CN102026050A - Optical fiber CAN bus hub and networking method thereof - Google Patents
Optical fiber CAN bus hub and networking method thereof Download PDFInfo
- Publication number
- CN102026050A CN102026050A CN 200910272151 CN200910272151A CN102026050A CN 102026050 A CN102026050 A CN 102026050A CN 200910272151 CN200910272151 CN 200910272151 CN 200910272151 A CN200910272151 A CN 200910272151A CN 102026050 A CN102026050 A CN 102026050A
- Authority
- CN
- China
- Prior art keywords
- bus
- hub
- twisted
- pair
- pin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000006855 networking Effects 0.000 title abstract description 15
- 230000003287 optical effect Effects 0.000 claims abstract description 60
- 238000006243 chemical reaction Methods 0.000 claims description 22
- 230000005611 electricity Effects 0.000 claims 3
- 239000000835 fiber Substances 0.000 abstract description 12
- 230000008054 signal transmission Effects 0.000 abstract description 8
- 230000000903 blocking effect Effects 0.000 abstract description 3
- 230000009977 dual effect Effects 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 description 10
- 230000004888 barrier function Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000002955 isolation Methods 0.000 description 4
- 230000001066 destructive effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Landscapes
- Small-Scale Networks (AREA)
- Optical Communication System (AREA)
Abstract
光纤CAN总线集线器的组网方法,将具有n个光口和一个本地双绞线电口扩展电路的光纤CAN总线的主集线器及主集线器与n个光节点或n个从集线器或n个远端电口扩展装置连接的n个双绞线CAN子网和1个本地双绞线CAN子网连接而构成网络,它采用可编程逻辑器件CPLD实现“线与”功能的带有若干个光口和一个双绞线电口扩展电路的光纤CAN总线集线器及采用双CAN收发器和两对双绞线将信号收发分离,避免信号传输环路引起自激阻塞通信;采用光纤CAN总线集线器,光纤对和远方电口扩展装置将光节点,本地双绞线CAN总线子网和远方双绞线CAN总线子网连接在一起,构成高网速广域组网方案。
The networking method of the optical fiber CAN bus hub is to combine the main hub and the main hub of the optical fiber CAN bus with n optical ports and a local twisted pair electric port expansion circuit with n optical nodes or n slave hubs or n remote ends The n twisted-pair CAN subnets connected to the electrical port expansion device and one local twisted-pair CAN subnet are connected to form a network. A fiber-optic CAN bus hub with twisted-pair electric port expansion circuit and dual CAN transceivers and two pairs of twisted-pair wires to separate signal transmission and reception, avoiding self-excited blocking communication caused by signal transmission loops; fiber optic CAN bus hub, fiber optic pair and The remote electrical port expansion device connects the optical node, the local twisted pair CAN bus subnet and the remote twisted pair CAN bus subnet together to form a high-speed wide-area networking solution.
Description
技术领域technical field
本发明属于CAN总线网络,特别是涉及一种传输介质为光纤的CAN总线集线器和基于该集线器的将光纤CAN节点和双绞线CAN总线子网连接在一起的广域高速组网方法。The invention belongs to a CAN bus network, in particular to a CAN bus hub whose transmission medium is an optical fiber and a wide-area high-speed networking method based on the hub for connecting an optical fiber CAN node and a twisted-pair CAN bus subnet together.
背景技术Background technique
CAN(Control Area Network)总线是一种采用无破坏性位竞争机制实现串行多主通信的现场总线网络。CAN总线具有抗干扰能力强、报文短、实时性好和组网成本低等优点。特别适合于环境恶劣,电磁辐射大,对可靠性要求高的工业自动化现场和汽车部件控制等领域。CAN总线的最常用传输介质是双绞线,在这种介质上可实现的最高速率为1Mbps。实际使用时,双绞线CAN总线的可用通信速率低于1Mbps。造成通信速率下降的原因主要有以下几个:(1)总线上接入的节点过多,造成总线参数失配;(2)节点上加装的过压过流保护电路造成总线参数失配;(3)节点的地域分布过大,太长电缆的分布参数造成总线参数失配。CAN (Control Area Network) bus is a field bus network that uses a non-destructive bit contention mechanism to realize serial multi-master communication. CAN bus has the advantages of strong anti-interference ability, short message, good real-time performance and low networking cost. It is especially suitable for fields such as industrial automation sites and auto parts control with harsh environments, large electromagnetic radiation, and high reliability requirements. The most commonly used transmission medium of the CAN bus is a twisted pair, and the highest rate achievable on this medium is 1Mbps. In actual use, the available communication rate of the twisted-pair CAN bus is lower than 1Mbps. The main reasons for the decrease in communication rate are as follows: (1) There are too many nodes connected to the bus, resulting in bus parameter mismatch; (2) The overvoltage and overcurrent protection circuit installed on the node causes bus parameter mismatch; (3) The geographical distribution of the nodes is too large, and the distribution parameters of the too long cable cause the mismatch of the bus parameters.
当总线的工作环境过于恶劣时,如节点间的共模电位差超出物理层收发器件的最大值时,总线将不能正常工作。因此研究采用光纤作为传输介质,利用其传输速率高和抗干扰能力强等优点,研究其组网方式,解决CAN总线的大容量,高速率和远距离组网问题具有十分重要的意义。When the working environment of the bus is too harsh, such as when the common-mode potential difference between nodes exceeds the maximum value of the physical layer transceiver device, the bus will not work normally. Therefore, it is of great significance to study the use of optical fiber as the transmission medium, take advantage of its high transmission rate and strong anti-interference ability, study its networking mode, and solve the large-capacity, high-speed and long-distance networking problems of the CAN bus.
双绞线CAN总线网络是由各个节点中的CAN控制器通过CAN收发器连接到双绞线上构成。当多个节点竞争总线时,某一节点发出的“隐性”或“显性”位信号,与其它节点发送的信号在总线上实现逻辑“线与”,并将结果送回到发送节点和各个接收节点实现无破坏性位竞争。由于双绞线并不限制信号的传输方向,出现在总线上的每一位数据只要能在规定的时间内被总线上的所有节点(包括发送节点)正确接收,通信就可正常进行。The twisted-pair CAN bus network is composed of CAN controllers in each node connected to twisted-pair wires through CAN transceivers. When multiple nodes compete for the bus, the "recessive" or "dominant" bit signal sent by a certain node, and the signals sent by other nodes realize logic "wired AND" on the bus, and send the result back to the sending node and Each receiving node implements non-destructive bit contention. Since the twisted pair does not limit the transmission direction of the signal, as long as every bit of data appearing on the bus can be correctly received by all nodes on the bus (including the sending node) within a specified time, the communication can proceed normally.
光纤是一种单向传输光信号的介质,目前还未出现一种能实现当一个或多个节点发出(或不发出)光信号时,光信号可以实现“线与”叠加,使所有节点均能收到叠加后的光信号的光收发器件。故光纤并不能直接用于CAN总线组网。采用光纤组网时,一般是保留原有的CAN控制器,舍去CAN收发器和双绞线,对网络物理层进行重新设计。光纤物理层如何与传统的双绞线物理层CAN网络相连也是需要解决的问题。Optical fiber is a medium for one-way transmission of optical signals. At present, there is no one that can achieve "line-AND" superposition of optical signals when one or more nodes send out (or not send out) optical signals, so that all nodes are equal to each other. An optical transceiver device capable of receiving superimposed optical signals. Therefore, optical fiber cannot be directly used for CAN bus networking. When using optical fiber networking, the original CAN controller is generally retained, the CAN transceiver and twisted pair are discarded, and the physical layer of the network is redesigned. How to connect the optical fiber physical layer with the traditional twisted pair physical layer CAN network is also a problem to be solved.
目前,关于光纤CAN总线组网已提出了几种实施方案。其中:(1)环形光纤CAN总线组网方案允许接入环内的节点(只能是光纤节点)的个数非常有限,并且随着接入节点个数的增加,通信速率急剧下降;(2)光纤CAN总线自愈环网方案也存在类似的问题;(3)双星光纤CAN总线方案允许接入的节点较多,但和前两种方案一样都存在着信号传输环路自激造成网络堵塞和不便于与双绞线CAN总线子网接口的问题。At present, several implementation schemes have been proposed about the networking of optical fiber CAN bus. Among them: (1) the ring optical fiber CAN bus network scheme allows a very limited number of nodes (only optical fiber nodes) in the access ring, and with the increase of the number of access nodes, the communication rate drops sharply; (2 ) The optical fiber CAN bus self-healing ring network scheme also has similar problems; (3) The dual-star optical fiber CAN bus scheme allows more nodes to be connected, but like the previous two schemes, there is a signal transmission loop self-excitation that causes network congestion and inconvenient interfacing with twisted pair CAN bus subnetworks.
发明内容Contents of the invention
本发明的目的是在现有技术的基础上提供一种光纤CAN总线集线器及其组网方法。The purpose of the present invention is to provide an optical fiber CAN bus hub and a networking method thereof on the basis of the prior art.
本发明的技术方案是:Technical scheme of the present invention is:
提供一种光纤CAN总线集线器的组网方法,其特征在于:将具有n个光口和一个本地双绞线电口扩展电路的光纤CAN总线集线器及其与另外n-1个光节点,本地双绞线子网,远端电口扩展装置和远端双绞线子网连接通信而构成的网络。A networking method of a fiber optic CAN bus hub is provided, which is characterized in that: the fiber optic CAN bus hub with n optical ports and a local twisted pair electrical port extension circuit and other n-1 optical nodes, local dual Twisted wire subnet, remote electrical port expansion device and remote twisted pair subnet are connected and communicated to form a network.
例如图1所示的具有n个光口和一个本地双绞线电口扩展电路的光纤CAN总线集线器1及其与各个光节点(包括光节点2),本地双绞线子网4和远端双绞线子网7的组网方法。For example, the optical fiber
集线器1上的每个光口都有一对光电转换模块PIN和电光转换模块LED。以1#光口为例,PIN12和LED13通过光纤对3分别与光节点2中的LED23和PIN22相连。集线器1的本地电口扩展电路14可通过两对双绞线与本地双绞线子网4相连。每个光口(以n#光口为例说明)也可以通过长光纤对5与位于远方的远端电口扩展装置6相连后,再通过两对双绞线连接到远端双绞线子网7上。Each optical port on the
所述的光节点2如图1所示,包括一个CAN总线控制器21,其输入脚RXD接PIN22的输出端,其输出脚TXD接LED23的输入端。The
提供的一种光纤CAN总线集线器1的原理框图如图2所示,集线器1内置一个复杂可编程器件CPLD11、构成n个光口的n个光电转换模块PIN、n个电光转换模块LED和本地电口扩展电路14。n个PIN的输出接CPLD11的输入RX(1)...RX(n);本地电口扩展电路14的输出接CPLD11的输入脚RX(n+1)。CPLD11的输出TX(1)...TX(n)接各个LED的输入;输出TX(n+1)接本地电口扩展电路14的输入。A schematic block diagram of a fiber optic
所述的本地电口扩展电路14如图2所示,它包括CAN收发器143、144、光隔141和142。收发器143的总线引脚CANH1和CANL1,收发器144的总线引脚CANH2和CANL2通过两对双绞线分别与本地双绞线子网4中的双绞线41和双绞线42相连。收发器143的输入脚TXD1接高电平“1”;输出脚RXD1接光隔141的输入脚,光隔141的输出接CPLD11的输入脚RX(n+1)。收发器144的输出脚RXD2悬空;输入脚TXD2接光隔142的输出脚,光隔142的输入接CPLD11的输出脚TX(n+1)。The local electrical port expansion circuit 14 is shown in FIG. 2 , which includes CAN transceivers 143 , 144 , and optical compartments 141 and 142 . The bus pins CANH1 and CANL1 of the transceiver 143 and the bus pins CANH2 and CANL2 of the transceiver 144 are respectively connected to the twisted pair 41 and the twisted pair 42 in the local twisted pair subnet 4 through two pairs of twisted pairs. The input pin TXD1 of the transceiver 143 is connected to a high level "1"; the output pin RXD1 is connected to the input pin of the optical isolation 141, and the output of the optical isolation 141 is connected to the input pin RX(n+1) of the CPLD11. The output pin RXD2 of the transceiver 144 is suspended; the input pin TXD2 is connected to the output pin of the optical barrier 142, and the input of the optical barrier 142 is connected to the output pin TX(n+1) of the CPLD11.
所述的本地双绞线子网4如图3所示,它包括节点43和其它多个电口CAN节点,两对双绞线41和42和四个120Ω终端电阻。以电节点43为例,它包括了一个CAN控制器435,两个CAN收发器431和432,两个光隔433和434。收发器431的输入脚TXD1通过光隔433接到CAN控制器435的输出脚TXD上,输出脚RXD1悬空,CAN总线脚CANH1,CANL1接双绞线41上。收发器432的输出脚RXD2通过光隔434接到CAN控制器435的输入脚RXD上,输入脚TXD2接高电平“1”,CAN总线脚CANH2,CANL2接双绞线42上。双绞线41和42分别与两个120Ω终端电阻相连。其它电节点接入双绞线41和42的方法相同。Described local twisted pair subnet 4 is shown in Figure 3, and it comprises node 43 and other multiple electrical port CAN nodes, two pairs of twisted pairs 41 and 42 and four 120Ω termination resistors. Taking the electrical node 43 as an example, it includes a CAN controller 435 , two CAN transceivers 431 and 432 , and two optical barriers 433 and 434 . The input pin TXD1 of the transceiver 431 is connected to the output pin TXD of the CAN controller 435 through the optical barrier 433 , the output pin RXD1 is suspended, and the CAN bus pins CANH1 and CANL1 are connected to the twisted pair 41 . The output pin RXD2 of the transceiver 432 is connected to the input pin RXD of the CAN controller 435 through the optical barrier 434, the input pin TXD2 is connected to a high level "1", and the CAN bus pins CANH2 and CANL2 are connected to the twisted pair 42. The twisted pairs 41 and 42 are respectively connected to two 120Ω terminal resistors. The methods for connecting other electrical nodes to the twisted pairs 41 and 42 are the same.
所述的远端电口扩展装置6如图4所示,它包括CAN收发器63和64,光电转换模块61和电光转换模块62。收发器64的输入脚TXD2通过PIN61和长光纤对5相连,输出脚RXD2悬空,CAN总线脚CANH2,CANL2接双绞线72上。收发器63的输出脚RXD1通过LED62和长光纤对5相连,输入脚TXD1接高电平“1”,CAN总线脚CANH1,CANL1接双绞线71上。The remote electrical port extension device 6 is shown in FIG. 4 , which includes CAN transceivers 63 and 64 , a photoelectric conversion module 61 and an electro-optical conversion module 62 . The input pin TXD2 of the transceiver 64 is connected to the
所述的远端双绞线子网7如图4所示,它与本地双绞线子网的电路结构和连接方法完全相同。The remote twisted-
本发明还提出了一种光纤集线器的级联组网方法如图6所示,它由具有n个光口的工作在主方式的主集线器81和具有n个光口的工作在从方式的从集线器82级联构成。主集线器81的每一个光口均可接光节点或从集线器,而从集线器82只有一个光口可接主集线器其它光口接光节点。例如,主集线器81的n#光口通过光纤对85与从集线器82的1#光口相连。主集线器81和从集线器82的其它光口分别接n-1个光节点并分别和一个本地双绞线CAN子网83和84相连。The present invention also proposes a cascading networking method of an optical fiber hub as shown in Figure 6, which consists of a master hub 81 with n optical ports working in a master mode and a slave working in a slave mode with n optical ports The hubs 82 are cascaded. Each optical port of the main hub 81 can be connected to an optical node or a slave hub, while only one optical port of the slave hub 82 can be connected to the other optical ports of the main hub to connect to an optical node. For example, the n# optical port of the master hub 81 is connected to the 1# optical port of the slave hub 82 through the optical fiber pair 85 . Other optical ports of the main hub 81 and the slave hub 82 are respectively connected to n-1 optical nodes and connected to a local twisted-pair CAN subnet 83 and 84 respectively.
本发明的技术效果体现在:Technical effect of the present invention is embodied in:
1、采用可编程逻辑器件CPLD实现“线与”逻辑的光纤CAN总线集线器通过光纤对将多个光CAN节点连接在一起,可实现完全符合CAN总线(物理层以上)规范的高速CAN网络。1. The optical fiber CAN bus hub that uses programmable logic device CPLD to realize "wire-and" logic connects multiple optical CAN nodes together through optical fiber pairs, and can realize a high-speed CAN network that fully complies with the CAN bus (above the physical layer) specification.
2、采用收发分离的两套CAN收发器和两对双绞线解决了以往光纤网络存在的信号传输环路产生自激,阻塞通信问题。2. Two sets of CAN transceivers and two pairs of twisted-pair wires separated by sending and receiving are used to solve the problem of self-excitation and blocking communication in the signal transmission loop existing in the optical fiber network in the past.
3、采用光纤CAN总线集线器、长光纤对、远端电口扩展装置和集线器的级联将多个光节点、本地双绞线CAN总线子网和远方双绞线CAN总线子网连接在一起,实现完全符合CAN总线规范的广域CAN总线高速网络。3. Using fiber optic CAN bus hubs, long fiber pairs, remote electrical port expansion devices and hub cascades to connect multiple optical nodes, local twisted pair CAN bus subnets and remote twisted pair CAN bus subnets together, Realize the wide-area CAN bus high-speed network that fully complies with the CAN bus specification.
附图说明Description of drawings
图1基于光纤CAN总线集线器的组网图;Figure 1 is based on the networking diagram of the fiber optic CAN bus hub;
图2光纤CAN总线集线器原理框图;Fig. 2 block diagram of optical fiber CAN bus hub;
图3本地双绞线CAN总线子网原理框图;Fig. 3 local twisted pair CAN bus subnet principle block diagram;
图4远端电口扩展装置原理框图和远端双绞线CAN总线子网图;Figure 4 The functional block diagram of the remote electrical port expansion device and the remote twisted pair CAN bus subnet;
图5 PCA82C250 CAN总线收发器内部电路框图;Figure 5 PCA82C250 CAN bus transceiver internal circuit block diagram;
图6光纤CAN总线集线器的级联示意图;The cascade schematic diagram of Fig. 6 optical fiber CAN bus hub;
具体实施方式Detailed ways
下面结合附图和实例详细说明本发明。The present invention will be described in detail below in conjunction with accompanying drawings and examples.
在图1所示的由光节点,本地电节点和远端电节点组成的广域CAN总线网络中,节点发出的“隐性”位和“显性”位在电路上分别表现为高电平和低电平。在光纤介质中传输时,要设计成有光传输对应“显性”位,无光传输(或不连接光纤时)对应“隐性”位。In the wide-area CAN bus network composed of optical nodes, local electrical nodes and remote electrical nodes shown in Figure 1, the "recessive" bit and "dominant" bit sent by the node are represented as high level and high level respectively on the circuit. low level. When transmitting in the optical fiber medium, it should be designed so that there is optical transmission corresponding to the "dominant" bit, and no optical transmission (or when not connected to the optical fiber) corresponds to the "recessive" bit.
图2所示的集线器1工作在主方式,其中的可编程逻辑器件CPLD11中的逻辑按如下n+1个方程式组设计:The
TX(1),TX(2),...,TX(n),TX(n+1)=TX(1), TX(2), ..., TX(n), TX(n+1) =
RX(1)&RX(2)&...&RX(n)&RX(n+1) (1)RX(1)&RX(2)&...&RX(n)&RX(n+1) (1)
其含义是将输入到CPLD11中的n+1个信号RX(1),RX(2)...RX(n),RX(n+1)的信号全部相“与”后,再送回n+1个输出TX(1),TX(2)...TX(n),TX(n+1)。采用CPLD逻辑“与”实现了双绞线的“线与”功能。当集线器上第i个光口悬空未用时,对应的PIN无光信号输入,CPLD11的输入RX(i)=1,为“隐性”电平,故不会影响方程式组(1)的“与”效果。Its meaning is to "AND" all the n+1 signals RX(1), RX(2)...RX(n), RX(n+1) input to CPLD11, and then send them back to
在图3所示的本地双绞线CAN总线子网4中,每个节点都采用收发分离的两套CAN收发器和两对双绞线。现以电节点43为例说明电节点和光节点的互连关系。CAN控制器435从TXD脚发出的位信号(“隐性”位或“显性”位)经过光隔433,CAN收发器431到达发送双绞线41,先与本子网中其它节点发出的信号“线与”后,再经过CAN收发器143,光隔141从RX(n+1)脚进入CPLD11,按方程式组(1)与其它光节点的位信号相“与”后,从TX(n+1)输出,经过光隔142,CAN收发器144到达接收双绞线42。该位信号经CAN收发器432,光隔434回到CAN接收器435的RXD输入脚;该位信号也同时被子网中的其它节点接收。In the local twisted-pair CAN bus subnet 4 shown in FIG. 3 , each node adopts two sets of CAN transceivers and two pairs of twisted-pair wires separated for sending and receiving. The electrical node 43 is taken as an example to illustrate the interconnection relationship between the electrical node and the optical node. The bit signal ("recessive" bit or "dominant" bit) that CAN controller 435 sends from TXD pin passes through optical barrier 433, and CAN transceiver 431 arrives and sends twisted pair 41, first with the signal that other nodes send in this subnet After "line and", through the CAN transceiver 143, the optical barrier 141 enters the CPLD11 from the RX (n+1) pin, and after "ANDing" with the bit signals of other optical nodes according to the equation group (1), from the TX (n +1) output, the CAN transceiver 144 reaches the receiving twisted pair 42 through the optical barrier 142 . The bit signal returns to the RXD input pin of the CAN receiver 435 through the CAN transceiver 432 and the optical isolation 434; the bit signal is also received by other nodes in the subnet at the same time.
同样,在图4所示的远端双绞线CAN总线子网7中,子网内各个电节点发出的位信号先在发送双绞线71上实现了“线与”后,再经过远端电口扩展装置6和长光纤对5耦合从RX(n)脚进入CPLD11,与其它信号相“与”后从TX(n)输出,再经过远端电口扩展装置6和长光纤对5耦合到达接收双绞线72,被子网中所有节点接收。Similarly, in the far-end twisted-pair
由上述分析可知,无论是光节点还是电节点从物理层发出的“隐性”位或“显性”位信号全部在CPLD11中进行“与”逻辑运算后,发回各个节点,符合CAN总线标准对物理层信号传输特性的要求,故可保证网络中各个节点实现CAN总线特有的多主,无破坏性位竞争方式的通信。From the above analysis, it can be seen that the "recessive" bit or "dominant" bit signal sent from the physical layer by both the optical node and the electrical node is all processed in the CPLD11 after the "AND" logic operation, and then sent back to each node, which conforms to the CAN bus standard Due to the requirements of the physical layer signal transmission characteristics, it can ensure that each node in the network realizes the unique multi-master of CAN bus, and the communication without destructive bit competition.
当图2所示的本地电口扩展电路14未接本地双绞线子网4时,CAN收发器143的输出RXD1为“隐性”高电平,RX(n+1)脚输入集线器的CPLD11中参加“与”运算,故也不会影响方程式组(1)的“与”效果。When the local electrical port expansion circuit 14 shown in Fig. 2 was not connected to the local twisted pair subnet 4, the output RXD1 of the CAN transceiver 143 was "recessive" high level, and the CPLD11 of the RX (n+1) pin input hub Participate in the "and" operation, so it will not affect the "and" effect of the equation group (1).
电口中采用两套CAN总线收发器和两对双绞线的目的就是为了消除信号传输环路,避免产生自激阻塞通信。现以图2中的本地电口扩展电路14为例加以说明。图5是CAN总线收发器PCA82C250的内部结构图,可以看出收发器具有自发自收功能,若只采用一个CAN收发器143或144,则CPLD11从TX(n+1)发出的信号,通过光隔142,CAN收发器144或143,光隔141从RX(n+1)又回到CPLD11。TX(n+1)和RX(n+1)出现在方程式组(1)的两端,故产生了信号环路。The purpose of using two sets of CAN bus transceivers and two pairs of twisted pairs in the electrical port is to eliminate the signal transmission loop and avoid self-excited blocking communication. Now take the local electrical port expansion circuit 14 in FIG. 2 as an example for illustration. Fig. 5 is the internal structure diagram of CAN bus transceiver PCA82C250, it can be seen that the transceiver has the function of self-sending and self-receiving, if only one CAN transceiver 143 or 144 is used, the signal sent by CPLD11 from TX(n+1) will pass through the optical Interval 142, CAN transceiver 144 or 143, optical isolation 141 returns from RX(n+1) to CPLD11. TX(n+1) and RX(n+1) appear at both ends of equation group (1), so a signal loop is generated.
图2所示,采用了双CAN收发器143和144和两对双绞线后可以解决这个问题。若只采用一对双绞线,仍然会形成信号环路。采用了两对双绞线,则各个电节点中必须采用两套独立收发的CAN总线收发器。As shown in FIG. 2, this problem can be solved by adopting dual CAN transceivers 143 and 144 and two pairs of twisted pairs. If only one twisted pair is used, a signal loop will still be formed. If two pairs of twisted-pair wires are used, two sets of independent CAN bus transceivers must be used in each electrical node.
图6所示的级联方式中,主集线器81工作在主方式,其中的CPLD仍然按n+1个方程式组(1)设计实现。从集线器82工作在从方式,其中的CPLD按下列单个方程式(2)和n个方程式组(3)设计实现。In the cascading mode shown in FIG. 6 , the main hub 81 works in the main mode, and the CPLD therein is still designed and implemented according to n+1 equation group (1). The slave hub 82 works in a slave mode, wherein the CPLD is designed and implemented according to the following single equation (2) and n equation groups (3).
TX(1)=RX(2)&...&RX(n)&RX(n+1) (2)TX(1)=RX(2)&...&RX(n)&RX(n+1) (2)
TX(2),...,TX(n),TX(n+1)=RX(1) (3)TX(2),...,TX(n), TX(n+1)=RX(1) (3)
由于1#光口是从集线器82向上的级联口,上述方程式的其含义是将输入到从集线器82中的n个信号RX(2)...RX(n),RX(n+1)(不包括RX(1))全部相“与”后,通过TX(1)送入主集线器81,与81中的所有信号再相“与”后从RX(1)回到从集线器82中,再转发至n个输出TX(2)...TX(n),TX(n+1)上。采用这种设计的目的是为了避免主、从集线器间出现信号传输环路。Since the 1# optical port is an upward cascading port from the hub 82, the meaning of the above equation is to input n signals RX(2)...RX(n), RX(n+1) from the hub 82 (not including RX (1)) after all phases "AND", send it to the main hub 81 by TX (1), and return to the slave hub 82 from RX (1) after all signals in 81 are phased "AND". Then forward to n output TX(2)...TX(n), TX(n+1). The purpose of this design is to avoid signal transmission loops between the master and slave hubs.
只要主、从集线器的逻辑按(1)、(2)和(3)设计实现,集线器的级联可以有很多级。随着级联数的增加,可接入的节点数很大,但信号传输的延时增加,可实现的最高CAN总线速率随之下降。As long as the logic of the master and slave hubs is implemented according to (1), (2) and (3), the cascading of hubs can have many stages. With the increase of the number of cascades, the number of nodes that can be accessed is very large, but the delay of signal transmission increases, and the highest achievable CAN bus rate decreases accordingly.
按此方法组成的广域CAN总线网络,各个由电节点构成的子网络规模都不要太大,故不存在总线节点过多、线缆过长造成通信速率下降问题,故网络的最高通信速率基本上只受限于各个器件的传输延时和信号在长光纤对中的延时。这个最高速率远高于采用全双绞线构成的广域CAN总线网络的最高速率。In the wide-area CAN bus network formed by this method, the scale of each sub-network composed of electrical nodes should not be too large, so there is no problem of communication rate drop caused by too many bus nodes and too long cables, so the maximum communication rate of the network is basically It is only limited by the transmission delay of each device and the delay of the signal in the long fiber pair. This maximum rate is much higher than the maximum rate of the wide-area CAN bus network composed of fully twisted pairs.
所述的光纤对3和长光纤对5等可采用单模或多模光纤。The
所述的光电转换模块PIN12,PIN22,PIN15和PIN61等可采用任何一款通信速率符合要求的转换模块,如HP公司的HFBR-2412。The photoelectric conversion modules PIN12, PIN22, PIN15 and PIN61 can use any conversion module with a communication rate that meets the requirements, such as HFBR-2412 of HP Company.
所述的电光转换模块LED13,LED123,LED116和LED162等可采用任何一款通信速率符合要求的转换模块,如HP公司的HFBR-1414。The electro-optical conversion modules LED13, LED123, LED116 and LED162 can use any conversion module with a communication rate that meets the requirements, such as HFBR-1414 of HP Company.
所述的可编程逻辑器件CPLD11采用任何一个公司生产的具有足够逻辑资源的CPLD,如:XC9572。The programmable logic device CPLD11 adopts a CPLD with sufficient logic resources produced by any company, such as XC9572.
所述的CAN总线控制器21,435和731等采用任何一款符合CAN总线规范的芯片,如:SJA1000。The CAN bus controllers 21, 435 and 731 etc. adopt any chip conforming to the CAN bus specification, such as SJA1000.
所述的CAN总线收发器143,144,341,342,734和735等采用任何一款符合CAN总线规范的芯片,如:PCA82C250。The CAN bus transceivers 143, 144, 341, 342, 734 and 735 etc. adopt any chip conforming to the CAN bus specification, such as PCA82C250.
所述的光电隔离器141,142,433,434,732和733等采用任何一款传输延时足够小的光隔芯片,如:6N137。The optical isolators 141, 142, 433, 434, 732 and 733 etc. adopt any optical isolator chip with sufficiently small transmission delay, such as 6N137.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910272151 CN102026050A (en) | 2009-09-18 | 2009-09-18 | Optical fiber CAN bus hub and networking method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910272151 CN102026050A (en) | 2009-09-18 | 2009-09-18 | Optical fiber CAN bus hub and networking method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102026050A true CN102026050A (en) | 2011-04-20 |
Family
ID=43866807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200910272151 Pending CN102026050A (en) | 2009-09-18 | 2009-09-18 | Optical fiber CAN bus hub and networking method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102026050A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102904786A (en) * | 2011-07-27 | 2013-01-30 | 上海联影医疗科技有限公司 | Optical fiber CAN (controller area network) bus node unit and CAN bus topology thereof |
CN103368649A (en) * | 2012-03-27 | 2013-10-23 | 北京华美煜力电力技术有限公司 | Anti-interference transmission system for remote control signals of power grid |
CN104506400A (en) * | 2014-11-12 | 2015-04-08 | 南京理工大学 | Wiring method for improving reliability of controller area network (CAN) bus and CAN bus system |
CN106375010A (en) * | 2016-08-31 | 2017-02-01 | 中国船舶重工集团公司第七〇二研究所 | Apparatus for controlling CAN bus of optical fiber local area network and application thereof |
CN109412918A (en) * | 2018-10-29 | 2019-03-01 | 北京无线电测量研究所 | A kind of CAN communication system |
CN109561005A (en) * | 2017-09-26 | 2019-04-02 | 湖南中车时代电动汽车股份有限公司 | A kind of CAN bus network-building method and the data transmission system based on CAN bus |
CN109873676A (en) * | 2017-12-05 | 2019-06-11 | 艾乐德电子(南京)有限公司 | A kind of CAN bus asynchronous communication method and network based on optical fiber |
WO2023283414A3 (en) * | 2021-07-09 | 2023-02-09 | Morrison Brian D | Hybrid wire-fiber data networks for electromagnetic and/or ground-noise environments, components thereof, and systems incorporating same |
CN115776421A (en) * | 2022-11-02 | 2023-03-10 | 西安现代控制技术研究所 | Electromagnetic isolation circuit and method of high-speed network bus |
-
2009
- 2009-09-18 CN CN 200910272151 patent/CN102026050A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102904786B (en) * | 2011-07-27 | 2016-08-03 | 上海联影医疗科技有限公司 | A kind of optical fiber CAN bus node unit and CAN topology thereof |
CN102904786A (en) * | 2011-07-27 | 2013-01-30 | 上海联影医疗科技有限公司 | Optical fiber CAN (controller area network) bus node unit and CAN bus topology thereof |
CN103368649A (en) * | 2012-03-27 | 2013-10-23 | 北京华美煜力电力技术有限公司 | Anti-interference transmission system for remote control signals of power grid |
CN104506400A (en) * | 2014-11-12 | 2015-04-08 | 南京理工大学 | Wiring method for improving reliability of controller area network (CAN) bus and CAN bus system |
CN106375010A (en) * | 2016-08-31 | 2017-02-01 | 中国船舶重工集团公司第七〇二研究所 | Apparatus for controlling CAN bus of optical fiber local area network and application thereof |
CN106375010B (en) * | 2016-08-31 | 2019-01-15 | 中国船舶重工集团公司第七一二研究所 | A kind of fiber optic local area network CAN bus control device and networking |
CN109561005A (en) * | 2017-09-26 | 2019-04-02 | 湖南中车时代电动汽车股份有限公司 | A kind of CAN bus network-building method and the data transmission system based on CAN bus |
CN109873676B (en) * | 2017-12-05 | 2020-07-03 | 艾乐德电子(南京)有限公司 | CAN bus asynchronous communication method and network based on optical fiber |
CN109873676A (en) * | 2017-12-05 | 2019-06-11 | 艾乐德电子(南京)有限公司 | A kind of CAN bus asynchronous communication method and network based on optical fiber |
CN109412918A (en) * | 2018-10-29 | 2019-03-01 | 北京无线电测量研究所 | A kind of CAN communication system |
WO2023283414A3 (en) * | 2021-07-09 | 2023-02-09 | Morrison Brian D | Hybrid wire-fiber data networks for electromagnetic and/or ground-noise environments, components thereof, and systems incorporating same |
US11677473B2 (en) | 2021-07-09 | 2023-06-13 | Brian D. Morrison | Hybrid wire-fiber data networks for electromagnetic and/or ground-noise environments, components thereof, and systems incorporating same |
CN115776421A (en) * | 2022-11-02 | 2023-03-10 | 西安现代控制技术研究所 | Electromagnetic isolation circuit and method of high-speed network bus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102026050A (en) | Optical fiber CAN bus hub and networking method thereof | |
CN202085309U (en) | Indoor Coverage System of Digital Repeater Using Mixed Networking of Cat5e Lines | |
CN205320075U (en) | Multi -service digit optical transmitter and receiver based on optic fibre ethernet | |
CN112865880B (en) | System and method for one-way data transmission through optical port | |
CN101005427A (en) | 485 bus system and method for transmitting data | |
CN101582723B (en) | CAN bus physical layer structure based on 1XN passive optical splitter (POS) | |
CN101719791A (en) | Optic fiber transceiver having remote monitoring function and data transmission method | |
CN102904786B (en) | A kind of optical fiber CAN bus node unit and CAN topology thereof | |
CN106375010B (en) | A kind of fiber optic local area network CAN bus control device and networking | |
CN114039809A (en) | CAN remote communication system based on optical transceiver | |
CN107682084A (en) | A kind of photoelectric communication conversion equipment and photoelectric communication system | |
CN105515927A (en) | Remote serial port communication system and method based on Ethernet Cat.5 wiring framework | |
CN109729444B (en) | ONU equipment, PON-CAN bus architecture and robot system | |
CN104734780A (en) | Passive light-splitting RS-485 optical fiber bus local side system | |
CN112260760B (en) | Nuclear power plant distributed control system field bus system based on optical loop | |
CN207801989U (en) | A kind of interchanger of long range Industrial Ethernet transmission | |
CN203847102U (en) | CAN bus and 485 bus node circuit | |
CN105991195A (en) | Fiber-to-CAN circuit applied to plastic optical fiber network | |
CN106850069B (en) | Data optical fiber cascading device and system | |
CN107948101A (en) | A kind of interchanger and method of the transmission of long range Industrial Ethernet | |
CN103124233B (en) | A kind of signal relay system and its implementation | |
CN203618007U (en) | Multichannel Ethernet cable extender main terminal with optical port | |
CN209400918U (en) | CAN bus network structure | |
CN1333560C (en) | High-performance optical fibre CAN communication system for strong electromagnetism interference environment | |
CN103746717A (en) | CFP connector and CFP transmission architecture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110420 |