the same |
CN104576678A (en) * | 2013-10-15 | 2015-04-29 | 爱思开海力士有限公司 | Variable resistance memory apparatus, manufacturing method thereof |
CN104124337A (en) * | 2014-07-15 | 2014-10-29 | 中国科学院上海微系统与信息技术研究所 | Method for manufacturing phase change memory unit |
CN109216543A (en) * | 2017-07-06 | 2019-01-15 | 三星电子株式会社 | Semiconductor devices |
CN109216543B (en) * | 2017-07-06 | 2023-10-24 | 三星电子株式会社 | Semiconductor device with a semiconductor layer having a plurality of semiconductor layers |
Also Published As
Publication number | Publication date |
---|---|
JP2011077526A (en) | 2011-04-14 |
KR20110035061A (en) | 2011-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7569417B2 (en) | Method of forming a phase changeable material layer, a method of manufacturing a phase changeable memory unit, and a method of manufacturing a phase changeable semiconductor memory device | |
US8901009B2 (en) | Methods of manufacturing semiconductor devices | |
US7622379B2 (en) | Methods of forming metal contact structures and methods of fabricating phase-change memory devices using the same | |
CN102104055B (en) | Variable resistance memory device | |
CN102034928A (en) | Phase-change memory device | |
US8551805B2 (en) | Methods of manufacturing phase-change memory devices | |
US20080054244A1 (en) | Phase change memory device and method of forming the same | |
CN101685825B (en) | The integrated circuit that comprises diode memory cells | |
US11805714B2 (en) | Phase change memory with conductive bridge filament | |
KR20090029488A (en) | Method of forming a silicon-containing chalcogenide film and a method of manufacturing a phase change memory device | |
US20080194106A1 (en) | Method of forming a titanium aluminum nitride layer and method of manufacturing a phase-change memory device using the same | |
KR20130012385A (en) | Semiconductor device and method for manufacturing the same | |
US20240276896A1 (en) | Titanium silicon nitride barrier layer | |
CN102810633A (en) | Phase change random access memory device and manufacturing method thereof | |
KR20130110406A (en) | Phase-change memory devices and methods of manufacturing the same | |
US10930848B2 (en) | Variable resistance memory device and method of manufacturing the same | |
US20110073832A1 (en) | Phase-change memory device | |
KR101802436B1 (en) | Semiconductor device and method for manufacturing the same | |
KR101163046B1 (en) | Fabricating Of Phase Change Random Access Memory | |
US20130193402A1 (en) | Phase-change random access memory device and method of manufacturing the same | |
TWI855193B (en) | Three-dimensional semiconductor memory devices | |
US20090285986A1 (en) | Methods of forming a material layer and methods of fabricating a memory device | |
CN111415956B (en) | Variable resistance memory device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110427 |